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fields on area metric backgrounds, we show that the radiation-dominated epoch of
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complements the previously derived prediction of a small late-time acceleration
of an area metric universe.
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1. Introduction

Refinement of the standard metric to an area metric spacetime structure provides an
explanation for the small acceleration of the late universe filled with non-interacting string
dust [1]. This prediction intriguingly follows solely from reading the Einstein—Hilbert
gravitational action as dynamics for an area metric spacetime structure [2], without the
need for any additional, strongly model-dependent, assumptions such as the existence of
dark energy.

In the present paper, we demonstrate that area metric cosmology is also consistent
with what is known about the early universe, in particular, about the radiation-dominated
epoch. In order to substantiate this claim, we first address a number of conceptual
issues, such as the consistent coupling of fermions to area metric backgrounds, and the
identification of bosonic and fermionic radiation fields in terms of invariants of the relevant
field strengths. These results enable us to derive the equations of state for a radiative
string fluid. Remarkably, we find that area metric cosmology filled with bosonic and
fermionic string radiation is exactly equivalent to Einstein cosmology with a standard
perfect radiation fluid. Hence important phenomenological tests, such as successful
nucleosynthesis [3, 4], are passed with flying colours by area metric cosmology.

These observationally consistent predictions for the early and the late universe [5, 6]
are all the more remarkable in that they follow from a single geometric hypothesis, namely
that the classical spacetime structure needs to be refined to an area metric one. This
assumption, that physical spacetime is described by an area metric, in turn simply casts
into geometric form what we have learnt from string theory: the massless modes of the
quantum string generate an effective geometry richer than what can be described by
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Lorentzian manifolds. Indeed, it has been shown that the generalized backgrounds [7]-
[19] produced by fundamental strings and even D-branes can be succinctly viewed in
terms of area metric manifolds [20]. Conversely, on an area metric manifold, the minimal
mechanical objects are strings; this fact manifests itself in area metric cosmology by
fluids that are necessarily composed of strings rather than point particles. For a formal
discussion of these points, we refer the reader to [2].

The present article builds on the constructions of our previous papers [1,2]. For the
convenience of the reader, section 2 concisely reviews the results relevant here. In the
following sections, we develop, from first principles, essentially three new techniques for
area metric spacetime, which are crucial for the definition of a radiation-dominated phase
in an area metric cosmology. First, we devise a consistent coupling of fermions to an
area metric in section 3. Second, the physical momentum of fermions and gauge fields is
identified from the respective source tensors in section 4. Third, we further deepen our
understanding of the null geometry of area metric spacetimes; in particular, we derive
a dual to the Fresnel tensor in section 5. With these tools at hand, we identify, in
section 6, bosonic and fermionic radiation fields in an invariant manner, by requiring that
the physical momentum for radiative solutions should be null with respect to the dual
Fresnel tensor. It is then straightforward to derive the equations of state for a bosonic or
fermionic radiative string fluid, and to prove the full equivalence of area metric cosmology
to standard Einstein cosmology in a radiation-dominated phase, in section 7. In section 8
we conclude with a discussion. Appendix is added to display our conventions.

2. Area metric spacetime in a nutshell

We recall the definition and central constructions of area metric geometry, as far as
they are of relevance for the present paper. An area metric spacetime (M, G) is a four-
dimensional smooth manifold M equipped with a fourth-rank covariant tensor field which
features the symmetries

Gabcd - chab - _Gbacd - _Gabdc (1)

and is invertible in the sense that a contravariant tensor field with components G
exists, so that everywhere on M

G G ea = 4020, (2)

We also require the area metric to be Lorentzian, in a sense to be defined below. Note that,
due to its symmetries, the area metric can be regarded as a symmetric 6 x 6 matrix with
Petrov indices which arise from the antisymmetric index pairs [ab]. Using the determinant
Det of this matrix, an area metric immediately gives rise to a volume form and a dual
4-tensor

1/6 abed —1/6 _abed
Wa abed = \Det G‘ / €abed s wa = —]Det G‘ / € s (3)
which in particular allow a unique decomposition of the inverse area metric as

Gabcd _ Cabcd 4 ¢w%bcd’ (4)

where ¢ is a scalar field, and C' an inverse area metric featuring the additional cyclicity
symmetry C™labd =0,
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The null geometry of the area metric manifold is determined solely by the cyclic part
C', and encoded in the totally symmetric Fresnel tensor [2,21, 22]

igkl __ 1 mnr (i ~j|ps|k ~l)qtu
g e _ﬂownpqwC’/‘stuC ( CJ' | O) . (5)

The Fresnel tensor defines the null geometry because the gradient p of light wave fronts
in electrodynamics on area metric manifolds satisfies the local condition G*7*'p,p,;prp, = 0.
We will make essential use of a dual to the Fresnel tensor, which we derive in section 5,
in order to identify bosonic and fermionic radiation fields on area metric backgrounds.

While the Fresnel tensor only depends on the cyclic part C' of the inverse area metric,
the extraction of an effective metric gg from area metric data requires the use of the scalar
¢ in the decomposition (4): we define

w1 0?
g =
“ 2 OpaOps p=dé

(G pipspep) . (6)

The geometric significance of this construction is explained in [2]. Finally, we define
the signature of the area metric manifold (M, G) as the signature of the metric go. In
particular, a Lorentzian area metric manifold (M, G) is one for which g has signature
(— + ++). In summary, an area metric spacetime manifold gives rise to a hierarchy of
derived structures

Lorentzian area metric G — Fresnel tensor § — Lorentzian metric gg.

A special class of area metric spacetimes (M, () is given by what we call almost metric
spacetimes; these are induced by a metric spacetime (M, ¢g) and an additional scalar field
¢ by virtue of

Gabcd _ gacgbd o gad be + ¢wabcd (7)

For such area metrics, the Fresnel tensor simply turns out to be G¥¥ = ¢(@g*)  and the
metric gg recovers the inducing metric g. The null condition reduces to (g®papy)? = 0, as
we expect for a basically metric manifold. Generically, however, area metrics are not of
the simple form (7); the area metric G contains truly more information than the effective
metric g, and the null geometry is described by the Fresnel tensor, and not by a metric.
This follows already from counting algebraic degrees of freedom: in four dimensions,
the case of immediate physical interest, an area metric features 21 algebraic degrees of
freedom, as opposed to the 10 degrees of freedom for a metric.

The refined geometry of an area metric manifold leads to a sixth-rank curvature tensor

R[ 1a2}[b1b2 if] = 6[(11 Raz balij <viLCXala2b1b2j + %Xalaninqulbgj _ (Z PEIN ])), (8)

where R and V¢ are the Riemann tensor and the Levi-Civita connection, respectively,
of the effective metric gg, and the non-metricity tensor X is defined by

Xa1a2b1b2f = iGalannvmenble = Xlnel [b1b2]f- (9)

The area metric curvature tensor, as well as the associated area metric Ricci tensor
(Re)ab = RP%paqp and area metric Ricci scalar Rg = g% (R )ap, reduce to their metric
counterparts for almost metric area metrics; X simplifies in this case in such a way that
the [ij] antisymmetrization removes it from the curvature. These correspondences show

Journal of Cosmology and Astroparticle Physics 12 (2007) 013 (stacks.iop.org/JCAP /2007 /i=12/a=013) 4


http://stacks.iop.org/JCAP/2007/i=12/a=013

Radiation-dominated area metric cosmology

that area metric geometry is downward compatible to metric differential geometry, which
is therefore contained as a special case.

The above facts show that the Einstein—Hilbert action may be read as an action also
for the refined area metric background: all metric objects are simply refined to their area
metric counterparts. We hence obtain the area metric gravitational dynamics

1
Sgrav + Sm == _/ wa RG + / [’ma (10)
2k Jur M

where we have added an action for matter defined on an area metric background. The
constant x will turn out to be x = 16wGy for Newton’s constant Gy. How the observed
standard model fields couple to area metric spacetime is discussed in the following section.
The gravitational field equations are derived from (10) by variation with respect to the area
metric, see [2]. Important for the purpose of the present paper is that the diffeomorphism
invariance of the above theory immediately leads to a conservation equation

TapeaVEC G 4 4(VEC 41X, ) (G Tper) = 0 (11)

for the fourth-rank tensor

Tabcd = _|]:)et G|_1/6%' (12)
We call T" the source tensor of matter on an area metric manifold. Its relation to the
physical energy-momentum tensor will be studied in section 4. Since the source tensor is
derived by variation with respect to the inverse area metric, it has the algebraic symmetries
of an area metric.

Symmetries of an area metric manifold are, like in the metric case, expressed in
terms of Killing vector fields K, for which the Lie derivative LxG = 0. Homogeneous
and isotropic four-dimensional Lorentzian area metric manifolds for instance, providing
the geometric ansatz for cosmology, are obtained by imposing the relevant Killing vector
fields and using the fact that the pull-back of an area metric to any three-dimensional
submanifold is equivalent to metric geometry [2,24]. One obtains that area metric
cosmology is of the almost metric form (7), where now

Gap Az da® = —dt? + a(t)? dX} (13)

is a standard FLRW metric with scale factor a and spatial curvature £k = —1,0, 1, and ¢
a function only dependent on cosmological time [2]. Thus four-dimensional homogeneous
and isotropic area metric spacetime features a scalar degree of freedom in addition to the
standard metric scale factor. Recall that almost metric backgrounds have Fresnel tensor
Gk = ¢l gkD) and the derived effective metric g = ¢. For area metric cosmology, the
gravitational field equations simplify drastically; the purpose of this paper is to derive
and solve these equations for radiation-dominated epochs of the early universe.

At large scales, the matter in an area metric universe is appropriately described by
a string fluid. That fluids must be constituted of strings, rather than point particles, is
an immediate consequence of the refined geometric structure presented by area metric
spacetimes. This refinement is mirrored in the string fluid by the presence of three
macroscopic variables p, p, ¢ (instead of only two, i.e., density and pressure, on metric
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spacetime). The source tensor for a three-component string fluid takes the form

3
Tovea = (P + D)3 Y Cabiy 2 Geart' + P Gasea + (5 + @) Glabed, (14)

I=1

where ()7 are tangent areas to the strings constituting the fluid, generalizing the tangent
vectors u to particle worldlines appearing in the description of perfect fluids on metric
backgrounds. Three components are needed in order to allow for local isotropy of the
fluid, despite the extended nature of the individual strings.

A key task in the discussion of various epochs of cosmological evolution is therefore
the identification of the equations of state governing the variables p, p, ¢, appropriate for
the kind of matter present. The equations of state for non-interacting string dust, p = 0
and ¢ = —p, have already been identified in [2]. For bosonic and fermionic radiation
fluids, we will show in the following few sections that one of the equations of state takes
the form

q=0, (15)

which is the key result in proving our claim that the radiation-dominated epoch of area
metric cosmology does not differ from general relativity. Like in the case of string dust,
the equation of state for radiation on an area metric manifold is a non-trivial result,
and requires the development of some additional technology. We start by studying the
coupling of gauge bosons and fermions to an area metric in the following section.

3. Gauge bosons and fermions

For our study of the radiation-dominated epoch of area metric cosmology, we need to
know how gauge bosons and fermionic matter couple to the area metric background.

As the reader may recall from [2], or as she learns here, abelian and non-abelian gauge
bosons directly couple to the area metric; the matter action for gauge fields reads

S::—%/“wGTYG““F@FQ, (16)
M

where F4 = 0,A;' — 0, A2 + fA5c AP AT for structure constants f“ o of some Lie algebra,
and the trace is taken over the gauge algebra indices. The variation of this matter action
with respect to the area metric yields the source tensor

Tabcd - % Tr Fachd - F%QGabchijkl Tr Eijla (17)
which is, and this will become important later, trace-free:

G g = 0. (18)

The coupling of fermions requires a spin structure. Here we will make use of the fact
that an area metric spacetime (M, G) gives rise to the hierarchy of structures G — G — g,
as discussed in section 2. The simplest procedure to introduce fermions is to define a spin
structure related to the effective metric go. For the case of an almost metric background,
on which the cosmological conclusions of this paper are based, we demonstrate explicitly
the consistency of this coupling, at the end of the present section. This coupling also
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provides us with the following important result: the source tensor for Dirac fermions in a
cosmological area metric background satisfies

WA g = 0, (19)

which ensures, among other things, the conservation of the physical energy—momentum
of our fermions, see section 4. The remainder of this section is devoted to the derivation
of identity (19).

Before employing techniques specific for area metric backgrounds, we fix our notation
by concisely recalling some standard constructions for Dirac spinors on curved metric
spacetime; see also appendix for a consistent set of conventions used in this paper. The
effective metric can be diagonalized locally by the introduction of a tetrad e#, i.e., a local
basis {e#} of the cotangent bundle, where italic characters denote spacetime indices and
Greek characters denote flat tangent space indices:

94Gab = egeznuuu (20)

where 7 is the Minkowski metric of mainly plus signature. The choice of the tetrad is not
unique; tetrads are only determined up to a local Lorentz transformation e? — A(z)", e,
so that all constructions involving the tetrad must be covariant under local Lorentz
transformations.

In order to achieve this, we introduce a covariant derivative D that acts on tensor fields
valued in some representation of the local Lorentz group. More precisely, we write group
elements given by parameters w as exp(w*’%,, /2), compare (A.7), for the six generators
EWAB with X, = X, of some representation of SL(2,C). Let 14 be the components
of a tensor field valued in the corresponding representation vector space, suppressing any
spacetime tensor index. Then the covariant derivative is defined as

(Da¢)A = V£C¢A + %wlwazuuAB@Z)By (21)

where w", is the so-called spin connection, to be determined below. The use of V¢
ensures covariance with respect to spacetime diffeomorphisms while the spin connection
guarantees local Lorentz invariance. If a field carries indices corresponding to various
representations X(1, ¥?) . of SL(2,C), then further terms containing the additional
generators are simply added to (21). In order to determine the spin connection in terms
of the tetrad, we require that the covariant derivative commutes with the mapping of
any vector field X to the flat tangent spaces, ie., e} D, X" = D,(e}X"). Hence the
covariant derivative of the tetrad must vanish; since e}’ carries one spacetime index and
one index corresponding to the vector representation of the Lorentz algebra, for which
Yuws = 2000, this amounts to

D€} = O0,e — e, el + wh qel = 0. (22)

Antisymmetrization of this equation over the indices [ab] removes the Christoffel symbols
of the effective metric; the resulting equation may be solved for the spin connection in
terms of the tetrad and the inverse tetrad, i.e., the dual basis {e,} of the tangent bundle

defined by el et = o7
Wy = 5" (Qaeh — Ohel) — (1 p) — 5" e (Dpees — Oetro) €. (23)
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Note that flat indices are consistently raised and lowered with 7, and spacetime indices
with the effective metric gg. Also note that w*?, = —w?*,. Using the result for the spin
connection and solving for the Christoffel symbols then shows consistency with their usual
definition via the partial derivatives of the effective metric. To obtain the expression in
terms of the tetrad, one simply replaces g¢ using (20). Local Lorentz transformations
el +— A(x)*,e” hence do not change I'YC, but the spin connection transforms as a
connection should:

W o s AN 0P + A, AY (24)

Now consider fields valued in the Dirac-spinor representation of the Lorentz algebra,
whose generators are given by ¥, = [[',,I',]/4, with the algebra relations given in (A.6)
and the Dirac gamma matrices I'* which form the Clifford algebra (A.4). For notational
clarity, we will mostly suppress the spinor representation indices A, B, .... It is convenient
to define the spacetime Dirac matrices 7v* = eI'* in terms of the tetrad and the flat
spacetime Dirac matrices. Their Clifford algebra immediately implies

{7*,7"} = 2g¥14. (25)

Some calculation shows that the covariant derivative of the spacetime Dirac matrices
vanishes:

Da(1) 4 = €& (50T 5 + 3000 Ao (T") s — $07a(S0) (T ) = 0. (26)

Moreover, the expression v*D,1¢ has a very simple transformation property under local
Lorentz transformations:

VDo) = A1 j27" Do), (27)

where Aq/, is the spinor representation of the local Lorentz group as defined in (A.7).
Showing this requires the use of (A.8) and the identity d,A*, = A" 0,w,, which follows
from the form of the Lorentz generators in the vector representation. Nothing of the above
is new.

After these preliminaries, however, we are in the position to write down the action
for a massive Dirac spinor on an area metric manifold, both invariant under spacetime
diffeomorphisms and local Lorentz transformations of the tetrad chosen to represent the
effective metric:

Sy = /M . (%WDaw ~ 5Dl imw) , (28)

where the conjugate spinor is ¢ = QNFO_. Note that the action is real, compare (A.10).
Variation of this action with respect to v yields the Dirac equation of motion

(”yaDa + 1—127“Xa — m) Y =0. (29)

The term involving the non-metricity tensor X arises from an integration by parts. Using
relation (A.5), it can be checked that the equation arising from variation with respect to ¢
is the Hermitian conjugate of the equation above, multiplied by I'’, and hence consistent.
Note that this would not have been the case, had we not chosen the action symmetric in

¥ and 1.
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The action for the massive Dirac spinor depends on the area metric directly through
the volume form, and more implicitly through the tetrad that represents the effective
metric and appears both in the spacetime y-matrices and in the spin connection in the
covariant derivative D. To obtain the source tensor, i.e., the variation of the action with
respect to the area metric, we first need to derive the variation with respect to the tetrad.
It is not difficult to find that

0eSy = / we b€, —(W D) — D) + / wG 8y e T, Toyy. (30)
M M

The second integral can be shown to vanish by substituting expression (23) for the spin
connection, and using the symmetries. The variation of the action with respect to the
effective metric can be written as

55, 165,
= — ery,,; . 31
598~ 2 e (31

Hence the total variation of the action with respect to the area metric background is

350 = [ e (86N s + 842V ). (32)
M
where the quantities
i
Vé’pabcd - 24 abcd ( ¢7 DP¢ _DP¢7p¢ m¢¢) (33&)
v, —1(15 Diytp = Diatyyd)) (330)
ggab 4 ,7((1 b) (a ’yb)

have been defined for convenience; the remaining calculation of the variational equations
now proceeds precisely as in [2]: compare equations (B.14)—(B.17) there, for the case of
general area metric backgrounds.

In this paper we are interested in applications to cosmology, so that we choose to
display only the almost metric case in more detail. Then the variations Kg and Kf; of
the fermion action with respect to the irreducible components C' and ¢ of the inverse area
metric have the same form as equations (C.1) and (C.3) of [2]. We may thus deduce the
fermion source tensor from the relations

K¢ = wzjklj?fklu Kgabcd bcd + 12¢ ga[cgd bt 24K W abed; (34)
and obtain
T;icd = Vg)abcd + V [a[cgd]b] 12 V;bga[cgd]b‘ (35)

Using the Dirac equation (29) allows a number of on-shell simplifications. One finds
vanishing trace ngb = 0 and Vg’abcd = 0. The latter result is not surprising; as is the
case for metric backgrounds, the Dirac Lagrangian also vanishes on-shell in area metric
geometry. Note that all terms in the on-shell fermion source tensor contain at least one
metric factor, so that the following relation holds:

Wity = 0. (36)
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So we have proven (19) for a cosmological background, a result that will be crucial for the
identification of fermionic radiation in cosmology.

Finally, one can check the consistency of the coupling of fermions to the area
metric background by demonstrating that the fermion equation of motion (29) implies
conservation of the source tensor, as in (11). If this were not the case, the conservation
equation would become a constraint equation for the fermion field, and remove essential
degrees of freedom. The calculation is performed for the simple case of almost metric
manifolds, with source tensor (35), which underlies our cosmological conclusions in
this paper, and requires a number of spinor identities. The commutator of covariant
derivatives acting on the spinor field, for example, is proportional to the Riemann
curvature, i.e., [Dy, DyJtb = 1/2 R" 4 X,,¢. Writing [) = v*D,, this in turn implies
D*D,b = D> — 1/2 R#P°Y,, 5,1, Similar identities hold for the conjugate spinor 1,
and allow the conversion of all derivatives in the conservation equation into simpler
expressions by means of the Dirac equation of motion. After some algebra one thus
finds a remaining expression of the form ewRP"‘“’ﬂ{Fu, Y0 }1. Now the anticommutator
gives totally antisymmetric indices, {I',, ¥ s} = I'[,I',I'5, so that the expression vanishes
because of the symmetries of the metric Riemann tensor. Hence the fermion equation
of motion indeed implies source conservation, which renders the fermion coupling to the
area metric background consistent.

The appearance of more than one geometric structure in the action of matter fields
coupled to area metric backgrounds, cf. the action for gauge fields (16) and fermions (28),
prompts the fair question of whether the motion of the corresponding matter can be
in accordance with various versions of the equivalence principle (although all those
structures directly derive from the area metric and only the area metric). A thorough
investigation of this question is subtle and somewhat beyond the scope of the present
paper. We hence content ourselves here with the following brief remarks. Already
superficial counting of the algebraic degrees of freedom of an area metric shows that
the Einstein equivalence principle, which asserts the full equivalence of all freely falling,
non-rotating laboratories in the sense that all local physics (except gravity) inside these is
described by special relativity, cannot generally hold in four dimensions. In contrast, the
minimal coupling prescription for matter in standard general relativity implements this
version of the equivalence principle: all matter sees the same metric. Indeed, a general
linear transformation in four dimensions is determined by 16 real numbers, which suffices
to bring the 10 degrees of freedom of a metric locally to its Minkowski normal form, but
it cannot generally achieve the same for the 21 degrees of freedom of an area metric.
This could potentially be a problem, since in recent years various aspects of the Einstein
equivalence principle have been tested experimentally, such as the constancy of constants,
local Lorentz invariance, the universality of free fall, and the universality of gravitational
redshift. For a detailed definition of the various versions of the equivalence principle and
a thorough discussion of these tests, see [25]. General consistency of area metric gravity
with tests of the Einstein equivalence principle, if given at all, is certainly not obvious
and deserves further investigation. However, reassuring partial results on the validity of
the weak equivalence principle, which asserts the equivalence of gravitational and inertial
mass (or energy for light) and is supported extremely well experimentally [26], can be
derived. It can be shown from first principles that light rays in an area metric background
are described by null geodesics with respect to a Finslerian norm [27] (which is given in
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terms of the Fresnel tensor) independent of their energy, and that string fluids admitting
a particle fluid limit effectively move along non-null geodesics with respect to the same
Finslerian norm [28], independent of their mass density.

4. Physical momentum of matter fields

In this section, we identify the physical momentum of Dirac fermions and gauge fields
on an area metric background, using the insights afforded above. The diffeomorphism
invariance of the gravitational action (10) directly implies an area metric Bianchi identity,
and the conservation equation (11) of the rank 4 source tensor (12). The natural question
arises of how the fourth-rank source tensor T,;.4 is related to the energy—momentum of
matter. To this end, define the second-rank tensor

Teffab - 4quTanqrb (37)

from the source tensor. For the case of immediate interest to this paper, namely for
almost metric spacetimes describing area metric cosmology, the interpretation of T.g as
the physical energy—momentum is easily proven to be correct, as follows.

Using the effective metric, the source tensor may be decomposed into a Weyl part
T :,ch, a Ricci part Ty, = ¢"™"Thany, a scalar part T = ¢™"¢"T,.ms and, because
of the generic non-cyclicity of the source tensor, a totally antisymmetric contribution
T = Wi Tpqrs, such that

Tabcd = T(yl?/cd + 2T[a[cgd]b] - %Tga[cgd]b - 2_14Tujgabcd‘ (38)

The tensor TV has the symmetries of the Weyl tensor, so that it is trace-free with respect
to the effective metric g. Expression (37) now simplifies to

Teg® = 8T% + ¢S T. (39)

In the following we will identify this tensor as the physical matter energy-momentum
tensor as it appears from the gravitational equations of motion in the almost metric case.
These follow from the action (10), compare [2], as

Rab — %Rgab — gZ;_l <Vaabq~5 - gabmgg) - ﬁ<4Tab + %ngabT)a (40&)
—o(1 — ¢)Y2R = kT, (40b)
0 = K/Tcxycd, (400)

where we have defined ¢ = (1+¢2)"/2. (Note that the sign of ¢ is lost in this redefinition,
so that we have to restrict to positive ¢, or 0 < d; < 1. There is another branch of negative
¢ for which one can replace ¢ — —¢ also in the equations, so that —1 < ¢ < 0.) The
above equations tell us that the Weyl part TW of the matter source tensor has to vanish for
consistent coupling to almost metric backgrounds. This simply shows that there is matter
whose backreaction requires more generic area metrics than those of almost metric form.
We also see that the tensor (39) indeed appears as a multiple of the matter side of the
first, Einstein type, field equation. Hence our identification of T, as the effective matter
energy-momentum is validated. However, we still have to explain why the factor +4 in
our definition (37) must be chosen. But first note that this fixes the value of the constant
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Kk in the equations. The matter side of the first equation can now be written as /2 Teg ap,
so that one needs kK = 167Gy, with Newton’s constant Gy, to obtain the correct Einstein
limit.

The normalization of T,g is quickly calculated by considering the purely metric
induced case, which is the limit of the almost metric case for ¢ — 0: consider the usual
definition of energy-momentum by variation of the matter action Sy,

5, 08, 0CLY

T% = 2|det g|~/?=2 g, = 2|det g| /2 b
b | g| 6gacg b | g| 60[)(]7‘5 59(10 < Yeb

(41)

where we assume that the matter action is one that can be generalized to an area metric
background and reduces to a metric action for Gaed = Cyaped = 2Gacgap, S0 that the
second equality is justified. Now rewrite the expression

e
0Gac Jeb

C«P‘J[T|‘155] (42)

Using the definition (12) of the source tensor and the determinant identity |Det C,| =
|det g|?, it follows that the energy—momentum tensor in equation (41) precisely coincides
with the effective energy-momentum tensor (37). This confirms the normalization by the
factor +4.

A simple conservation law for the effective energy—momentum density, denoted by a

tilde,
Tog" = 4|Det G|1/6G”qupqrb, (43)

follows from the source tensor conservation equation (11). It is not difficult to see that
the term X, which arose from an integration by parts, can be removed by densitizing the
equation; we may hence write

OpTes”s + |Det G|/°T 00, G = 0. (44)

Note that the conservation of effective energy-momentum density depends on whether
or not the second term in the equation vanishes. In the almost metric case, this term
simplifies; then

0, Teﬂ i+ \/_ ;deTabcd = 0. (45)
m
Since d¢ is generically non-zero, the effective energy-momentum density is only conserved
if the matter source has no totally antisymmetric component, i.e., if T = w®“T 5 = 0.
As we will show below, this is the case for an early universe filled with fermionic and
bosonic radiation.
The most relevant insight for our further developments in this article is that the
physical momentum of the matter fields is given by

jp - Teﬂp07 (46)

choosing a gg-orthonormal frame {eg, e, } for an observer with 4-velocity ey = u. Note
that for the identification of radiation fields, whose physical momentum j is Fresnel-null,
the normalization of the observer’s velocity u is irrelevant.
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Before continuing this discussion, we remark that T,g also seems to be meaningful
as the physical energy—-momentum of fields on general area metric backgrounds, not
only the almost metric ones which are of direct relevance for our application to
cosmology. An explicit calculation on general area metric manifolds demonstrates this
for electrodynamics (16): we will show the equality of —T.4% to the Hamiltonian energy
density of the abelian gauge field A. The calculation of the effective energy-momentum
tensor from the source tensor (17) yields

Toq’o = [Det G|'/® (RGP Fys Fys — LGP F 5F.) (47)

denoting spatial indices by Greek letters. The Hamiltonian density on the other hand is
most easily obtained from the Lagrangian density £, in the temporal gauge Ay = 0, in
which it becomes

La=—1DetG|'/ (GQWFWF% + 4GP AgFys + 4G°’@°5Aﬁ/15)- (48)

The momentum conjugate to Az is defined as 117 = 9L 4/ 8/15 and the Hamiltonian density
is H= Hf@Ag — L4. One thus finds precise agreement, H = —T,5%.

5. More on null geometry

Equipped with the physical momentum density for matter fields coupled to an area metric
background, we would like to identify radiative solutions by null momentum. Recall from
section 2 that null covectors are defined via the Fresnel tensor G¥* see (5), associated
with the area metric. These Fresnel-null covectors have immediate physical significance
as the directions of light fronts. For the identification of bosonic and fermionic radiation
fields in the next section, however, we need to have at our disposal also a dual G;jj; of the
Fresnel tensor, in order to define radiation fields via null physical momentum vectors in
the next section.

The basic idea leading to the construction of the dual Fresnel tensor may be borrowed
directly from classical string theory; we know that the endpoints of open strings on metric
manifolds follow null curves. We now carry this result over to open strings on area metric
manifolds: consider an open string worldsheet (7, ) with local tangent area Q = & A 2’
that solves the stationarity condition [20]

[dGC(Qa )](Qv ) =0, (49)

where G© denotes the cyclic part of the area metric, so that this worldsheet becomes a
minimal surface on (M, G). We parametrize the worldsheet so that one of its boundaries
lies at 0 = 0 and impose von Neumann boundary conditions z/(7,0) = 0. Since we are
interested in the motion of the boundary curve, we Taylor-expand around ¢ = 0, which
gives

z(7,0) = yo(7) + 3072(7) + O(0”), (50)

where we write y;(7) for the ith derivative (9,)'z(7,0). We substitute the expansion into
the stationarity condition. To lowest order O(¢") this yields a single contribution, coming
from the second derivative z”, which has to vanish on its own:

Gbea(Y0)9596Y5 = 0. (51)
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Choosing a basis {e;, €5} of the local tangent spaces so that ey = ¥y, and using the

symmetries of GC, this equation becomes GY 5y‘2§ = 0. Since yo # 0 generically, the only

030

way to satisfy this condition is to require the vanishing of the determinant of G¢ 0508" ie.,

OaﬁVWOKA’LGg ORGOﬁO)\Gocwo = 0. Writing X = 9y we can obtain this covariantly as

gabchaXchXd _iwzﬂkl mnqu

C C aybycyd
24 e Gb|k‘n|ch)lqu X X X - O7 (52)

igm(a
which defines the totally symmetric covariant dual Fresnel tensor. Note that our choice
of the dual tensor wge implies that the dual Fresnel tensor only depends on the algebraic
curvature part G¢ of the area metric. These results easily generalize to higher dimensions,
which however will not be needed in the present paper.

We may thus call a vector X on an area metric manifold null if it is null with respect
to the dual Fresnel tensor according to equation (52). The same condition can be derived
from the framework of pre-metric electrodynamics [21]-[23], similarly to how we did it
in [2], but starting from a geometric definition of light rays [29]. With the notion of null
vectors on area metric manifolds at hand we finally turn to the discussion of radiation

fields.

6. Radiation fields

Collecting results from the previous three sections, we may now provide an invariant
characterization for radiation fields. We start from the physical definition of a radiation
field configuration as one for which the physical momentum (46) is Fresnel-null everywhere,

Gaveaj®j’i5% = 0. (53)

For our application to cosmology, we are only interested in homogeneous and isotropic
area metric manifolds, which take the almost metric form (7), as discussed above; then
the expression for the dual Fresnel tensor (52) becomes

Gusea = 120753 (54)
and the physical momentum conveniently simplifies to

7° = 8Ty + WM Ty ¢ 55, (55)
compare (39), where indices have been raised with the inverse metric ¢g=!, and where

the macroscopic observer’s frame defines the direction of time. We will now discuss the
specific cases of electrodynamics and Dirac spinors in turn.

For area metric electrodynamics, the source tensor is given by (16), with the trivial
gauge group U(1). The physical momentum thus becomes

J* = FPFqg+ jow,(F, )0y — 3G~ (F, F)6¥, (56)

where by our conventions G~(F, F) = G*F,,F.;/4, and similarly for the term with w,,.
A rather lengthy calculation, using the intermediate definitions Fyz = Ej for electric and
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Fop = wgoyapB” for magnetic components of the field strength, now reveals that

g ; a:bc d
abed, Og

which must vanish for radiation. But since each of the field invariants in the bracket
is positive, they must vanish separately. This in turn may be taken as an alternative
definition of radiation as solutions of area metric electrodynamics characterized by
vanishing field invariants Cy-1(F, F)) = 0 and w,(F, F') = 0. Finally, we conclude that for
gauge field radiation, the totally antisymmetric contribution to the source tensor vanishes,

A (F,F)? 4 wy(F, F)?), (57)

1 ¢ B
i wo(F, F) — mcg_l(ﬂ F) =0. (58)

For Dirac fermions we have the source tensor (35). Using the on-shell simplifications
this source tensor implies an effective energy-momentum tensor (39) of the form

P i _
T = 597Dyt — 597 Dby (59)

wgde Tabcd -

Since Tpg%, = 4G°TY, it immediately follows, again on-shell, that
i -
Gebedy = R (60)

Collecting the results (18), (58) for gauge fields, and (60), (36) for fermions, we thus
arrive at the conclusion that gauge field radiation and massless fermions on an almost
metric background satisfy the conditions

wgdeTade =0 and GadeTabcd = 0. (61)

In the following section, we will derive the equations of state for a radiative string fluid
from the vanishing of these two invariants.

7. Radiation-dominated area metric cosmology

Finally we turn to the effective string fluid that describes radiation fields in area metric
cosmology, both gauge fields and ultrarelativistic fermions, which for all practical purposes
may be treated as massless. Imposing the radiation conditions (61) on the source
tensor (14) for a general string fluid we obtain the equations of state for the macroscopic
variables p, p and ¢ that describe a radiation fluid:

G=0,  p+p—2pp* =0, (62)

These very simple equations of state present the technical key result of this paper. Note
here that the first relation § = 0, equivalent to wg®™T,.q = 0, also guarantees the
conservation of the effective energy-momentum (37), according to equation (45).

We will now demonstrate that these relations for the macroscopic string fluid variables
imply that an area metric cosmology filled with bosonic and fermionic radiation evolves
precisely as Einstein cosmology filled with a perfect radiation fluid. As was shown in [2],
the equations of motion for area metric cosmology (determined by a homogeneous and
isotropic FLRW metric g and scalar ¢) filled with a general string fluid (with p, p and §)
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are precisely equivalent to the equations for Einstein cosmology filled with a perfect fluid
whose energy density p and pressure p both depend in a rather intricate manner on the
more fundamental variables of the string fluid, p, p and ¢, and on the scale factor a and
the scalar field ¢. So, schematically, we have

Area cosmology (g, ¢)  +  String fluid (p, p, §)
<~
Einstein cosmology (g) +  Perfect fluid (p, p).

More precisely, one finds p = 3(x — y) and p = = + y, so that the effective equation of
state parameter becomes

p r+y
w="= =" 63
0" 3=y (63)
for
v=—Hoo ' +4r(p+§)0%,  y=4kq, (64)

where H = a/a is the Hubble function and ¢ is defined as in section 4. This mapping is a
convenient formal trick that allows to compare the predictions of area metric cosmology
to standard cosmology. The appearance of the gravitational degrees of freedom a and ¢
in (64), however, renders this map highly non-trivial; in particular, it is the exception
rather than the rule that specific, physically meaningful equations of state for the string
fluid variables p, p and ¢ will recover the physically corresponding equations of state for
a perfect fluid.

For non-interacting string dust, for instance, we have shown in [2] that the equations
of state take the form p = 0 and ¢ = —p; however, they do not imply p = 0 for the
effective pressure, which fact lies at the heart of the existence of the accelerating solution
for the late universe in area metric cosmology.

Our equations of state (62) for radiation string fluids, in contrast, imply that the
effective perfect fluid indeed satisfies the familiar equation of state for radiation,

p=3p (65)

as one easily verifies by insertion of (62) into (63). This immediately implies the
equivalence of area metric cosmology filled with radiation string fluids to FEinstein
cosmology filled with a perfect radiation fluid. Of course, area metric cosmology provides
a more detailed solution for the scalar field ¢ and the string fluid variables, but by a
miraculous cancellation these details do not in any way affect the evolution of the scale
factor.

Therefore the area metric cosmology of the early, radiation-dominated universe is
completely unchanged with respect to Einstein cosmology, so that all successes, such as
for instance nucleosynthesis (yielding the correct abundances of light elements already
in standard cosmology), are inherited. But as we saw in [2], the late universe in area
metric cosmology does depart from Einstein cosmology in allowing for the experimentally
observed accelerating expansion.

Journal of Cosmology and Astroparticle Physics 12 (2007) 013 (stacks.iop.org/JCAP /2007 /i=12/a=013) 16


http://stacks.iop.org/JCAP/2007/i=12/a=013

Radiation-dominated area metric cosmology

8. Conclusions

Nowadays, cosmology provides an excellent probe for our theories of nature; first, due
to the availability of reliable, and partly unexpected, observational precision data, and
second, because of the intricate interplay between different branches of fundamental
physics that is needed to draw realistic conclusions. While the non-trivial combination
of general relativity and the standard model of particle physics provides predictions
consistent with most data, the observed small acceleration of the late universe indicates
that our ideas about particle physics, or gravity, or both, might have to be changed in
order to satisfactorily explain this stunning observation [30]—[35].

The absence of a natural explanation within the cosmological standard model suggests
that there is something essential about the interaction of spacetime and matter that we
do not understand. This lack of understanding may quickly be parametrized in form
of a cosmological constant, or a more elaborate model of dark energy; but the inherent
difficulty of such purely phenomenological approaches is that we do not learn much at a
fundamental level from the failure or even success of any such particular model.

This insight is what has fuelled, at least from the point of view of relativists,
the excitement about string theory ever since it became clear that both gravity and
matter could arise from one fundamental principle, and their interaction be determined.
Unfortunately, the consistency of quantum string theory only in higher dimensions stands,
to the present day, in the way of unique phenomenological predictions. One qualitative
aspect of quantum string theory, however, which attracts increasing attention today, are
the refined effective geometries arising in form of two additional massless fields, the Neveu—
Schwarz 2-form and the dilaton, besides the graviton.

Area metric geometry is the geometrization of this insight: on the classical level, the
generalized effective backgrounds for strings can be neatly described by an area metric.
It is still too early to say much about the quantized string and its spectrum of massless
and massive modes; though quantum string theory on area metric backgrounds is highly
desirable, it seems to be a formidable task. But already the refined classical effective
background geometry comes with a great advantage. As we showed before, this structure
can be given consistent dynamics in four dimensions, which we interpret as a refined
gravity theory.

Intriguingly, the cosmology of this area metric gravity effortlessly provides a universe
with increasingly small late-time acceleration, while the early, radiation-dominated epoch,
as shown from first principles in this paper, evolves like in standard cosmology. Both the
early- and late-time behaviour are thus consistent with observations, and follow from the
single principle of an area metric spacetime structure. Especially since the derivation of
these predictions also required an understanding of the consistent coupling of bosonic and
fermionic matter, they provide non-trivial support for the consistency of an area metric
structure of physical spacetime.

More precisely, in this paper we studied the consistent coupling of Dirac spinors and
non-abelian gauge fields to an area metric. The deeper insights into the null geometry
of area metric manifolds, afforded here by studying open strings, were instrumental in
providing a physically meaningful definition of radiation on area metric spacetimes. We
showed that both radiation gauge fields and massless Dirac fermions are characterized by
the vanishing of two invariants of their on-shell source tensors, which refine the notion
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of an energy—momentum tensor in the context of area metric spacetime. The technical
key result of the paper, namely the equations of state for a string fluid describing bosonic
and fermionic radiation, was then derived by imposing that the same invariants vanish
for the source tensor of a string fluid. Other than in the case of a string dust fluid, which
leads to a late-time acceleration of the universe, the string radiation fluid does not induce
any deviation from Einstein cosmology in the early, radiation-dominated epoch of the
universe. This shows that the success of the theory in explaining cosmic acceleration does
not come at the cost of inconsistencies in the early universe.

Maybe the most desirable feature of the theory is its direct falsifiability, since no
undetermined new fundamental constant is introduced. The falsifiability is a direct merit
of using a refined geometry; on a metric manifold, in contrast, any modification of the
standard gravitational action requires the introduction of a length scale for dimensional
reasons alone. Pushing this length scale to smaller and smaller values may then always be
used to achieve compatibility with standard predictions within any experimental margin
of error.

In contrast, every single prediction made by area metric gravity provides a rigid check
on its validity. The next challenge is to derive predictions for the solar system, where the
reduced symmetry allows for even more deviation from purely metric backgrounds, as
compared to cosmology. One immediate consequence is the kinematical possibility for
arbitrarily large birefringence, which however is tightly constrained [28] by high precision
data. It has to be seen whether the gravitational field equations constrain the solutions
in such a way that birefringence is either absent or sufficiently highly suppressed. Again,
the absence of a freely adjustable scale makes this another really decisive test of the area
metric hypothesis.
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Appendix. Conventions

In contrast to most treatments of quantum field theory we employ a mainly plus
signature convention for the Lorentzian metric; our metric Riemann tensor is defined,
in components, as R%.y = ZFZMC] + QFZ[CbeI d and the Ricci tensor as Rpy = R%q4.
Lagrangian densities in the matter action S, = [ L, are written with positive
kinetic terms; then the Hamiltonian H = —TY, for the energy-momentum tensor
T% = 2/\/=g6Sm/0ga. Also, Ty > 0, so that the Einstein equations take the form
Rap — Rgap/2 = 81GNT .

For specific calculations with our conventions, we now also list consistent choices for
the treatment of spinors. Together with the two-dimensional identity matrix 1y, the
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Pauli sigma matrices

(1) e (0F) (A 5)

form a basis of the vector space of two-dimensional complex Hermitian matrices. They
satisfy the anticommutator relation {0, 0"} = 26°?1,. Using the notation

O'u = (]:[2,0'0[), 5'” = (—]IQ,O'Q), (AQ)

the Pauli matrices furnish us with a representation of the Dirac algebra on flat spacetime:

H = ( 60“ Jou ) . (A.3)

Indeed, the anticommutator relation of the Pauli matrices immediately translates into the
well-known anticommutator of Dirac gamma matrices,

{I, T} = 29" 1L, (A.4)

for flat spacetime metric n with mainly plus signature (1,3). This signature is a
consequence of the definition of ¢# which differs by a sign from that in most quantum
field theory texts. Note that this representation is defined up to unitary equivalence; any
redefined set of matrices I"* = UT'*UT for unitary U with UTU = 1, satisfies the same
Clifford algebra. It is very useful to have a simple expression for the Hermitian conjugate
of the Dirac matrices. In the representation introduced above one easily checks that

r#t = 7OrHro, (A.5)
but this statement is independent of an arbitrary unitary change of representation.

The commutator of the Dirac matrices gives, as usual, the generators of the Lorentz
algebra in the spinor representation:

EHV — i[lﬂu’ FV:I) [EHV’ Zpa] — ,r]puzau o npugo‘u _ (p PN O'). (A6)
A representation of the proper orthochronous Lorentz group, which is the subgroup
continuously connected to the identity, is then given by

Aijp(w) = exp (3w B") (A7)
for real antisymmetric parameters wy,. Note that A j(w)™" = Ay 2(—w); using this fact it
can be shown in standard fashion that the Dirac matrices transform as a Lorentz vector:

Al/g_lru/\l/g — A“prp. (A8)
From the simple behaviour of the gamma matrices under Hermitian conjugation, it follows

that 2T = P0xm 0 and hence that Al/QT = —FOAl/Q_IFO. The Lorentz transformation
of Dirac spinors ¢ and ¢ = ¢'T'° then becomes

Y= Ayt PPy (A.9)

This allows us to write down the Lagrangian density for massive Dirac spinors on flat
space:

Ly = 3T 9,0 — Li0,0T "y — imapip. (A.10)

The form of £ is chosen symmetric in ¢ and v for convenience of generalization in the
paper; the odd factors of i ensure that £ is Hermitian, and thus real.
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