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We prove global pointwise decay estimates for a class of defocusing semilinear
wave equations in n = 3 dimensions restricted to spherical symmetry. The technique
is based on a conformal transformation and a suitable choice of the mapping
adjusted to the nonlinearity. As a result we obtain a pointwise bound on the
solutions for arbitrarily large Cauchy data, provided the solutions exist globally. The
decay rates are identical with those for small data and hence seem to be optimal.
A generalization beyond the spherical symmetry is suggested.
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1. Introduction

We consider a class of nonlinear wave equations

�2t �− �� = f��� (1)

in n = 3 spatial dimensions where the nonlinearity f��� is of a defocusing type.
It means that the nonlinear term has a repulsive action on the waves and focusing
of waves is suppressed by an energy condition. The sign of the nonlinear term
which is chosen is essential such that the following conserved energy is positive
definite

E =
∫
�3

(
1
2
��t��2 +

1
2
����2 + F���

)
d3x (2)

with f = −F ′. Equation (1) has been intensively studied in the literature over a few
decades, in particular in the case of a pure power nonlinearity f��� = −���p−1�.
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206 Bieli and Szpak

Let us collect the most important results defining the context for this work.
The global existence of C2 solutions to the Cauchy problem has been shown by
Jörgens [11] in the energy subcritical case 1 < p < 5 and later by Grillakis [8] in
the critical case p = 5 (see also [17] for the spherically symmetric p = 5 case) while
not much is known about the supercritical case p > 5. For more references related
to global existence we recommend the book of Sogge [13]. Uniform boundedness
of solutions for 2 < p < 5 has been proved by Pecher [12]. Uniform decay 1/t1−�

and scattering have been proved for 3 ≤ p < 5 by Strauss [14]. Bahouri and Shatah
[2] have shown that finite energy solutions decay to zero for p = 5 and Hidano [9]
has shown scattering and decay to zero for 2�5 < p ≤ 3. Ginibre and Velo [7] have
shown scattering in the energy space for nonlinearities near p = 1+ 4/�n− 2� in
dimensions n ≥ 3 but for n = 3 only with smallness assumption. Scattering results
imply, in some sense, that the solutions behave asymptotically like solutions of
the linear equation. (For more scattering results we refer to the monograph of
Strauss [15].)

Here, we go further and study the pointwise behavior of solutions for 3≤p < 5.
Such results in dimension n = 3 exist only for small data [1, 16, 18, 19] and are
based on perturbation techniques which cannot be generalized to large data. We
extend the technique of conformal compactification developed by Choquet-Bruhat,
Christodoulou and others in [3, 5, 6]. The novelty is that we use a suitably chosen
conformal transformation, adjusted to the nonlinearity. In this setting, we first show
uniform boundedness of the transformed solutions in the precompact region and
then use the inverse transformation to get an extra decaying (conformal) factor and
thus a pointwise decay estimate for the original solution. We claim that this estimate
is optimal (for generic initial data) as it is identical with the one obtained for small
data where it has been shown to be optimal [18, 19]. Numerical simulations done
by Bizoń et al. [4] also support this picture.

The Main Result and the Method

In the following we study the Cauchy problem for the radial semilinear wave
equation

�2t �− �� = −���p−1� (3)

with the initial data of compact support r ∈ 	0
 �p	, where �p > 0 will be specified
later and chosen at time t = 1

��1
 r� = �0
 �t��1
 r� = �1 (4)

and prove that the solutions satisfy for all t ≥ 1 and 0 ≤ r ≤ t

���t
 r�� ≤ C

�1+ t + r��1+ t − r�p−2
(5)

with some constant C depending only on �0
 �1 and p. (Symmetries of the equation
(3) allow for mapping any compactly supported initial data onto the interval r ∈
	0
 �p	 at t = 1.)
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Global Pointwise Decay Estimates 207

Briefly, our method is based on a conformal mapping �u
 v� → �ũ
 ṽ� defined in
the double-null coordinates u = t + r
 v = t − r,

ũ �= − 1
up−2


 ṽ �= − 1
vp−2

� (6)

The conformal factor  �= r̃/r multiplies the transformed solution �̃�ũ
 ṽ� �=
−1��u
 v� which satisfies the transformed wave equation

�̃�̃+ 1
�p− 2�2

[
ũ− ṽ

�−ṽ�1/�p−2� − �−ũ�1/�p−2�

]p−1

�̃��̃�p−1 = 0 (7)

in a precompact region of spacetime. There, we are able to show boundedness of
some pseudo-energy flux what we further use to show the uniform boundedness of
��̃�ũ
 ṽ�� ≤ C̃. Finally, the inverse transformation provides the desired estimate

���u
 v�� ≤ C̃ · = C̃ · 1
�uv�p−2

· u
p−2 − vp−2

u− v
≤ C

u · vp−2
�

The power p− 2 in the mapping (6) cannot be increased, what would potentially
lead to a stronger pointwise decay of the solutions, because then the factor
multiplying the nonlinearity in (7) becomes singular and our boundedness theorems
cannot be applied.

The estimate (5) is also optimal in the sense of compatibility with the small
data case. For small initial data it has been shown in [19] that the solutions behave
asymptotically, for large t and fixed r, like

��t
 r� = C

tp−1
+ ��t−p�

where the constant C can be expressed explicitly via �0 and �1. Hence, the estimate
(5) applied to the small data case gives the optimal decay rate.

The assumption of spherical symmetry is essential for the method to yield
optimal decay for p > 3. On �×�3 the obvious analogue of the map �u
 v� →
�ũ
 ṽ� is no longer conformal, unless p = 3, of course. The reason is that radial and
angular parts of the wave operator transform diversely and the resulting equation
is no longer semilinear. Applying the transformation corresponding to p = 3, which
is conformal, to an equation with nonlinearity of power p > 3 still gives a global
1/�uv�-decay result, being however not optimal and independent of the actual
power p.

2. Conformal Transformation

In the case p = 3, the radial wave equation (3), having the explicit form

�2t �− �2r�− 2
r
�r�+ �3 = 0


is not only invariant under time translation, ��t
 r� �→ ��t + a
 r�, scaling, ��t
 r� �→
����t
 �r�, and reflection, � �→ −�, but also under a conformal inversion which is
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208 Bieli and Szpak

given by

��t
 r� �→ 1
t2 − r2

�

( −t

t2 − r2



r

t2 − r2

)
� (8)

This inversion maps solutions on the interior of the forward light-cone
K+ �= ��t
 r� � 0 ≤ r < t� to solutions on the interior of the backward light-
cone K− �= ��t
 r� � 0 ≤ r < −t� of the origin and vice versa. Thus, establishing
boundedness of a solution on K− towards the future immediately implies pointwise
decay estimates for the transformed solution on K+. In order for this to yield
optimal decay in the case of more general nonlinearities it is necessary to also
consider more general conformal transformations which is what will be discussed in
the following. For this, the standard conformal method (see e.g., [10, Section 6.7])
is applied with a different choice of the conformal factor.

On �t
 r� ∈ �×�+ consider null coordinates u �= t + r and v �= t − r. Then u

and v are positive on K+ and negative on K−. For any p > 2 define, with respect to
the �u
 v�-coordinate system, the map

� � K+ → K−
 �u
 v� �→
(
− 1
up−2


− 1
vp−2

)
�

It is analytic with analytic inverse

�−1 � K− → K+
 �u
 v� �→ (
�−u�−

1
p−2 
 �−v�−

1
p−2

)
�

Furthermore, there exists a positive analytic function  > 0 on K+ with the
property that

r = r �� (9)

holds on K+. If � = dt2 − dr2 denotes the Minkowski metric on �×�+ then its
pullback by � satisfies

�∗� = �p− 2�2

�t2 − r2�p−1
� on K+


which shows that mapping by � is conformal. In the case p = 3 the map
� �→ �∗� =  · �� ��� corresponds to the conformal inversion (8) since then
= 1/�t2 − r2�. This conformal transformation is illustrated in Figure 1. Note that
with

�p �= 1− 1

2
1

p−2

∈ �0
 1	


for any compact interval I contained in �1�× 	0
 �p	 the interval J is compactly
contained in �−1�× 	0
 1	, where J is the intersection of the future of the curve
H �= ��I� with the line �t = −1�. Moreover, for p ≥ 3 one has �p ≤ 1/2,
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Global Pointwise Decay Estimates 209

Figure 1. The function � maps the interior of the forward light-cone K+ to the interior of
the backward light-cone K− conformally and bianalytically. An interval I of the line �t = 1�,
containing the support of the original Cauchy data, is mapped to a curve H . The future of
the interval I is mapped into the future of the curve H . Initial data on H is evolved in the
region S to yield new initial data on the interval J of the line �t = −1�.

Suppose that h ∈ C2�K−� is a twice continuously differentiable function on K−.
Then �∗h is a function on K+ of class C2 for which

���∗h� = ����∗h+
�p− 2�2

�t2 − r2�p−1
�∗

�h


where � �= �2t − �2r − �2/r��r on �×�+. With the special choice of h = 1/r, this
identity together with relation (9) implies that ����∗�1/r� = �

[
�∗�1/r�

] = 0
since ��1/r� = 0 and �∗�1/r� = 1/r. Therefore, � = 0, such that in general

���∗h� = �p− 2�2�uv�−�p−1��∗
�h� (10)

Hence, if p > 2 and � ∈ C2�K+� is a classical solution of the radial wave equation

��+ ����p−1 = 0 (11)
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210 Bieli and Szpak

on K+, its conformal transformation � �= �∗�−1�� ∈ C2�K−� satisfies

��+ 1
�p− 2�2

[
�∗�uv�p−1

]
����p−1 = 0
 (12)

where �∗ denotes the push-forward by the diffeomorphism �. On the other hand,
it also follows directly from (10) that if � ∈ C2�K−� is a classical solution of the
transformed equation (12) on K−, the function � �= �∗� ∈ C2�K+� solves the
original equation (11) on K+.

3. Evolution of the Pseudo-Energy

As mentioned introductorily, for equations of the form (1) there is a conserved
energy (2) that in particular controls the spatial Lp+1-norm of the solution. One
can no longer expect to find such a quantity for the conformally transformed
equation (12) or, more generally, for an equation

��+ c�t
 r�����p−1 = 0 (13)

with a non-negative function c of class C2. However, an analogue of the energy
expression, although not conserved exactly, will turn out to be sufficient to prove
boundedness of � on the relevant region of K−, provided the function c is
monotonically decreasing in t there. This pseudo-energy will now be defined.

Let � ∈ C2�K−� be a classical solution of (13) on K− for p > 2. Then the vector
field � given by

� �= r2
[
1
2
��t��

2 + 1
2
��r��

2 + 1
p+ 1

c���p+1

]
�t − r2

(
�t��r�

)
�r

is continuously differentiable and

div� = r2
[
��+ c����p−1

]
�t�+ 1

p+ 1
r2��tc����p+1 = 1

p+ 1
r2��tc����p+1

holds on K−. Assume furthermore that �tc ≤ 0 is non-positive such that the same
is true for div�. This implies, recalling Figure 1, together with the assumption that
the support I of the initial data is compactly contained in �1�× 	0
 �p	, that

0 ≥
∫
S
�div��dt ∧ dr =

∫
�S
i��dt ∧ dr� =

∫
J∪H

[
�i�dt�dr − �i�dr�dt

]
=

∫
J
r2
[
1
2
��t��

2 + 1
2
��r��

2 + 1
p+ 1

c���p+1

]
dr

− p− 2
2

∫
I
�i�dt� ���1+ r
 1− r� ·

[
1

�1− r�p−1
+ 1

�1+ r�p−1

]
dr

− p− 2
2

∫
I
�i�dr� ���1+ r
 1− r� ·

[
1

�1− r�p−1
− 1

�1+ r�p−1

]
dr


where i� denotes the interior multiplication with the vector field �. The volume form
dt ∧ dr is chosen such that the interval J carries the standard orientation by dr as
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Global Pointwise Decay Estimates 211

does the interval I . The last two integrals over the interval I depend only on the
initial data �0 and �1 on I and are certainly finite. Thus

E0 �=
∫
J
r2
[
1
2
��t��

2 + 1
2
��r��

2 + 1
p+ 1

c���p+1

]
dr ≤ C (14)

for a constant C.
The pseudo-energy E0 now controls light-cone integrals of the quantity c���p+1

according to the following Proposition 1, a fact that will be essential for proving
boundedness of � on the region K �= K− ∩ �−1 ≤ t < 0�.

Proposition 1. Let � ∈ C2�K� be a solution of (13) with initial data supported on J
satisfying the estimate (14). If �tc ≤ 0 on K then

1
p+ 1

∫ t0

−1

[
r2c���p+1

]
�s
 t0 − s�ds ≤ E0

holds for any −1 ≤ t0 < 0.

Proof. It is useful to consider the functions

Et0
�t� �=

∫ t0−t

0
�i�dt��t
 r�dr

for any −1 ≤ t ≤ t0 < 0. Then, for a fixed −1 < t0 < 0
 Et0
is continuously

differentiable and

E′
t0
�t� = −�i�dt��t
 t0 − t�−

∫ t0−t

0

[
�r�i�dr�

]
�t
 r�dr +

∫ t0−t

0
�div���t
 r�dr

= −�t0 − t�2
[
1
2
��t�− �r��

2 + 1
p+ 1

c���p+1

]
�t
 t0 − t�+

∫ t0−t

0
�div���t
 r�dr

holds for all −1 ≤ t ≤ t0. Hence, it follows that

Flux�−1
 t0� �=
∫ t0

−1
i��dt + dr��s
 t0 − s�ds

=
∫ t0

−1
�t0 − s�2

[
1
2
��t�− �r��

2 + 1
p+ 1

c���p+1

]
�s
 t0 − s�ds

= −
∫ t0

−1
E′

t0
�s�ds +

∫ t0

−1

∫ t0−t

0
�div���s
 r�dr ds

= Et0
�−1�+

∫ t0

−1

∫ t0−t

0
�div���s
 r�dr ds ≤ E0


since Et0
�t0� = 0, Et0

�−1� ≤ E0 and div� ≤ 0. But this implies

1
p+ 1

∫ t0

−1
�t0 − s�2

[
c���p+1

]
�s
 t0 − s�ds ≤ Flux�−1
 t0� ≤ E0


and hence the claim. �
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212 Bieli and Szpak

4. Boundedness

Using the light-cone estimate established in Proposition 1 the boundedness of � in
the region K = K− ∩ �−1 ≤ t < 0� can be shown by a simple argument going back
to Pecher [12].

Theorem 1. Let � ∈ C2�K� be a solution of (13) with 2 < p < 5 and initial data
supported on J satisfying the estimate (14). If c ≥ 0 is uniformly bounded and �tc ≤ 0
on K then � is uniformly bounded.

Proof. Let �0 ∈ C2�K� be a classical solution of the homogeneous equation
��0 = 0 with the same initial data as �. Then, for a fixed �t
 r� ∈ K, it holds that

��− �0��t
 r� ≤
1
2r

∫ t

−1

∫ t−s+r

�t−s−r�
yc�s
 y����p�s
 y�dy ds�

Due to the fact that 2 < p < 5 there exists a q with 3/2 < q < �p+ 1�/�p− 1�.
Changing variables and applying Hölder’s inequality yields

1
2r

∫ t

−1

∫ t−s+r

�t−s−r�
yc�s
 y����p�s
 y�dy ds

= 1
2r

∫ t+r

a

∫ b

−1
�t0 − s�c�s
 t0 − s����p�s
 t0 − s�ds dt0

≤ 1
2r

[ ∫ t+r

a

∫ b

−1
�t0 − s�2cq�s
 t0 − s����pq�s
 t0 − s�ds dt0

] 1
q

×
[ ∫ t+r

a

∫ b

−1
�t0 − s�

q−2
q−1ds dt0

] q−1
q


 (15)

where the abbreviations a �= max�t − r
 r − t − 2� and b �= [
t0 + �t − r�

]
/2 were

introduced. Consider the first integral. Since q > 1 and c is bounded, so is cq−1.
Furthermore, 0 < pq − �p+ 1� < q, so that

∫ t+r

a

∫ b

−1
�t0 − s�2cq�s
 t0 − s����pq�s
 t0 − s�ds dt0

≤ C

(
sup

−1≤�≤t

���
 ·�L�

)�q ∫ t+r

a

∫ b

−1
�t0 − s�2c�s
 t0 − s����p+1�s
 t0 − s�ds dt0


where 0 < � < 1 is such that �q = pq − �p+ 1�. The integration variable t0 takes
values t0 ≥ a which ensures −1 ≤ b ≤ t0. Thus, the integral in s can be estimated by
virtue of Proposition 1 to yield

∫ t+r

a

∫ b

−1
�t0 − s�2c�s
 t0 − s����p+1�s
 t0 − s�ds dt0 ≤

∫ t+r

t−r
�p+ 1�E0 dt0 ≤ 2rCE0�

The second integral in (15) can be calculated directly to give

∫ t+r

a

∫ b

−1
�t0 − s�

q−2
q−1ds dt0 ≤

q − 1
2q − 3

∫ t+r

t−r
�1+ t0�

2q−3
q−1 dt0 ≤ 2rC
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Global Pointwise Decay Estimates 213

because q > 3/2. To sum up, the estimate

��− �0��t
 r� ≤
C

2r

(
sup

−1≤�≤t

���
 ·�L�
)�(

2rE0

) 1
q
(
2r
) q−1

q = CE
1
q

0

(
sup

−1≤�≤t

���
 ·�L�
)�

holds true for any �t
 r� ∈ K. But since the solution �0 of the homogeneous equation
is clearly bounded and 0 < � < 1 this estimate implies the boundedness of � itself
uniformly on K, for the function t �→ sup−1≤�≤t ���
 ·�L� is continuous and finite
at t = −1. �

With the function � bounded on K the decay of � in the future of I follows
immediately.

Corollary 1. Let � be a classical solution of the wave equation (11) for 3 ≤ p < 5 with
initial data �0 ∈ C2��+� and �1 ∈ C1��+� given at t = 1 and which exists globally
towards the future. Assume that the support of �0 and �1 is contained in the compact
interval I ⊂ 	0
 �p	. Then there is a constant C ∈ �+ such that � satisfies the decay
estimate

���t
 r�� ≤ C

�1+ t + r��1+ t − r�p−2
(16)

for all t ≥ 1 and 0 ≤ r ≤ t.

Proof. Given such a solution � of class C2, it was shown in section 2 that
its conformal transformation � = �∗�−1�� is a classical solution of the wave
equation (13) on the future of the curve H in K−, cf. Figure 1, with

c = 1
�p− 2�2

�∗�uv�p−1

according to equation (12). Now, for v < u < 0

�∗�uv� = u− v

�−v�
1

p−2 − �−u�
1

p−2




so that c is bounded on the future of H in K− owing to p ≥ 3. Furthermore,

�t
[
�∗�uv�

] = 1
p− 2

�∗�uv�2

2r

[
�−v�−

p−3
p−2 − �−u�−

p−3
p−2

]



which implies �tc ≤ 0 on K− again by reason of p ≥ 3. Moreover, as detailed
in section 3, the assumptions on the support of �0 and �1 guarantee that J
is compactly contained in �−1�× 	0
 1	 and that the estimate (14) holds. Thus,
Theorem 1 applies and yields boundedness of � on K. Since � is also bounded on
the compact region S it follows that � is bounded on the whole future of H in K−,
say ��� ≤ C. But then

���t
 r�� = �t
 r���∗��t
 r�� ≤ C�t
 r�
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214 Bieli and Szpak

on the whole future of I in K+, while

�t
 r� = 1
2rvp−2

[
1−

(
v

u

)p−2]
≤ p− 2

2rvp−2

(
1− v

u

)
= p− 2

uvp−2
�

Since in this region u ≥ 1 and v ≥ 1− �p and outside, for v < 1− �p, the solution
vanishes identically, the bound for ��t
 r� can be written in the regularized
form (16). �

5. Discussion

As already noted in the introduction, the conformal transformations which
we consider for the radial problem are not conformal for the full problem, beyond
the spherical symmetry, unless p = 3. However, for the full problem with 3 < p < 5
we can still apply the conformal (p = 3) transformation and obtain a global
pointwise decay 1/�uv�. The decay rate is then not optimal but can act as a
prerequisite for a more refined asymptotic analysis. Indeed, that decay rate is
sufficient for the solution to become small at large times in the sense which allows
a perturbative analysis with methods similar to those developed in [18]. We want to
address this issue in a forthcoming publication.

It seems, at least as far as the spherical symmetry is concerned, that our method
can be applied in higher than n = 3 odd dimensions.

Also the linear wave equations with strong positive potentials

�2t �− ��+ V�x�� = 0

having prescribed decay at spatial infinity V�x� ∼ 1/�x�k still lack a sharp pointwise
decay estimate and seem to be treatable with our method after some modifications.
Such equations have a positive definite energy, too, and can be conformally
transformed to a form analogous to (13) however with a weakly singular positive
function c. This idea shall be addressed in another publication.
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