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a b s t r a c t

Phenomenological compactifications of M-theory involve seven-manifolds with G2
holonomyand various singularities. Herewe study local geometrieswith such singularities,
by thinking of them as compactifications of 7d supersymmetric Yang–Mills theory on a
three-manifold Q3. We give a general discussion of compactifications of 7d Yang–Mills
theory in terms of Higgs bundles on Q3. We show that they can be constructed using
spectral covers, which are Lagrangian branes with a flat connection in the cotangent
bundle T ∗Q3. We explain the dictionary with ALE fibrations over Q3 and conjecture that
these configurations have G2 holonomy. We further develop tools to study the low energy
effective theory of such a model. We show that the naive massless spectrum is corrected
by instanton effects. Taking the instanton effects into account, we find that the massless
spectrum and many of the interactions can be computed with Morse theoretic methods.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

String theory vacua are explicit realizations of the ideas of Kaluza and Klein on extra dimensions. As such, geometric
structures inevitably play a central role in studying such vacua. Geometric techniques arewidely used for phenomenological
model building in the heterotic string.

In the past fewyears,we have learnt to start applying techniques fromgeometric engineering tomodel building problems
in type II settings. Using ideas about exceptional collections, this led to the construction of ‘local models’ in which the force
of gravity may be treated as a small perturbation [1–3]. More recently, it has led to the first new class of models since
the appearance of the heterotic string that can successfully explain unification, namely F-theory GUTs [4–6]. The F-theory
models allow for scenarios not available in the heterotic string, such as gauge mediation, and hence may display some
strikingly different signatures. Since they have been relatively little studied, it is desirable to develop the phenomenology
and mathematics of these models in more detail. A number of interesting papers have recently appeared on this topic.

In this project, we follow a slightly different direction. In light of the line of research mentioned above, it is natural to
ask if a similar set of ideas based on geometric engineering may also be used to address some of the difficulties encountered
in constructing phenomenological models in other type II settings. Here we would like to address the construction of GUT
models inM-theory. Although suchmodelswere expected to exist and qualitative features have been studied assuming their
existence, there are currently no examples or techniques for explicitly constructing them. For a recent summary, see [7].

One of themain ideas thatwe employ, in physical terms, is the central role played by the BPS equations of a ‘worldvolume’
supersymmetric Yang–Mills theory, which lives in seven dimensions in the present case. In mathematical terms we are
dealing with Higgs bundles, that is a gauge field and an adjoint Higgs field satisfying a version of Hitchin’s equations, which
are exactly the BPS equations of the 7d Yang–Mills theory. Even thoughwe are in a non-perturbative regime of string theory,
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the gauge theory description can be trusted as long as the gauge and Higgs field are slowly varying. This strategy was
successfully used in recent phenomenological constructions in F-theory, and we will see how it carries over inM-theory.

On the other hand, supersymmetric compactifications of M-theory to four dimensions are known to be given by
G2-manifolds. The principle that the worldvolume gauge theory completely determines the local geometry of the brane
is well established in other contexts in string theory. Therefore we expect that our approach should establish the existence
of a large class of non-compact G2-manifolds with singularities.Wewill outline how one recovers the data of a non-compact
G2-manifold with singularities from the data of the compactified 7d gauge theory, but we will not give a complete proof of
the correspondence in this paper. At any rate, string, M or F-theory only plays a secondary role in our philosophy. The
primary object of interest is the higher dimensional Yang–Mills theory, and the main role of string/M/F-theory is to provide
a UV completion of this Yang–Mills theory.

Spectral covers are a powerful technique for constructing solutions to Hitchin’s equations. In the present setting, spectral
covers correspond to Lagrangian A-branes in the auxiliary Calabi–Yau geometry T ∗S3, and thus much of our intuition about
intersecting Lagrangians can be carried over. One might think this is not surprising, because if we do not use exceptional
gauge groups, then we should be able to take a perturbative IIa limit and end up with a configuration of D6-branes and
orientifold planes on a Calabi–Yau. However this picture is misleading for at least two reasons. First, our Lagrangian branes
are intrinsic to the 7d Yang–Mills theory and do not assume any string orM-theory. Second, we are working at finite string
coupling, so we do not expect sharply localized 6-branes. Indeed, our Lagrangian branes are auxiliary objects, and when we
go back to the physicalM-theory space-time they getmapped to the two-formsωi discussed in Section 2.2, which in general
are not sharply localized. Analogous statements are also familiar in the F-theory context, where the spectral cover branes
should not be confused with the (p, q) 7-branes [8].

For phenomenological purposes it is important to understand the spectrum and interactions in such models. Some
qualitative results have already been obtained in the literature. Herewewill find that these resultsmay be better understood
and extended using Morse theory as a principal tool. As a result, we find that the massless spectrum and many of
the interactions reflect topological properties of the configuration, and can be computed without any knowledge of the
solutions of the D-term equations. This is a remarkable simplification which should be of great help in understanding the
phenomenological signatures of these models.

In this paper we mostly focus on abelian examples, although we will make statements that apply more generally. Work
on non-abelian examples is still in progress [9].

2. Local models inM-theory

As mentioned in the introduction, our goal will be to construct compactifications of the 7d supersymmetric Yang–Mills
theory. Such compactifications are mathematically described by Higgs bundles. In order to explain the relevance of such
compactifications to M-theory, we have to explain how this data is related to G2-manifolds with singularities. The main
purpose of this section is to set up the dictionary between ALE fibrations inM-theory, Higgs bundles, and spectral covers in
an auxiliary Calabi–Yau geometry.

2.1. General properties of G2-manifolds

We are interested in engineering effectively four-dimensional models from M-theory. Since M-theory lives in 11d, this
means we must compactify on a seven-dimensional internal space X7. Furthermore, if we require N = 1 supersymmetry
in four dimensions, then X7 should admit a Killing spinor. As is well known, the existence of a Killing spinor implies that
X7 must admit a metric of G2-holonomy. Such metrics are hard to find explicitly. However, much like Calabi–Yau metrics
which are also hard to find, onemay reformulate the problem of finding G2-metrics in terms of anti-symmetric tensor fields,
which are much easier to work with. For G2-manifolds, the relevant tensor field is a three-formΦ .

Given a smooth seven-manifold, a three-formΦ is said to be stable if it lies in an open orbit of Gl(7). In terms of a 7-bein,
Φ may be written as

Φ = e1 ∧ e2 ∧ e3 + ei ∧Σi (2.1)
where

Σ1 = e4 ∧ e5 − e6 ∧ e7, Σ2 = e4 ∧ e6 − e7 ∧ e5, Σ3 = e4 ∧ e7 − e5 ∧ e6. (2.2)
From such a three-form, one may reconstruct a metric through the following formulae [10]:

gij = det(sij)−1/9sij

sij = −
1

144
Φiµ1µ2Φjµ3µ4Φµ5µ6µ7ϵ

µ1...µ7 ∼ −
1

144
Φi ∧ Φj ∧ Φ. (2.3)

In terms ofΦ , the condition that the metric has G2 holonomy is equivalent to [11]
dΦ = 0 (F-term)
d ∗Φ Φ = 0 (D-term). (2.4)

The ∗-operator depends on the metric and hence implicitly onΦ , as we have indicated.
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These two equations can be obtained as the critical points of two functionals which have a natural four-dimensional
interpretation. The first equation in (2.4) is the equation of motion of a Chern–Simons functional W ∼


Φ ∧ dΦ . In fact,

M-theory not only yields a metric but also a three-form tensor field C3, and in N = 1 SUSY compactifications it is natural
to combine them in a single complex three-form field C3 + iΦ . A quick way to see this is by reducing on a circle to type IIa,
in which case we get the complexified Kähler form B + iJ as required by supersymmetry. Including the dynamics of C3, the
BPS equations are generalized to

d(C3 + iΦ) = 0
d ∗Φ Φ = 0 (2.5)

and the Chern–Simons functional may be generalized to:

W =
1

16π2

∫
X7
(C3 + iΦ) ∧ d(C3 + iΦ). (2.6)

This expression combines both the action of [12–14] and that of Hitchin [15]. It is interpreted as a term in the four-
dimensional superpotential.

The second equation in (2.5) can be interpreted as amomentmap condition. The three-form field inM-theory transforms
under a group G of gauge transformations as C3 → C3 + dΛ. We also have a natural Kähler form associated to the metric∫

X7
(C ′

3 + iΦ ′) ∧ ∗Φ(C ′′

3 + iΦ ′′) (2.7)

on the space of solutions of the F-terms. Then i dĎΦ is the moment map associated to G , and the second equation in (2.5)
describes the critical points of a D-term potential. Under a suitable stability condition, we would expect that for every
solution to the F-terms there exists a unique solution to the D-terms in the same G c orbit. This is often guaranteed by
the Kempf–Ness theorem, but the standard version of this theorem does not apply here.

The linearized deformations of (2.5)modulo gauge transformations by G are counted by harmonic three-forms, and these
deformations are unobstructed [16]. Therefore the number of complex deformations of the G2 structure is given by h3(X7).
The Kähler potential on moduli space turns out to be given by [12]

K = −3 log
1

2π2

1
7

∫
|C3 + iΦ|

2. (2.8)

In this paper we will be taking a slightly different point of view however, and we will not be using these expressions
explicitly.

To summarize, the main point of this subsection is that the three-formΦ is an equivalent but more useful variable than
the G2 metric itself. Moreover, in terms of these variables the equations naturally split up into a set of first order equations
which can be interpreted as F-terms and D-terms.

2.2. ALE fibrations

Now consider a local G2-manifold X7 which is an ALE fibration over a three-manifold Q3. We will usually assume that
the ALE fibration has a section, and also use Q3 to denote this section. On each ALE fibre, there is a natural set of two-cycles
αi ∈ H2(ALE, Z) which intersect according to the Cartan matrix associated to the ALE, generating an ADE root lattice Λ.
There is also a dual set of two-forms ωi.

The moduli space M(Λ) of M-theory on an ALE surface is described as follows. Given a hyperkähler structure {I,J,K}

on the ALE,we can construct a triplet of two-forms Ω⃗ = (Iνµgνλ,J
ν
µgνλ,K

ν
µgνλ). Their periods over theαi are the parameters∫

αi

Ω⃗ = φ⃗i, (2.9)

which describe complex structure and Kählermoduli of the ALE. They are often called the FI parameters because they appear
as such in the hyperkähler quotient construction of the ALE. They naturally transform as a vector under an SO(3)R symmetry.
In addition, we may expand the M-theory three-form in terms of the ωi, yielding n vectors in seven dimensions, where n
is the rank of the latticeΛ. Since the ALE preserves half of the 32 supersymmetry generators, we are guaranteed to recover
their fermionic superpartners as well. In fact they are given by the same internal wave functions on the ALE. So for large
sizes of the vanishing cycles we get a supersymmetric 7d gauge theory with gauge group U(1)n. But what happens when
the vanishing cycles are small?

There are additional supersymmetric states obtained fromwrappingM2-branes on the vanishing cycles of the ALE. Their
masses are given by m ∼ mpl|N iφ⃗i|, i.e. they are proportional to the size of the vanishing cycle N iαi that the membrane is
wrapping. Quantizing such a particle yields a vector multiplet, since this is the only non-gravitational multiplet available
in a 7d theory with 16 supercharges. Since membranes couple to C3 in 11d, the U(1)n charges of these states are precisely
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those of theW -bosons of a non-abelian ADE gauge theory with root latticeΛ. Therefore the effective low energy dynamics
ofM-theory on an ALE surfacewith small periods should be described by the corresponding 7d supersymmetric non-abelian
ADE gauge theory. Additional evidence for this statement can be obtained through heterotic/type II duality.

When we further fibre the ALE over Q3, additional supersymmetries will be broken. In G2 compactifications,
supersymmetry requires that C3 and Φ are paired into a complex three-form. Expanding in a basis of exceptional cycles
of the ALE, locally we get n complex one-forms on Q3:∫

αj

C3 + iΦ = Aj + iφj. (2.10)

Since Φ describes zero modes of the metric, the one-form φj must be identified with the triplet of adjoint scalars of the 7d
gauge theory encountered above. One can see this more explicitly from the canonical expression of Φ in terms of a 7-bein.
Therefore the three adjoint scalars associated to each αj must be twisted to a one-form on Q3 [17]. In other words, in order
to preserve N = 1 supersymmetry in four dimensions, the SO(3)R-symmetry acting on the φ⃗ is identified with the (dual of
the) SO(3)Q structure group of Q3. Equivalently, there exists a covariantly constant tensor Jνµ on Q3 where µ transforms as a
vector under SO(3)Q and ν transforms as a vector of SO(3)R. In suitable coordinates we may write Jνµ = iδνµ.

Thus locally theALE fibrationmaybe described by a set of n complex one-forms. There is an additional symmetry however
whichmay be used in gluing local patches together in a globalmodel. Namely the ALE has a diffeomorphism symmetry group
which acts on the cycles as the ADEWeyl group. Eg. for An−1 ALEs this is the symmetric group Sn on n letters. This symmetry
may be thought of as a residual gauge symmetry from the non-abelian gauge theory. Thus altogether we see that an ALE
fibration may be described by n one-forms on Q3, with branch points across which the one-forms may be permuted. Said
differently, locally on Q3 we have a map from Q3 into the parameter space h⊗3

R /W of the universal unfolding of our ADE
singularity. This is the essence of a Higgs bundle, as we will explain in more detail in Section 2.4.

Conversely, given a configuration for the φi on Q3, we may try to reconstruct an ALE fibration over Q3 with G2 holonomy.
To first order we get

Φ = Φ0 + φi ∧ ω
i
+ . . . (2.11)

where Φ0 corresponds to the three-form for a constant ALE fibration, which certainly exists (it may be written down
explicitly). The equations dΦ = d ∗ Φ = 0 put constraints on the φi and on the higher order terms. By analogy with
Kodaira–Spencer theory for Calabi–Yau manifolds [18,19], we conjecture that if the φi satisfy certain first order equations
discussed below aswell as tadpole constraints, and ifQ3 has non-negative curvature (so as to avoid curvature singularities at
finite distance from the zero section that onewould otherwise likely have), then the above seriesmay be uniquely completed
and has a finite radius of convergence.

So our main point here is that the data of the ALE fibrationmay be described as a field configuration in a supersymmetric
7d Yang–Mills theory living on Q3. This naturally leads to a set of equations which we would expect the data to satisfy, in
the limit that the fields are slowly varying.

2.3. Hitchin system

The BPS conditions in the 7d gauge theory are given by reducing the BPS conditions for ten-dimensional YM theory to
seven dimensions. In 10d we have

δλ = Fµν Γ
µνϵ = 0. (2.12)

To preserve 3 + 1d Poincaré invariance, we assume only field configurations on the 6d internal space are turned on. On a
Calabi–Yau manifold, this yields the well-known Hermitian Yang–Mills equations

F2,0 = 0, gµν̄Fµν̄ = 0. (2.13)

Next we reduce these equations to 3d. This is well understood [20,21].
Let us work on a local patch of Q3. Then we can put a Calabi–Yau metric on the tangent bundle which is semi-flat. That

is, the metric on the tangent bundle is expressed as ds2 = Kij(x)(dxidxj + dyidyj), where K is a real Kähler potential which
satisfies a real Monge–Ampère equation, and x and y are coordinates along Q3 and along the bundle directions respectively.
There is a natural complex structure in which the complex coordinates are given by z j = xj + iyj. To perform the reduction,
we assume that the gauge field is independent of the y coordinates, and we write the gauge field on the tangent bundle as

A = Ai(x)dxi + φj(x)dyj = (A + φJ)idxi (2.14)

where we used dyj = J jidx
i and wrote φJi = φjJ

j
i ∼

√
−1φi. Thus A naturally defines a complexified gauge field on Q3. We

have

F2,0 = Fjkdz j ∧ dzk (2.15)
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so the condition F2,0 = 0 simply becomes the condition that the curvature of the complex connection A vanishes.
Decomposing in real and imaginary parts, we get the F-terms

0 = Re F0,2 = F − [φJ , φJ ]

0 = Im F0,2 = DA φJ . (2.16)

Further, we have the D-terms

0 = gµν̄Fµν̄ = i K ijDiφJj = i DĎ
AφJ . (2.17)

These equations are precisely Hitchin’s equations [20,22].
The equations for the Yang–Mills–Higgs fields on Q3 are the primary objects for our purposes. However if Q3 admits an

integral affine structure, then the above isomorphism between solutions of Hitchin’s equations on Q3 and the Hermitian
Yang–Mills equations on TQ3 may be extended globally over Q3. In order to do this on S3 wewould need to excise a suitable
graph. Since the Higgs field takes values in the cotangent bundle T ∗Q3, it will be useful to define dual coordinates:

dỹj = Kjkdyk. (2.18)

The Kähler form on TQ3 naturally gets identified with the standard symplectic form on T ∗Q3:

ω =
i
2
Kijdz i ∧ dz̄ j = Kijdxi ∧ dyj = dxi ∧ dỹi. (2.19)

For later use, we can also dualize dx̃j = Kjkdxk. Then there is a natural complex structure also on T ∗Q3, in which the complex
coordinates are given by z̃j = x̃j + iỹj, and a Calabi–Yau metric given by

ds2 = K ij(dx̃idx̃j + dỹidỹj). (2.20)

Furthermore, we will see in the next section that solutions of Hitchin’s equations can be interpreted as Lagrangian
branes in T ∗Q3. This mapping between R3-invariant solutions of the Hermitian Yang–Mills equations and solutions of the
Yang–Mills–Higgs equations is a real version of the Fourier–Mukai transform.

There are two basic type of solutions of the above Yang–Mills–Higgs equations. Solutions with [φ, φ] = 0 are said to
be flat, and with this restriction the above data describes a Higgs bundle. One can also have solutions with [φ, φ] ≠ 0.
These will not describe Higgs bundles or ALE fibrations, but rather (in the picture described in Section 2.4) they will describe
coisotropic branes in T ∗Q3. Such configurations were proposed to be relevant for moduli stabilization in [23]. In this paper
we consider [φ, φ] = 0.

We would like to elaborate a bit on the interpretation of the D-terms. Let us say that A is an Sl(n, C) connection. Given
a solution to the F-term equations, in order to write the D-term equation we need to split A up into a real part A and an
imaginary part φJ . In general this cannot be done canonically, but depends on a choice of Hermitian metric h, which can be
thought of as an equivariant map from the universal cover

h : Q3 → Hn, Hn = Sl(n, C)/SU(n). (2.21)

Given such a metric h, the covariant derivative DA will generally not preserve it, but it can be split up as

DA = DA + φJ (2.22)

where DA preserves the metric. Furthermore φ is locally identified with the derivative ∇h : TQ3 → THn, and DA is the
pull-back of the Levi-Civita connection on Hn. The D-term equation

DĎ
Aφ = DĎ

A∇h = 0 (2.23)

is precisely the requirement of harmonicity of h as a mapQ3 → Hn. Hence the solution of the D-term equation is also called
the harmonic metric [22,24].

Let us spell this out in a little bitmore detail in the abelian case. In this caseC∗/U(1) = R≥0 is the one-dimensional version
of hyperbolic space, ∇h = h−1dh and A = −

1
2h

−1dh. The Hermitian metric can be written as h = ef where f : Q3 → R. The
D-term equation says that

DĎ
A∇h = dĎdf = 0 (2.24)

which says that f is a harmonic function on Q3, or that φ = df is a harmonic one-form on Q3. Of course we can also argue
more directly that setting A to zero locally and solving dφ = 0 ⇒ φ = df implies that the D-term can be written as
dĎdf = 0. But the above point of view is useful for establishing the existence of solutions in the non-abelian case [22,24].

The F-term part of the Yang–Mills–Higgs equations are the critical points of a Chern–Simons functional with complex
gauge group, so we identify this as the four-dimensional superpotential

W =
1

16π2

∫
Q3

Tr

A ∧ dA +

2
3
A ∧ A ∧ A


. (2.25)
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In fact we could have gotten this more directly by applying the real Fourier–Mukai transform to the holomorphic
Chern–Simons functional [21]. Further the D-term is the moment map for real gauge transformations, with respect to the
Kähler form associated to the metric

g(A,A) =

∫
Q3

|A |
2

=

∫
Q3

|A + iφ|
2. (2.26)

Thus it can be obtained as the critical point of the D-term potential:

VD ∼
1
2

∫
|DĎ

Aφ|
2 (2.27)

when varied over possible hermitian metrics h. These are the precise analogues of the quantities we wrote earlier for G2-
manifolds in Section 2.1, but they also incorporate non-perturbative states that arise at ALE singularities.

2.4. Spectral cover picture

Suppose we are given a configuration for the adjoints φ satisfying [φ, φ] = 0. Then the three components of φ may be
diagonalized simultaneously, and we may associate to φ its spectral data (i.e. its eigenvalues). Conversely, the Higgs field
φ may be reconstructed from its spectral data. This picture yields A-model branes in an auxiliary Calabi–Yau three-fold
X = T ∗Q3. In this subsection we discuss this construction in more detail. There is a completely analogous construction
in F-theory [8,25] involving spectral covers in the canonical bundle over a complex surface. For convenience we will take
Q3 = S3.

In the case of An-fibrations, the spectral cover picture is more than just an auxiliary construction, since it describes the
D6-branes that we see in the weak coupling IIa limit. This is not a coincidence, because in the limit vol(S3) → ∞ the
worldvolume theory on the D6-branes is well approximated by the maximally supersymmetric 7d YM theory.

Let us briefly recap the general structure. For the moment we will restrict to An−1-fibrations, i.e. 7d gauge theory with
gauge group G = SU(n). The twisted adjoint scalars of the 7d gauge theory give a section of

φ ∈ T ∗S3 ⊗ Ad(G) (2.28)

whereG is the principle bundlewith gauge group G. Consider the Hitchinmap, which takes the Higgs field to the coefficients
of s in

det(sI − φ) ∈ Symn T ∗S3. (2.29)

Here s is a local coordinate on the bundle direction of T ∗S3, and Symn is the nth symmetric power. The eigenvalues
{λ1, . . . , λn} of φ correspond to the zero set of the above section. Each λi is a one-form, so has three components. Thus
the zero set defines an n-fold covering of the zero section in T ∗S3. This is called the spectral cover for the fundamental
representation. We will denote it as C(E,φ), or simply CE for brevity, and the covering map by pC : CE → S3. Since φ lives in
the adjoint of SU(n), the eigenvalues add to zero on each fibre of T ∗S3:

λ1 + . . .+ λn = 0. (2.30)

The gauge field A gives a flat connection on a bundle E associated to the fundamental representation of SU(n). We can think
of φ as a map

φ : E → E ⊗ T ∗S3. (2.31)

Then on each fibre E decomposes into a sum of eigenspaces ⊕i C |i⟩ under the action of φ. The assignment λi → C |i⟩ gives a
line bundle LE on C called the spectral line bundle, and since DAφ = 0, DA commutes with the action of φ on E and therefore
A gives a flat connection on this line bundle. Conversely, given a spectral cover CE together with a flat line bundle LE , we can
reconstruct the Higgs bundle on S3 by

E = pC∗LE, φ = pC∗s (2.32)

which yields a rank n bundle E and a map φ : E → E ⊗ T ∗S3. In order for this to be an SU(n) bundle, rather than a U(n)
bundle, we must have

det(pC∗LE) = 1 (2.33)

where 1 denotes the trivial line bundle. This puts a topological constraint on the allowed line bundles on the spectral cover.
We claim that the spectral cover yields an A-type brane in T ∗S3. In order to see this, we may analyse the F- and D-terms

locally. Since the gauge field A is flat, it may locally be gauged away. Further, as we discussed the equation Dφ = 0 splits up
into n− 1 abelian equations dφ = 0, where in the last equation we used φ to denote an abelian Higgs field. It is well known
that the condition that φ be closed is equivalent to the section being Lagrangian with respect to the standard symplectic
form on the cotangent bundle. To see this, writing φ = φidxi, the equation ω|C = 0 gives

0 = dxi ∧ dỹi|C = dxi ∧ dφi(x) = −d(φidxi) = −dφ. (2.34)
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Thus the F-terms equations correspond precisely to the condition that the spectral cover is a Lagrangian submanifold of
T ∗S3, together with a flat connection. It is also worth noting that dφ = 0 implies that φ = df for some function f on a local
patch of S3. Thus each sheet of the spectral cover may locally be represented as the graph of the differential of a real-valued
function.

Naively one might expect these branes to be special Lagrangian also, since this is the usual requirement for
supersymmetric D6 branes in IIa string theory. However, this is not quite the case. Locally on each sheet we have

Ω3,0
|C = dz̃1 ∧ dz̃2 ∧ dz̃3|C = det(I + iHess(f ))dx̃1 ∧ dx̃2 ∧ dx̃3 (2.35)

where we used dz̃i = dx̃i + idỹi and ỹi(x)dxi = φ = df . Requiring that the imaginary part vanishes identically leads to the
non-linear equation

∆f = det(Hess(f )). (2.36)

It is not hard to see where this apparent discrepancy comes from. The right hand side comes from a higher derivative
correction to the two-derivative SYM theory. Indeed onemaywrite a similar non-linear correction term for 10d SYM theory,
which is related to (2.36) by the Fourier–Mukai transform1 [21]:

ω ∧ ω ∧ F = F ∧ F ∧ F . (2.37)

In the large volume limit in which we are working, such higher derivative corrections are parametrically small and can be
neglected to first approximation. Thus in our approximation, D6-branes in type IIa and more generally spectral covers of
ALE fibrations/Higgs bundles are described by ‘harmonic’ Lagrangian branes in T ∗S3, rather than special Lagrangian branes.

In the IIa context it is natural to conjecture that the ‘harmonic’ Lagrangian flows to a unique special Lagrangian under
mean curvature flow [26]. In theM-theory context however it seems inappropriate to look at special Lagrangians. The reason
is that in the IIa context we have two expansion parameters in 4d, namely gs and ℓs/RKK , but in the present context there is
only a single expansion parameter (namely 1/vol(S3) in Planck units), and so the higher order corrections discussed above
can compete at the same order in this expansion parameter with other corrections such as KK loops. It would be physically
incorrect to include only one type of correction and ignore the other contributions at the same order in the expansion
parameter.

For applications toM-theory phenomenologywe are interested in E8 Higgs bundles. The spectral cover in this case can get
quite complicated, but fortunately phenomenological considerations dictate thatweonly consider non-trivial configurations
for an SU(n) sub-bundle (so that the Higgs field breaks the E8 gauge group to the commutant of SU(n); the unbroken part
of the gauge group is called the GUT group). In particular we would like to consider the case n = 5, which yields an SU(5)
GUT group. The E8 spectral cover has 248 sheets and decomposes into several pieces, according to the decomposition2

248 = (24, 1)+ (1, 24)+ (5, 10)+ (5, 10)+ (10, 5)+ (10, 5) (2.38)

of E8 under SU(5)GUT × SU(5)H . The most important is the spectral cover for the fundamental representation of SU(5)H ,
which determines all the others uniquely. This cover intersects each fibre of T ∗S3 in five points λ1, . . . , λ5, with

λ1 + . . .+ λ5 = 0. (2.39)

Here addition is defined in the obvious way in each fibre. In the language of ALE fibrations, the λi’s correspond to certain FI
parameters of the E8 ALE using the dictionary described in Section 2.2. Using the labelling in Fig. 1, we may take the λi to
describe the size parameters of the following exceptional cycles:

|1⟩ = α4 |4⟩ = α1 + α2 + α3 + α4
|2⟩ = α3 + α4 |5⟩ = α−θ + α1 + α2 + α3 + α4
|3⟩ = α2 + α3 + α4.

(2.40)

The sizes of the cycles {α5, . . . , α8} are taken to be zero, generating an SU(5) GUT group, and all other cycles are obtained as
linear combinations. As we will discuss in more detail later, when one of the λi’s goes to zero, i.e. when the cover intersects
the zero section, one may get a chiral or anti-chiral field in the 10 localized here. Another piece of the E8 cover corresponds
to the anti-symmetric representation of SU(5)H . The cover CΛ2E intersects each fibre in

λi + λj, i < j (2.41)

andwewill see later thatwhen this cover intersects the zero section, wemay get a chiral or anti-chiral field in the 5 localized
there.

1 This is for the abelian case; the non-abelian case is apparently not yet completely understood.
2 The cover corresponding to (24, 1) further splits into two pieces, a cover of degree 20 and a four-fold multiple of the zero section.
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Fig. 1. The extended E8 Dynkin diagram and Dynkin indices.

To summarize, we have gone through the following chain:

. (2.42)

The conjecture is that we can also go in the reverse, i.e. given solutions to Hitchin’s equations with [φ, φ] = 0 one may
reconstruct solutions to dΦ = d∗Φ = 0. This must be correct if the 7d gauge theory is to give an accurate description of
M-theory dynamics on an ALE singularity, as is expected physically for large S3.

2.5. Non-compact branes

We claim that in order to get interesting solutions, we have to allow for certain source terms in the YMH equations. To
see this, let us assume that we do not have any source terms. Now flat connections are characterized by their monodromies,
and since π1(S3) = 1 any flat connection is equivalent to the trivial connection. This is in accord with the statement that
branes wrapped on the minimal three-sphere in T ∗S3 do not form bound states [27].

Onemay get non-trivial solutions by instead quotienting the S3 by a freely acting discrete group Γ , so that π1(S3/Γ )will
be non-trivial. However the non-trivial bound states one can make are still not of the type we want. We need the discrete
group Γ to be freely acting, and in this case must be finite (basically Γ is a product of ADE subgroups of SU(2)L × SU(2)R
acting on S3). Therefore the monodromies must be contained in the compact part of the complexified gauge group. This
means that Wilson lines for the gauge field can be turned on but the Higgs field has zero expectation value. In order to get
more interesting solutions with a non-trivial Higgs field we need to do something else.

In order to get interesting solutions we need to allow for non-compact flavour branes, i.e. source terms in the
Yang–Mills–Higgs equations. This is completely analogous to the meromorphic Higgs bundles appearing in local F-theory
models [8,25]. One may also see how this arises by applying heterotic/M-theory duality to heterotic models. Let us take for
instance a heterotic model with the spin connection embedded in the gauge connection. In a suitable limit, the heterotic
Calabi–Yau three-fold admits a Lagrangian T 3-fibration over S3. The Wilson lines of the bundle along the T 3 fibres form a
covering of the S3, which consist of three-points on the generic dual T 3 fibre. This is the heterotic picture of the spectral
cover that we discussed, for the special case of the tangent bundle. However over special subsets in S3 the cover may wrap
some of the circles of the T 3-fibration. Eg. over a graph in S3 it may contain a T 2

⊂ T 3, and over special points in S3 it may
contain the whole T 3. As in F-theory/heterotic duality, we expect that in a suitable limit this data is equivalent at the level of
F-terms to a degenerate K3 fibration over S3 with a section of E6ALE singularities, although for M-theory/heterotic duality
this is of course not established. Taking the local limit, we should take the size of the dual T 3 fibres to infinity in the heterotic
picture. This gives the picture advocated above of a Higgs field which is generically finite, but may blow up over a special
subset of S3.
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3. The effective theory

In the previous section, we reformulated the problem of constructing phenomenological M-theory compactifications in
terms of Higgs bundles and spectral covers. In this section we explain how the low energy degrees of freedom and their
interactions arise from the compactified Yang–Mills theory. Qualitatively this is already largely understood in the literature,
but in order to construct models and carry out the computations explicitly we need some new tools. Therefore we will
reformulate some old results in our present language and introduce Morse theory in order to relate the spectrum to more
readily computable quantities.

3.1. Chiral matter

Intuitively, chiral matter will be localized on some kind of solitonic configuration of the Higgs field. At the centre of such
a soliton, one of the eigenvalues of the Higgs field is going to zero. Thus we would like to analyse the Dirac equation in such
a solitonic background. In non-degenerate situations, there is only a single eigenvalue or combination of eigenvalues of the
Higgs field going to zero. Therefore in the non-degenerate case it is sufficient to consider abelian Higgs fields only, and we
will assume this through much of the discussion below. As we will discuss in the next subsection however, there are some
global effects which may require us to look at the full non-abelian field.

Recall that locally we can set the gauge field to zero, and write φ = df . Therefore the zeroes of φ are sometimes also
called ‘critical points’. We will now describe how this gives rise to chiral matter. This is essentially already discussed in the
literature, particularly [28,29] for the present setting, but will be reformulated somewhat to fit our purposes.

In order to calculate the spectrum, we need to solve a Dirac equation with a background Higgs field turned on. Following
[30] we will rescale the Higgs field by a positive real number t ∼ 1/h̄ and calculate the spectrum in a 1/t expansion.

It is convenient to think of the spinors in the 7d Yang–Mills theory from a ten-dimensional point of view. The
ten-dimensional 16 decomposes under SO(3, 1)× SO(6) as

(2, 1, 4)+ (1, 2, 4̄) (3.1)

which are further related by the Majorana condition. The 4 and 4̄ of SO(6)may be identified with (0, p) forms, with p even
odd for 4 and p even for 4̄. Each breaks up under SO(3)Q × SO(3)R as a (2, 2), but they have different eigenvalues under Γ6.
We can denote them as (2, 2)± according to their Γ6 eigenvalue.

As we discussed, due to twisting needed to maintain N = 1 supersymmetry, we can identify SO(3)R with SO(3)Q3 . This
diagonal SO(3) may be identified with the real subgroup SO(3) ⊂ SU(3) of the Calabi–Yau holonomy group fixed by an
anti-holomorphic involution, which gives another way to see the twisting. In any case, our spinors are functions of xi and
transform as spinor bilinears on Q3 = S3. As is well known, such bilinears can be identified with differential forms on Q3,
i.e. they may be identified with sections of

ψ ∈ Ap(Q3, C)⊗ Ad(G), p = 0, 1 (3.2)

where G is the principal bundle with gauge group G. Note that this matches with the bosonic field content. In order to relate
this to the description above, given a p-formwave functionψ wemay associate with it a (0, p)-form by replacing dxi → dz̄ i
in ψ , and a (p, 0)-form by replacing dxi → dz i in ψ∗. By Serre duality (i.e. taking the complex conjugate and contracting
withΩ3,0) we may relate the (p, 0)-forms to (0, 3 − p)-forms which transform in the same representation. The reason for
replacing ψ∗ by its Serre dual is that the Dirac operator acts more naturally in this basis. In terms of the original p-form ψ
this is just the real Hodge ∗-operator ψ → ∗ψ on Q3 without complex conjugation. So it is natural to allow differential
forms (3.2) for all values of p, with equivalent degrees of freedom related by the ∗-operator. Tracing back to (3.1) we see
that chiral fermions are naturally paired with odd p-forms and anti-chiral fermions are paired with even p-forms.

We assume that we have a gauge group G which is broken to a subgroup H by turning on an abelian component of the
Higgs field. We decompose the adjoint representation of G under H × U(1) as

Ad(G) = Ad(H)0 + Rq(H)+ R−q(H)+ 10. (3.3)

The worldvolume gauge fields can be set to zero locally. The Dirac operator acting on the spinors in the R-representation is
then given by

iQt = i
−

j=1,2,3

(∂j + t∂jf )(a
Ď
j + aj). (3.4)

Here we set q → 1 because its precise value is inconsequential, only its sign is important. The Dirac operator acting on
spinors in the R̄-representation is given by interchanging f → −f . When identifying the spinors with forms, the Clifford
algebra may be represented as aĎi = ∧dxi and ai = ı∂/∂xi , so we get

Qt = dt + dĎt (3.5)
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Fig. 2. Fermion zero mode localized on a defect.

where

dt = d + t df ∧ . (3.6)

The operator Qt is exactly the operator discussed at length in [30], so we will borrow from the discussion there.
The operator Qt may be thought of as a supercharge for supersymmetric quantum mechanics with target space M . The

Hamiltonian of this system is given by

Q2
t = Ht = ∆+ t2(df )2 +

−
i,j

t
D2f

DxiDxj
[aĎi, aj] (3.7)

where ∆ denotes the usual Laplace–Beltrami operator. For large t , the Hamiltonian is dominated by the potential energy
|df |2. In order to minimize the potential energy for large t , the eigenfunctions must be peaked around the critical points
of f . Therefore we may focus on a single critical point and approximate f by a quadratic potential. Up to coordinate
transformations, f may locally be written as:

f =
1
2

−
i=1,2,3

pix2i . (3.8)

The pi, i = 1, 2, 3 are real constants. They are all non-zero because we assumed that the critical points are non-degenerate.
Then the Higgs field near the critical point is given by

φ = df =

−
i=1,2,3

pixi dxi. (3.9)

The D-term equation put a restriction on the pi:

Tr Hess(f ) = p1 + p2 + p3 = 0. (3.10)

Using coordinates in which f takes the diagonal form (3.8), we may clearly use separation of variables. Thus we
concentrate on one variable xi temporarily and finally tensor the wave functions together. Then we have a standard domain
wall set-up (see Fig. 2). The Dirac equation becomes[

∂

∂x1
+ tp1x1

]
ψ+

1 = 0,
[
∂

∂x1
− tp1x1

]
ψ−

1 = 0. (3.11)

The local solution is

ψ±

1 (x) = e±tp1 x2/21 ϵ± (3.12)

where ϵ+
= 1 and ϵ−

= dx1. Inspecting the exponential factor, we see that eitherψ+

1 is normalizable andψ−

1 is not, or vice
versa. The normalizable solution is physically sensible and the non-normalizable one should be discarded. Which solution
is normalizable clearly depends only on the sign of p1.

Tensoring together withψ2 andψ3 and a four-dimensional chiral or anti-chiral spinor χ±, we get the full wave function:

χ±ψ±

1 ψ
±

2 ψ
±

3 ⊗ R(H) ∈ A∗(Q3; C)⊗ R(H). (3.13)

As we discussed, not all of these combinations are allowed. The four-dimensional chirality is correlated with the degree of
the form, which now becomes the number of negative eigenvalues. The number of negative eigenvalues of the Hessian at
an isolated critical point is called the Morse index. The cases of Morse index zero or three (i.e. (+,+,+) and (−,−,−)) are
ruled out by the D-terms, since a harmonic function cannot have local minima ormaxima. Therefore up to permutations, we
have Morse index one (+,+,−) which gives a chiral fermion, and Morse index two (+,−,−) which gives an anti-chiral
fermion.

In addition, we should analyse the Dirac equation for the remaining pieces in the decomposition of Ad(G), namely Ad(H)0
and 10. The corresponding zero modes are not localized at the critical points and we need some global information. In this
case the Dirac operator is just given by the exterior differential, and the zero modes are in one-to-one correspondence
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Fig. 3. The extended A5 Dynkin diagram and Dynkin indices.

with Betti numbers. From Ad(H)0 we get a gaugino transforming in Ad(H), and b1(Q ) adjoint chirals. From the 10 we get
H1(C)moduli (where C is the spectral cover). This concludes the derivation of the massless spectrum to all orders in the 1/t
expansion.

As a simple example, consider the local unfolding of an SU(6) singularity to an SU(5) singularity, considered in [29,31].
That is, we will consider an A5 ALE surface fibred over R3, such that for x⃗ = 0⃗ all the vanishing cycles are zero size and we
have an A5 singularity, and such that for x⃗ ≠ 0 the ALE is partially resolved, but we still have an A4 singularity. Thenwe need
to turn on an abelian Higgs field. Under SU(5)× U(1)Q , the adjoint of SU(6) decomposes as

Ad(SU(6)) = Ad(SU(5))+ 5 + 5̄ + 1 (3.14)

and so we expect a chiral fermion at x⃗ = 0 which transforms as a 5 or 5 under the unbroken SU(5) gauge symmetry. Let us
first phrase the configuration in our current language, and then compare with [29].

Our Higgs field will be proportional to a Cartan generator U(1)Q which is embedded in SU(6) as ωQ = diag
(1, 1, 1, 1, 1,−5). In terms of the canonical basis ωk satisfying

[ωk, αl] = δkl (3.15)

this corresponds to ωQ = 6ω5. To each node we can associate an abelian Higgs field φkωk, whose three components are the
three FI parameters for the corresponding cycle αk. They satisfy the constraint

d−θφ−θ + · · · + d5φα5 = 0 (3.16)

where dk are the Dynkin indices (see Fig. 3). In the present case, the dk are all equal to one. (This description is redundant
because we can always use this relation to eliminate φ−θ , but it becomes quite convenient for non-abelian Higgs field VEVs).
Now we set

φα5 = −φ−θ = df , f ∝

3−
i=1

pix2i . (3.17)

Since {φα1 , . . . , φα4} are all kept zero, the corresponding cycles αk are all kept at zero size, and an SU(5) singularity is
preserved. This satisfies the F-terms, andusing themetricds2 =

∑
dx2i onR3 it also satisfies theD-termsprovidedp1+p2+p3

= 0. By our previous analysis, we get a chiral fermion localized at x⃗ = 0⃗, in the 5 if p1p2p3 > 0 or in the 5 if p1p2p3 < 0.
This description agrees with the hyperkähler quotient construction of [29]. Their D-terms are given by D⃗ = (a, b̄)/U(1),

where the U(1) acts with charge one on a and b. The authors of [29] choose the unfolding x⃗ = (a, b)/U(1), i.e. we changed
the sign of one of the components of D⃗ (changing the Morse index from zero to one) and then identified the image with R3.
Thus this agrees with our claims above except for an inconsequential rescaling in the metric on R3. Additional constructions
along the lines of [29] can be found in [32,33].

Of course wewant a gap between themassless modes and the KKmodes of the 7d gauge theory, so we are not interested
in fibering over R3 but over a compact three-manifold like S3 or S3/Γ . Then there will necessarily be higher order terms in f
and additional critical points. Our calculation was not exact, and in fact there are corrections toHt exponentially suppressed
in t which may lift some of the zero modes we found. These corrections are the topic of Section 3.3.

We can also state the formula for chiral matter in terms of the spectral cover in the auxiliary Calabi–Yau T ∗S3. Locally
we can describe a sheet by the graph of df . A critical point of f corresponds to an intersection point between the graph of
df and the zero section, and the sign of the intersection is just (−1)p where p is the Morse index. Thus the statement is that
one must count with sign the number of intersection points of a harmonic Lagrangian brane C with the zero section C0:

Nχ (R) = #(C0 ∩ C)−, Nχ (R̄) = #(C0 ∩ C)+. (3.18)

Consider for instance E8 models broken to SU(5) by an SU(5)Higgs field. The SU(5)Higgs field can be encoded in a Lagrangian
brane CE in T ∗S3 which is a five-fold covering of the zero section, or in a ten-fold covering CΛ2E associated to the anti-
symmetric representation. When CE intersects the zero section, we have λi → 0 for some i and the symmetry is locally
enhanced to SO(10). Using the decomposition

Ad(SO(10)) = Ad(SU(5))+ 10 + 10 + 1 (3.19)
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the chirals in the 10 are counted by the number of negative intersections between CE and the zero section. Similarly when
CΛ2E intersects the zero section, λi + λj → 0 for some i ≠ j and the symmetry is locally enhanced to SU(6), i.e. it locally
looks like the example discussed above. Thus the number of 5 or 5’s is counted by the intersection points of the cover CΛ2E
with the zero section. However pairs of chirals and anti-chirals may still be lifted through instanton effects, leading to the
quantum intersection theory of Lagrangian branes in T ∗S3.

3.2. Abelian solutions

Recall that in order to get non-trivial solutions to Hitchin’s equations on S3 or S3/Γ , we have to allow for non-compact
branes, i.e. we have to allow for singularities in the Higgs field. We will generally assume that these singularities are located
on a graph ∆ in S3, although one could consider more general situations. Then locally we may choose a coordinate r
transverse to the graph, and an angle θ in the plane transverse to the graph. In the abelian case, the local behaviour as
r → 0 is

A ∼ αdθ
φ ∼ βd log r + γ dθ. (3.20)

The parameters α, β and γ are boundary data that we have to specify. In this section we discuss the special case when there
is no monodromy of the gauge and Higgs fields, i.e. α + iγ = 0, and we return to the general case later.

We excise a small tubular neighbourhood of ∆ from S3, which therefore becomes a manifold with boundary which we
will denote byM . Then the F-terms on M simply read

dφ = 0 (3.21)
and since the Higgs field carries no monodromy (γ = 0), we may express φ = df for a globally defined function f . The
D-terms read

d∗df = 0 (3.22)
on the complement of∆. In fact it is simpler in this case to think of β as a charge density along∆, and write the D-terms as
a Poisson equation on S3

d∗df = β. (3.23)
The above equations are of course very familiar. We are simply dealing with an electro-statics problem, with the Higgs

field φ playing the role of the (dual of the) electric field, β playing the role of a charge density along the graph, and f = log h
playing the role of the electro-static potential. Thus we can solve this problem in the standard way, by using the Green’s
function for the Laplacian. There is a single consistency constraint that needs to be satisfied: using the divergence theorem,
we get

0 =

∫
M
d∗φ =

∫
∂M
φ · ν (3.24)

and hence the total flux through the boundary must vanish, which means that the total ‘charge’ on S3 must vanish (Gauss’s
law). Accordingly there must be positive and negative charges, and we can split up the graph ∆ as ∆+

∪ ∆− which are
positively and negatively charged respectively. Let us denote the Green’s function for the Laplacian as G(x, y). The solution
to the BPS equations is given by

φ = df , f (y) =

∫
S3

d3x
√
g β(x)G(x, y). (3.25)

3.3. Instanton corrections and Morse cohomology

In the above we saw that onemay construct abelian solutions by solving a simple electro-statics problem. However even
though we know there exists a solution satisfying both the F-terms and the D-terms, one can learn much by imposing only
the F-term equations. That is, in the following we will assume that φ is closed but not necessarily harmonic. Recall that
the spectrum of massless charged chiral and anti-chiral matter is related to the critical points of φ. As we will now discuss,
the massless spectrum may actually be deduced using purely combinatorial methods and is common to all solutions of the
F-terms, independent of whether φ is harmonic.

Let us denote the set of critical points of index i by Criti(f ). It is a well-known fact that on a compactmanifold the number
of critical points of Morse index i is bounded below by the i-th Betti number:

# Criti(f ) ≥ hi(M). (3.26)
This is the weak form of the Morse inequalities, one of the central results of Morse theory (a brief review may be found in
Appendix). In the present setting we also have boundaries, and we really get a bound in terms of Betti numbers for relative
cohomology. For simplicity let us temporarily ignore this issue. The point is that we get a lower bound on the massless
spectrum in terms of topological data.
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Now it turns out the situation is actually much better than that. The calculation of the massless spectrum in Section 3.1
was exact to all orders in a 1/t expansion, but may still be corrected by instantons. Once we take these quantum effects
into account, we will find that the massless spectrum is in fact exactly computed by the Betti numbers. In other words, we
may read of the massless spectrum just from the topology ofM , which may be computed by purely combinatorial methods.
Following [30] (see also [34]), we will now briefly explain how instantons correct the computation.

The potential energy function V ∼ |df |2 has multiple critical points. However it is not generally true that the states we
found at each critical point are all true ground states. We have not yet accounted for the possibility of tunnelling. To see
this, we consider two critical points p, q and their associated ground states |p⟩ , |q⟩ and compute the amplitude ⟨q|Qtp⟩.
The effective Lagrangian of the 7d SYM describing excitations along M in the representation R is that of supersymmetric
quantum mechanics onM:

L =
1
2
(dx)2 −

1
2
t2(df )2 +

i
2
ψ̄(D + tD2f )ψ +

1
4
Rψ̄ψψ̄ψ. (3.27)

The fermions may be thought of as the operators ai ∼ ∧dxi encountered earlier. Ignoring the fermions, the Euclidean action
is given by:

2 SE =

∫
dλ (dx)2 + (tdf )2 =

∫
dλ(dx ± tdf )2 ∓ t

∫
dλdf

≥ t |f (q)− f (p)| (3.28)

where λ denotes Euclidean time. The potential is then turned upside down, and there are instanton solutions:

∂xi
dλ

= ±tg ij ∂ f
∂xi

(3.29)

with x(λ → −∞) = q, x(λ → +∞) = p. These are gradient flow trajectories that connect critical points p and q. For
instanton contributions to dt we want the minus sign above. Each such instanton contributes

⟨q|dt |p⟩ ∼

∫
dx0dψ̄0

detF
det1/2B

dt |classe−
1
2 t(f (q)−f (p)). (3.30)

Here x0 and ψ̄0 denote the bosonic and fermionic zero modes of the instanton; detB and detF denote the bosonic and
fermionic fluctuation determinants; and we evaluate dt on the instanton solution.

To get the amplitude, we need to compute the one loop fluctuation determinant. In supersymmetric theories, the
determinants for the non-zero modes of the bosons and fermions cancel, but there are zero modes. For an instanton
connecting two critical points whose Morse index differs by one, there is one bosonic zero mode (for the broken translation
invariance in Euclidean time) and one fermionic zero mode (for the broken supersymmetry generator). More generally, the
number zero modes is given by the Morse index of pminus the Morse index of q. Since the operator dt = ψ̄(∂x+ ∂ f ) soaks
up exactly one bosonic and one fermionic zero mode, the instanton only contributes if the difference in the Morse indices
is equal to one.

We further need to know the coefficient, in particular the sign of the coefficient. This is slightly subtle since the coefficient
is proportional to 1/t , so we simply state the result. Consider the subspace Vp of the tangent space at p onwhich the Hessian
is negative definite. Its dimension is given by the Morse index of p and it carries an orientation induced by the differential
form |p⟩. Let v⃗ denote a vector tangent to the gradient flow trajectory, and V⊥

p the subspace of Vp orthogonal to v⃗. It carries
an orientation induced by the contraction of |p⟩ with v⃗. At qwe have an analogous subspace Vq with orientation induced by
|q⟩. Now we transport V⊥

p along the gradient flow trajectory to q. If the orientation agrees with Vq we use the plus sign, and
if they disagree we use the minus sign.

Hence we deduce that non-perturbatively in 1/t , the action of dt on the would-be zero modes has the following
correction:

dt |p⟩ =

−
C i+1(M)

n(p, q)e−
1
2 t(f (q)−f (p))

|q⟩ (3.31)

where n(p, q) counts with sign the number of trajectories. By rescaling |p⟩ → e
1
2 tf (p) |p⟩, |q⟩ → e

1
2 tf (q) |q⟩ we can get rid of

the exponential factors, and hence we simply get

dt |p⟩ =

−
C i+1(M)

n(p, q) |q⟩ . (3.32)

Since d2t = 0, it is a boundary operator. The actual zero modes are those which are also annihilated by dt and dĎt , so the true
zero modes are in one–one correspondence with the cohomology of dt . This is the Morse complex.

It is not hard to recover these instantons in the other pictures we have been using. In the ALE fibration picture, the
gradient flow trajectories connecting critical points can be interpreted as membrane instantons. Let us assume for instance
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that we have an A1 ALE space fibred over S3, and our line bundle is embedded as the diagonal generator in SU(2), generically
breaking the SU(2) → U(1). Then in the ALE sitting over the critical point of f , an S2 shrinks to zero size and the U(1)
gets enhanced to SU(2) due to a massless M2-brane wrapping the S2. Now let us take this S2 and transport it along the
gradient flow trajectory to the other critical point. In this way we trace out an S3 inside the ALE fibration which projects to
the gradient flow trajectory in the base Q3, and there is a membrane instanton obtained by wrapping an M2-brane on this
S3. The action of this instanton is proportional to the area of the S3, which we can find because the S3 is a calibrated cycle.
Recalling thatΦ ∼ Φ0 + tdf ∧ ω, we get:

vol =

∫
S3
Φ ∼

∫
t∂λf dλ ∼ t (f (q)− f (p)). (3.33)

This agrees with the action of the gradient flow instanton. Clearly this generalizes to more complicated ALE fibrations. Note
that we should not interpret these M2 instantons as saying that our gauge theory breaks down, we are still describing a
tunnelling effect in the 7d gauge theory.

We can also interpret these instantons in the spectral cover picture. It will not come as a surprise that they lift to disc
instantons. To see this, consider a disc stretching between the zero section and the Lagrangian brane defined by the function
f , which projects to the gradient flow trajectory on S3 between the critical points p and q. Its area, measured with respect to
the standard symplectic form on T ∗S3, is given by∫

∞

−∞

dλ
∫ 1

0
dx x|t∇f | =

1
2
t(f (q)− f (p)) (3.34)

and therefore the action of the disc instanton also agrees with the action of the gradient flow instanton.
Now the beauty of theMorse complex is that it reconstructs the ordinary cohomology of the underlying manifold, i.e. we

have

H∗

Morse(M, f ) = H∗(M,R). (3.35)

One way to understand this isomorphism is by noticing [30] that our differential operator is related to the ordinary exterior
differential by a similarity transformation

dt = e−tf detf = d + t df ∧ . (3.36)

Thus the Betti numbers are independent of t . In the limit t → ∞ we obtain the Morse complex, and in the limit t → 0 we
recover the definition of the ordinary de Rham cohomology.

There is also a version of this isomorphism for manifolds with boundary, which is the case relevant for us. Recall that
we effectively have boundaries where the Morse function (or electro-static potential) becomes infinite. We will assume the
boundary may be split up into disjoint positively charged and negatively charged pieces

∂M = ∂+M ∪ ∂−M. (3.37)

Then the Morse complex reconstructs the relative cohomology

H∗

Morse(M, f ) = H∗(M, ∂+M). (3.38)

Actually in order for Morse theory with boundaries to be well defined and reproduce the relative cohomology, we must
ensure that the gradient flow trajectories connecting critical points do not hit the boundary. This is automatically the case
for the harmonic solutions that satisfy the D-term equations. In the electro-statics analogy, the critical points are the points
where a test chargewould experience zero force. The gradient flow trajectories describe the possible trajectories of a positive
test charge. A trajectory connecting two critical points cannot hit a boundary — the potential energy is minimized at a
boundary and the test charge cannot climb back out.

Therefore we conclude that themassless matter content depends only on topological properties of the configuration and
is independent of the explicit solution to the D-term equation. The massless matter content is simply given by the ranks of
the relative cohomology groups:

Nχ (R) = h1(M, ∂+M), Nχ̄ (R) = h2(M, ∂+M) (3.39)

where ∂+M is the boundary of M where the Morse function is increasing, i.e. where the positive charges are located.
Therefore the computation of the spectrum is reduced to a purely combinatorial problem involving triangulations or cell
complexes. In particular the net number in the representation R is simply given by

net chiral(R) = χ(M, ∂+M). (3.40)

As we will discuss later, this formula holds much more generally.
More generally wemay have multiple abelian Higgs fields. Suppose there are two, with associated Morse functions fa, fb.

Let us denote the boundaries as

∂a = ∂+

a − ∂−

a (3.41)
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where we used the minus sign to indicate that there are negative charges located on ∂−
a . We will assume again that positive

and negative boundaries do not intersect, and we will also assume for convenience that the charge density along the
boundary is uniform. Then it is not hard to see that for a general linear combination qafa + qbfb, the boundary is given
by

∂qa,qb = qa∂+

a − qa∂−

a + qb∂+

b − qb∂−

b . (3.42)

Depending on how the Higgs fields are embedded into a non-abelian group G, one will be interested in the critical points
of various linear combinations of fa and fb. These linear combinations depend on the U(1) × U(1) charges (qa, qb) of the
multiplets appearing in the decomposition of the adjoint of G under H × U(1)a × U(1)b. In each case we have

Nχ (qa, qb) = H1(M, qafa + qbfb) = H1(M, ∂+

qa,qb). (3.43)

So far, our results were stated as certain properties of the Higgs field. We may also restate some of the results in the
spectral cover description, which yields a more geometric picture. We have already seen that critical points correspond to
intersections of components of the spectral cover with the zero section. We have also seem that gradient flow trajectories
lift to disc instantons in T ∗S3. Therefore the instanton corrected spectrum is computed by the Floer cohomology groups

HF∗(C0, CE) (3.44)

wherewe used C0 to denote the zero section. Indeed it is well known in the literature that Floer cohomology in the cotangent
bundle coincides with Morse/Novikov cohomology on the base manifold [35–37].

The analysis of the charged chiral spectrum implies that if # Criti(f ) > hi(M, ∂+M), then there are chiral fields in the
spectrum whose masses are exponentially suppressed compared to the GUT or KK scale:

M2
∼ e−

1
αGUT M2

GUT . (3.45)

These massive modes modify the running of the gauge couplings below the GUT scale (which may be identified with the KK
scale up to threshold corrections), and may provide channels for proton decay. The GUT breaking mechanism of [38] using
discrete Wilson lines in fact requires the existence of such relatively light massive modes, namely the Higgsino triplets, and
depending on themodel there could be additionalmodes. The GUT breakingmechanism of [38] in principle also allow one to
eliminate dimension five operators leading to proton decay. However with such a lowmass for the triplets, even dimension
six proton decay could lead to trouble. Therefore it was suggested in [39] that for the GUT breaking mechanism in [38] to be
viable, one should also modify the running so as to get αGUT ∼ 0.2 − 0.3. This could be engineered by having additional 5 5
pairs below the GUT scale. We will briefly suggest a different GUT breaking mechanism in Section 3.7.

3.4. Comments on anomaly cancellation

In type IIa string theory, non-abelian anomalies due to chiral fermions at brane intersections can be cancelled by anomaly
inflow. To see this, we have an interaction

SCS =

∫
C (1) ∧ Tr(F 3) = −

∫
F (2) ∧ ω5(A). (3.46)

Under a gauge transformationΛwe have

δΛSCS = −

∫
F (2) ∧ δΛω5(A) =

∫
dF (2) ∧ I14 (A,Λ). (3.47)

Further, 6-branes are monopole configurations for C (1):

dF (2)/2π ∼

−
a

Naδ
3(Pa). (3.48)

Therefore the term δΛSCS above is of precisely the right form to cancel non-abelian anomalies due to chiral fermions at brane
intersections.

In M-theory, the RR gauge field C (1) is generally massive, and so is not included as a propagating degree of freedom
in the effective action. However after integrating it out, there must be a residual interaction which is not invariant under
gauge transformations, for otherwise the anomalies above could not be cancelled. Ref. [40] explained what this residual
interaction looks like in a local model. The geometry near a 6-brane locally looks like an An ALE fibration over S3. The ALE
has a natural U(1) isometry that commutes with the holonomy, and as we fibre over S3 we may get a non-trivial U(1)
bundle. The curvature of the corresponding U(1) bundle over S3 is denoted by K ; it becomes F (2) in a IIa limit. Then in [40]
it is essentially argued that the coupling (3.46) survives inM-theory in the following form:∫

d7x
K
2π

∧ ω5(A), dK =

−
naδPa (3.49)
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where Pa are the locations of chiral and anti-chiral matter, and na their multiplicities. As written, this interaction onlymakes
sense for local geometries which are fibred by An ALE spaces and not for more general G2-manifolds, but presumably there
is a more general expression that reduces to the above one in a scaling limit. This is an additional coupling in the action
beyond the terms we have considered so far, which is needed for consistency. The associated tadpole constraint expresses
cancellation of the non-abelian anomalies.

One may also consider abelian anomalies. Let us briefly review some arguments in [40] (see also [41]). Chiral fields are
localized at codimension 7 singularities, and locally the G2 metric may be written as

ds2 ∼ dr2 + r2ds2Yα (3.50)

where r is a radial coordinate. We cut such a local neighbourhood around each codimension 7 singularity. Then our
G2-manifold X7 becomes a manifold with boundary X ′

7, with ∂X ′

7 = ∪α Yα . We expand C3 in harmonic forms on X ′

7:

C3 ∼ Ai ∧ ω
i
+ aj ∧ χ j. (3.51)

Here ωi are harmonic two-forms and χ j are harmonic three-forms, so the Ai are our four-dimensional abelian gauge fields
and the aj are four-dimensional axions. Then under a gauge transformation C3 → C3 + dΛ, the Chern–Simons term varies
as

δΛSCS ∼ −

∫
R4×∂X

Λ ∧ G ∧ G ∼ −

−
α

∫
R4
ϵi Fj ∧ Fk

∫
Yα
ωi

∧ ωj
∧ ωk (3.52)

where we decomposedΛ asΛ ∼ ϵi ω
i. This is cancelled if there are fermion zeromodesψσ localized at the singularity, with

U(1) anomalies given by−
σ

qiσ q
j
σ q

k
σ =

∫
Yα
ωi

∧ ωj
∧ ωk. (3.53)

Moreover from Stokes’ theorem we get

0 =

−
σ ,α

qiσ q
j
σ q

k
σ (3.54)

which one interprets as cancellation of the cubic U(1) anomalies. Similarly one may discuss mixed abelian-gravitational
anomalies and mixed abelian/non-abelian anomalies.

At first sight there is one puzzling aspect about this derivation. It implies that in M-theory compactifications on
G2-manifolds, the chiral spectrum is such that the light U(1)’s are always non-anomalous, and no Green–Schwarz
mechanism is ever needed. On the other hand, type IIa withD6 branes lifts toM-theory onG2, and there can also be heterotic
duals. In both of these contexts, there can be light anomalous U(1)’s and there is a Green–Schwarz mechanism for their
cancellation.

The likely resolution to this puzzle is as follows. In these other settings, the anomalous U(1)’s obtain a mass of order
∼ gYM,4ℓ−1

s through the Green–Schwarz terms, and this mass is always parametrically lighter than the KK scale. Thus it
makes sense to have anomalous U(1)’s below the KK scale and a Green–Schwarz mechanism for cancelling their anomalies.
This is true even in F-theory. However the lift from IIa toM-theory is a little more subtle, and it seems a priori possible that
such anomalous U(1)’s in type IIa will lift to massive U(1)’s in M-theory with masses scaling like 1/RKK . In that case we
should treat these massive U(1)’s on the same footing as other massive U(1) gauge bosons, and there will be no anomalous
U(1)’s in the effective action below the KK scale, in agreement with the arguments of [40].

3.5. Techniques from algebraic topology

In this section we would like to apply some simple techniques from algebraic topology in order to compute the relative
Betti numbers hi(M, ∂+M) in terms of the topological properties of the positive and negative boundaries. We actually work
with the homology, which can easily be dualized to cohomology. We assume that the positive charge density is smeared
along a graph ∆+ with n+ components and ℓ+ loops, and similarly the negative charge density is smeared along a graph
∆− with n− components and ℓ− loops. For some examples see Fig. 5 in Section 3.6. The open manifold M is identified with
S3 \ (∆+

∪∆−).
In order to compute the relative Betti numbers and the Euler character, there are two relevant long exact sequences. The

first is the Mayer–Vietoris sequence. Suppose a manifold X is covered by two open sets U, V . Then we have the long exact
sequence

· · · → Hi(U ∩ V ) → Hi(U)⊕ Hi(V ) → Hi(X) → Hi−1(U ∩ V ) → · · · . (3.55)

In particular, the Euler characters are related as

χ(X) = χ(U)+ χ(V )− χ(U ∩ V ). (3.56)
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Fig. 4. The extended E7 Dynkin diagram and Dynkin indices.

In the applicationwehave inmind,X = S3,U is S3 with a small tubular neighbourhood of the negative boundary excised, and
V is itself a tubular neighbourhood of the negative boundary. Suppose the graph has n− components and has ℓ− loops. Then
U ∩V is topologically a collection of higher genus Riemann surfaces, so we have bi(U ∩V ) = {n−, 2ℓ−, n−, 0}. Furthermore
we have bi(V ) = bi(∆−). It follows from the long exact sequence that

b3(S3 \∆−) = 0, b2(S3 \∆−) = n− − 1, b1(S3 \∆−) = ℓ−, b0(S3 \∆−) = 1. (3.57)

In particular

χ(S3 \∆−) = n− − ℓ−. (3.58)

The second sequence we need is the one for relative homology. If A is a subset of X , then we have

. . . → Hi(A) → Hi(X) → Hi(X, A) → Hi−1(A) → . . . . (3.59)

In particular

χ(X, A) = χ(X)− χ(A). (3.60)

For our application, we would like to take X to be M ∼ S3 \ (∆+
∪ ∆−), and A to be a small tubular neighbourhood of

∆+
∼ ∂+M . In fact by the excision axiom, because∆+

⊂ A, it is equivalent to take X = S3 \∆−. The precise Betti numbers
b1(X, A) and b2(X, A) depend on the details of how the graphs are linked. From the long exact sequence, we find that they
are given by

b2(M, ∂+M) = n− − 1 + ℓ+ − r
b1(M, ∂+M) = n+ − 1 + ℓ− − r 0 ≤ r ≤ min(ℓ+, ℓ−). (3.61)

Here r is the rank of the inclusion map

H1(∂
+M) → H1(S3 \∆−). (3.62)

That is, any loop in ∆+ is naturally embedded in S3 \ ∆−, and r counts the number of loops that remain independent in
homology after embedding. Thus we see that r indeed describes the linking between the positive and negative graphs. If the
graphs are unlinked then r = 0. Moreover the Euler character is easily calculated and given by

χ(M, ∂+M) = χ(M)− χ(∂+M) = n− − ℓ− − n+ + ℓ+ (3.63)

which is independent of r . Thus the net number of generations is easily computed from the topology of the positive and
negative boundaries.

3.6. Example

In this section we would like to consider a toy GUT model, obtained by compactifying a gauge theory with gauge group
E7 on the three-manifold Q3 = S3. We will use the labelling of the roots shown in Fig. 4. The group E7 contains a maximal
SO(10)×U(1)a ×U(1)b subgroup, and we can take the SO(10) to be generated by {α2, α3, α4, α5, α7}. Under this subgroup,
the adjoint representation of E7 decomposes as

133 = 450,0 + 10,0 + 10,0 + r + r̄
r = 16−2,1 + 160,−3 + 102,2 + 1−2,4. (3.64)

In terms of our canonical basis ωi dual to αj, the two U(1)’s correspond to

ωa = 2ω1, ωb = 2ω1 − 3ω6. (3.65)

Wewould like to have an unbroken SO(10) gauge group after compactification. In order to achieve this breaking pattern,
we need to turn on a profile for the Higgs fields corresponding to U(1)a and U(1)b. The Morse functions will be denoted as
log h1 = f1 and log h6 = f6. That is, the FI parameters are given by

λ1 = df1, λ6 = df6, λθ = −df1 − 2df6. (3.66)



1240 T. Pantev, M. Wijnholt / Journal of Geometry and Physics 61 (2011) 1223–1247

Fig. 5. Positively charged (red) and negatively charged (black) boundaries of Morse functions on S3 . Case (a) yields an electro-static potential that we call
f6 , case (c) yields the potential f1 , and case (b) corresponds to the linear combination−f1 − f6 . Note that we took one of the pieces of the boundary common
to f1 and f6 , but with the charge density for f6 dominant there. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Then the various chiral fields are counted by the following Morse cohomology groups:

160,−3 → h1(M, f6) 16−2,1 → h1(M,−f1 − f6)
102,2 → h1(M, f1) 1−2,4 → h1(M,−f1 − 2f6).

(3.67)

Similarly the chiral fields in the conjugate representations are counted by h2(M, f ).
Now we will define the electro-static potentials f1 and f6 by specifying suitable positive and negative charges on S3. An

example is shown in Fig. 5. To compute the spectrum, we use the formulae derived in Section 3.5, dualized to cohomology:

h1(M, ∂+M) = n+ − 1 + ℓ− − r
h2(M, ∂+M) = n− − 1 + ℓ+ − r

0 ≤ r ≤ min(ℓ+, ℓ−). (3.68)

Using the charge configurations in Fig. 5, we find

h1(M, f6) = 2 h1(M,−f6 − f1) = 1 h1(M, f1) = 1
h2(M, f6) = 0 h2(M,−f6 − f1) = 0 h2(M, f1) = 2.

(3.69)

Therefore we have precisely three chiral generations in the 16, three Higgs fields, and also one chiral field in the
representation 1−2,4. The Yukawa coupling

160,−3 × 16−2,1 × 102,2 (3.70)

is in principle allowed by the symmetries.
This example is unrealistic in a number of ways. In our non-compact set-up the U(1)a × U(1)b is not dynamical, but it

imposes some strong selection rules. Since theU(1)’s are anomalous under the spectrum of the local model, we expect them
to become massive upon compactification, but interactions violating the selection rules would then still be suppressed by
the compactification scale. A nicer way would be to break the extra U(1)’s by using non-abelian Higgs fields. Or one could
start with an abelian configuration and try to turn on an expectation value for the 1−2,4. In the present example such a VEV
would still leave an unbroken U(1), so it would be better to start with E8 instead since this can be broken to SO(10) by
turning on an SU(4) valued Higgs field. Finally we have not yet incorporated a mechanism for breaking the GUT group to
the Standard Model.

3.7. Breaking the GUT group with an abelian Higgs field

In order to break the GUT group, we can in principle proceed in two ways. One method is to engineer a four-dimensional
Higgs field that can do the breaking, like an adjoint field. This is not possible if weworkwithQ3 = S3/Γ since h1(S3/Γ ) = 0,
and even if it were one would end up with a conventional four-dimensional GUT model with the associated problems like
doublet–triplet splitting.

The other method is to give a VEV to a charged field in the higher dimensional gauge theory in the process of
compactification. The available charged fields which can get a VEV are the 7d gauge field and the 7d Higgs field.

We can turn on a VEV for the gauge field in two ways. If π1(Q3) is non-zero we can use discrete Wilson lines with a
hypercharge component. This is the conventional mechanism used in the heterotic string and introduced in the M-theory
context in [38]. Unfortunately as we already discussed, this mechanism leads to light Higgsino triplets and looks somewhat
less than desirable. The other possibility is to turn on a fluxwith a hypercharge component. Howeverwe have h2(S3/Γ ) = 0
so this is not available for us [42].

There is then still one other option: we could turn on an abelian hypercharged Higgs field to break SU(5) → SU(3) ×

SU(2) × U(1). This corresponds to a reducible spectral cover. Apart from the usual Standard Model fields which descend
from the 10 and 5 however, there can be additional unwantedmatter. Let us denote the pair (C, L) simply byL. The spectral
cover moduli decompose as

HF 1(L,L) =

−
m,n

HF 1(Lm,Ln) (3.71)
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Fig. 6. Graph of gradient flow trajectories relevant for Yukawa couplings.

where m, n run over the irreducible components. The off-diagonal components are charged under the extra U(1)’s, which
includes hypercharge in this case. We saw an example of this in Section 3.6, where we had a scalar 1−2,4. So in this scenario
one has to make sure that such hypercharged moduli are massive, i.e. there is no deformation to a smooth spectral cover,
because there are no light hypercharged scalars in the realworld. This can likely be arrangedby a suitable boundary condition
or by turning on flat spectral line bundles on the irreducible components of the cover which cannot be obtained as a limit of
a smooth line bundle after deformation. The crucial part is to check that this can be done while still satisfying the D-terms.

Another possible issue is that in the local set-ups we have been discussing, the U(1) would not be dynamical. It can
become dynamical when embedded in a compact model but it may have some UV sensitivity. Nevertheless this would lead
to very different signatures than breaking by discrete Wilson lines, and so may be worth pursuing.

3.8. Superpotential terms

In this section we would like to explain how superpotential couplings are recovered from Morse theory. In the 1/t
expansion we can think of such couplings as generated by membrane instantons or disc instantons, which map to trees
of gradient flow trajectories on S3. The prescriptions were originally found by [37,43]. We focus on the Yukawa couplings
and quartic couplings. This is all that is needed for practical purposes. The Yukawa couplings correspond to the cup product
on cohomology, and the quartic couplings to the Massey product, and so once more we see that the F-term data reflects the
underlying topology and may be computed using alternative, combinatorial methods.

To define a three-point function we need three functions fi, i = 1, 2, 3 such that the differences fij = fi − fj are Morse
functions. In practice one of the fi will correspond to the zero section and so is taken constant. Our chiral fields correspond to
certain linear combinations of index one critical points of the fij. We assume that a chiral field can be associated to a definite
critical point. One can extend the definition of the three-point function using linearity.

The three-point function is given by the classical overlap of the wave functions of the chiral zero modes. In the 1/t
approximation, it receives contributions from minimal area membrane instantons, which map to graphs of gradient flow
trajectories in S3 along the lines we discussed in Section 3.3. Namely we consider embedding graph as in Fig. 6 into S3, such
that the edges get mapped to gradient flows of fij as indicated, and the ends get mapped to an index one critical point of fij.
The moduli space of such graphs is denoted byM(p12, p23, p31). When non-empty, it is a manifold of dimension

dimM(p12, p23, p31) = m(p12)+ m(p23)+ m(p31)− 3. (3.72)
In particular when m(p12) = m(p23) = m(p31) = 1, it is a finite set of points counted with signs. The action of such an
instanton is given by

exp−|f12(p12)+ f23(p23)+ f31(p31)| (3.73)
and so the Yukawa coupling is given by

λ123 =

−
graphs

n(p12, p23, p31) e−|f12(p12)+f23(p23)+f31(p31)|. (3.74)

Although the exponential factors may be scaled out by field redefinitions and are therefore ignored in the mathematics
literature, they are physically relevant because the field redefinitions would change the normalization of the kinetic terms.

Similarly we may recover the four-point function. In this case use four functions fi, i = 1, 2, 3, 4 and we look for graphs
of gradient trajectories as in Fig. 7. The virtual dimension of the moduli space of graphs of type (a) and (b) is given by

dimM(p12, p23, p34, p41) = m(p12)+ m(p23)+ m(p34)+ m(p41)− 4. (3.75)
These two moduli spaces are glued along the moduli space of graphs of type (c), whose dimension is one lower. Again we
are interested in the case when allm(i) = 1, in which case we can count a discrete number of graphs of type (a) and (b). The
quartic coupling is defined as

λ1234 =

−
graphs

#M(p12, p23, p34, p41) e
−|

∑
i
fi,i+1(pi,i+1)|

. (3.76)
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Fig. 7. Graphs of gradient flow trajectories generating quartic couplings.

There exist alternative ways to compute the four-point function. Once the boundary operator and the three-point functions
have been obtained, one may also construct higher point functions through a recursion relation [36,44]. This may be
thought of as a Feynman diagram expansion of our Chern–Simons theory (2.25), however it is more general in that it
does not necessarily require that we use the Morse–Smale complex. In case of the four-point function this computes the
(length 3) Massey product. If the boundary operator and the three-point function have been normalized correctly, these
two constructions should be equivalent up to field redefinition of the form Φi → Φi + cijkΦjΦk+ higher order. There are
generalizations to higher point functions along the same lines.

3.9. Unsuppressed couplings and degenerate critical points

So far we have assumed that chiral fields are localized at non-degenerate critical points. In this case the interactions
between chiral fields are described as being generated by instanton effects. Interactions are therefore generically small, and
this will lead to phenomenological problems. In particular, this would lead to the prediction that the top quark Yukawa
coupling is rather small, whereas in fact it turns out to be of order one.

In order to get unsuppressed couplings,wemust tune the boundary conditions on the flavour branes so that the endpoints
of the trivalent graph for the Yukawa coupling live close together. In this limit, the instanton approximation is not good, but
we can get another weakly coupled description by analysing the Dirac equation and couplings directly for a degenerate
(non-Morse) critical point. Although we have not carried out the analysis, one expects to be able to get a non-zero classical
contribution to the Yukawa couplings this way, at least for the down-type or off-diagonal up-type Yukawa couplings.

This however may still not be enough for the top quark, as was pointed out in [45]. In our present language, if the QL and
UR come from the same critical point, then the trivalent graph for the Yukawa coupling must have two legs on that critical
point. This seems impossible to achieve if the graph must live in a small local neighbourhood of the critical point, because
the two 10’s in the 10 · 10 · 5 coupling have different weights under the holonomy group of the Higgs bundle (i.e. they live
on different sheets of the spectral cover), and so one of the legs of the graph will have to pass through a branch point or
wrap around a boundary. Thus no matter how close the 10 and 5h, the diagonal up-type Yukawa couplings would still seem
to be subject to some exponential suppression. Overcoming this issue is one of the key points that needs to be addressed in
M-theory phenomenology.

It is also interesting to point out that one needs exceptional gauge groups in 7d to describe the top quark Yukawa coupling
inM-theory, just as in F-theory or the heterotic string, and essentially for the same reason [45]. In the language of the present
paper, this is because the fermion zeromodes live in non-trivial representations of the holonomy group of the Higgs bundle,
which is itself a subgroup of the (complexified) gauge group in 7d. Interaction terms must be invariant however, so it must
be possible tomake the Yukawa coupling a singlet under this holonomy group. In the case of the top quark Yukawa coupling
in an SU(5) GUT model, this singles out the exceptional groups for purely group theoretical reasons.

In F-theory one may take a scaling limit to map models to a IIb description [8]. The top quark Yukawa is then described
as a D1 instanton effect. An analogous limit is not yet known for G2-manifolds, but we know that membrane instantons get
mapped toworldsheet disc instantons andD2-instantons. As usual, the top quark Yukawa is charged under theU(1) ⊂ U(5)
in the IIa description. This U(1) is anomalous but it is parametrically lighter than the KK scale in the IIa limit. The instanton
action will then have to shift under the U(1) gauge transformation in order to compensate for the lack of invariance of the
up-type Yukawa coupling, or it should be neutral for the case of the down-type coupling. Since the Ramond three-form shifts
under such a gauge transformation and the NS two-form does not, we expect that membrane instantons get mapped to D2
instantons if they generate an up-type Yukawa, and to disc instantons if they generate a down-type Yukawa.

3.10. Novikov cohomology

Now we discuss the more general possibilities for the boundary behaviour of abelian Higgs fields:

A ∼ αdθ
φ ∼ βd log r + γ dθ. (3.77)
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First we consider β, γ ≠ 0 but still α = 0. In this case we can no longer define an electro-static potential, since it would
have to bemultivalued. Related to this, there may be an infinite number of gradient flow trajectories connecting two critical
points, and hence the boundary operator is no longer well defined. However we can still define a potential on a multiple
cover ofM , define critical points and flow lines, and define a equivariant boundary operator and a cohomology theory. This
more general cohomology is called Novikov cohomology. We will next explain how this arises from the supersymmetric
quantummechanics discussed previously, which can actually be defined by replacing df by an arbitrary closed one-form φ.

The Novikov homology depends on the cohomology class [φ] of the closed one-form, which specifies the monodromies.
The D-terms imply that φ is harmonic. By Hodge theory arguments, there should be a unique harmonic form in the class
whose periods are specified by [φ]. Given a cohomology class, wemay construct theminimal cover M̃φ onwhich φ becomes
exact, π∗φ = df . Generically this is the universal cover. Denote by Γ the group of covering transformations. Then f satisfies
f (gx) = f (x)+ ξ(g), g ∈ Γ , where ξ(g) are the ‘periods’ of [φ]. Note that ξ(g) is independent of x.

Since locally the situation is exactly the same as when the periods of φ vanish, we still get a chiral fermion for each
critical point of φ in the 1/t expansion. Thus the generators of the Novikov cohomology are still given by the critical points.
However the coefficientswill no longer be real-valued but rather valued in a power series in order to keep track of additional
information. As before the action of dt defines a boundary operator

dt |a⟩ =

−
b∈Cri+1(M),g∈Γ

n(a, gb)e−t(f (gb)−f (a))
|b⟩ . (3.78)

Note that n(a, gb) is only non-zero when f (gb) > f (a). By rescaling |a⟩ , |b⟩ we can write this as

dt |a⟩ =

−
|b⟩∈Cri+1(M),g∈Γ

n(a, gb)qξ(g) |b⟩ (3.79)

where q = e−t and qξ(g) corresponds to the part of the instanton action that cannot be scaled out.
We see that the ‘numbers’ multiplying |b⟩ are no longer integers, but live in a ring of power series called the Novikov ring

Nov(Γ ). It is defined as the ring of formal power series

Nov(Γ ) =


∞−
i=0

niqγi |γi ∈ R, γi < γi+1, γi → −∞


(3.80)

i.e. γi takes values in a discrete set which tends to minus infinity, and the ni are integers. The cohomology of dt is called the
Novikov cohomology:

H∗

Nov(M, [φ]). (3.81)

Since the chain complex is a module over Nov(Γ ), hence so is the cohomology. It is known that H∗

N(M, [φ]) decomposes as
a finite sum of free and torsion modules over Nov(Γ ).

The zero modes we are after are annihilated by both dt and dĎt . This number may jump for a finite number of values of
t , but excluding those values it is independent of t . Hence the generic number of zero modes corresponds to the number of
generators of the cohomology of dt over the Novikov ring, i.e. by the Novikov–Betti numbers:

hi(M, [φ]) = rankNov(Γ ) H i
N(M, [φ]). (3.82)

If [φ] = 0, i.e. if φ = df for some f , this reduces to the usual Betti numbers. Since our Dirac equation is defined over the real
numbers, we can ignore the torsion. Thus hi(M, [φ]) counts the massless chiral matter.

It is natural to expect that the effect of turning on additionalmonodromy is to reduce the total amount ofmasslessmatter,
i.e. we expect

hi(M, [φ]) ≤ hi(M, [φ] = 0). (3.83)

In the case without boundary, a proof can be found in [46]. Furthermore, if the periods can be turned off continuously (as
would certainly be the case if we work on a simply connected manifold like S3), then the net amount of chiral matter can
clearly not change. Thus

h2(M, [φ])− h1(M, [φ]) = χ(M, ∂+M). (3.84)

As we vary [φ] in H1(M,R), the Betti numbers hi(M, [φ]) are generically constant, but may jump up on algebraic subsets of
H1(M,R). However they must always satisfy the identities above.

Finally we would like to also allow for α ≠ 0, i.e. we turn on a flat spectral line bundle. In this case we also need to take
into account the holonomy of the gauge field, and the action of dt is modified to

dt |a⟩ =

−
b∈Cri+1(M),g∈Γ

n(a, gb) ei
 gb
a A e−

1
2 t(f (gb)−f (a))

|b⟩ . (3.85)
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Again after scaling out a common piece, we can write this as

dt |a⟩ =

−
b∈Cri+1(M),g∈Γ

n(a, gb) eiρ(g)qξ(g) |b⟩ . (3.86)

Here ρ(g) =
 gb
b A is the representation describing the holonomies of the flat line bundle. This yields a twisted version of

Novikov cohomology. Not much seems to be known about it. However when γ → 0 it reduces to the cohomology with
values in L, i.e. H i(M, L) [46]. Since we would expect that turning on γ generally only decreases the Betti numbers, this can
be used to get even stronger constraints on the spectrum. If we can continuously setα to zero, then the net number of chirals
is not affected.

So all in all, in the abelian case we have a fair amount of control. The Betti numbers are computable when γ = 0 and
should only decrease when we turn on Higgs field monodromies starting from a configuration with γ = 0. Further under
such continuous deformations, the net number of chirals is unchanged. In all cases, thinking in the spectral cover picture, we
can ‘close the loop’ of the boundary of a disc instanton by adding a segment along the zero section, recovering the definition
of Floer cohomology on the cotangent bundle.

3.11. Non-abelian Higgs bundles

In this paper we have focused primarily on abelian configurations. In order to make realistic models, one is naturally
interested in non-abelian configurations. In this case, there are two challenges to be addressed. First, for the configurations
of interest the Higgs field is not finite everywhere, but a generalization of Corlette’s theorem in such situations has not been
established. Thus when we try to write a model by specifying boundary data, we do not know if a solution to Hitchin’s
equations exists. Second, even if such a solution exists, we have only presented formal expressions for the spectrum and the
interactions, given by the cohomology groups of the Higgs bundle and the product structure on this cohomology. We still
need to generalize the tools we have developed for abelian Higgs bundles in order to explicitly compute them.

Both these issues may be addressed by employing a Fourier–Mukai transform to turn the problem into an algebro-
geometric one. Writing down holomorphic brane configurations and computing their spectrum and interactions is much
more straightforward. This is the subject of forthcoming work [9].

3.12. Knot invariants

Given a knot, link or graph ∆ in S3 with specified Gl(n, C) monodromies around it, there should be Lagrangian three-
cycle in T ∗S3 with boundary specified by ∆. As discussed in this paper, such a configuration defines an effective 4d gauge
theory, in fact it defines a whole ensemble of gauge theories since we can embed the holonomy in different gauge groups.
Similar configurations have been considered before but focus on the Wilson line correlation functions of the CS theory as
knot invariants. Here we see that there is another natural set of observables which can be used as invariants, namely the
4d massless spectrum of the compactified gauge theory and its superpotential (as a function of the massless chiral fields).
Mathematically speaking, the invariants are given by the hypercohomology groups of the Higgs bundle, and by the structure
constants of the Yoneda pairing and Massey products on these hypercohomology groups. We have already seen earlier in
this paper that these invariants know about simple properties like the linking number.

The information in these invariants is in some sense stronger thanwhat we get from Chern–Simons theory, because they
yield generators of a Hilbert space and an algebra on these generators. It would be interesting to understand their properties
in more detail.
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Appendix. Some elements of Morse theory

We only summarize some of the basics here. See [47] for a classic account and [48,30] for a more modern perspective.
Consider a compact manifold M and a function f : M → R. The function f is said to be Morse if all its critical points are

non-degenerate, i.e. the Hessian at the critical point has no zero eigenvalues. We pick an auxiliary metric g and define the
gradient flow

∂ x⃗
∂λ

= −∇f . (A.1)

We denote by φλ(x) the solution of this equation (the gradient flow trajectory) which starts at x at time λ = 0. Since any
critical point is non-degenerate, up to coordinate transformations the only invariant data of the Hessian is the number of
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positive and the number of negative eigenvalues of the Hessian. The number of negative eigenvalues is called the Morse
index of the critical point.

Morse functions can be used to deduce the homotopy type of the manifold M . Given a critical point p, we define the
unstable manifold of p to be the set of points onM that lie on a gradient flow trajectory starting at p:

Wu(p) = {x ∈ M|φ(x,−∞) = p}. (A.2)

Similarly onemay define the stablemanifoldWs(p), which consists for the gradient flow trajectories ending at p. ThenWu(p)
has the topology of a cell of dimension i, where i is the Morse index of p, and M is the union of these cells

M =


p

Wu(p). (A.3)

To learn about the homotopy type, we have to understand how the cells are glued together. We define the manifolds-with-
boundary

Ma = {p ∈ M|f (p) ≤ a}. (A.4)

The manifolds Ma and Mb are diffeomorphic if there are no critical points in f −1
[a, b]. However if there is a critical point,

then the topology changes. For a critical point c ofMorse index i, themanifoldMc+ϵ is homotopy equivalent toMc−ϵ∪Ws(c).
The proof is a local argument near each critical point, see [47] for details.

Unfortunately the above decomposition of M does not necessarily define a CW complex, and so the relation with the
homology of the manifold remains unclear. The missing condition was introduced by Smale. The pair (f , g) is said to be
Morse–Smale if the stable and unstable manifolds intersect each other transversally. This can be shown to be satisfied for
generic (f , g).

Using such Morse–Smale pairs (f , g), one may construct a homology called the Morse homology. We define

Ci =

−
Criti(f )

Zp (A.5)

to be the free abelian group generated by the critical points of Morse index i. The boundary operator is defined as follows.
Given two critical points p, q, we denote the moduli space of gradient flow trajectories connecting p and q by M(p, q):

M(p, q) = Wu(p) ∩ Ws(q). (A.6)

When non-empty, the dimension of M(p, q) is m(p) − m(q), the difference between the Morse indices. There is a natural
action of the real line R on this moduli space, given by rescaling the parameter λ that parametrizes the gradient flow
trajectory. Modding out by this rescaling, we define

n(p, q) = M(p, q)/R (A.7)

whose dimension is m(p) − m(q) − 1. If the Morse indices differ by one, then n(p, q) is zero dimensional and counts the
number of trajectories connecting p and q. The moduli spacesM(p, q) and n(p, q) come with natural orientations, and thus
n(p, q) counts trajectories with a sign. We can define a boundary operator

∂ : Ci → Ci−1, ∂p =

−
q∈Criti−1(f )

n(p, q)q. (A.8)

The fact that ∂2 = 0 relies on an analysis of broken flow lines, which lie on the boundary of the moduli space M(p, r) with
m(p)− m(r) = 2 and inherit their orientation fromM(p, r).

The correspondence with the ordinary homology of the underlying manifold can be understood by establishing
an isomorphism with cellular homology, which is built from the free abelian groups generated by the cells of a cell
decomposition. We have already seen how a Morse function gives rise to a cellular decomposition. To each critical point
of index i we can associate an i-cell, namely the associated unstable manifold, and the original manifold is precisely the
union of these cells. For Morse–Smale pairs, the boundary of such an i-cell is contained in the skeleton built from the k-cells
with k < i. The unstable manifold Wu(p) for p ∈ Ci gets attached to the unstable manifolds


q Wu(q) where q ∈ Ci−1 runs

over the critical points connected to p by gradient flow. The boundary operator of the cellular complex maps each cell to its
boundary, with an induced orientation. Similarly the boundary operator of the Morse complex induces a boundary map on
the cell complex, since there is a one–one correspondence between critical points and generators of the cell complex. It will
probably not come as a surprise that these two boundary operators are equivalent.

Dually we can also define the Morse cohomology. This is more natural than homology for physicists, because it describes
properties of functions on the underlying manifold, rather than the underlying manifold itself (although these two points
of view are of course related by Poincaré duality). We write generators of Ci as bra-vectors, and define the dual as

C i
= Hom(Ci,R), δ : C i

→ C i+1, ⟨r|δp⟩ = ⟨∂r|p⟩ ∀ ⟨r| ∈ Ci+1 (A.9)
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Fig. 8. Gradient flow trajectories connecting critical points of the height function on a deformed two-sphere.

or more explicitly, up to a similarity transformation,

δ |p⟩ =

−
q∈Criti+1(f )

n(q, p) |q⟩ . (A.10)

Intuitively one may think of a generator |p⟩ of C i as a delta-function differential form localized at the critical point p, with i
indices all of which lie along the unstable directions at p. We are using the same numbers n(p, q) as before, but the Morse
index is increasing instead of decreasing. Thus this is isomorphic to replacing negative gradient flow with positive gradient
flow, or replacing f → −f , which is the incarnation of Poincaré duality in this context.

Another way to think about Morse cohomology was introduced by Witten, and is closer to the M-theory/Yang–Mills
picture. The conjugation

d → etf de−tf (A.11)

is a similarity transformation and induces an isomorphism between the ordinary De Rham cohomology at t = 0 and a
deformed cohomology as t → ∞. By the arguments reviewed in Section 3.3, the deformed cohomology is identified with
the Morse cohomology. However since the two are related by a similarity transformation, the Betti numbers do not depend
on t .

A well-known example is shown in Fig. 8. Let us apply Morse theory to the height function of the deformed two-sphere
shown in this figure. There are four critical points, two of themwithMorse index two, onewith index one and onemorewith
index zero. However the boundary operator maps the saddle point to the difference between the two maxima. Therefore
the Morse cohomology is given by

H2(S2, f ) = R, H1(S2, f ) = 0, H0(S2, f ) = R (A.12)

which is of course the same as the ordinary cohomology of S2.
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