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Abstract

The three-algebras used by Bagger and Lambert in N = 6 theories of ABJM type
are in one-to-one correspondence with a certain type of Lie superalgebras. We show
that the description of three-algebras as generalized Jordan triple systems naturally
leads to this correspondence. Furthermore, we show that simple three-algebras corre-
spond to simple Lie superalgebras, and vice versa. This gives a classification of simple
three-algebras from the well known classification of simple Lie superalgebras.
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1 Introduction

Superconformal Chern-Simons theories in three dimensions [1] have recently attracted
much interest. Especially two different approaches have appeared in the literature,
based on so called three-algebras and Lie superalgebras, respectively. In this paper we
will connect these two algebraic structures to each other using a third one, generalized
Jordan triple systems.

Bagger and Lambert proposed a model for multiple M2-branes with N = 8 super-
symmetry based on an algebraic structure called three-algebra [2–4]. The closure of
the supersymmetry algebra was first shown by Gustavsson [5] using a different (but
equivalent [4]) algebraic approach. It was later proven [6, 7] that there is only one
such simple three-algebra, leading to an SO(4) gauge symmetry. Bagger and Lam-
bert subsequently generalized their model to one with N = 6 supersymmetry, based
on a new, more general, notion of three-algebras [8]. It was shown that an infinite
class of such three-algebras, parameterized by an integer n ≥ 2, gives the N = 6
theories of Aharony, Bergman, Jafferis and Maldacena (ABJM) with gauge groups
SU(n)×SU(n) [9–11]. For n = 2 the supersymmetry enhances from N = 6 to N = 8,
and the ABJM theory coincides with the original Bagger-Lambert-Gustavsson theory,
in accordance with the isomorphism SO(4) = SU(2)×SU(2). Schnabl and Tachikawa
have classified all N = 6 theories that can be obtained by such an enhancement from
theories with a smaller amount of supersymmetry [12].

Three-dimensional conformal Chern-Simons theories with N = 4 supersymme-
try were studied by Witten and Gaiotto in relation to Janus configurations of four-
dimensional N = 4 super Yang-Mills theory [13]. They showed that these novel
theories can be classified in terms of Lie superalgebras. Hosomichi, Lee, Lee, Lee and
Park extended the theories by Gaiotto and Witten by additional twisted hypermul-
tiplets [14]. In this way, they obtained the ABJM theory with U(m) × U(n) gauge
symmetry as corresponding to the Lie supergroup U(m|n) [15]. The supersymmetry
was thus enhanced from N = 4 to N = 6 in this case. Such an enhancement was
shown also for another theory, corresponding to the Lie supergroup OSp(2|2n).

Generalized Jordan triple systems are algebraic structures that on the one hand
include three-algebras as special cases, and on the other hand have a well studied
connection to Lie algebras [16]. Their relevance for the ABJM theory were first pointed
out in [17], where it was shown that instead of a three-algebra, the theory can equally
well be formulated in terms of the associated Lie algebra. It was also shown that
the associated Lie algebra is infinite-dimensional, but not of Kac-Moody type (thus it
should not be confused with the Lie algebra of the gauge group.)

The main observation in the present paper is that the construction by Kantor [16]
of the associated Lie algebra in a simple way can be modified to the construction of
an associated Lie superalgebra, without (unlike other methods to construct Lie super-
algebras from triple systems [18–21]) generalizing the definition of the triple system
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itself. We will show that when the generalized Jordan triple system is a three-algebra,
the associated Lie superalgebra is finite-dimensional and 3-graded (with respect to a
Z-grading consistent with the usual Z2-grading). Conversely, any 3-graded Lie super-
algebra gives rise to a generalized Jordan triple system which under certain conditions
is a three-algebra. This naturally leads to a one-to-one correspondence between three-
algebras and this type of Lie superalgebras that we will describe in detail.

The correspondence between three-algebras and Lie superalgebras has also been
studied by Figueroa-O’Farrill et al. [22] in the context of the more general Cherkis-
Sämann three-algebras [23]. This description is possibly related to ours, but seemingly
different. It does not involve generalized Jordan triple systems, but is a special case
of a general construction by Faulkner [24].

One advantage of our method is that it enables us to refine the result: we will show
that simple three-algebras correspond to simple Lie superalgebras and vice versa. The
simple Lie superalgebras that appear have been classified by Kac [25, 26] as C(n+ 1)
and A(m, n). Thus we arrive at a classification of the simple three-algebras defined by
Bagger and Lambert in [8]. In particular, the uniqueness of the three-algebra in [2, 3]
is from this point of view just a consequence of the well known classification by Kac
of simple Lie superalgebras.

The paper is organized as follows. In section 2 we give our definition of a three-
algebra (which is the same as in [8]) and show that it is a special case of a generalized
Jordan triple system. We review how an arbitrary generalized Jordan triple system
gives rise to an associated graded Lie algebra. Then we show how this construction
can be modified to give a Lie superalgebra instead of a Lie algebra. This leads to
Theorem 2.1, which says that there is a one-to-one correspondence between simple
three-algebras and a certain type of simple Lie superalgebras. In section 3, we go in
the opposite direction: we start with the Lie superalgebras C(n+ 1) and A(m, n) and
describe how the corresponding triple systems can be obtained. Section 4 contains our
conclusions, and the proof of the theorem is completed in an appendix.

2 Three-algebras and triple systems

The original definition of a three-algebra given by Bagger and Lambert [3] has subse-
quently been generalized by many authors, among them Bagger and Lambert them-
selves [8]. We will in this paper use the two definitions in [3] and [8], but in order
to distinguish between them, we will talk about ‘N = 6 three-algebras’ and ‘N = 8
three-algebras’, respectively. When we only say ‘three-algebra’ we mean an ‘N = 6
three-algebra’, since we are mainly interested in this more general case.
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2.1 Basic definitions

An N = 6 three-algebra is a finite-dimensional complex vector space V with a triple
product f : V × V × V → V and an ‘inner product’ h : V × V → C, such that

• the triple product (xyz) ≡ f(x, y, z) is linear in x and z but antilinear in y:

α(xyz) = ((αx)yz) = (x(α∗y)z) = (xy(αz)) (2.1)

for any complex number α (where ∗ is the complex conjugate),

• the triple product satisfies the identities

(uv(xyz))− (xy(uvz)) = ((uvx)yz)− (x(vuy)z), (2.2)

(xyz) = −(zyx), (2.3)

• the inner product 〈x|y〉 ≡ h(x, y) is linear in x and antilinear in y,

• the inner product satisfies the identities

〈w|(xyz)〉 = 〈y|(zwx)〉 = 〈(wzy)|x〉 = 〈(yxw)|z〉, (2.4)

〈x|y〉 = 〈y|x〉∗, (2.5)

• the inner product is positive-definite.

An N = 8 three-algebra is an N = 6 three-algebra V such that (in addition to the
requirements above) the triple product satisfies (xyz) = −(yxz) and the inner product
h is real. This implies that the triple product is totally antisymmetric and that the
inner product is symmetric. Then the identity (2.2) takes the form of a Leibniz rule,

(uv(xyz)) = ((uvx)yz) + (x(uvy)z) + (xy(uvz)). (2.6)

In this form it is often called the fundamental identity. Moreover, for an N = 8
three-algebra (2.4) expresses an invariance of the inner product,

〈(xyw)|z〉+ 〈w|(xyz)〉 = 0. (2.7)

Let V be a N = 6 three-algebra, and let T a be an orthonormal basis of V , for
a = 1, 2, . . . , dimV . In analogy with Lie algebras we introduce structure constants
fa

b
c
d for V , which specify the triple product by

(T aT bT c) = fa
b
c
dT

d. (2.8)
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We will see that it is natural to put the second index downstairs. This is related to
the fact that the triple product is not linear but antilinear in the second argument.
The identities (2.2)–(2.4) can now be written

fa
b
c
df

e
f

d
g − f e

f
c
df

a
b
d
g = f e

f
a
df

d
b
c
g − (f f

e
b
d)∗fa

d
c
g, (2.9)

fa
b
c
d = −f c

b
a
d, (2.10)

(fa
b
c
d)∗ = (f c

d
a
b)
∗ = f b

a
d
c = fd

c
b
a. (2.11)

This means that f is antisymmetric not only in the upper pair of indices, but also in
the lower pair. In [17] the identity (2.11) was used to rewrite (2.9) as

fa
g

[b
df

c]
e
g
f = f b

g
c
[ef

a
f ]

g
d. (2.12)

We follow the notation in [17], which means that we put the indices of f in a different
order compared to Bagger and Lambert [8]:

(fa
b
c
d)NP = (facb̄

d)BL. (2.13)

The identities (2.9) and (2.11) should be compared to (2) and (4), respectively, in [8].
A difference compared to [17] is that f there was linear in all three arguments, also

the second one. But as well as f and h given here, we can always consider the triple
product f̃ and the inner product h̃ in V , given by

f̃(x, y, z) = f(x, C(y), z), h̃(x, y) = h(x, C(y)) (2.14)

where C is a conjugation, that is, an antilinear involution. Thus f̃ and h̃ are linear
in all arguments, and we can consider the N = 6 three-algebra V as a special kind of
a generalized Jordan triple system [16]. By definition, this is a vector space with
a trilinear triple product that satisfies the identity (2.2).

A weak ideal of a generalized Jordan triple system V is a subspace W such that
(V VW ) ⊆ W and (WV V ) ⊆ W . For an N = 6 three-algebra these two conditions
are equivalent, because of the antisymmetry of the triple product. If in addition
(VWV ) ⊆ W then W is called an ideal of V . Thus any ideal is a weak ideal. But for
N = 6 three-algebras also the converse is true, as we will show in the appendix.

The triple system V is simple if the only ideals of V are 0 and V itself. If it is not
simple then we can ‘make it simple’ by factoring out the maximal ideal.

2.2 The associated graded Lie algebra

We will now describe how a generalized Jordan triple system V gives rise to a graded
Lie algebra [16] in the special case when V is an N = 6 three-algebra. This was already
done in [17], but the description here will be more detailed. Also in the general case,
our approach is somewhat different from the original one by Kantor (but equivalent).
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Any vector space V gives rise to a graded Lie algebra

Ũ = Ũ−1 ⊕ Ũ0 ⊕ Ũ1 ⊕ Ũ2 ⊕ · · ·
= Ũ−1 ⊕ Ũ0 ⊕ Ũ+, (2.15)

which is the direct sum of subspaces Ũk for all integers k, such that [Ũi, Ũj] ⊆ Ũi+j,
and Ũk = 0 for k ≤ −2 [27]. The subspaces Ũk for k ≥ −1 are defined recursively,
starting with Ũ−1 = V . For each k ≥ 0, the subspace Ũk is then defined as the vector
space of all linear maps V → Ũk−1. Thus Ũ0 = EndV , and Ũ1 consists of linear maps
V → EndV . The Lie bracket is defined recursively by

[a, b] = (ad a) ◦ b− (ad b) ◦ a, (2.16)

starting from [u, v] = 0 for u, v ∈ Ũ−1. Here any element u in Ũ−1 = V should be
considered as a constant map V → V , given by u(v) = u for all v ∈ V . The Jacobi
identity can be shown by induction.

Suppose now that V is an N = 6 three-algebra with an orthonormal basis T a and
structure constants fa

b
c
d. Define the elements Sa

b ∈ Ũ0 and T̄a ∈ Ũ1 by

Sa
b : V → Ũ−1 = V, Sa

b(T
c) = fa

b
c
dT

d,

T̄a : V → Ũ0, T̄a(T b) = Sb
a. (2.17)

Set U−1 = Ũ−1 = V and let U0 and U1 be the subspaces of Ũ0 and Ũ1 spanned by
all elements Sa

b and T̄a, respectively. Furthermore, let U+ = U1 ⊕ U2 ⊕ · · · be the
subalgebra of Ũ+ = Ũ1 ⊕ Ũ2 ⊕ · · · generated by U1 (with grading inherited from Ũ+).

Since the inner product in an N = 6 three-algebra is positive-definite and thus
non-degenerate, it follows from (2.4) that if (xuy) = (xvy) for all x and y, then u = v.
This means that U1 is isomorphic to U−1. The map

τ : T̄a 7→ T a (2.18)

between the bases of U1 and U−1 is one-to-one and can be extended by linearity to
an isomorphism between the vector spaces U1 and U−1. However, here we choose
to extend it by antilinearity to an anti-isomorphism τ : U+ → U−, where, for each
k ≥ 2, we introduce a vector space U−k isomorphic to Uk, and let U− be the direct
sum U− = U−1 ⊕ U−2 ⊕ · · · of all these vector spaces. Furthermore, we can define a
Lie algebra structure on U− by

[τ(a), τ(b)] ≡ τ([a, b]). (2.19)

Then τ extends to a Lie algebra anti-isomorphism from U+ to U−. These two iso-
morphic Lie algebras are generated by U1 and U−1, respectively. We can define a Lie
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algebra structure on the direct sum

U = · · · ⊕ U−2 ⊕ U−1 ⊕ U0 ⊕ U1 ⊕ U2 ⊕ · · ·
= U− ⊕ U0 ⊕ U+ (2.20)

by combining the Lie algebra structures on the subspaces U− and U−1 + U0 + U+. It
follows by construction that the commutation relations involving U±1 and U0 are

[Sa
b, T

c] = fa
b
c
dT

d,

[Sa
b, T̄d] = −fa

b
c
dT̄c,

[T̄b, T
a] = Sa

b,

[Sa
b, S

c
d] = fa

b
c
eS

e
d − fa

b
e
dS

c
e. (2.21)

All other commutation relations then follow from (2.21) by the Jacobi identity and the
fact that U is generated by T a and T̄a. It follows from (2.21) that τ can be extended
to a conjugation on U by the inverse of (2.18),

τ : T a 7→ T̄a. (2.22)

This conjugation acts on U0 in the following way,

Sa
b = [T̄b, T

a] 7→ [T b, T̄a] = −[T̄a, T
b] = −Sb

a. (2.23)

All elements Λ in U0 that are invariant under this conjugation constitute a real form
of the complex Lie algebra U0. If we write Λ = Λa

bSa
b this means (Λa

b)∗ = −Λb
a. It

also follows from (2.2) that they act as derivations on V :

Λ((xyz)) = (Λ(x)yz) + (xΛ(y)z) + (xyΛ(z)). (2.24)

In [17] we studied the properties of the graded Lie algebra U associated to a three-
algebra V . We found that it is infinite-dimensional, but not of Kac-Moody type. Here
we will instead modify the associated Lie algebra to a Lie superalgebra.

2.3 The associated graded Lie superalgebra

In the same way as V gives rise to a graded Lie algebra U , it also gives rise to a graded
Lie superalgebra U . We recall that a Lie superalgebra [25,26] is a Z2-graded algebra
G = G(0) ⊕ G(1) with a Lie superbracket such that

[[a, b]] = −(−1)pq[[b, a]] ∈ G(p+q) (2.25)

if a ∈ G(p) and b ∈ G(q). We say that p and q are the degrees of a and b, respectively.
The degrees should be considered as elements in the field Z2 = {0, 1} so that 1+1 = 0.
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If pq = 0, we write [[a, b]] = [a, b], and if pq = 1, we write [[a, b]] = {a, b}. Furthermore
the superbracket is required to satisfy the Jacobi superidentity

(−1)pr[[[[a, b]], c]] + (−1)qp[[[[b, c]], a]] + (−1)rq[[[[c, a]], b]] = 0, (2.26)

where p, q, r are the degrees of a, b, c, respectively. For more information about Lie
superalgebras, see for example [28].

A Lie superalgebra is already a Z2-graded algebra, but when we talk about graded
algebras here, we refer to Z-gradings. In particular, when we talk about a graded Lie
superalgebra

G = · · · ⊕ G−1 ⊕ G0 ⊕ G1 ⊕ · · · , (2.27)

we refer to a Z-grading that is consistent with the Z2-grading. This means that G(0)

is the sum of all Gk for k even, while G(1) is the sum of all Gk for k odd.

For any vector space V , we can now define a graded Lie superalgebra Ũ as the
same vector space as Ũ , defined in the preceding subsection. Thus Ũ is a direct sum
of subspaces Ũ k = Ũk for k ≥ −1. We equip Ũ with a Lie superalgebra structure by
modifying the recursively defined Lie bracket (2.16) to

[[a, b]] = (ad a) ◦ b− (−1)pq(ad b) ◦ a, (2.28)

where p and q are the degrees of a and b, respectively. The Jacobi superidentity can
then be shown by induction.

If V is a generalized Jordan triple system, we set U−1 = Ũ−1 = V and let U 0 and
U 1 be the subspaces of Ũ 0 and Ũ 1 spanned by all elements Sa

b and T̄a, respectively,
in analogy with the construction of the Lie algebra U . Thus U±1 = U±1 and U 0 = U0.
But when we define U+ as the subalgebra of Ũ+ = Ũ 1 ⊕ Ũ 2 ⊕ · · · generated by
U 1, and let V be an N = 6 three-algebra, a difference arises compared to U+. The
subspace U 2 = {U 1, U 1} is spanned by elements {T̄a, T̄b} which are maps from V to
U 1. It follows from (2.28) that they act as

{T̄a, T̄b}(T c) = [T̄a, T̄b(T
c)] + [T̄b, T̄a(T c)]

= [Ta, S
c
b] + [Tb, S

c
a]

= f c
b
d
aT̄d + f c

a
d
bT̄d, (2.29)

and this is zero for an N = 6 three-algebra. Since U+ is generated by U 1, this means
that U+ = U 1, and the Lie superalgebra is in fact 3-graded,

U = U−1 ⊕U 0 ⊕U 1. (2.30)

We note that the same happens for the Lie algebra associated to a Jordan triple system,
which is a generalized Jordan triple system such that (xyz) = (zyx). It follows from
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this symmetry of the triple product that the subspaces U±2 vanish, in the same way
as U±2 do for an N = 6 three-algebra. The complete set of commutation relations is
then given by

[[Sa
b, T

c]] = [Sa
b, T

c] = fa
b
c
dT

d,

[[Sa
b, T̄d]] = [Sa

b, T̄d] = −fa
b
c
dT̄c,

[[T̄b, T
a]] = {T̄b, T

a} = Sa
b,

[[Sa
b, S

c
d]] = [Sa

b, S
c
d] = fa

b
c
eS

e
d − fa

b
e
dS

c
e. (2.31)

We want to extend the anti-isomorphism

τ : U 1 → U−1, T̄a 7→ T a (2.32)

to the whole of U in a way such that τ(Sa
b) = −Sb

a as before. But then we cannot
extend it by its inverse as we did for the Lie algebra U . Instead we have to take

τ : U−1 → U 1, T a 7→ −T̄a. (2.33)

Then we get

Sa
b = {T̄b, T

a} 7→ −{T b, T̄a} = −{T̄a, T
b} = −Sb

a. (2.34)

We call the resulting anti-isomorphism a graded superconjugation. For a general
graded Lie superalgebra (with consistent grading)

G = · · · ⊕ G−1 ⊕ G0 ⊕ G1 ⊕ · · · , (2.35)

we define it by τ(Gk) = G−k for all integers k, and furthermore

[τ(a), τ(b)] = τ([a, b]), τ 2(c) = (−1)r(c) (2.36)

for all a, b ∈ G and c ∈ Gr.
Before stating the main result of this paper, Theorem 2.1 below, we need one more

definition. A bilinear form κ on a Lie superalgebra G = G(0) ⊕ G(1) is said to be
consistent and supersymmetric if

κ(a, b) = 1
2

(
(−1)p + (−1)q

)
κ(b, a),

for any x ∈ G(p) and y ∈ G(q) (where p, q = 0, 1). If it furthermore is invariant,

κ([[a, b]], c) = κ(a, [[b, c]]). (2.37)

for any a, b, c ∈ G, then we call it an inner product.
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Theorem 2.1. There is a one-to-one correspondence between simple N = 6 three-
algebras V and simple 3-graded Lie superalgebras U with an inner product κ and a
graded superconjugation τ such that

κ(a, τ(b)) = κ(b, τ(a))∗, κ(a, τ(a)) > 0, (2.38)

for all a, b ∈ U .

Proof. We have already described how L(V ) ≡ U is defined from V . The inner
product κ and the graded superconjugation τ are then defined by

τ(T a) = −T̄a, τ(T̄a) = T a, τ(Sa
b) = −Sb

a,

κ(T a, T̄b) = −κ(T̄b, T
a) = δa

b, κ(Sa
b, S

c
d) = fa

b
c
d. (2.39)

It is straightforward to show that they satisfy the requirements in the theorem.
Conversely, start with the 3-graded Lie superalgebra U . Then we take U−1 to be

the N = 6 three-algebra K(U) ≡ V with the triple product

(xyz) = [[[[x, τ(y)]], z]] = [{x, τ(y)}, z] (2.40)

and the inner product

〈x|y〉 = κ(x, τ(y)). (2.41)

Again, it is straightforward to show that the definition of an N = 6 three-algebra is
satisfied. It is also easy to see that the map L is invertible: K(L(V )) = V for any
N = 6 three-algebra V . It remains to show that L(V ) is a simple Lie superalgebra if
and only if V is a simple N = 6 three-algebra. We will do this in the appendix. �

It follows that a classification of all simple three-algebras is equivalent to the clas-
sification of all simple Lie superalgebras that satisfy the conditions in the theorem.
The simple 3-graded Lie superalgebras have been classified by Kac [25, 26], and they
are called classical Lie superalgebras of type I. They are denoted A(0, n), A(m, n),
C(n+ 1) and P (n+ 1) for all integers m, n ≥ 1. Among these, P (n+ 1) is a strange
Lie superalgebra, which in particular means that dim U−1 6= dim U 1 in the 3-grading
P (n) = U−1 + U 0 + U 1. Thus P (n + 1) does not admit a graded superconjugation.
For the remaining basic Lie superalgebras A(0, n), A(m, n) and C(n + 1) there is a
unique 3-grading up to automorphisms. Furthermore, there is an inner product κ and
a graded superconjugation τ such that the requirements are satisfied.

It is a general result that an inner product on a simple Lie superalgebra is unique
up to an overall constant, so we only have to show that there is a superconjugation τ
that is compatible with this inner product. The inner product reduces to the ordinary
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Killing form on the subalgebra U 0 (which is a semisimple Lie algebra), and the super-
conjugation τ reduces to an ordinary conjugation on U 0. This means that it defines
a real form of the complex Lie algebra U 0, consisting of all elements x + τ(x), where
x ∈ U 0. Then the requirement that κ be positive-definite on this real Lie algebra
defines τ uniquely on U 0, up to automorphisms. In the next section we will see that
there is even a way to extend τ to the U±1 subspaces such that the conditions (2.38)
are satisfied on the full Lie superalgebra U .

3 From Lie superalgebras back to three-algebras

We will now change perspective and focus on the simple Lie superalgebras C(n + 1)
and A(m, n) that satisfy the conditions in the theorem. Physicists are perhaps more
familiar with the notation sp(2|2n, C), su(m+ 1|n+ 1, C) and psu(n+ 1|n+ 1, C) for
C(n+ 1), A(m, n) and A(n, n), respectively, where m 6= n. We will review how these
Lie superalgebras can be constructed from their Cartan matrices or Dynkin diagrams.
The Cartan matrices and Dynkin diagrams that we use are always the distinguished
ones. For more details, we refer to [25,26,28].

We will define an inner product κ and superconjugation τ on the Lie superalgebras
C(n+ 1) and A(m, n) that satisfy the conditions (2.38), whereupon the construction
of the associated N = 6 three-algebra follows by (2.40) and (2.41). Repeated indices
should not be summed over in this section.

3.1 The Lie superalgebras C(n+ 1)

For any integer n ≥ 1, the Lie superalgebra C(n+ 1) is given by the entries Aij of the
Cartan matrix

0 1 2 n

0

1

2

n− 2

n− 1

n



0 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −2
0 0 0 · · · 0 −1 2


(3.1)

︸ ︷︷ ︸
n

or, equivalently, by the Dynkin diagram
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0 1 n− 1 n

⊗ i ii <

To each row and column in the Cartan matrix, and to each node in the Dynkin diagram,
we associate three Chevalley generators ei, fi, hi where i = 0, 1, . . . , n according
to the labelling above.

The Lie superalgebra C(n+1) is now generated by the Chevalley elements modulo
the Chevalley relations

[[ep, fq]] = [ep, fq] = δpqhq, [[hi, ej]] = [hi, ej] = Aijej,

[[e0, f0]] = {e0, f0} = h0 [[hi, fj]] = [hi, fj] = −Aijfj, (3.2)

for (p, q) 6= (0, 0), and, for i 6= j, the Serre relations

(ad ei)
1+|Aij |(ej) = (ad fi)

1+|Aij |(fj) = 0. (3.3)

The subspace U−1 in the 3-grading C(n+1) = U−1⊕U 0⊕U 1 is spanned by all multiple
commutators where the Chevalley generator e0, corresponding to the ’grey’ node above,
appears exactly once. Likewise, U 1 is spanned by all multiple commutators where f0

appears exactly once. The subalgebra U 0 is the direct sum of a one-dimensional Lie
algebra and the simple complex Lie algebra Cn. The Dynkin diagram of Cn is obtained
by deleting the grey node, and its compact real form is sp(2n).

Now we define the inner product κ and the superconjugation τ for the Chevalley
generators. For the inner product we have

κ(hn−1, hn) = 1, κ(en, fn) = −1
2

(3.4)

and otherwise

κ(hi, hj) = −Aij, κ(ei, fj) = −δij. (3.5)

The superconjugation is given by

τ(e0) = −f0, τ(ep) = −fp,

τ(f0) = e0, τ(fp) = −ep,

τ(h0) = −h0, τ(hp) = −hp, (3.6)

for p > 0. The inner product of two arbitrary elements then follows by invariance,
and the action of the superconjugation on an arbitary element follows by the homo-
morphism property.
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3.2 The Lie superalgebras A(m, n)

For any integers m, n ≥ 0, (m, n) 6= (0, 0), the Lie superalgebra A(m, n) is given by
the entries Aij of the Cartan matrix

−m −2 −1 0 1 2 n

−m

−m + 1

−m + 2

−2

−1

0

−1

−2

n− 2

n− 1

n



−2 1 0 · · · 0 0 0 0 0 · · · 0 0 0
1 −2 1 · · · 0 0 0 0 0 · · · 0 0 0
0 1 −2 · · · 0 0 0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 · · · −2 1 0 0 0 · · · 0 0 0
0 0 0 · · · 1 −2 1 0 0 · · · 0 0 0
0 0 0 · · · 0 1 0 −1 0 · · · 0 0 0
0 0 0 · · · 0 0 −1 2 −1 · · · 0 0 0
0 0 0 · · · 0 0 0 −1 2 · · · 0 0 0
...

...
...

...
...

...
...

...
. . .

...
...

...
0 0 0 · · · 0 0 0 0 0 · · · 2 −1 0
0 0 0 · · · 0 0 0 0 0 · · · −1 2 −1
0 0 0 · · · 0 0 0 0 0 · · · 0 −1 2



(3.7)

︸ ︷︷ ︸
m

︸ ︷︷ ︸
n

or, equivalently, by the Dynkin diagram

−m −m+ 1 −1 0 1 n− 1 n

i i i ⊗ i ii

The Lie superalgebra A(m, n) can now be constructed from its Cartan matrix or
its Dynkin diagram in the same way as C(n+ 1) in the preceding subsection, starting
from 3(m+ n+ 1) Chevalley generators ei, fi, hi, where now i = −m, −m+ 1, . . . , n
according to the labelling above. The Lie superalgebra A(m, n) is then generated by
these elements modulo the Chevalley-Serre relations (3.2)–(3.3) and, if m = n, the
supplementary relations

0 = (ad e0) ◦ (ad e1) ◦ (ad e0) ◦ (ad e−1)

= (ad e0) ◦ (ad e−1) ◦ (ad e0) ◦ (ad e1)

= (ad f0) ◦ (ad f1) ◦ (ad f0) ◦ (ad f−1)

= (ad f0) ◦ (ad f−1) ◦ (ad f0) ◦ (ad f1). (3.8)

For m = n, we also factor out the one-dimensional ideal spanned by the Cartan element

h−m + 2h−m+1 + · · ·+mh−1 + (m+ 1)h0 +mh1 + · · ·+ 2hm−1 + hm. (3.9)
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It follows from the Chevalley-Serre relations that A(m, n) is spanned by all ele-
ments eij, fij and hij, defined by

eij = [· · · [ei, ei+1], . . . , ej],

fij = (−1)j[· · · [fi, fi+1], . . . , fj],

hij = hi + hi+1 + · · ·+ hj, (3.10)

where −m ≤ i ≤ j ≤ n. As for C(n+ 1), the subspaces U−1 and U 1 in the 3-grading
A(m, n) = U−1⊕U 0⊕U 1 are spanned by all multiple commutators where e0 and f0,
respectively, appear exactly once. If m 6= n, then the Lie algebra U 0 is the direct sum
of a one-dimensional subalgebra and the complex semisimple Lie algebra Am ⊕An. If
m = n, the one-dimensional subalgebra vanishes, since this is then the ideal, spanned
by the element (3.9), that we factored out in the construction of the algebra. The
Dynkin diagram of Am ⊕ An is obtained by deleting the grey node above, and its
compact real form is su(m+ 1)⊕ su(n+ 1).

In the basis (3.10), the subspaces U 1 and U−1 are spanned by all elements eik and
fjl, respectively, such that i, j ≤ 0 ≤ k, l. Then we have

[hik, ejl] = (−δij + δkl)ejl,

[hik, fjl] = (δij − δkl)fjl. (3.11)

If we furthermore assume i < j and k < l, then we get

{eik, fjk} = −ei(j−1),

{ejk, fik} = fi(j−1),

{ejk, fjl} = −f(k+1)l,

{ejl, fjk} = −e(k+1)l, (3.12)

and we also have

{eij, fij} = hij. (3.13)

For (i, j) 6= (k, l), the anticommutator {eij, fkl} is instead another element epq or fpq.
Using (3.11)–(3.13) we obtain

[{eik, fjl}, epq] = δijδlqekp − δklδjpeiq (3.14)

for any i, j ≤ 0 ≤ k, l. Define the inner product κ and the superconjugation τ by

κ(hi, hj) = −Aij, κ(ei, ej) = −δij, (3.15)

τ(eq) = fq, τ(e0) = −f0, τ(ep) = −fp,

τ(fq) = eq, τ(f0) = e0, τ(fp) = −ep,

τ(hq) = −hq, τ(h0) = −h0, τ(hp) = −hp, (3.16)
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for (only here) q < 0 < p. This gives

κ(eik, fjl) = −δijδkl, τ(eik) = −fik, τ(fjl) = ejl (3.17)

for i, j ≤ 0 ≤ k, l. It then follows that the vector space U−1 together with the triple
product given for the basis elements by

(eikejlepq) = [{eik, τ(ejl)}, epq] = δklδjpeiq − δijδlqekp (3.18)

is an N = 6 three-algebra.
To each basis element eij of U−1 we can associate an m×n matrix where the entry

in row i and column j is one, and all the others are zero. Thus we can identify U−1

with the vector space of all complex m× n matrices. The triple product that follows
from (3.18) for three arbitrary elements is then

(xyz) = xy†z − zy†x. (3.19)

We have thus shown that this example of an N = 6 three-algebra, associated to the
Lie superalgebra A(m, n), is indeed the same as the one in [8], where it was shown
to give the ABJM theory. Alternatively, one could have shown this using the matrix
realization of A(m, n) as su(m+ 1|n+ 1, C) or (if m = n) as psu(n+ 1|n+ 1, C), with
(minus) the supertranspose as the superconjugation τ , and also obtained an analogous
description of the three-algebra associated to C(n+ 1) = osp(2|2n, C).

4 Conclusion

We have in this paper used generalized Jordan triple systems to describe a one-to-one
correspondence between two different algebraic structures: on the one hand side the
three-algebras that have been used in three-dimensional superconformal Chern-Simons
theories, and on the other a kind of 3-graded Lie superalgebras.

As mentioned in the introduction, the correspondence between three-algebras and
Lie superalgebras has also been studied in [22]. Theorem 22 there is similar to our
Theorem 2.1, but the conditions on the Lie superalgebra are seemingly different, and
the construction does not involve generalized Jordan triple systems. Also, we have
shown that simple three-algebras correspond to simple Lie superalgebras and vice
versa. It would be interesting to investigate the relation between the two approaches.

The simple Lie superalgebras that appear in the one-to-one correspondence are
C(n+ 1) and A(m, n). We have only considered N = 6 and N = 8 theories, but there
are also N = 4 and N = 5 theories corresponding to the Lie superalgebras B(m, n),
D(m, n), F (4), G(3), D(2, 1; α) [13–15, 29] (for the embedding tensor approach see
also [30]). These Lie superalgebras do not admit a 3-grading but instead a 5-grading,
with nonzero subspaces U±2. It would be interesting to study the generalized Jordan
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triple systems corresponding to such 5-graded Lie superalgebras. Those corresponding
to 5-graded ordinary Lie algebras are called Kantor triple systems [16,31,32] and were
suggested in [33] to play a role in the Bagger-Lambert-Gustavsson theory of multiple
M2-branes. Going to the other side of the correspondence, the three-algebras that we
have considered here are positive-definite, and this fact is essential for some of the
results. Possible generalizations to other signatures would be an interesting subject
for further research.

Our construction of the associated Lie superalgebra is a simple modification of the
original construction by Kantor, which associates a graded Lie algebra to any general-
ized Jordan triple system. These Lie algebras are defined by the same Cartan matrices
(3.1) and (3.7) as the corresponding Lie superalgebras, but the anticommutator in the
Chevalley relations is replaced by a commutator. The result is an infinite-dimensional
Lie algebra, which is not of Kac-Moody type [17]. However, the Lie algebra cor-
responding to A(0, n) is in fact a Borcherds algebra, which is a kind of generalized
Kac-Moody algebra [34]. This would be interesting to explore further.
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A Simple three-algebras and Lie superalgebras

As promised in section 2.3, we will here prove the remaining part of Theorem 2.1, that
the 3-graded Lie superalgebra U associated to an N = 6 three-algebra V is simple if
and only if V is simple. First we need the following result, which we mentioned in
section 2.2.

Lemma A.1. Any weak ideal D of an N = 6 three-algebra V is an ideal.

Proof. Any two elements u, v ∈ V can be decomposed as

u = uD + u⊥, v = vD + v⊥, (A.1)

where uD, vD ∈ D, and

〈u⊥|d〉 = 〈v⊥|d〉 = 0 (A.2)

for all d ∈ D. Suppose that D is not an ideal. Then, for any d ∈ D, there must be
elements u, v ∈ V such that (udv) /∈ D. But since D is a weak ideal,

(uDdvD), (uDdv⊥), (u⊥dvD) ∈ D (A.3)
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so this means that (u⊥dv⊥) /∈ D. Using (2.4) we get

〈(u⊥dv⊥)|(u⊥dv⊥)〉 = 〈v⊥|(du⊥(u⊥dv⊥))〉 = 〈v⊥|d′〉 (A.4)

for some d′ ∈ D, again since D is a weak ideal. Thus the inner product with v⊥ is zero.
But on the other hand, (u⊥dv⊥) is a nonzero element and since the inner product is
positive-definite, we must have

〈(u⊥dv⊥)|(u⊥dv⊥) > 0. (A.5)

Thus we get a contradiction, and we conclude that D is an ideal. �

Since also the converse is true, any ideal is a weak ideal, it follows from the lemma
that it is enough to show that U is simple if and only if there are no weak ideals
of V (other than 0 and V itself). Furthermore, a weak ideal of V is the same as a
subrepresentation of U−1 under U 0, so in fact we only have to show U is simple if
and only if the representation of U0 on U−1 is irreducible.

Suppose first that the representation of U0 on U−1 is irreducible, and that there is a
nontrivial ideal C of U. Let c = c−1 +c0 +c1 be a nonzero element in C, where ck ∈ Uk

for k = 0, ±1. Thus τ(c1) ∈ U−1 = V . Since the inner product is non-degenerate, it
follows from (2.4) that there must be elements u, v ∈ V such that (uτ(c1)v) 6= 0. But

(uτ(c1)v) = [{u, τ(τ(c1))]]}, v] = −[{u, c1}, v] = −[{u, c}, v], (A.6)

where the last equality follows from the 3-grading. This is an element in U−1, but
also in C, since C is an ideal of the Lie superalgebra. Thus the intersection of U−1

and C is a nonzero subrepresentation of U−1 under U0. But then U−1 ⊆ C since the
representation of U0 on U−1 is irreducible. In the same way, there must be elements
τ(x), τ(y) ∈ U 1 = τ(V ) such that (τ(x)τ(c−1)τ(y)) 6= 0 and we get that U−1 ⊆ C.
Since U is generated by U−1 and U 1, we conclude that U = C, so the only nontrivial
ideal of U is U itself. Thus U is simple.

Suppose now that U is simple, and let D be a proper and nontrivial ideal of
V = U−1, so that [U 0, D] ⊆ D. Then the subspace

D + {D, U 1}+ [{D, U 1}, U 1] (A.7)

is a proper and nontrivial ideal of U , which contradicts the assumption that U is
simple. Thus there are no such ideals in V , and we conclude that V is simple.
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