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Abstract
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. INTRODUCTION

Numerical relativity has undergone a rapid developmertiénpast few years. After the break-
through of [1] 2 B], stable longterm simulations of binatgdk hole (BBH) systems are common
practice, besides waveform modelling, to study the closexerger spin precessioﬁ HZ 5] or to
model the final spin [6,/7) 8] 9, 10] of BBH inspirals [11] é,]. Recently extensive
investigations have been done concerning the formatiocggand spin evolution of black holes
with accretion disksﬂﬂS appearing in fully relativessimulations of binary neutron stars

,@,EJL], mixed binarieﬂ}iﬁZ@M] and rotating nentstar collapséﬁﬂ EZS].

In these cases accurate numerical techniques to extraspthef a BH in a gauge invariant
manner are required. It is common to obtain a rough appraxamaf the spin via the quasinormal
oscillation extracted from the gravitational waveforneaftnerger, where a perturbed Kerr space-
time is assumed. Another approximation scheme is to integhe radiated angular momentum
during the simulation at ‘large’ coordinate spheres to deawclusions about the remaining spin
of the system given the initial data.

Other methods, as discussed in this paper, use the gaugeimvaotation of an apparent
horizon (AH) or in more general terms a marginally outer pregh surface (MOTS) which can be
located on the spatial slices of the simulation. There gaugeiant spin and mass can be defined,
if an axial Killing vector field (KVF)®* is present, as in the case of Kerr. But opposed to the
stationary case, the spacetime outside the horizon can feedgal without spoiling the gauge
invariance of these quantitiéﬂ@ 30| 31, 32]. The invaripiasi-local spin/[®’] is given by the
surface integral (Brown-York form)

. 1 . .
J[®7] = —S—Wji@Kijs’dA, (1.1)

wheredA is the 2D area elementy;; the extrinsic curvature of the Cauchy slice ands the
outward-pointing surface normal on the MOTS denotedbin order to obtainb’ the 2D Killing
equation has to be solved; if the axisymmetry is perturbgaapmate KVFs (aKVFs) have to
be calculated [33, 34, B5], for applications in BBH simwas see![11, 16]. Sometimes, due to
computational reasons, the effort of finding a KVF or aKVF @ done and coordinate vector
fields are instead used to estimai@’] ~ J[®/ |, see e.g.[14]. Another common set of methods
to determine the spin uses properties of the Kerr solutidheahorizon, such as the proper length
of the ‘equatorial’ circumferencat%] or the extrema of Hualar 2-curvaturé;_L’LG].

In this paper we present a new, comparatively easy to impieaigorithm, which is based on a
multipole decomposition of thetational Weyl scalaim W, [@] in the framework of the isolated
and dynamical horizon formalisrﬂ:%@ 32]; for reviews geg. [[5.[1@9]. The dipole term

reads
12mdrm Jg

where(y, ¢) is an invariant coordinate systeiﬂ[37] ‘tied’ to the axisyatry, such that/; and
J[®7] are identical, and'°(x) is the spherical harmonic= 1, m = 0. We circumvent the use
of invariant coordinates/KVFs and instead use the averageésf the scalar 2-curvatu&R and
ImW, to obtain.J; and higher multipole moments

(o) = (o) =9 (8)i= 5 f eda, (13)

1 In statisticsu,, is called thenth central momenof the probability distribution of a random variable.
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which are well defined, even if the axisymmetry is perturbadithat allow us to benefit from exact
numerical integration in order to reduce grid size and nizakerror significantly. The invariant
surface integralg.,,(*R) , u,(Im¥,) are related to the horizon spin, mass and higher multipole
moments by algebraic systems of equations. Where the kiedefined in the presence of an
axisymmetry onIyB?], the.,, allow to extend them to the perturbed case as a solution skthe
systems.

In order to minimize numerical errors pf,(*R) , u,,(Im¥,) accurate numerical computations
of the curvature component®, Im¥, and the surface triatbn the horizon are required which is
usually given by the Cartesian coordinateape functiork (6, ¢) = /0;;X*X7 in the simulation,
where X’ are the Cartesian coordinates at the 2-surface centeregaibtinside the surface.
Instead of finite differencing we expand the shape functoieims of a tensor basis to determine
Cartesian derivatives off the surface, as commonly useaiizén finding algorithmﬂO]. But
opposed tdEO], we use another basis, which is easier temght, and exact numerical integra-
tion to determine the multipole coefficientsioff, ¢), where ] use minimization to determine
the coefficients.

As a further technical novelty we introduce a coordinateapping which adapts spherical
coordinates to the minima of the scalar 2-curvature on thigto. This coordinate transformation
‘roughly’ approximates the invariant spherical coordesgtif an axisymmetry is present. In that
case the azimuthal coordinate lines yield an axial cootdimactor field to estimate the spin with
(@.3), similar to the Cartesian coordinate vector field[bf [Moreover, a re-interpolation on this
new coordinate system can be useful before applying metiodsg to solve the Killing equation,
in which finite differencing is involved, like the Killing émsport methodﬁS]. Additionally, the
axis given by the two minima can be used to define a spin dinectn order to study the close to
merger spin precession, as an alternative to the Eucligearvector of |[]1].

We apply the new methods to the AH of a perturbed, ringing®8Ha 3+1 simulation, where
we follow the evolution of spin and mass multipoles untilitHamal Kerr values are reached. It
is interesting to compare the angular momentum didalé (@i®) other spin measures and spin
approximants during the evolution.

This paper is organized in the following way. In secfidn Il réefly review numerical methods
to find Killing vector fields and approximate Killing vectorfids on AHs. In sectiofidll we
deduce the analytic expressions to determine spin and niass the geometric properties of
an AH in Kerr, such as area, ‘equatorial’ circumferenceyearia of the scalar 2-curvature or
the numerically more convenient surface integral we useti@€lV| is dedicated to the angular
momentum and mass multipole moments on axisymmetric AHgaiticular, we show how these
multipole moments are related to the invariant integral$R) , p1,,(ImWs). In sectiodY we show
how to compute the curvature componet®s ¥,, and the surface triad accurately. In secfioh VI
we explain the setup and initial data of your 3+1 simulatidaring the evolution we follow spin,
mass and higher multipole moments, compare different nasttmmeasure the spin and test their
convergence.

Notation: Indices, j, k indicate 3D Cartesian components, indiaek c label 2D components
on the local horizon grid, lettedsm label spherical harmonics. We indicate dimensionless-quan
tities (mass dimension) with a hat, eg= J/m,*R = *R - A/(87), ImWy = Im¥, - A/(47).

2 Note that a ‘coordinate-induced’ surface triad on ‘largeoinate spheres (as for wave extraction¥ig is given
analytically, where the horizon shape in Cartesian coatémis a deformed 2-sphere and the construction of a

surface triad (to obtain for example the Weyl scalars at tirezbn) non-trivial.
3 We evolvetwo puncturdD. The punctures are close enough to form a common horiztalin



I1. SOLVING THE 2D KILLING EQUATION NUMERICALLY

The induced 2-metrig,;, of an ellipsoidS embedded the Euclidean space admits one rotational
Killing vector field * which is a solution of th&illing equation

£¢Qab = 2D(a(I)b) =0, (21)

where?D is the induced covariant derivative ¢h The vector fieldb® is unique up to a constant.
In the case of Kerr for example, wheb¢ = 0, and¢ is the Boyer-Lindquist coordinate, it is fixed
such that integral curves have affine lengti2ofthus¢ € [0; 27].

A. Killing Transport Method

Dreyer et al.@b] used the Killing transport method, seeempiix of m], to solve the Killing
equation[(Z.11). Since we apply this method in our simulaj@ee section VI, we briefly explain
it in the following.

The method can be roughly divided into three steps: 1. determsingle vector of the KVF at
a point on an arbitrary loop ofi, 2. spread this vector throughout the whole surface, 3. abizm
the whole KVF by normalizing an arbitrary integral curve tavk affine length ofx. The first
two steps require thKilling transport equation

c® 2Da(I)b = "L 25ab (22)
c” ZDa(L 26bc) - CCLQRdCba(I)d 5

where%:,, denotes the Levi-Cevita tensor atif;,, the 2D Riemann tensor. This equation holds
for any functionL and vector field:* on S as long asb* is the KVF. On the other hand, assume
that &, and L were unknown, pick a loop, e.g. the equatgr (¢ = 7/2,¢) of a spherical
coordinate system, pick a point, e.®, (¢ = 7/2,¢ = 0) and identifyc® := 9, 4, then [2.2)
becomes an ODE for the unknowst, (¢), (o), L(¢)) alongc.. This defines a linear operator
for 3-vectors af”. If we pick three arbitrary, linear independent initial t@&s atP, transport[(Z.2)
them along the loop t@’, we obtain & x 3 matrix presentation of this operator. Two components
of its eigenvector are the KVF dt (1. step), the third is the auxiliary functiahat P. At next
this 3-vector is transported (2.2) along coordinate lines\aer S, settingc” = J, or ¢* = 0y
respectively (2. step). Where the transportation equdfd®) by construction ‘conserves’ the
Killing property. The last step is to normalize the KVF (3}, where we have to solve the ODE
00 = ®1(0,0), 0,0 = D*(0,¢), P4, where the initial vectod is arbitrary, to obtain an integral
curve and normalize such that the curve parametef0; 27|.

B. ApproximateKilling Vector Fields

If the ellipsoid S is slightly deformed, no exact solution df (R.1) exists. Bue could try
to find a ‘best match’ which minimizes a certain norm of thed.hof [2.1) onS. Such vector
fields are often denoted approximate Killing vector fieldeaKVF). Opposed to KVFs there is no
unique definition of aKVFs. Dreyer et aﬂ33] could show ttie Killing transport method is still

4 The resulting KVF is independent of the initial loop, initiint and curve parameter.



applicable to yield a ‘well matching’ aKVF. But one has to lvgaae that the final vector field will
not be anymore independent of the particular loops of trartapon. Although this effect may be
negligible for practical applications, e.@ El 7], if themhrture from axisymmetry is ‘small’.

We found it useful to adapt the coordinate system on the bormefore applying the Killing
transport method such that the azimuthal transport regsgh@minima of the scalar 2-curvatite
see appendix]B. Another approach to find an approximatenigilector field has been given by

]. They use a variational principle to minimize the ‘nsyimmetric’ features of the vector field.
A similar method can be found in the appendix@ [42], for aplagation to a BBH simulation see
[IE]. Caudill et al. [[ZB] consider the conformal Killing egpion in order to define an aKVF. Re-
cently Beetle@4] pointed out that CookE[34] approachlgsely related to an older proposal by
Matzner EE], where the aKVF is the solution of an eigenvadtablem. An outstanding question
is still the normalization of these aKVFs. An interestingwidea has been given in the appendix
of [@], where the aKVF is normalized to a particular surfategral instead of a single integral
curve.

C. Coordinate Vector Fields

If the coordinates are conveniently adapted to the metricifola, the coordinate vectors au-
tomatically generate symmetries, such as the Boyer-Listiqoordinate vector§, andd, in a
Kerr spacetime. If a coordinate vector field is known to besel to a KVF like in theadapted
spherical coordinate§l,., ¢.sc), See appendixIB,

¢ZSC = a(z’asc ? (23)

one can use it to estimate the spifd’| ~ J[®/_ | with (I.T), see the application in section VI.
Similarly Campanelli et al.[[4] use the three rotationalliki vectors of Euclidean space in
Cartesian coordinates

oWl = (aF — CMYey, j=1,2,3, (2.9)
wheree’ ,67% = €% js the flat space Levi-Cevita tensor a6 a point insideS, to define a Eu-
clidean spin vectotJ[®L], J[@7], J[®1]) and together witH{Z11) to estimaéd’] ~ J[d: ],
where J[®! | denotes the Euclidean norm of this vector which allows thestudy the spin pre-
cession in a BBH inspiral and to estimate the final spin aftergar. Referring tc[[4] this Euclidean

spin vector reproduces the Bowen-York spin parameterseofdimformally flat initial data and for
the final black holé.J[®7] — J[®] || < 1.

1. INVARIANTSOF THE HORIZON IN KERR

If an AH, say, detected in a 3+1 simulation, is approximatde in a slice of Kerr, the
numerical extraction of the black hole spin given the ADM @3$N evolution variables at the
AH is relieved and it can be avoided to solve the Killing eiprat(2.1). The Kerr spacetime is
uniquely defined by two invariant numbers, like spin and nidss:), like ‘equatorial’ circumfer-
ence®and areq L(c.), A) of the BH surface, see [36], or an extremum of the scalar 2ature

5 An ellipsoid has two minima of the scalar 2-curvature whioincide with the minima of the KVF, given by the
symmetry axis of the body.



and ared®R., A), see ELIZ]. Each pair is related to the other by the Kerr meinid we can
choose the numerically most convenient one. In order tofiidnem exact numerical integra-
tion we select the invariantg:,(*R), A), see [[LB). The explicit algebraic expressions relating
J = L(c) < *Rex < 12(?R) (= p2(Im¥y)) are derived in the following.

Any axisymmetric 2-metrig,, can be put in the compact form

A 1
d2:—<—d2+ dz). 3.1
= Fo™ FO)do (3.1)
For the 2-surface of a Kerr black hoféy), see @B], is given by
1— 2
fr— = y = 97 3.2
00 =g oy Yo (32)

wherej € [0;1/4/2] is called theKerr distortion parameteand (¢, ¢) are the Boyer-Lindquist
spherical coordinates. The distortion parametes related to the more familiar dimensionless
spin parametei = a/m = J/m? by

- 1
F=s(1-vi—a), (3.3)
2
to Kerr spin.J and massn ’ by
1-vi-a _ _ A I S (3.4)
1++1— a2 /1—62 8 2\ 4n(1 - 32 '

Smarr ] pointed out the analog of the surface of rotatiregamal bodies to the black hole
horizon, where the equatorial circumference increaseleabddy spins up. The equatorial cir-
cumference for the Kerr horizon is given by integrating)(&tbng the maximum ofR which is
the curve(y = 0, ¢),

we)= i s =00 =

For the numerical application in arbitrary coordinates thionly useful, if the curve, is known to
overlap with a coordinate line. If this is not the case theex of°R are a practical alternative,
see |'l- | 42]. The scalar 2-curvaturegof (3.) is

AT e, (3.5)
_ 52

8m 1 A 1
2 A 2/ 2 I 2
R=-——50) — "R=-35K), (3.6)
with extrema aty,,in = 1; —1, xmax = 0. We obtain
. 1 . .
Rpax = ———  Romin = 1 — 457 (3.7)
(-

6 This is the curve.. along the maximum ofR in Kerr.
" For completeness note that,, = Ra.ea1/2 is theirreducible masandR,,..1 = \/A/(47) theareal radius
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A. Aninvariant surfaceintegral in Kerr

If the scalar 2-curvature has been computed on a finite grietpolation is required to obtain
the extrema. This is not necessary if the following surfategrals are employed

o (PR) = <(<2fz> - R)> (R =1 ﬁ "R dA. (3.8)

Moreover, the numerical error qm‘g(zﬁ) benefits from averaging over all points on the grid and
exact numerical integration can be used. With the normidizaf (3.6) the average 2R > orid=

1 + €numerical fOr @any 2-metric computed on a finite grid dghaccording to the Gauss-Bonnet
theorem. For Kerr the integral appearing[in {3.8) is takegr @arational function iry. We obtain

1(*R) = —15 — 70¢? 3012864; 70¢5 + 1568 N 3(1+¢)* arctz?n(é) | (3.9)
(1+¢2) 16 ¢

whereé is given by [3#). In the numerical simulations of secfiohwé compute( ;i (2R), A) on

the AH and calculate the correspondifg m) with (3.9) and [(34). Where we assume that the
AH is in a slice of Kerr, which is a rough approximation for tbemmon horizon directly after
the merger of two black holes, but as soon as the ‘non-Keatuies have vanished below the
numerical error this method yields an accurate measureedirthl black hole spin and mass.

Note that for Kerflm¥, = —ig”(x), g(x) = % see ] and some algebra, which
meansyl(xlm\i@) = ¢. Thatis inconvenient in application, since the Boyer-lgagt coordinate
(x = cos ) explicitly appears. Fopi,(ImW,) we obtain a similar expression 0 (8.9) which is

A N N A ~ ~2\4 A
po(ImW,) = =15+ 17002‘2“(}(11?2;37006“508  MLES arctan(@) Therefore, we do not expect to get more

information by extracting from y,(ImW5) or u5(2R) or highery,, but rather from the whole sets
wn(ImWs), 1, (*R) and the procedure explained in the next section (when aptiia perturbed
axisymmetric horizon).

IV. INVARIANTSOF AXISYMMETRIC ISOLATED HORIZONS

For the calculations in the last section to be reasonablenvelpplied to an AH found in a
numerical simulation, we had to assume that the detectedf@eg was in a slice of Kerr. We
relax this condition and allow the spacetime to be dynaniictie vicinity of the horizon which
we assume to be an axisymmetigolated horizon(IH) [29, [30]. On the horizon in Kerr all
multipole moments are necessarily given by spin and masegftbre higher moments contain no
extra information. This is in general not the case on an axmegtric IH, where an infinite set of
independent multipole moments permits more complexity|3¢].

At first the axisymmetry has to be exploited to define an irargrcoordinate systeify, ¢) for
which the 2-metric has the forfi(3.%), is the KVF and the zonal harmoni¢3™(y)} represent
an orthonormal basig, Y'°(x)Y"*(x)dA = 24", At next note that, as valid for Kerr, the Weyl
scalar¥, is gauge invariant on IHs without matter fields, in both cadde$, = —1/42?R holds



and the dimensionless IH multipole momehtsL, are defined by

I = %S 1/4°R(x)Y"(x) dA, L :=— %S ImW, ()Y (x) dA. (4.1)
R =47 SRV, Wls(0) =~ SOLY(). (@42)
=0 =0

Note that for KerrJ - 87/A = ¢ = /1/(3x) L, and for an IHJ[®7] - 87 /A = /1/(37) Ly,
where ®’ is the KVF corresponding tdy, ¢) and J[®’] given by [1.1). Therefore, the curva-
ture componentm ¥, is sometimes calletbtational Weyl scalar and thé, angular momentum
multipole moments, all vanish in the absence of spin. Theriants];, L, are subject to certain
algebraic constraints such thgt= /7 (Gauss-Bonnet), that the mass dipdleand the angular
momentum monopolé, vanishgi If the 2-metric [[3.1) admits a reflection symmetry as forrKer
f(x) = f(—=x), seel(3.R), all odd, and ever, vanish, too.

A. Theinvariants u, on axisymmetric isolated horizons

In analogy to subsectidnIITA we want to use the invarignt&R), . (ImWs,), see [LB), to
determine the IH multipole momenta because a direct cortipataf the integrald,,, L,, @)
would require the knowledge of the invariant coordinates tus the KVF®’ (then the spin
J[®7] could be directly computed(1.1)). Therefore we calculatedlgebraic relations between
the i, *R), 11, (ImW,) and thel,,, L, by inserting[ZR) into[{1]3)

n

lrInax
“"<27%) - < 1-2) 1Y"(x) > n=2,3, 0 M (4.3)
=0
ll’lll)aX "
un<1m\if2) =< 0+> LiY"(x) > n=23,..,nk.. (4.4)
=0

where we assume thaR, ImW, are given by finite sets of multipole moments upig, . I%...
We obtain’

m(*R) = i(;)<—2>m > (Km )<f.>Klmx<<Y-°>Klmx>, (45)

m=0 K| =m N max

o (Tms) = 37 (K” )(L)Km (YO ) | 0 =23, 0, (4.6)

K |=n N ma

whereK,,,,. = (ki ks, .., ki) is @ multi-index of length.., (,. . ) is the multinomial coef-

ficient and(Z )Fumax ((V-0)Ktmax) = (I})M1 (L)% {(Y1O)M (Y20)*=...) . The integersi,. , n’

max ’ max

match the numbers of non-trivia, L, given by the algebraic constraints mentioned earlier and

max

8 Therefore, the invariant coordinates are sometimes caltader of mass frame’ of the IH.
9Heretheindices,Lini! 1L nl —nL  areomitted.

max’ ‘max’ max’ max
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lﬁlax 1% .. The coefficientg (Y-) %=« ) are integrals over products of (zonal) spherical harmon-
ics. They are given by the associated Clebsch-Gordan deetficand higher order generaliza-
tions.

Consider the following example. In a simulation of a peragtKerr spacetime we locate the
AH and compute the surface integrals(*R) , 1, (ImW¥s) to n,.c = 6. Where we assume that
the 2-surface is a cross-section of an IH with reflection- ardymmetric 2-metric. Then the

algebraic system& (4.3), (#.4) become

un(zﬁ,) _ <<1—2(\/%Y00+ 3 lel°)+OI> >,n:2,3,4,5,6 4.7)

1=2,4,6,8

lin (Im‘i/2> - < (Z Ly 4+ 0L> > n=246 (4.8)

1=1,3

which we solve fotl,, Iy, Is, Is, Oy andL,, Ly, O, where®;, @, are constants accounting for
the truncation of the expansions. Among the solutions wk thie one that is real and closest to
the corresponding Kerr value or, if no guess for that valuevalable, we pick the real solution
with =1, > I, > —Is > O; andL1 > —Ls > O;. If we were only interested i, andO;,, two
surface integralg, (ImW,), 4 (Im¥,) would be enough.

In order to attribute a physical interpretation to the Z;, in analogy to electro dynamics,
dimensionfull factors can be added, see [37]. Here we requir

1 .

| =
ThenJ[®7] = J; holds for the KVF®’ corresponding tdy, ¢).

The surface integralg, (Im0,) are well defined even in the perturbed axisymmetric case and
allow us to extend the concept of IH multipole moments, inlegyto akKVFs which are gen-
eralizations of KVFs, where no exact solution of the Killieguation exists. Opposed to the
conciderations of the last subsection, we take more infoomabout the horizon geometry into
account, than extracting the spin from a singleonly and modelling the horizon with Kerr.

V. ACCURATE COMPUTATION OF 2R, ¥, ON THE AH

In this section we will show how to compute the curvature comgnts’R and ¥, accurately,
where we assume that the 3+1 evolution variabfestrinsic 3-curvaturds;;, 3-metric~y;; (to-
gether withd; K, 0;v,x, 0:0;7kk) @nd the horizon coordinate shajié are given on a Cartesian
grid. The accurate calculation of curvature components defarmed 2-sphere in a Cauchy
slice is a common problem in numerical relativity which aggein horizon finding algorithms.
Therefore, the new methods introduced in this paper coukhlsdy implemented as an extension
of existing horizon finding routines. Various methods hagerbtried to discretize the necessary
spatial derivative®);h, 9,0,k by finite differencing, finite element, pseudo-spectral apéctral
methods, using square{d grids or multipatch grids, for a review SEE_|[47] Our apptoac
motivated by the work of [40]. There a spectral decompasitibthe coordinate shape function

10 They can be easily assembled from the BSSN evolution vasabl
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h(6, ¢) is being used to compute Cartesian derivatives. The lstaliméso;h are necessary to
obtain a surface triadls’, u?, v*} (required to compute the Weyl scalars) and the 2nd derstiv
0;0;h to obtain the extrinsic 2-curvatuf&’;; of S embedded into the Cauchy slice (additionally
required to compute the scalar 2-curvature).

If we parametrize the AH with spherical coordinates, the edatingX”’ (6, ¢) into the Cartesian
grid is _ _ '

X(0,¢) = h(8, ¢)n’ +C7, (5.1)

where(’ is a coordinate location inside the horizon (for exampledberdinate centroid);’ the
Cartesian radial unit vector = %xj, r = /d;;x'z7 andz’ are Cartesian coordinates.

A. Spectral decomposition

To compute spatial derivatives one could decompgdges) into

Imax l
(o, ¢) = [0, ¢) (5.2)

1=0 m=l

where[h]'™ are the expansion coefficients and” the spherical harmonics. The evaluation of
9;Y'™ (6, ¢) would require the Jacobian to transform between sphenchCartesian coordinates.
This is inconvenient for the numerical application, since Jacobian is singular at the spherical
coordinate poles.

Therefore, [[40] take a tensor basis which is build of theakdiit vectorni(z7) = 27 /r and
thus defined in Cartesian coordinates (and easily pararaedtwith any other local coordinate
system on the 2-surface, e.g. sphericdb, ¢) = (sin 6 cos ¢, sin 0 sin ¢, cos §) or stereographic
coordinates)’ (u, v) = (2u, 2v, u* + v* — 1) /(1 + u* + v?)),

l’nL(L:L’

h="Y [Ny, (5.3)
=0

where K is again a multi-index of length and the tensor productSy, = ng,ny, ...n; are
symmetric tracefree tensors (STF) of Euclidean space, dkegian is adapted fronﬁhS]. If the
coefficients of the expansio%.bZ) are known, they can lmskaged to obtain the expansién (5.3),
for how to [h]'™ « [h]%: see|[4D]. The partial derivative of the tensor prod@g¥y, consists

of the derivative®);n; = (6,; — n;n;)/r. In detail the implementation of the STF tensors and its
derivatives is a bit cumbersomely but straight forward.

We use another basis of the harmonics instelga’V7)!, where A’ is a constant complex
Euclidean null vectof\;A7) = 0, N7 + 0, see Sec.11.5.1., Vol.IL [49] or [50]. The expres-
sion (n;N7)! is a homogeneous harmonic polynomial of Euclidean spacedsd, therefore
Agar(n;N7)! = 0. The radial vector’ defines a restriction of the polynomial to the unit sphere
z'z76;; = 1. Itis known that such restrictions are eigenfunctions efltaplacian of the induced
metric (this applies to any embedding $f into Euclidean space, e.g. an ellipsoid). On the unit
sphere this implieg\,(n,N7)" = (I + 1)(n;N7)!, whereA, is the Laplacian of the standard
spherical 2-metric. This holds for any null vectd?. In order to span eacheigenspace of\,
with 2/ + 1 linear independent eigenfunctions we define a list of nulters

21
204+ 17

'/\/‘[]lm] = (Z Sin(ma'l)v i COS(m(ll), 1) y = m=—l,---,l, (54)
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where the roots of unity have been used such tha.t\tﬁin%, have the Euclidean norv; N7 =

—|e*31 |2 4 1. Now we can define the new basé™ := (n; N/

imy) @nd decomposk into

lmax —1

h=>Y Y [nr (N )" (5.5)
=0 m=l
Thed'™ m = —I,--- , [ are not orthogonal in eadkeigenspace but across different eigenspaces.

They are related to the standard basis by

l
ylm — pim Z (I)lm’e—im’mal7 (56)
m/=—1
l 1 &y
m _ - rm'may
d 1 m;l T © : (5.7)
L [+ m)(l—m)!
B'™ = (=1)"= :
(=1) l!\/ 4m(20+1)
and we can transform the coefficieft$™ < [h]i7. Derivatives of the new basis are given by
@™ = (N (Opn; N7 (5.8)
. 1 ,
8k<I>lm = (anJ)l_ll ; (Nk - nknj/\fj) y (59)

and similarly for higher derivative,0,®"™.

B. Surfacetriad

Now we have the Cartesian derivativgs, 0;0;h at hand and are able to compute the outward
pointing surface norma¥ = 7*s,

5= Mnj — 0;h), A = 1/y/(n; — k) (n; — ;1) (5.10)
In order to complete the surface trigef, v/, v*} we setw’ = sy 0y X7 ando® = e%s;u;,
wheres7% = ||~]|~1/2[123]* is the spatial Levi-Civita tensor ar{d23]”* the pure alternating
symbol.

C. Extrinsicand intrinsic 2-Curvature

The extrinsic 2-curvatur&s;; of S embedded into the Cauchy slice is given by
2Kij = DZ'Sj — SiSkaSj y (511)

where the second derivativéso,h are required and the Christoffel symbols associated to the
3-metric. Then the intrinsic 2-curvatut® is given by Gausstheorema egregium

R =R —2Rys's) + K — 2KV K, (5.12)
where’C = 2K;;¢q" andq” = % — s's’ is the induced 2-metric in Cartesian components (also
required to raise the indexes#;; in the last summand on the r.h.s. 0f(8.12)).
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D. AreaElement

The computation of surface integrals on the AH requires tba alement A = +/det ¢, dfdo,
where we need the induced 2-metric in local coordinates

Gab = 0a X7 0, X v, (5.13)

hereX’ has been defined ii.(8.1), for an alternative see append@d}f [

E. U, and other Weyl scalars

To obtain mass and angular momentum multipdled (4.1) arraicaomputation o, given
the 3+1 evolution variables, is requried. Additionally, want to follow the constraint¥, = 0
andW¥; = 0 which hold for Kerr and on IH@Q] in the simulation of sectl@ll Theelectric £,
andmagneticB;; parts of the Weyl tensar’;;; w.r.t. time-like normak* of the Cauchy slice are

Ej; = —Cymi*n' = —Ry; + K" Ky,j — KKy, (5.14)
By = — % Cypit*i! = —e," Dy K . (5.15)

We further projectr;;, B;; onto the surface triads’, u/, v*} and obtain the Weyl scalars, see

51,[52],

1 )
U, = —§(Ejk — iBj)ss" (5.16)
Uy = —(Ej, —iBj)m’m" (5.17)
1 , .
\Ill = —E<EJ —szk)m]sk, (518)

wherem’ = %(uﬂ — iv?).
We monitor the dynamics of the AH during the evolution in satiVIl by computing the
dimensionless surface integrals

~ ~ N 1
do= f 10ldA, = § wlda %:w—fmwﬂAH, (5.19)
S S 87T S

which vanish for a MOTS in a slice of Kerr or an IH.

VI. NUMERICAL EVOLUTION AND INITIAL DATA

In order to test and compare the new techniques we applied tbean AH of a perturbed
ringing BH in a 3+1 simulation which as been carried out ushregyCCATIE code@l]. Thisis a
3D finite differencing code based on the Cactus Computdtitoalkit []. The CCATIE code
provides a collection of moduleshrng which allow us to usguncture initial data[@] with
the TwoPunctures thorn [65], to do the time evolution of thisal Cauchy slice with the BSSN
evolution systen@@ 8], to set proper gauge condit{ornere we used 1+log slicing and the
hyperbolic gamma-driver condition as in [59]), to succedlsirefine the Cartesian mesh with sev-
eral nested static boxes around the AH (where we used thetCakpR driver @]) and to locate

12



the horizon every few time steps during the evolution [61heThorizon finding thorAtprovides
the shape functionh(6, ¢) which is being used by a separate thorn to interpolate (Abrd_a-
grange) all necessary 3+1 evolution variables onto thergeyrid, to accurately compute the
curvature component®k, Im¥, at the horizon (see sectibn V) and, finally, to determine fis®a
ciated quasi-local IH multipole moments using the surfategrals[(1.8).

In addition to the angular momentum dipolg(y; 4 6(ImW5), A) 12, we compare the spin with
four other methods: 17[®/,] using the Killing transport method of subsection]l A to dbtthe
KVF &/, and equation{1]1) in adapted spherical coordinates (Seendix[A), 2. J[®/. ] and
J[®!_ ], where we approximate the KVF with the coordinate vectodfiedf subsection ITC, 3.

asc

~

J(12(*R), A), where we use a single surface integral and the forniula (8s8uming closeness
to Kerr) to extract the spin.

A. Initial Data and Grid Parameters

In order to model the common horizon after the coalescen@nddrbitrarily aligned BBH
system we chose as a non-trivial initial configuration a tigs&d spinning puncture with a nearby
smaller non-spinning companion puncture, where the cominooizon is already present on the
initial slice. The Bowen-York parameters of the first pumetarem; = 0.8M, |s;| = 0.3M?
with orientation(d,, = 0.6, ¢, = 0.4) in the Cartesian grid. And for the second puncture we set
meo = 02M, So9 = 0.

We evolve the initial data 4th-order in space and time with@artesian grid resolutionsr =
0.048M, 0.035M, 0.025, 0.02M (finest AMR resolutions) and use three different spherical g
resolutionsNy x Ny = Ng = 480, 1104, 4900, where Ny is the total number of grid points on
the surface andV, = 2N, (where the 6-patch grid of the horizon finder and the sphlegita are
kept at the same resolution). The spectral resolution f@rettpansion of the shape functibrs
fixed tol,,,x = 10.

B. Numerical Evolution
1. Monitoring the Isolation Constraints

To monitor the dynamics on the horizon we computed the serfiaiegrals[(5.19) shown in
figurell (for Kerr@EO,LQ = 0). On the left we see the typical exponentially damped csailh of the
radiativeWeyl scalarsV, ¥, which are (after an initial bur3izo,1 < 1) given by a superposition
of several quasinormal-modes, predominately2 modes, that have been excited by the specific
initial data. As a fit to the ring-down profile @Zfo we obtain the frequenayg; ~ 0.355 + 0.0884,
in agreement with thé = 2-mode frequencies,;—,,,,, see EIZ], which arevs_o9 ~ 0.34 +
0.0897, wagy ~ 0.36 + 0.089¢, - - - for our case of/ = 0.3, m = 1.035. After aroundt > 90M
the perturbations on the Kerr background are to weak to lbaduresolved limited by the total

1 The new techniques could have been implemented directbytive horizon finder, which uses a 6-patch stere-
ographic coordinate systelm61]. But to benefit from the ekaegration scheme, appendi¥ A, we employ a
spherical grid. Both grids a kept at the same resolution.

12 This new notation denotes that the aréand the three surface integralg(lm\ifg), u4(1m\i/2), /LG(Im\ifg) are
used to determing; as a solution of{4]3).
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Az = 0.035, Ng = 4900

Az=.048, Ng = 4900 |
Az=.035, Ng = 4900, 48

0 50 100 150 20C 0 50 100 150 20C

Time/M Time/M

FIG. 1: Left: time evolution of); » 3, Right: time evolution ofj

numerical error, which we downsize by increasing the Categrid resolution, see figuré 1 on the
right, in order to see the dynamics belay < 10~°. Where the total errd®is almost independent
of the spherical grid resolution and dominated by the erwge tb time-integrating the BSSN
equation. We accomplished this by employing an exact iategr scheme (integration over the
surface), see appendiX A, and the computational techniofusesctior V.

2. Evolution and Convergence of the Invariapts

In figure[2 we see the exponentially damped oscillation ofithas they ring-down to their
final Kerr value. On the right it is shown how the time averagfes, (>R ) (120M/-200M, straight
black lines) converge with the expected 4th-order as thée€ian grid resolution increases after
the oscillations have settled down. Apparently, the erfqi.¢>R) does not converge uniformly
but the effect flattens out as the Cartesian resolution asea®

Ax=0.020, Ng = 4900
- . 0.001325(
oo/ S #2CR)
ol ] 0.0013241}

p3(*R)
KQ 0.001324¢
[a\]

10° A E X
V'\/\'#“‘l CR) —
£ 0.001324.

10°F E

s
, /\/\'—%( R) 0.001324:
107§ 1

oot B M 0
80 10¢ 80 100 120 140 160 180  20C

40 60
Time/M TimelM

FIG. 2: Left: time evolution ofuz 3 4 5(>R), Right: time evolution ofiz(*R)

13 Additional contributions to the total error are due to ipi@ation and truncation of the series expansion @ ¢)
atl,.x = 10 (and due to evaluation).
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FIG. 3: Left: time evolution of mas§, Right: and angular momentum multipoles momehts

3. Evolution of Mass and Angular Momentum Multipole Moments

Every few time steps the,,(*R), u.(Im¥,) are computed and the algebraic system relating
them to the IH multipole moments (assuming reflection- andyammetry) is solved, as in the
example [(4]7), see figuté 3, where ¥, O, account for all higher multipole moments. We
see that already dt= 30M the assumption of a reflection- and axisymmetric horizorliepp
although the AH is still dynamic at that time, see figlte 1.etastingly,L, is almost constant
during the evolution, as the horizon area (not plottédy 47 - 2.052M/2).

4. Spin Evolution and Comparison with other methods

And finally we show the evolution of the angular momentum tﬁplg(u27476(1m‘ifz), A) ¥(red
curve) in comparison with other spin measures and apprdsiraee figurel4 top panels, and their
convergence, bottom panels. Here the coordinate approxsviad,..], J[P..] can be seen as a
reference, since we chose the numerical setup convenisutlg that the horizon is ‘at rest’ (after
the dynamical phase) and such that coordinate distorti@nsmall*>. After a short initial bust all
methods yield nearly the same spin value, which stays condtaing the evolution; an exception
is J(u2(*R), A) (brown) which oscillates with the quasinormal frequencyhisTindicates that
there is a certain phase in which the horizon is at best medi®y an axisymmetric, dynamical
horizon but not Kerr. These ‘axisymmetric features’ arecgted in theus; 4 6(ImW,) such that
we get an overlap off; (i.46(ImWs), A) with the referenced/[®,..], J[®.]. The remaining
difference| J[®...|/M? — 0.3| converges with 4th-order as the Cartesian resolution &#3&® see
figure[4 bottom right. Where on the other hasih,;| converges at 2nd-order as the spherical
grid resolution increases, bottom left pafelbecause finite differencing on the spherical grid is
involved to determin@, .

14 This denotes that; is given as a solution of 4.7 ) arld (#.9 ), where the surfategialsA, ;i (ImWs), 14 (ImWs),
16 (ImW,) were the input.

15 This is in general not the case in a full BBH simulation.

16 Note that the low resolutioiVs = 480 (light blue) is to coarse to be in the convergence regime.
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Az = 0.035, Ng = 4900 Az = 0.035, Ng = 4900
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FIG. 4: Top Left: time evolution of other spin measures, ToghR time evolution of/; (u274,6(1m\i12), A)
(red) in comparison with other spin measures (zoomed) oBotteft: convergence of [y varying Ng,
Bottom Right: convergence of[®,.], J(u2(*R), A) varying Az

VII. CONCLUSION

The dominant part of the gravitational radiation at Scrigatained in the quadrupole moment
of W, which is in practice extracted at ‘large’ coordinate speexmund the source in numerical
simulations. Similarly, the dipole moment of the rotatibveyl scalarimW¥, encodes the quasi-
local angular momentum measured at the apparent horizdreipresents of axisymmetry. The
local coordinates on the horizon are in general distortatlasolution of the Killing equation
is required to determine an invariant coordinates systewhich the multipole moments can be
computed.

It is involved to determine the Killing vector field, in pattilar, to find a convenient approxi-
mant in case the axisymmetry is perturbed. We have shown amedivod to extract the horizon
multipole moments using coordinate invariant surfacegrats,.,, from which we deduce the mul-
tipole moments as a solution of an algebraic system. We lemrethat the ‘axisymmetric features’
contained in theu,, allow for an accurate quasi-local spin computation, whickhe dipole mo-
ment solution of this algebraic system. Indeed this angulamentum dipole is equal to the spin
(up to numerical errors) given by solutions of the Killinguadion, even in the case of a perturbed
axisymmetry.

We have also presented the possibility to extract the spm & single.,, in comparison with its
analytic expression for Kerr. But there seems to be a dyrampl@ase of the horizon, in which it is
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better modeled by an axisymmetric dynamical horizon andauitbtKerr. Then the spin extraction
by severalu, is favoured. The perturbations from Kerr oscillate in agreat with black hole
perturbation theory, until they are no more resolvable, ueumerical errors. Then the dipole
moment of the rotational Weyl scalar agrees with the Kermn gpid theu,, take their final Kerr
value.

The computation of the invariants, is done very accurately using an exact integration scheme.
In combination with spectral methods, in order to computgtiapderivatives of the horizon co-
ordinate shape function (adapted from horizon finding atligors), the curvature components
2R, Im¥, are computed accurately (given the 3+1 evolution varighdes finite differencing
on the horizon is avoided. This way we could accomplish thatriumerical error of the,
(dominated by the time-integration error of the BSSN eaqum) converges as the Cartesian grid
resolution is refined, almost independently of the numbespdierical grid points, which can be
significantly reduced in order to save computational costs.

Additionally, three technical novelties have been introetl that ease computations on de-
formed 2-spheres: an adapted spherical coordinate systeosé azimuthal coordinate vector
field can be used to approximate Killing vector fields), the osa non-standard basis of spherical
harmonics and the use of an exact integration scheme. Thekeiques should be considered
for wave extraction on coordinate spheres or constant meamttire (CMC) sphereﬁb@&].
In particular, if &, (computed at several coordinate or CMC spheres) is fittedpmymomial in
1/ Rarear (@Nd NOtRo0rq), foOr the extrapolatioHES].
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APPENDIX A: EXACT INTEGRATION SCHEMESFOR SPHERICAL GRIDS

It is well know that the equation

/ foywlapds = Y wsf (), (A1)

holds exactly, where () is called thewveight functionif f(x) is a polynomial of degree less than
2N and the weightsv; and abscissas; are chosen in accordance with the orthogonal basis of
polynomials orja, b] defined by the scalar product f|g >:= fab f(x)g(x)w(z) dz, because there
are2N degrees of freedom to make both sided of| (A1) match, see &onpbe I[EB].

For the integration withu(z) = 1 on the circlea = b, the ‘correct’ weights and abscissas
are particularly simple. They ar& equi-distant points with equal weights. This can not be
generalized for the integration on the 2-sphere

Ng
f; flz,y)dA = Z w; f (24, Yi) (A2)
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for arbitrary Ng, because the number of uniform grid structures is filNie = 4,6, 8, 12, 20,
corresponding to the faces of the platonic solids. Sincg ithia 2D integration, we hav&Vg
degrees of freedom in the sum on the r.h.s[ofl (A2) dpd. + 1)? spherical harmonics of degree
< lmax- This means iff (z,y) was given by an expansion up tg.., we needed at leasts =
(Imax + 1)?/3 points to make[(AR) hold. Lets sai(x) was given by an expansion ¢f + 1) — 4
spherical harmonics, then the integrationl(A2) on an icededd gridNs = 20 with equal weights
would be exact. There is an extensive body of work on the proldf optimal integration schemes
for Ng > 20 (cubature problery see for exampléﬂi?].

There are less optimal compromises available, which requuch more points thafi,,.. +
1)2/3, but which are defined on regular spheri¢al ¢) grids. For example the Gauss-
Legendre/Gauss scheme, where the integration along ethiah—1, 1], [0; 27] is a Gaussian

guadrature
Ny N4>

2w 1
f’g / SO oxdxdd = 3w £, 6. (A3)
- i=1 j=1
where againy = cosf, Ng = Ny x Ny andNy = 2Ny.

As before thep-integration is a Gaussian quadraturedor= 27 (j —1)/N,, j =1,..., N, and
equal WeightSUj.’ = 27 /N, the x-integration (in that case called Gauss-Legendre quarior
x: being the roots of the Legendre polynomials (according ¢onkight functionu(y) = 1). The
corresponding weights* can be found in e.g.| [68]. This method is exact for polynomifi
degree less thatwV, (less than/2Ng < v/3Ng).

An alternative integration scheme has been found:IQHGQ]'here the integration grid is a
standard equi-anguldp, ¢) grid, §; = (j — 1/2)7/N, (staggered) and the computation of the
roots of the Legendre polynomials not necessary. The weighteven/oddV, are given by

Ny/2—1
w! = 4/Ny > o7 S ((2k+1)d;) , Nyeven, (A4)
k=0
(Ng—1)/2—1
w! = 4/N, isin(N -0;) + Z ! sin ((2k 4+ 1)6;) Nyodd, (AD)
/ "\ 2N, o 2 +1 L

which allows for exact integration of harmonics of order slethan Ny/2 (less than

/1/8Ng < /2Ng < v/3Ng). Then equatior (A3) becomes

Ng Ng

f:w /O7r f(6,0)sinfdbdp = ZZw?wff(@i,éj) sin ;. (A6)

i=1 j=1

A small summarizing example: for the total 8fs = 512 we have the cubature limite at
39 ~ v/3- 512, for the Gauss/Gauss-Legendre scheme wé, get< 32 and for the scheme of
] we havel,,.. < 8 (which is almost possible on an icosahedral dfdith only Ng = 20,

wherel,.. < 8 =~ v/3 - 20).

17 The authors make use of the fact that the pojpts= cos 6; (although not the zeros of the Legendre polynomials

on[1; —1]) are the zeros of the Chebyshev polynomials of the 1st kind.
18 Therefore, if one is only interested in the first coefficienitst smooth function on the sphere uplig, = 6, an

icosahedral grid with equal weights would be a good choice.
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FIG. 5: parametrization of the unit-sphere with a shiftedesgral coordinate system

APPENDIX B: ADAPTED SPHERICAL COORDINATES

Before solving the 2D Killing equation on a sphere it is uséfuhave the 2-metric in a con-
venient coordinate representation, which is ‘roughly’ @éd to the axisymmetry. Such that the
poles of the spherical coordinates system agree with thertwona of the scalar 2-curvature. We
assuméRr (0, ¢) to be given on a spherical coordinate syst@mp), where the two minima are at
N7 = (0,0, co80pin) andS? = (0,0, — cos O ), See figuréls. This can always be accomplished
by a simple Euler rotation. In order to obtain the adapte@spél coordinates syste(’, ¢'), we
have to shift the Cartesian z-axis along the x-axis by theuartb: = sin 6,,;,. This is being done
by

n;(0,¢) =r'(¢',¢") nj(¢',¢') + d - (1,0,0), (B1)
wheren; (0, ¢) = (cos ¢sin 0, sin ¢ sin 0, cos 0), n’(0', ¢") = (cos ¢'sin ¢, sin ¢’ sin ¢, cos ') are
the radial unit vectors in the corresponding coordinatéesys The distance/ (¢, ¢') is given by

(0, ¢) = \/dﬁ —2rydysinf +1rf, (B2)
whered,, r, are given by

r, = cos@ cosd+ |sing’|\/1 —cos? ¢, (B3)
d, = dcos¢'. (B4)

And finally, cos ¢ andsin € in terms of¢’, ¢’ are given by

cos¢ = dsin® ¢’ + cosd'y/1 — d2sin’ ¢/, (B5)
sinf = % (du cos® ¢’ 4 sinf'y /r? — d? cos? 9’) : (B6)
I

The inverse transformation is given by interchangbhg- ¢, ¢ <~ ¢’ d — —d in the above
expressions.
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