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Abstract
We accurately compute the scalar 2-curvature, Weyl scalars, associated quasi-
local spin, mass and higher multipole moments on marginally trapped surfaces
in numerical 3+1 simulations. To determine the quasi-local quantities, we
introduce a new method which requires a set of invariant surface integrals,
allowing for surface grids of a few hundred points only. The new technique
circumvents solving the Killing equation and is also an alternative to
approximate Killing vector fields. We apply the method to a perturbed non-
axisymmetric black hole ringing down to Kerr and compare the quasi-local spin
with other methods that use Killing vector fields, coordinate vector fields, quasi-
normal ringing and properties of the Kerr metric on the surface. Interesting
is the agreement with the spin of approximate Killing vector fields during the
phase of perturbed axisymmetry. Additionally, we introduce a new coordinate
transformation, adapting spherical coordinates to any two points on the sphere
such as the two minima of the scalar 2-curvature on axisymmetric trapped
surfaces.

PACS numbers: 04.25.Dm, 04.30.Db, 04.70.Bw, 95.30.Sf, 97.60.Lf

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Numerical relativity has undergone a rapid development in the past few years. After the
breakthrough of [1–3], stable long-term simulations of binary black hole (BBH) systems are
common practice, besides waveform modeling, to study the close-to-merger spin precession
[4, 5] or to model the final spin [6–10] of BBH inspirals [11–16]. Recently, extensive
investigations have been done concerning the formation process and spin evolution of black
holes with accretion disks [17, 18] appearing in fully relativistic simulations of binary neutron
stars [19–21], mixed binaries [22–24], rotating neutron star collapse [25–28] and rotating
supermassive star collapse [29–31].

In these cases, accurate numerical techniques to extract the spin of a BH in a gauge
invariant manner are required. It is common to obtain a rough approximation of the spin
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through the quasinormal mode oscillation extracted from the gravitational waveform after
merger within black hole perturbation theory. Another approximation scheme is to integrate
the radiated angular momentum contained in the gravitational radiation at ‘large’ coordinate
spheres to draw conclusions about the remaining spin of the system given the initial data.

Other methods, as discussed in this paper, use the gauge invariant notation of an apparent
horizon (AH) or in more general terms a marginally outer trapped surface (MOTS) which can
be located on the spatial slices of the simulation. There gauge invariant spin and mass can
be defined, if an axial Killing vector field (KVF) �a is present, as in the case of Kerr. But
opposed to the stationary case, the spacetime outside the horizon can be dynamical without
spoiling the gauge invariance of these quantities [32–35]. The invariant quasi-local spin J [�j ]
is given by the surface integral (Brown–York form)

J [�j ] := − 1

8π

∮
S

�jKij s
idA, (1.1)

where dA is the 2D area element, Kij is the extrinsic curvature of the Cauchy slice and si is
the outward-pointing surface normal on the MOTS denoted by S. In order to obtain �j the 2D
Killing equation has to be solved; if the axisymmetry is perturbed approximate KVFs (aKVFs)
have to be computed [36–38], for applications in BBH simulations see [11, 16]. Sometimes,
due to computational reasons, the effort of finding a KVF or aKVF is not done and coordinate
vector fields are instead used to estimate J [�j ] ≈ J

[
�

j
cv

]
; see e.g. [4, 39]. Another common

set of methods for determining the spin uses properties of the Kerr solution at the horizon,
such as the proper length of the ‘equatorial’ circumference [40] or the extrema of the scalar
2-curvature [16].

In this paper we present a new, comparatively easy to implement algorithm, which is
based on a multipole decomposition of the rotational Weyl scalar Im �2 [41] in the framework
of the isolated and dynamical horizon formalism [33–35]; for reviews see e.g. [34, 42, 43].
The dipole term reads

J1 = −
√

1

12π

A

4π

∮
S

Im �2 Y 10(χ) dA, (1.2)

where A is the horizon area, (χ, φ) is an invariant coordinate system [41] ‘tied’ to the
axisymmetry, such that J1 and J [�j ] are identical, and Y 10(χ) is the spherical harmonic
l = 1, m = 0. We circumvent the use of invariant coordinates/KVFs and instead use the
surface averages μn

1 of the scalar 2-curvature 2R and Im �2 to obtain J1 and higher multipole
moments

μn(•) := 〈(〈•〉 − •)n〉, 〈•〉 := 1

A

∮
S

• dA, (1.3)

which are well defined, even if the axisymmetry is perturbed and that allow us to benefit
from exact numerical integration in order to reduce grid size and numerical error significantly.
The invariant surface integrals μn(

2R), μn(Im �2) are related to the horizon spin, mass and
higher multipole moments by algebraic systems of equations. In principal, μn allow us to
generalize the horizon multipole moments through solutions of these systems in the absence
of axisymmetry.

In order to minimize the numerical error of μn(
2R), μn(Im �2) accurate numerical

computations of the curvature components 2R, Im �2 and the surface triad2 on the horizon are

1 In statistics μn is called the nth central moment of the probability distribution of a random variable.
2 Note that a ‘coordinate-induced’ surface triad on ‘large’ coordinate spheres (as for wave extraction via �4) can
easily be computed analytically. On the other hand, the coordinate representation of the horizon is a deformed
2-sphere and the computation of derivatives delicate.
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required. The horizon is usually given by h(θ, φ) = √
δijXiXj , the Cartesian shape function,

where Xj are the Cartesian coordinates at the 2-surface centered at a point inside. Instead
of finite differencing, we expand the shape function in terms of a tensor basis to determine
Cartesian derivatives off the surface, as commonly used in horizon finding algorithms [44].
But opposed to [44], we use another basis, which is easier to implement, and exact numerical
integration to determine the multipole coefficients of h(θ, φ), where [44] use minimization.

We apply the new method (in comparison with others) to the dynamical AH of a non-
axisymmetric BH3 ringing down to Kerr in a 3+1 simulation, where we follow the evolution
of spin and mass multipoles until their final Kerr values are reached.

This paper is organized in the following way. In section 2, we briefly explain the numerical
methods we use to compute KVFs and aKVFs on AHs. In section 3, we deduce formulae
from the Kerr metric to determine Kerr spin and mass from the area and the ‘equatorial’
circumference or the extrema of the scalar 2-curvature on the horizon and give a new formula
which requires the surface average μ2(

2R) and that we also apply to our simulations. In section
4, we show how to use the whole set of μn to extract the multipole spectrum of an axisymmetric
isolated horizon. In section 5, we show how to compute the curvature components 2R, �n

and the surface triad accurately. In section 6, we explain the set-up and initial data of our
3+1 simulation. During the evolution we follow spin, mass and higher multipole moments,
compare different methods to measure the spin and test their convergence. Notation: indices
i, j, k indicate 3D Cartesian components, indices a, b, c label 2D components on the local
horizon grid, letters l, m label spherical harmonics. We indicate dimensionless quantities
(mass dimension) with a hat, e.g. â = a/m, 2R̂ = 2R · A/(8π), Im �̂2 = Im �2 · A/(4π).

2. Solving the 2D Killing equation numerically

The IH multipole moments are defined in an invariant coordinate system [41] which requires
knowledge of the axial KVF on the horizon. Our approach does not explicitly require the
KVF to extract the IH multipole moments and circumvents the invariant coordinates by using
the surface averages μn(

2R̂), μn(Im �̂2) which can easily be computed in any coordinate
system. Nevertheless, in the numerical simulation of section 6 we want to compare our
method and hence require the KVF. Therefore, we will briefly explain the techniques we use
to solve/approximate the Killing equation.

The induced 2-metric qab of a spheroid S embedded into Euclidean space admits one
rotational Killing vector field �a which is a solution of the Killing equation

L�qab = 2 2D(a�b) = 0, (2.1)

where 2D is the induced covariant derivative on S. The vector field �a is unique up to a
constant. For Kerr �a = ∂φ , where φ is the Boyer–Lindquist coordinate, this constant is fixed
such that integral curves have an affine length of 2π , thus φ ∈ [0; 2π ].

2.1. Killing transport method

In order to solve the Killing equation, we apply the Killing transport method [37], appendix
of [45], which is explained in this section.

The method can be roughly divided into three steps: (1) determine a single vector of the
KVF at a point on an arbitrary loop on S, (2) spread this vector throughout the whole surface
and (3) normalize the whole KVF by normalizing an arbitrary integral curve to have an affine

3 We evolve two puncture initial data with an initially non-axisymmetric common horizon.
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length of 2π . The first two steps require the Killing transport equation

ca 2Da�b = caL 2εab

ca 2Da(L
2εbc) = ca2Rd

cba�d, (2.2)

where 2εab denotes the Levi-Civita tensor and 2Rd
cba denotes the 2D Riemann tensor. The first

equation holds, since 2D(a�b) = 0 if �b is a KVF and since any 2-form on S can be expressed
as L2εab, where L is a function. The second equation follows from the first; see [45] for details.
Therefore (2.2) hold for a KVF �a and the corresponding function L for any vector field ca.

On the other hand, assume that �b and L were unknown, pick a loop, e.g. the equator ce

(θ = π/2, φ), of a spherical coordinate system, pick a point, e.g. P (θ = π/2, φ = 0), and
identify ca := ∂φ ,4 then (2.2) becomes an ODE for the unknown (�1(φ),�2(φ), L(φ)) along
ce. This defines a linear operator for 3-vectors at P. If we pick three arbitrary, linear independent
initial vectors at P, transport (2.2) them along the loop to P, we obtain a 3×3 matrix presentation
of this operator. Two components of its eigenvector are the KVF at P (step 1), the third is the
auxiliary function L at P. Next this 3-vector is transported with (2.2) along coordinate lines
all over S, setting ca = ∂φ or ca = ∂θ respectively (step 2), where the transportation equation
(2.2) by construction ‘conserves’ the Killing property. The last step (step 3) is to normalize
the KVF, where we have to solve the ODE ∂tθ = �1(θ, φ), ∂tφ = �2(θ, φ),�a

0, where the
initial vector �a

0 is arbitrary, to obtain an integral curve and normalize such that the curve
parameter t ∈ [0; 2π ].

2.2. Approximate Killing vector fields

If the spheroid S is slightly deformed, similar to the initial non-axisymmetric AH in our
simulation, no exact solution of (2.1) exists. But one could try to find a ‘best match’ which
minimizes a certain norm of the lhs of (2.1) on S. Such vector fields are often denoted as
approximate Killing vector fields (aKVF). Opposed to KVFs there is no unique definition of
aKVFs. Dreyer et al [37] could show that the Killing transport method is still applicable to
yield a ‘well matching’ aKVF. But one has to be aware that the final vector field will no longer
be independent of the particular loops of transportation, although this effect may be negligible
for practical applications, e.g. [4, 7], if the departure from axisymmetry is ‘small’. The method
has also been used to determine aKVFs in binary black hole initial data; see Caudill et al [39].

We found it useful to adapt the coordinate system on the horizon before applying the
Killing transport method such that the azimuthal transport revolves the minima of the scalar
2-curvature5; see appendix B. Another approach to finding an approximate Killing vector
field has been given by [38]. They use a variational principle to minimize the ‘non-symmetric’
features of the vector field. A similar method can be found in the appendix of [46], for an
application to a BBH simulation see [16]. Recently Beetle [47] has pointed out that Cook’s
[38] approach is closely related to an older proposal by Matzner [36], where the aKVF is the
solution of an eigenvalue problem. An outstanding question is still the normalization of these
aKVFs. An interesting new idea has been given in the appendix of [46], where the aKVF is
normalized to a particular surface integral instead of a single integral curve.

In our approach these difficulties do not appear because no KVF/aKVF is explicitly
required to represent the axisymmetry/perturbed axisymmetry. Instead we compute the
invariant surface averages μn which exist in any case, and from those we compute the IH

4 The resulting KVF is independent of the initial loop, initial point and curve parameter.
5 A spheroid has two minima of the scalar 2-curvature which coincide with the minima of the KVF, given by the
symmetry axis of the body.
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multipole moments/generalized IH multipole moments through the algebraic system linking
the two sets of invariants, section 4.1.

2.3. Coordinate vector fields

If the coordinates are conveniently adapted to the metric manifold, the coordinate vectors
can automatically generate symmetries (if existing), such as the Boyer–Lindquist coordinate
vectors ∂t and ∂φ in a Kerr spacetime. This is also the case for the adapted spherical coordinates
(θasc, φasc), see appendix B, and the particular initial set-up we chose in our simulations6. Then
the coordinate vector field,

�a
asc = ∂φasc , (2.3)

is a good approximation to the KVF and we can estimate the spin J [�j ] ≈ J
[
�

j
asc

]
with

(1.1); see the application in section 6.
Similarly the authors of [4, 39] use the three rotational Killing vectors of Euclidean space

in Cartesian coordinates

�i[j ]
cc = (xk − Ck)εij

k, j = 1, 2, 3, (2.4)

where εij
pδpk = εijk is the flat space Levi-Civita tensor and Cj is a point inside S, to define

an Euclidean spin vector
(
J
[
�i[1]

cc

]
, J

[
�i[2]

cc

]
, J

[
�i[3]

cc

])
and together with (1.1) to estimate

J [�i] ≈ J
[
�i

cc

]
, where J

[
�i

cc

]
denotes the Euclidean norm of this vector which allows them

to study the spin precession in a BBH inspiral and to estimate the final spin after merger.
Referring to [4] this Euclidean spin vector reproduces the Bowen–York spin parameters of
the conformally flat initial data and for the final black hole

∣∣J [�j ] − J
[
�

j
cc

]∣∣ � 1 as in our
simulations.

3. Invariants of the horizon in Kerr

Before we go into details of how the surface averages μn are linked to the IH multipole
moments in the next section 4, we want to recall that the mass MKerr

l and angular momentum
J Kerr

l multipole moments of Kerr MKerr
l + iJ Kerr

l = m(iJ/m)l are uniquely given by Kerr spin
J and mass m. In this section, we will review the analytic formulae necessary to extract Kerr
spin and mass from an AH and give a new formula which we apply in our simulations.

In many numerical simulations, Kerr spin and mass (J,m) are computed from the
‘equatorial’ circumference7 and the area (L(ce), A) of the BH surface; see [40]. A more
recent approach is to use an extremum of the scalar 2-curvature and the area (2Rext, A); see
[46]. Each of these invariant pairs uniquely determines a Kerr spacetime and is related to the
other through the Kerr metric such that we are free to choose the numerically most convenient
one. In order to benefit from exact numerical integration and to avoid interpolation on the
horizon, we chose the invariants (μ2(

2R̂), A); see (1.3). The explicit algebraic expressions
relating J ↔ L(ce) ↔ 2Rext ↔ μ2(

2R̂) (↔ μ2(Im �̂2)) are derived in the following.
Any axisymmetric 2-metric qab can be put in the compact form

dq2 = A

4π

(
1

f (χ)
dχ2 + f (χ) dφ2

)
. (3.1)

6 In general, this is not the case and the correct solution of the Killing equation has to be found. In our case,
coordinate vector fields are very useful for the comparison of section 6.
7 This is the curve ce along the maximum of 2R in Kerr.
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For the 2-surface of a Kerr black hole f (χ), see [48], is given by

f (χ) = 1 − χ2

1 − β̂2(1 − χ2)
, χ := cos θ, (3.2)

where β̂ ∈ [0; 1/
√

2] is called the Kerr distortion parameter and (θ, φ) are the Boyer–
Lindquist spherical coordinates. The distortion parameter β̂ is related to the more familiar
dimensionless spin parameter â = a/m = J/m2 by

β̂2 = 1

2

(
1 −

√
1 − â2

)
= ĉ2

ĉ2 + 1
(3.3)

to Kerr spin J and mass m 8 by

J = A

8π

√
1 − √

1 − â2

1 +
√

1 − â2
= A

8π

β̂√
1 − β̂2

=:
A

8π
ĉ , m = 1

2

√
A

4π(1 − β̂2)
. (3.4)

Smarr [48] pointed out the analog of the surface of rotating material bodies to the black hole
horizon, where the equatorial circumference increases as the body spins up. The equatorial
circumference for the Kerr horizon is given by integrating (3.1) along the maximum of 2R
which is the curve (χ = 0, φ),

L(ce) =
∮ 2π

0

√
A

4π
f (χ = 0) dφ =

√
Aπ

1 − β̂2
= 4πm. (3.5)

For the numerical application in arbitrary coordinates this is practical, if the curve ce is known
to overlap with a coordinate line. If this is not the case, the extrema of 2R are an appealing
alternative; see [16, 46]. The scalar 2-curvature of qab (3.1) is

2R = −8π

A

1

2
f ′′(χ) → 2R̂ = −1

2
f ′′(χ), (3.6)

with extrema at χmin = 1;−1 , χmax = 0. We obtain

2R̂max = 1

(1 − β̂2)2
, 2R̂min = 1 − 4β̂2. (3.7)

3.1. An invariant surface integral in Kerr

If the scalar 2-curvature (or alternatively Re �2, since Re �2 = − 1
4

2R for Kerr) has been
computed on a finite grid, interpolation is required to obtain the extrema. This is not necessary
if the following surface integrals are employed

μ2(
2R̂) := 〈(〈2R̂〉 − 2R̂)2〉, 〈2R̂〉 := 1

A

∮
S

2R̂ dA. (3.8)

Moreover, the numerical error of μ2(
2R̂) benefits from averaging over all points on the grid

and exact numerical integration can be used. With the normalization of (3.6) the average
〈2R̂〉grid = 1 + εnum, where εnum is the numerical error, for any 2-metric computed on a finite
grid on S according to the Gauss–Bonnet theorem. For Kerr the integral appearing in (3.8) is
taken over a rational function in χ . We obtain

μ2(
2R̂) = −15 − 70ĉ2 + 128ĉ4 + 70ĉ6 + 15ĉ8

80(1 + ĉ2)
+

3(1 + ĉ2)4

16

arctan(ĉ)

ĉ
, (3.9)

8 For completeness, note that mirr = Rareal/2 is the irreducible mass and Rareal = √
A/(4π) is the areal radius.
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where ĉ is as defined in (3.4). In our simulations, we compute the surface average μ2(
2R̂)

numerically and solve (3.9) for the Kerr ĉ. Kerr spin and mass are then given by J = A/(8π)ĉ

and m2 = A(1 + ĉ2)/(16π) (3.4). For the numerical application in section 6 the Kerr spin
deviates significantly from the IH spin during the initial phase but the ‘non-Kerr’ features are
radiated during the evolution and finally vanish below the numerical error.

Note that we could similarly use any μn(
2R̂), n > 2 or μn(Im �̂2), n > 1 to compute ĉ for

Kerr. In that case Im �̂2 = − 1
4g′′(χ), g(χ) := (1+ĉ2)2

ĉ(1+ĉ2χ2)
, see [49] and some algebra. It follows

that μ1(Im �̂2) = 0 and μ1(χ · Im �̂2) = ĉ. The explicit appearance of the Boyer–Lindquist
coordinate (χ = cos θ ) is inconvenient for the numerical application. For μ2(Im �̂2) we obtain
an expression similar to (3.9) which is μ2(Im �̂2) = −15+170ĉ2+112ĉ4+70ĉ6+15ĉ8

320(1+ĉ2)
+ 3(1+ĉ2)4

64
arctan(ĉ)

ĉ
.

To extract more information than the Kerr ĉ we have to consider the whole set of μn and follow
the procedure explained in the following section.

4. Invariants of axisymmetric isolated horizons

For the calculations in the last section to be reasonable when applied to an AH found in a
numerical simulation, we had to assume that the detected 2-surface was in a slice of Kerr. We
relax this condition and allow the spacetime to be dynamical in the vicinity of the horizon
which we assume to be an axisymmetric isolated horizon (IH) [32, 33]. On the horizon in
Kerr all multipole moments are necessarily given by spin and mass, therefore higher moments
contain no extra information. This is in general not the case on an axisymmetric IH, where an
infinite set of independent multipole moments permits more complexity; see [41].

Ashtekar et al [41] exploit the axisymmetry to define an invariant coordinate system (χ, φ)

for which the 2-metric has the form (3.1), ∂φ is the KVF and the (zonal) harmonics {Y l0(χ)}
represent an orthonormal basis

∮
S
Y l0(χ)Y l′0(χ) dA = A

4π
δll′ which they use to define the

dimensionless IH mass Îl and angular momentum L̂l multipole moments

Îl :=
∮

S

1
4

2R(χ)Y l0(χ) dA, L̂l := −
∮

S

Im �2(χ)Y l0(χ) dA. (4.1)

2R(χ) = 4 · 4π

A

∞∑
l=0

ÎlY
l0(χ), Im �2(χ) = −4π

A

∞∑
l=0

L̂lY
l0(χ). (4.2)

On IHs without matter fields (like in Kerr) the Weyl scalar �2 is invariant and Re �2 = − 1
4

2R.
Note that for Kerr J · 8π/A = ĉ = √

1/(3π) L̂1 and for an IH J [�j ] · 8π/A =√
1/(3π) L̂1, where �j is the KVF corresponding to (χ, φ) and J [�j ] given by (1.1).

Therefore, the curvature component Im �2 is sometimes called rotational Weyl scalar and
the L̂l angular momentum multipole moments all vanish in the absence of spin.

The invariants Îl , L̂l are subject to certain algebraic constraints such that Î0 = √
π

(Gauss–Bonnet) that the mass dipole Î1 and the angular momentum monopole L̂0 vanish9. If
the 2-metric (3.1) admits a reflection symmetry as for Kerr f (χ) = f (−χ), see (3.2), all odd
Îl and even L̂l vanish, too.

4.1. The invariants μn on axisymmetric isolated horizons

In analogy with the method explained in section 3.1 for Kerr, where we gave the formula (3.8)
to compute the Kerr ĉ from the surface average μ2(

2R̂), we would like to relate the invariants
μn(

2R̂), μn(Im �̂2) (1.3), which are numerically easy to obtain in any coordinate system, to

9 Therefore, the invariant coordinates are sometimes called ‘center of mass frame’ of the IH.

7
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the IH multipole moments (4.1) which would require the invariant coordinates for a direct
computation of the integrals (4.1) (as for example done in [50]).

We obtain the algebraic relations between μn(
2R̂), μn(Im �̂2) and În, L̂n by inserting

(4.2) into (1.3)

μn(
2R̂) =

〈⎛
⎝1 − 2

lImax∑
l=0

Îl Y
l0(χ)

⎞
⎠

n〉
, n = 2, 3, . . . , nI

max, (4.3)

μn(Im �̂2) =
〈⎛
⎝0 +

lLmax∑
l=0

L̂l Y
l0(χ)

⎞
⎠

n〉
, n = 2, 3, . . . , nL

max, (4.4)

where we assume that 2R̂, Im �̂2 are given by finite sets of multipole moments up to lImax, lLmax.
We obtain10

μn(
2R̂) =

n∑
m=0

(
n

m

)
(−2)m

∑
|Klmax |=m

(
m

Klmax

)
(Î )Klmax 〈(Y 0)Klmax 〉, (4.5)

μn(Im �̂2) =
∑

|Klmax |=n

(
n

Klmax

)
(L̂ )Klmax 〈(Y 0)Klmax 〉, n = 2, 3, . . . , nmax, (4.6)

where Klmax = (
k1, k2, . . . , klmax

)
is a multi-index of length lmax,

(
k

k1,k2,...

)
is the multinomial

coefficient and (Î )Klmax 〈(Y 0)Klmax 〉 = (Î1)
k1(Î2)

k2 · · · 〈(Y 10)k1(Y 20)k2 . . .〉. The integers
nI

max , nL
max match the numbers of non-trivial În, L̂n given by the algebraic constraints

mentioned earlier and lImax, l
L
max. The coefficients 〈(Y 0)Klmax 〉 are integrals over products

of (zonal) spherical harmonics. They are given by the associated Clebsch–Gordan coefficients
and higher order generalizations.

Consider the following example. In a simulation of a perturbed Kerr spacetime, we locate
the AH and compute the surface integrals μn(

2R̂), μn(Im �̂2) (1.3) numerically to nmax = 6 11

to equate them with the rhs of (4.3), where we assume that the 2-surface is a cross-section
of an IH with reflection and axisymmetric 2-metric. Then the algebraic systems (4.3), (4.4)
become

μn(
2R̂) =

〈(
1 − 2

(
√

πY 00 +
∑

l=2,4,6,8

ÎlY
l0

)
+ OI

)n〉
, n = 2, 3, 4, 5, 6 (4.7)

μn(Im �̂2) =
〈(∑

l=1,3

L̂lY
l0 + OL

)n〉
, n = 2, 4, 6, (4.8)

which we solve for Î2, Î4, Î6, Î8, OI and L̂1, L̂3, OL, whereOI , OL are constants accounting
for the truncation of the expansions. Since we simulate a perturbed Kerr spacetime, we pick
the solution that is real and for which −Î2 > Î4 > −Î6 > OI and L̂1 > −L̂3 > OL holds as
for Kerr.

10 Here the indices I , L in lImax, lLmax, nI
max, nL

max are omitted.
11 Formally the solutions of the algebraic systems depend on nmax. It determines the number of multipole moments
we can resolve lmax and is limited by the numerical noise. In practice, the solution for lower lmax does not change as
we go to higher nmax.
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In analogy with electrodynamics dimensionful factors can be added to attribute a physical
interpretation to Îl , L̂l ; see [41]. To obtain the spin we need

J1 =
√

1

12π

A

4π
L̂1. (4.9)

The equation J [�j ] = J1 holds if �j is the KVF corresponding to the invariant coordinates
(χ, φ).

The surface integrals μn are well defined even in the absence of axisymmetry and allow
us to extend the concept of IH multipole moments by adding the m �= 0 harmonics in the
expansions of 2R̂ and Im �̂2 on the rhs of (4.9). Nevertheless, for the evolution of the non-
axisymmetric initial data studied in section 6, we assume that the contribution of odd/even
mass/angular momentum multipole moments (reflection symmetry), higher harmonics as well
as m �= 0 harmonics is small and can be accounted for through OI , OL. We do not further
investigate the possibility of generalized multipole moments. Our approach aims at numerical
convenience and is flexible enough to extract, in principle, other invariants like the generalized
multipole moments proposed by Owen [51] who considers the eigenfunctions of the intrinsic
Laplacian on the horizon.

5. Accurate computation of 2R, Ψ2 on the AH

In this section, we will show how to compute the curvature components 2R and �2 accurately,
where we assume that the 3+1 evolution variables12 extrinsic 3-curvature Kij, 3-metric γij

(together with ∂iKjk, ∂iγjk, ∂i∂jγkk′) and the horizon coordinate shape Xj are given on a
Cartesian grid. The accurate calculation of curvature components on a deformed 2-sphere in
a Cauchy slice is a common problem in numerical relativity which appears in horizon finding
algorithms. Various methods have been tried to discretize the necessary spatial derivatives
∂jh, ∂i∂jh by finite differencing, finite element, pseudo-spectral and spectral methods, using
squared (θ, φ) grids or multipatch grids; for a review see [52]. Our approach is motivated by
the work of [44]. There a spectral decomposition of the coordinate shape function h(θ, φ) is
being used to compute Cartesian derivatives. The first derivatives ∂jh are necessary to obtain
a surface triad {si, uj , vk} (required to compute the Weyl scalars) and the second derivatives
∂i∂jh to obtain the extrinsic 2-curvature 2Kij of S embedded into the Cauchy slice (additionally
required to compute the scalar 2-curvature).

If we parametrize the AH with spherical coordinates, the embedding Xj(θ, φ) into the
Cartesian grid is

Xj(θ, φ) = h(θ, φ) nj + Cj , (5.1)

where Cj is a coordinate location inside the horizon (for example the coordinate centroid), nj

is the Cartesian radial unit vector nj = 1
r
xj , r = √

δij xixj and xj are Cartesian coordinates.

5.1. Spectral decomposition

To compute spatial derivatives one could decompose h(θ, φ) into

h(θ, φ) =
lmax∑
l=0

−l∑
m=l

[h]lmY lm(θ, φ), (5.2)

12 They can easily be assembled from the BSSN evolution variables.
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where [h]lm are the expansion coefficients and Ylm are the spherical harmonics. The evaluation
of ∂jY

lm(θ, φ) would require the Jacobian to transform between spherical and Cartesian
coordinates. This is inconvenient for the numerical application, since the Jacobian is singular
at the spherical coordinate poles.

Therefore, Baumgarte et al [44] take a tensor basis which is built of the radial
unit vector ni(xj ) = xj/r and is thus defined in Cartesian coordinates (and is easily
parametrized with any other local coordinate system on the 2-surface, e.g. spherical ni(θ, φ) =
(sin θ cos φ, sin θ sin φ, cos θ) or stereographic coordinates nj (u, v) = (2u, 2v, u2 + v2 −
1)/(1 + u2 + v2)),

h =
lmax∑
l=0

[h]KlNKl
, (5.3)

where Kl is again a multi-index of length l, NKl
= nk1nk2 · · · nkl

is the vector product of unit
vectors and the location-independent coefficients [h]Kl are symmetric tracefree tensors (STF),
the notation is adapted from [53]. If the STFs are known, they can be translated to obtain
the expansion (5.3), for how to [h]lm ↔ [h]Kl see [44]. The partial derivative of the tensor
product ∂jNKl

consists of the derivatives ∂inj = (δij − ninj )/r . In detail the implementation
of the STF tensors and its derivatives is a bit cumbersome but straightforward.

We use another basis of the harmonics instead (δijn
iN j )l , whereN j is a constant complex

Euclidean null vector (NjN j ) = 0, N j �= 0, see section 11.5.1, vol. II [54] or [55]. The
expression (njN j )l is a homogeneous harmonic polynomial of Euclidean space of order l,
therefore �flat(njN j )l = 0. The radial vector nj defines a restriction of the polynomial to
the unit sphere xixj δij = 1. It is known that such restrictions are eigenfunctions of the
Laplacian of the induced metric (this applies to any embedding of S2 into Euclidean space,
e.g. an ellipsoid). On the unit sphere, this implies �◦(njN j )l = l(l + 1)(njN j )l , where �◦ is
the Laplacian of the standard spherical 2-metric. This holds for any null vector N j . In order
to span each l-eigenspace of �◦ with 2l + 1 linear independent eigenfunctions, we define a list
of null vectors

N j

[lm] = (i sin(mal), i cos(mal), 1) , al = 2π

2l + 1
, m = −l, . . . , l, (5.4)

where the roots of unity have been used such that N j

[lm] have the Euclidean norm NjN j =
−|ei 2πm

2l+1 |2 + 1. Now we can define the new basis �lm := (
njN j

[lm]

)l
and decompose h into

h =
lmax∑
l=0

−l∑
m=l

[h]lmN
(
njN j

[lm]

)l
. (5.5)

�lm, m = −l, . . . , l are not orthogonal in each l-eigenspace but across different eigenspaces.
They are related to the standard basis by

Y lm = Blm

l∑
m′=−l

�lm′
e−i m′m al , (5.6)

�lm = 1

2l + 1

l∑
m′=−l

Y lm′

Blm′ ei m′m al ,

Blm = (−1)m
1

l!

√
(l + m)!(l − m)!

4π(2l + 1)
. (5.7)
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and we can transform the coefficients [h]lm ↔ [h]lmN . Derivatives of the new basis13 are given
by

∂k�
lm = (njN j )l−1l (∂knjN j ) (5.8)

∂k�
lm = (njN j )l−1l

1

r
(Nk − nknjN j ), (5.9)

and similarly for higher derivatives ∂i∂j�
lm.

5.2. Surface triad

Now we have the Cartesian derivatives ∂jh, ∂j ∂ih at hand and are able to compute the outward
pointing surface normal sj = γ jksk

sj = λ(nj − ∂jh), λ = 1/

√
γ ij (ni − ∂ih)(nj − ∂jh). (5.10)

In order to complete the surface triad {si, uj , vk}, we set uj = 1√
γik∂θ Xi∂θXk

∂θX
j and

vk = εijksiuj , where εijk = ‖γ ‖−1/2[123]ijk is the spatial Levi-Civita tensor and [123]ijk

is the pure alternating symbol.

5.3. Extrinsic and intrinsic 2-curvature

The extrinsic 2-curvature 2Kij of S embedded into the Cauchy slice is given by
2Kij = Disj − sis

kDksj , (5.11)

where the second derivatives ∂j ∂kh are required and the Christoffel symbols associated with
the 3-metric to compute the 3-covariant derivative Dj. Then the intrinsic 2-curvature 2R is
given by Gauss’ theorema egregium

2R = R − 2Rij s
isj + 2K2 − 2Kij 2Kij , (5.12)

where 2K = 2Kijq
ij and qij = γ ij − sisj is the induced 2-metric in Cartesian components

(also required to raise the indexes of 2Kij in the last summand on the rhs of (5.12)) and Rij, R
are the three-dimensional Ricci tensor and scalar.

5.4. Area element

The computation of surface integrals on the AH requires the area element dA =√
det qab dθ dφ, where we need the induced 2-metric in local coordinates

qab = ∂aX
j∂bX

kγjk. (5.13)

Here Xj is as defined in (5.1); for an alternative see the appendix of [44].

5.5. �2 and other Weyl scalars

To obtain mass and angular momentum multipoles (4.1), an accurate computation of �2,
given the 3+1 evolution variables, is required. Additionally, we want to follow the constraints
�0 = 0 and �1 = 0 which hold for Kerr and on IHs [32] in the simulation of section 6. The
electric Eij and magnetic Bij parts of the Weyl tensor Cijkl w.r.t. time-like normal ñμ of the
Cauchy slice are

Eij ≡ −Cijkl ñ
kñl = −Rij + Ki

kKkj − KKij , (5.14)

13 Here we omit the subscripts N j

[lm] → N j for simplicity.
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Bij ≡ − � Cijkl ñ
kñl = −εi

klDkKlj . (5.15)

We further project Eij , Bij onto the surface triad {si, uj , vk} and obtain the Weyl scalars, see
[56, 57],

�2 = −1

2
(Ejk − iBjk)s

j sk, (5.16)

�0 = −(Ejk − iBjk)m
jmk, (5.17)

�1 = − 1√
2
(Ejk − iBjk)m

j sk, (5.18)

where mj = 1√
2
(uj − ivj ).

We monitor the dynamics of the AH during the evolution in section 6 by computing the
dimensionless surface integrals

ψ̂0 =
∮

S

|�0| dA, ψ̂1 =
∮

S

|�1| dA, ψ̂2 =
∣∣∣∣ 1

8π

∮
S

4Re �2 dA + 1

∣∣∣∣ , (5.19)

which vanish for a MOTS in a slice of Kerr or an IH.

6. Numerical evolution and initial data

In order to test and compare the new techniques, we applied them to the dynamical AH of
a non-axisymmetric spinning BH in a 3+1 simulation ringing down to Kerr which has been
carried out using the CCATIE code [11]. This is a 3D finite differencing code based on
the Cactus Computational Toolkit [58]. The CCATIE code provides a collection of modules
(thorns) which allow us to use puncture initial data [59] with the TwoPunctures thorn [60], to
do time evolution using the BSSN evolution system [61–63], to set proper gauge conditions
(where we used 1+log slicing and a hyperbolic gamma-driver condition stemming from [64]
but with advection terms [11]), to successively refine the Cartesian mesh with several nested
static boxes around the AH (where we used the Carpet AMR driver [65]) and to locate the
horizon every few time steps during the evolution [66]. The horizon finding thorn provides
the shape function h(θ, φ) which is being used by a separate thorn to interpolate (fourth-order
Lagrange) all necessary 3+1 evolution variables onto the spherical grid, to accurately compute
the curvature components 2R, Im �2 at the horizon (see section 5) and, finally, to determine
the associated quasi-local IH multipole moments using the surface integrals μn (1.3).

6.1. Initial data and grid parameters

In order to model the common horizon after the coalescence of an arbitrarily aligned
BBH system, we chose as a non-trivial initial configuration a misaligned spinning puncture
with a nearby smaller non-spinning companion puncture, where the common horizon is
already present on the initial slice. The Bowen–York parameters of the first puncture are
m1 = 0.8M, |s1| = 0.3M2 with orientation (θs1 = 0.6, φs1 = 0.4) in the Cartesian grid. And
for the second puncture we set m2 = 0.2M, s2 = 0.

The evolution is being carried out using the method of lines with the fourth-order Runge–
Kutta time integrator and fourth-order centered stencils for spatial differentiation with the
Cartesian grid resolutions �x = 0.048M, 0.035M, 0.025, 0.02M (finest AMR resolutions).
To determine the KVF/aKVF, we use the Killing transport method (2.1) with second-order
centered stencils for differentiation and a second-order Runge–Kutta integrator; see [37]

12
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Figure 1. Left: time evolution of dimensionless surface averaged Weyl scalars ψ̂0,1,2. Right:
time evolution of ψ̂0 for 3 different Cartesian resolutions.

for more details. To compute spatial derivatives of the shape function h(θ, φ) we use its
decomposition into spherical harmonics, where the spectral resolution is fixed at lmax = 10.
To compute the surface averages μn we use an exact integration scheme, see appendix A, and
fix nmax = 6. For every Cartesian resolution, we use three different spherical horizon grid
resolutions Nθ × Nφ = NS = 480, 1104, 4900, where NS is the total number of grid points
on the surface and Nφ = 2(Nθ + 1). The horizon finder is using a projective 6-patch grid [66]
with approximately the same number of points as on the spherical grid.

6.2. Numerical evolution

6.2.1. Monitoring the isolation constraints To monitor the dynamics on the horizon, we
computed the surface integrals (5.19) shown in figure 1 (for Kerr ψ̂0,1,2 = 0). On the left, we
see the typical exponentially damped oscillation of the radiative Weyl scalars �0, �1 which
are (after an initial burst ψ̂0,1 � 1) given by a superposition of several quasinormal-modes,
predominately l = 2 modes, that have been excited by the specific initial data. As a fit to
the ring-down profile of ψ̂0 we obtain the frequency ωfit ≈ 0.355 + 0.088i, in agreement
with the l = 2-mode frequencies ωl=2mn, see [67], which are ω2−20 ≈ 0.34 + 0.089i, ω220 ≈
0.36 + 0.089i, . . . for the case J = 0.3, m = 1.035. After around t > 90M the perturbations
are too weak to be further resolved limited by the total numerical error, which we downsize by
increasing the Cartesian grid resolution, see figure 1 on the right, in order to see the dynamics
below ψ̂0 < 10−5. For �x = 0.035 (black and orange) we computed ψ̂0 for two different
spherical resolutions to show that the total error of ψ̂0 (and similar for surface integrals of other
curvature components) is almost independent of the spherical resolution due to the spectral
methods involved.

6.2.2. Evolution and convergence of the invariants μn. In figure 2, we see the exponentially
damped oscillations of μn as they ring-down to their final Kerr value. On the right, it is shown
how the time averages of μ2(

2R̂) (120 M–200 M, straight black lines) converge with the
expected fourth-order (4.01) as the Cartesian grid resolution increases after the oscillations
have settled down. Apparently, the error of μ2(

2R̂) does not converge uniformly but the effect
flattens out as the Cartesian resolution increases.
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Figure 3. Left: time evolution of mass Îl . Right: angular momentum multipole moments L̂l

given as a solution of the algebraic system (4.7) for μn up to nmax = 6; OI , OL account for all
higher multipole moments.

6.2.3. Evolution of mass and angular momentum multipole moments. From μn we compute
the IH multipole moments Îl , L̂l corresponding to a reflection axisymmetric horizon by
solving the algebraic system (4.7), where OI , OL account for all higher, non-axisymmetric
and non-reflection symmetric multipole moments. It is apparent in figure 3 that these multipole
moments are quickly radiated t < 30 M, leaving the horizon almost reflection axisymmetric
but still oscillating. Interestingly, the dimensionless IH spin L̂1 is almost constant during the
evolution, as is the horizon area (not plotted, A ≈ 4π · 2.052M2).

6.2.4. Spin evolution and comparison with other methods. In figure 4, we see the comparison
between the various spin measures and their convergence. We have

(i) J1 = A/
√

192π3L̂1 (red) computed from μn, (4.7), assuming an axisymmetric IH,
(ii) J [�kt] (blue) computed from the Killing transport KVF/aKVF �kt, (2.2), (1.1), assuming

an axisymmetric IH,
(iii) J [�cc] (light green), J [�asc] (dark green) given by the coordinate vector fields �cc

(Cartesian coordinates), (2.4), �asc (adapted spherical coordinates), (2.3), assuming
‘small’ coordinate distortions,

(iv) J = J (μ2(
2R̂), A) (brown) computed from μ2(

2R̂), (3.8), assuming a Kerr horizon.
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Figure 4. Top left: time evolution of spins given by the Killing transport aKVF �kt, the coordinate
vector fields �asc, �cc and the Kerr spin computed from μ2(

2R̂). Top right: zoom of ‘top left’
together with angular momentum dipole J1 = A/

√
192π3L̂1 (red) computed from μ2, μ4, μ6 of

Im �̂2. Bottom left: convergence of J [�kt] varying number of spherical grid points NS. Bottom
right: convergence of J [�asc], J (μ2(

2R̂), A) varying Cartesian resolution �x.

After a short initial burst, all methods yield nearly the same spin value, which stays
constant during the evolution; except J (μ2(

2R̂), A) (brown) which oscillates with the
quasinormal frequency. During this phase the horizon seems to be best modeled assuming an
axisymmetric dynamical horizon but not Kerr. We chose the numerical set-up such that the
coordinate distortions are small and J [�asc], J [�cc] overlap with the invariant measure J1.
This is in general not the case in a full BBH simulation and these methods should be used with
care.

In figure 4 (bottom right) we see the expected fourth-order convergence (w.r.t. Cartesian
grid) of J [�asc], J [�cc] and J (μ2(

2R̂), A) toward 0.3M2. The convergence of J1 is not shown
explicitly. It is a smooth function of μn (convergence shown above) and converges therefore at
the same rate. On the other hand J [�kt] converges at second order (w.r.t. the spherical grid),
figure 4 (bottom left)14, because the Killing transport method requires finite differencing on
the horizon grid to determine �

j

kt.

7. Conclusion

The dominant part of the gravitational radiation at Scri is contained in the quadrupole moment
of �4 which is in practice extracted at ‘large’ coordinate spheres around the source in

14 Note that the low resolution NS = 480 (light blue) is too coarse to be in the convergence regime.
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numerical simulations. Similarly, the dipole moment of the rotational Weyl scalar Im �2

encodes the quasi-local angular momentum measured at the apparent horizon in the presence
of axisymmetry. The local coordinates on the horizon are in general distorted, and a solution
of the Killing equation is required to determine an invariant coordinate system in which the
multipole moments can be computed.

It is involved to determine the Killing vector field, in particular, to find a convenient
approximant in case the axisymmetry is perturbed. We have shown a new method for
extracting the horizon multipole moments using coordinate invariant surface integrals μn

from which we deduce the multipole moments as a solution of an algebraic system. In the case
of an axisymmetric IH, the angular momentum dipole J1 is equal to the spin J [�] given by a
solution of the Killing equation �j in agreement with our simulations. Interestingly, the spin
of the aKVF �kt (given by the Killing transport method) and the angular momentum dipole
moment J1(μn(Im �̂2), A) (given by μn) agree even in the absence of axisymmetry.

There seems to be a dynamical phase of the horizon in which it is better modeled by an
axisymmetric dynamical horizon and not with Kerr. Nevertheless, after the horizon is settled,
the Kerr formula is valid. Then the computation of the Kerr spin using the surface average
μ2(

2R̂) (or μ2(Im �̂2)) is sensible and numerically more convenient than using the horizon
circumference. The deviations from Kerr oscillate in agreement with black hole perturbation
theory, until they are no more resolvable due to numerical errors. Then the dipole moment of
the rotational Weyl scalar agrees with the Kerr spin, and μn take their final Kerr values.

We have shown how to use spectral methods, in a 3+1 finite differencing code, to accurately
compute curvature components at the horizon and to extract spin and other multipole moments
saving computational costs. These techniques, in particular, the non-standard basis of spherical
harmonics and the exact integration scheme, should be considered for wave extraction on
coordinate spheres or constant mean curvature spheres [68, 69].
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Appendix A. Exact integration schemes for spherical grids

It is well know that the equation

∫ b

a

f (x)w(x) dx =
N∑

i=1

wif (xi) (A.1)

holds exactly, where w(x) is called the weight function, if f (x) is a polynomial of degree less
than 2N and the weights wi and abscissas xi are chosen in accordance with the orthogonal
basis of polynomials on [a, b] defined by the scalar product 〈f |g〉 := ∫ b

a
f (x)g(x)w(x) dx,

because there are 2N degrees of freedom to make both sides of (A.1) match; see for example
[70].
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For the integration with w(x) = 1 on the circle a = b, the ‘correct’ weights and abscissas
are particularly simple. They are N equi-distant points with equal weights. This cannot be
generalized for the integration on the 2-sphere∮

S2
f (x, y) dA =

NS∑
i=1

wif (xi, yi), (A.2)

for arbitrary NS, because the number of uniform grid structures is finite NS = 4, 6, 8, 12, 20,
corresponding to the faces of the platonic solids. Since this is a 2D integration, we have 3NS

degrees of freedom in the sum on the rhs of (A.2) and (lmax + 1)2 spherical harmonics of
degree � lmax. This means if f (x, y) was given by an expansion up to lmax, we needed at least
NS = (lmax + 1)2/3 points to make (A.2) hold. Let us say f (x) was given by an expansion of
(7 + 1)2 − 4 spherical harmonics, then the integration (A.2) on an icosahedral grid NS = 20
with equal weights would be exact. There is an extensive body of work on the problem of
optimal integration schemes for NS > 20 (cubature problem); see for example [71].

There are less optimal compromises available, which require many more points than
(lmax + 1)2/3, but which are defined on regular spherical (θ, φ) grids. For example the
Gauss–Legendre/Gauss scheme, where the integration along each interval [−1, 1], [0; 2π ] is
a Gaussian quadrature∮ 2π

0

∫ 1

−1
f (χ, φ) dχ dφ =

Nχ∑
i=1

Nφ∑
j=1

w
χ

i w
φ

j f (χi, φj ), (A.3)

where again χ = cos θ , NS = Nθ × Nφ and Nφ = 2Nθ .
As before the φ-integration is a Gaussian quadrature for φj = 2π(j − 1)/Nφ, j =

1, . . . , Nφ and equal weights w
φ

j = 2π/Nφ , the χ -integration (in that case called the Gauss–
Legendre quadrature) for χi being the roots of the Legendre polynomials (according to the
weight function w(χ) = 1). The corresponding weights w

χ

i can be found in, e.g., [72]. This
method is exact for polynomials of degree less than 2Nθ (less than

√
2NS <

√
3NS).

An alternative integration scheme has been found by [73]15. There the integration grid
is a standard equi-angular (θ, φ) grid, θj = (j − 1/2)π/Nθ (staggered) and the computation
of the roots of the Legendre polynomials is not necessary. The weights for even/odd Nθ are
given by

wθ
j = 4/Nθ

Nθ/2−1∑
k=0

1

2l + 1
sin((2k + 1)θj ), Nθ even, (A.4)

wθ
j = 4/Nθ

(
1

2Nθ

sin(Nθ · θj ) +
(Nθ−1)/2−1∑

k=0

1

2l + 1
sin((2k + 1)θj )

)
, Nθ odd, (A.5)

which allows for exact integration of harmonics of order less than Nθ/2 (less than
√

1/8 NS <√
2NS <

√
3NS). Then equation (A.3) becomes∮ 2π

0

∫ π

0
f (θ, φ) sin θ dθ dφ =

Nθ∑
i=1

Nφ∑
j=1

wθ
i w

φ

j f (θi, φj ) sin θj . (A.6)

A small summarizing example: for the total of NS = 512, Nθ × Nφ = 16 × 32 the
cubature limit is at 39 ≈ √

3 · 512 = √
3NS , for the Gauss/Gauss–Legendre scheme we get

15 The authors make use of the fact that the points χj = cos θj (although not the zeros of the Legendre polynomials
on [1; −1]) are the zeros of the Chebyshev polynomials of the first kind.
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Figure B1. Parametrization of the unit-sphere with a shifted spherical coordinate system.

lmax < 32 = 2Nθ and for the scheme of [73] we have lmax < 8 = Nθ/2 (we get almost the
same limit on an icosahedral grid16 with only NS = 20, where lmax < 8 ≈ √

3 · 20).

Appendix B. Adapted spherical coordinates

Before solving the 2D Killing equation on a sphere, it is useful to have the 2-metric or
the horizon shape in a convenient coordinate representation, which is ‘roughly’ adapted to
the axisymmetry, such that the poles of the spherical coordinate system agree with the two
minima of the scalar 2-curvature. We assume 2R(θ, φ) to be given on a spherical coordinate
system (θ, φ), where the two minima are already in the xz-plane symmetric to the x-axis at
Nj = (sin θmin, 0, cos θmin) and Sj = (sin θmin, 0,− cos θmin); see figure B1. This can always
be accomplished by a simple Euler rotation.

In order to obtain the adapted spherical coordinates system (θ ′, φ′), we have to shift the
Cartesian z-axis along the x-axis by the amount d := sin θmin. This is being done by

nj (θ, φ) = r ′(θ ′, φ′) n′
j (θ

′, φ′) + d · (1, 0, 0), (B.1)

where nj (θ, φ) = (cos φ sin θ, sin φ sin θ, cos θ), n′
j (θ

′, φ′) = (cos φ′ sin θ ′, sin φ′ sin θ ′,
cos θ ′) are the radial unit vectors in the corresponding coordinate system. The distance
r ′(θ ′, φ′) is given by

r ′(θ ′, φ′) =
√

d2
‖ − 2r‖d‖ sin θ + r2

‖ , (B.2)

where d‖, r‖ are given by

r‖ = cos φ′ cos φ + | sin φ′|
√

1 − cos2 φ, (B.3)

d‖ = d cos φ′. (B.4)

And finally, cos φ and sin θ in terms of θ ′, φ′ are given by

cos φ = d sin2 φ′ + cos φ′√1 − d2 sin2 φ′, (B.5)

sin θ = 1

r‖

(
d‖ cos2 θ ′ + sin θ ′

√
r2
‖ − d2 cos2 θ ′

)
. (B.6)

The inverse transformation is given by interchanging θ ↔ θ ′, φ ↔ φ′ d ↔ −d in the above
expressions.

16 Therefore, if one is only interested in the first coefficients of a smooth function on the sphere up to lmax = 6, an
icosahedral grid with equal weights would be a good choice.
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