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We derive a scalar field theory of the deformed special relativity type, living on noncommutative

�-Minkowski space-time and with a �-deformed Poincaré symmetry, from the SO(4,1) group field theory

defining the transition amplitudes for topological BF theory in 4 space-time dimensions. This is done at a

nonperturbative level of the spin foam formalism working directly with the group field theory (GFT). We

show that matter fields emerge from the fundamental model as perturbations around a specific phase of the

GFT, corresponding to a solution of the fundamental equations of motion, and that the noncommutative

field theory governs their effective dynamics.
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I. INTRODUCTION

The progress toward a quantum theory of gravity, in the
past 20 years or so, has been substantial. On the theory
side, many different approaches, the most notable being
probably string theory, have been developed and achieved
considerable successes [1].

Group field theories (GFTs) [2,3] are quantum field
theories over group manifolds, characterized by a nonlocal
pairing of field arguments in the action, which can be seen
as a generalization of matrix models [4]. They can be
interpreted as a simplicial ‘‘third quantization’’ of gravity
[5], in which a discrete space-time emerges as a Feynman
diagram of the theory in perturbative expansion. The field
arguments assign group-theoretic data to these cellular
complexes, and the GFT perturbative expansion in
Feynman amplitudes define uniquely and completely a
so-called spin foam model [6]. Spin foam models [7], in
turn, can be understood as a covariant formulation of the
dynamics of loop quantum gravity [8] and as a new alge-
braic implementation of discrete quantum gravity ap-
proaches, such as Regge calculus [9] and dynamical
triangulations [10]. This makes GFTs a very useful tool,
and suggests that they may provide the fundamental defi-
nition of a dynamical theory of spin networks, and be of
great help in investigating nonperturbative and collective
properties of their quantum dynamics [2,3,11].

In recent years, moreover, the possibility of testing
experimentally Planck scale effects using astrophysical or
cosmological observations has been investigated to a great
extent and led to a whole set of approaches to possible
quantum gravity phenomenology [12]. The general idea is

that there exist several physical amplifying mechanisms,
e.g., in gamma-ray bursts, cosmic rays, or gravitational
wave physics, that could bring quantum gravity effects,
even if suppressed by (negative) powers of the Planck
energy or by (positive) powers of the Planck length, within
reach of near future (if not current, e.g., the on-going
GLASTexperiment) experiments. The most studied effects
are that of a breaking (e.g., Einstein-Aether theory) or of a
deformation (e.g., deformed special relativity) of funda-
mental space-time symmetries, like the Lorentz or
Poincaré invariance [12]. This last case is implemented
in the context of noncommutative models of space-time,
with symmetry groups implemented by means of appro-
priate Hopf algebras [13]. In many of the interesting cases,
in particular, those we are concerned with in this work,
space-time coordinates, turned into operators, have Lie
algebra-type commutation relations, with a corresponding
momentum space given instead by a group manifold, fol-
lowing the general principle [13] that noncommutativity in
configuration space is related to curvature in momentum
space, a sort of ‘‘cogravity’’ [13]. One class of models that
have attracted much attention in this context is given by so-
called deformed (or doubly) special relativity (DSR)
[12,14], based on the idea of introducing a second invariant
scale, given by the Planck length (or energy) and assumed
to encode quantum gravity effects in a semiclassical and
flat space-time, on top of the velocity scale of usual special
relativity, while maintaining the relativity principle, and
thus a 10-dimensional transformation group relating the
observations made by inertial observers. In one particular
incarnation of DSR, space-time is noncommutative and its
structure is of �-Minkowski type [15]. This is the space-
timewe are concerned with here. In fact, it is now clear that
these effective models of quantum gravity can in principle
be falsified. Unfortunately, we are still lacking any funda-
mental formulation of quantum gravity that, on top of
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being clearly defined at the Planck scale, can produce
unambiguously any of the effective models that have
been proposed, thus producing falsifiable predictions.

Very interesting results have been obtained in the 3D
context [16–18] where it has been shown that effective
models with quantum group symmetries and a noncommu-
tative space-time structure (although different from the
DSR one) arise very naturally when considering the cou-
pling of point particles to a spin foam model for 3D
quantum gravity, in the Riemannian setting, with the phys-
ics of these particles being that of noncommutative field
theories on Lie algebra spaces. While no similarly solid
links between spin foam models and noncommutative field
theories have been discovered in the 4D context, several
arguments have been put forward suggesting that these
links should exist and that the relevant effective models
in 4D should indeed be of the DSR type [19,20].

For reasons that should become apparent in the follow-
ing, group field theories are a natural framework for estab-
lishing such links, and for actually deriving effective
noncommutative models of quantum gravity from more
fundamental (if tentative) descriptions of quantum space-
time. Once more, in 3D this is technically easier to do, and
it has been shown recently [21] that one can indeed derive
the same effective field theory obtained in [17] directly
from GFT model corresponding to the spin foam model on
which that earlier work was based. The procedure used,
moreover, appears not to depend too much in the details of
the 3D model considered, but only on general properties of
the GFT formalism.

What we do in this paper is to apply the same procedure
to the more technically challenging case of four space-time
dimensions, and Lorentzian signature, and derive from a
group field theory model related to 4-dimensional quantum
gravity an effective noncommutative field theory of the
DSR type and living on �-Minkowski space-time.

As said, not only is this the first example of a derivation
of a DSR model for matter from a more fundamental
quantum gravity model, and one further example of the
link between noncommutative geometry and quantum
gravity formulated in terms of spin foam/loop quantum
gravity ideas, but it is of great interest from the point of
view of quantum gravity phenomenology. It is also inter-
esting, more generally, as another possible way of bridging
the gap between quantum gravity at the Planck scale and
effective physics at low energies and macroscopic dis-
tances. For a possible interpretative framework of our
results relating them to the issue of the continuum approxi-
mation of group field theory, and for a connection with the
analogue gravity models, we refer to [22].

II. 4D GROUP FIELD THEORYAND
PERTURBATIONS

We present in this section the generalization of the 3D
framework of [21] to the 4-dimensional case. Given the

GFT action given by Ooguri [23], which is related to the
quantization of the BF theory in four dimension, we iden-
tify a specific type of fluctuations of the group field �,
around some classical solution, as matter degrees of free-
dom propagating on some effective flat noncommutative
background.
We show here the general form of the class of solutions

we deal with, the type of perturbations we study which lead
to the emergent matter fields, and the general form of the
effective actions that result from the expansion. Wewill see
that this part of the construction, which works for any
group G, is straightforward. The real task, which we tackle
in the rest of the paper, will be to identify the specific
classical solutions and perturbations whose effective ac-
tions are defined on the specific momentum space charac-
terizing DSR theories (i.e., the group AN3) and possess the
right kinetic term, (i.e., the one characterized by the ap-
propriate symmetries in DSR).
Let us consider the 4D GFT related to topological BF

quantum field theories [23], i.e., whose Feynman expan-
sion leads to amplitudes that can be interpreted as discrete
BF path integrals, for a compact semisimple gauge group
G. This is given by the following action:

S4d ¼ 1

2

Z
½dg�4�ðg1; g2; g3; g4Þ�ðg4; g3; g2; g1Þ

� �

5!

Z
½dg�10�ðg1; g2; g3; g4Þ�ðg4; g5; g6; g7Þ

��ðg7; g3; g8; g9Þ�ðg9; g6; g2; g10Þ
��ðg10; g8; g5; g1Þ; (1)

where the field is required to be gauge invariant,
�ðg1; g2; g3; g4Þ ¼ �ðg1g; g2g; g3g; g4gÞ for all group el-
ements g 2 G. The relevant groups for 4D quantum grav-
ity are G ¼ Spinð4Þ [and SO(5)] in the Riemannian case
and G ¼ SLð2;CÞ [and SO(4,1)] in the Lorentzian case. In
this section, we focus on the compact group case. We will
deal with the noncompact group case relevant to
Lorentzian gravity in the next section. It will require proper
and careful regularization to avoid divergencies due to the
noncompact nature of the group.
We generalize the ‘‘flat solution’’ ansatz of the 3D group

field theory to the 4-dimensional case [21]:

�ð0ÞðgiÞ �
ffiffiffiffiffi
4!

�

3

s Z
dg�ðg1gÞFðg2gÞ ~Fðg3gÞ�ðg4gÞ: (2)

It is straightforward to check that this provides a solution to
the classical equations of motion as soon as ðRF ~FÞ3 ¼ 1.
We let aside for a moment this normalization condition,
and we compute the effective action for 2-dimensional
variations around such background configurations for ar-
bitrary functions F and ~F:

Seff½c � � S4d½�ð0Þ þ c ðg1g�1
4 Þ� � S4d½�ð0Þ�:
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We obtain an effective action with a linear term proportional to c ðIÞ, a nontrivial quadratic kinetic term, and interaction
vertices of order 3 to 5:

Seff½c � ¼
ffiffiffiffiffi
4!

�

3

s
c ðIÞ

Z
F
Z

~F

�
1�

�Z
F ~F

�
3
�
þ 1

2

Z
c ðgÞc ðg�1ÞKðgÞ �

ffiffiffiffiffi
�

4!

3

s Z
F
Z

~F
Z

c ðg1Þ . . . c ðg3Þ�ðg1 . . .g3Þ

�
�Z

F
Z

~Fþ
Z

dhFðhg3Þ ~FðhÞ
�
�

� ffiffiffiffiffi
�

4!

3

s �
2 Z

F
Z

~F
Z

c ðg1Þ . . . c ðg4Þ�ðg1 . . . g4Þ

� �

5!

Z
c ðg1Þ . . . c ðg5Þ�ðg1 . . . g5Þ; (3)

with the new kinetic operator given by:

K ðgÞ ¼
�
1� 2

�Z
F
Z

~F

�
2 Z

F ~F

� 2
Z

F
Z

~F
Z

dhFðhgÞ ~FðhÞ

�
Z

dhFðhÞ ~FðhgÞ
�
: (4)

Taking into account the normalization condition
ðRF ~FÞ3 ¼ 1 and thus working with an exact solution �0

of the equations of motion, we see that the linear term
vanishes exactly due to this condition. We also notice that,
if we were to relax this normalization condition and work
with a ‘‘partial solution requirement’’ as in the 3D case, the
linear term could still be made to vanish and with the same
condition

R
F ¼ 0 (or with

R
~F ¼ 0). However, in this 4D

case, this other condition also makes all new terms (among
which the nontrivial kinetic term) vanish. Another possi-
bility could be to renormalize the coupling constant � by
reabsorbing in it the factors

R
F
R
~F, and then impose the

same condition of vanishing integral in some limiting
procedure. The interest and consequences of doing this,
however, are not clear at the present stage.

At any rate, we obtain an effective field theory for the
field c defined on two copies of the initial group manifold,
but reduced by means of the symmetry requirement to a
function of a single group element, with a nontrivial qua-

dratic propagator. The group G is now interpreted again as
the momentum space for the quanta corresponding to this
field, with the �ðg1 . . . gnÞ factors in the action imposing
momentum conservation in the field interactions. And
again, after introducing a suitable Fourier transform, such
effective group field theory appears as the dual of a non-
commutative field theory. This same duality implies that
position space field theory is defined in terms of functions
on Rd, with d the dimension of the group G, endowed with
a suitable star product structure, or, equivalently, by ele-
ments of the enveloping algebra for the Lie algebra of the
same group G, i.e., noncommutative fields living on a
noncommutative space-time given by the same Lie alge-
bra. The noncommutativity reflects the curvature of the
group manifold and the non-Abelian group multiplication
leads to a deformation of the addition of momenta. We will
show how this works in detail in the next section for the
noncompact group G ¼ SOð4; 1Þ and for a group field
theory more closely related to 4D quantum gravity.
We conclude this section by considering the special case

when the function ~F is fixed to be the � distribution while
F is kept arbitrary as long as FðIÞ ¼ 1. This ansatz clearly
satisfies the normalization condition

R
F ~F ¼ 1 and thus

provides a solution to the classical field equations. Calling
c � R

F, the effective action takes has a simpler expres-
sion:

Seff½c � ¼ 1

2

Z
c ðgÞc ðg�1Þ½1� 2c2 � 2cFðgÞFðg�1Þ� � c

� ffiffiffiffiffi
�

4!

3

s �Z
c ðg1Þ . . . c ðg3Þ�ðg1 . . . g3Þ½cþ Fðg3Þ�

� c

� ffiffiffiffiffi
�

4!

3

s �
2 Z

c ðg1Þ . . . c ðg4Þ�ðg1 . . . g4Þ � �

5!

Z
c ðg1Þ . . . c ðg5Þ�ðg1 . . . g5Þ: (5)

III. DEFORMED SPECIAL RELATIVITYAS A
GROUP FIELD THEORY

The term DSR has been used to describe many different
theories. Here we are interested in the original construction
which described a noncommutative space-time, of the Lie
algebra type (� Minkowski) together with some deformed

Poincaré symmetries. In particular the latter are consistent
with the existence of another universal scale (the Planck
mass/momentum) than the speed of light.
When dealing with such theory, the literature has often

emphasized its noncommutative geometry aspect.
Moreover it is also known since some time [13] that a
Fourier transform from a noncommutative space-time of
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the Lie algebra type leads to a (curved) momentum space
with a (non-Abelian) group structure. From this perspec-
tive, it is clear that a scalar field theory over � Minkowski
can also be interpreted as a group field theory, where the
group is the momentum space (contrary to the usual GFT
approach for quantum gravity models where the group is
usually considered as the configuration space). This aspect
of DSR was certainly known but never exploited before
from the group field theory perspective. In fact having this
in mind will allow us to derive a DSR scalar field theory
from a group field theory describing the BF quantum
amplitudes in the next section.

Before doing so, we recall the definition of the
�-Minkowski space and its associated momentum space,
the AN group. The construction can be done in any dimen-
sion. This means that we can also obtain, in principle, an
effective field theory on �-Minkowski space-time in any
dimension from a group field theory, using our procedure.
However, we focus on the 4D case which is directly
relevant for quantum gravity. We then review the construc-
tion of scalar field theory on � Minkowski, emphasizing
the group field theory aspect.

A. �-Minkowski and the AN momentum space

As a vector space, the �-Minkowski space-time is iso-
morphic to Rn and is defined as the Lie algebra ann�2,
which is a subalgebra of the Lorentz algebra soðn� 1; 1Þ.
In the following, we work with the signature
ð�;þ; . . . ;þÞ. The n� 1 generators of ann�2 are given by

X0 ¼ 1

�
Jn0; Xk ¼ 1

�
ðJnk þ J0kÞ; k ¼ 1; . . . ; n� 2;

(6)

where the J�� are the generators of the Lorentz algebra

soðn� 1; 1Þ. It is easy to see that ann�2 is therefore
encoded by the following commutation relations:

½X0; Xk� ¼ � i

�
Xk; ½Xk; Xl� ¼ 0; k; l ¼ 1; . . . ; n:

(7)

Their explicit matrix elements in the fundamental
(n-dimensional) representation of soðn� 1; 1Þ are [24]

X0 ¼ i

�

0 0 1
0 0 0
1 0 0

0
@

1
A; Xk ¼ i

�

0 tx 0
x 0 x
0 �tx 0

0
@

1
A; (8)

where tx are the (n� 2)-dimensional basis vectors
(1,0,. . .,0), (0,1,0,. . .), and so on. For explicit calculations,
it is convenient to notice that the matrices Xk are nilpotent
with ðXkÞ3 ¼ 0. There are indeed n� 2 Abelian and nil-
potent generators, hence the name ANn�2. The corre-
sponding exponentiated group elements are

eik0X0 ¼
coshk0� 0 � sinhk0�
0 1 0;

� sinhk0� 0 coshk0�

0
B@

1
CA

eikiXi ¼
1þ k2

2�2 � tk
�

k2

2�2

� k
� 1 � k

�

� k2

2�2

tk
� 1� k2

2�2

0
BB@

1
CCA;

(9)

where 1 is the ðn� 2Þ � ðn� 2Þ identity matrix. We pa-
rametrize generic ANn�2 group elements as

hðk�Þ ¼ hðk0; kiÞ � eik0X0eikiXi : (10)

As we will see in the next subsection, this group element
can be interpreted as the noncommutative plane wave and
the coordinates on the group k� as the wave vector (and

therefore related to the momentum). To multiply group
elements in this parametrization, we check that

eik0X0eikiXi ¼ eiðek0=�ÞkiXieik0X0 :

This is the exponentiated version of the commutation
relation between X0 and the Xi’s. This allows one to derive
the multiplication law for ANn�2 group elements:

hðk0; kiÞhðq0; qiÞ ¼ hðk0 þ q0; e
�q0=�ki þ qiÞ; (11)

which defines a deformed noncommutative addition of the
wave vectors:

ðk � qÞ0 � k0 þ q0; ðk � qÞi � e�q0=�ki þ qi: (12)

This also gives the inverse group elements

hðk0; kiÞ�1 ¼ hð�k0;�ek0=�kiÞ; (13)

which defines the opposite momentum Sðk�Þ for the non-

commutative addition

Sðk0Þ ¼ �k0; SðkiÞ ¼ �ek0=�ki: (14)

The relation between the SOðn� 1; 1Þ group andANn�2

is given by the Iwasawa decomposition (see, e.g., [24,25]):

SOðn� 1; 1Þ ¼ ANn�2SOðn� 2; 1Þ
[ ANn�2MSOðn� 2; 1Þ; (15)

where the two sets are disjoint and M is the following
diagonal matrix,

M ¼
�1

1
�1

0
@

1
A:

To understand the geometric meaning of this decompo-
sition, we look at the map between ANn�2 and the de Sitter
space-time dSn�1 defined as the coset SOðn�
1; 1Þ=SOðn� 2; 1Þ. We introduce a reference spacelike

vector vð0Þ � ð0; . . . ; 0; 1Þ 2 Rn. The little group of this
vector is the Lorentz group SOðn� 2; 1Þ and the action of
SOðn� 1; 1Þ on it sweeps the whole de Sitter space.
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Looking at the action of ANn�2 on vð0Þ, using the plane

wave parametrization (10), we define the vector v �
hðk�Þ:vð0Þ with explicit coordinates:

v0 ¼ � sinh
k0
�
þ k2

2�2
ek0=� vi ¼ � ki

�

vn ¼ cosh
k0
�
� k2

2�2
ek0=�:

(16)

We easily check that vAv
A ¼ �v2

0 þ ~v2 þ v2
n ¼ 1.

However, since v0 þ vn ¼ expð�k0=�Þ, this action of

ANn�2 on vð0Þ sweeps only half of the de Sitter space
defined by the condition vþ ¼ v0 þ vn > 0. Assuming
this condition, we can reverse the previous relation and
express the ANn�2 group element in terms of the n vector
v:

hðk�Þ ¼
vn þ v2

v0þvn

tv
v0þvn

v0

v 1 v
v0 � v2

v0þvn

�tv
v0þvn

vn

0
B@

1
CA; with hðk�Þ�1 ¼

vn þ v2

v0þvn
�tv �v0 þ v2

v0þvn�v
v0þvn

1 �v
v0þvn�v0

tv vn

0
B@

1
CA: (17)

To recover the full de Sitter space, we need to use the other
part of the Iwasawa decomposition. Considering the action
of M, we obtain

hðk�ÞM:vð0Þ ¼ �v

hðk�Þ ¼
�vn � v2

v0þvn

tv
v0þvn

�v0

�v 1 �v

�v0 þ v2

v0þvn

�tv
v0þvn

�vn

0
BBB@

1
CCCA: (18)

Thus the action of the M operator simply maps the n
vector vA in its opposite �vA. Clearly that allows one to
complete the other side of de Sitter space with vþ < 0. Let
us point out that the left action Mhðk�Þ would still map
v0 ! �v0 and vn ! �vN but would leave the other com-
ponents invariant v ! v.

To summarize, an arbitrary point v on the de Sitter
space-time is uniquely obtained as

v ¼ ð�Þ�hðk�Þ:vð0Þ ¼ hðk�ÞM�:vð0Þ;

� ¼ 0 or 1; h 2 ANn�2:
(19)

The sign ð�Þ� corresponds to the two components of
the Iwasawa decomposition. The coset space SOðn�
1; 1Þ=SOðn� 2; 1Þ is isomorphic to the de Sitter space
and is covered by two patches, each of these patches being
isomorphic to the group ANn�2.

We introduce the set ANc
n�2 � ANn�2 [ ANn�2M,

such that the Iwasawa decomposition reads SOðn�
1; 1Þ ¼ ANcSOðn� 2; 1Þ and that ANc is isomorphic to
the full de Sitter space (without any restriction on the sign
of vþ). Actually, ANc

n�2 is itself a group. Indeed we first
easily check the commutation relation between the M
operator and ANn�2 group elements:

Mhðk�Þ ¼ hðk0;�kiÞM;

where commuting M with h sends the 5-vector vA to
ðv0;�v; vnÞ. This implies the group multiplication on

ANc:

hðk�ÞM�hðq�ÞM	 ¼ hðk � ð�Þ�qÞM�þ	; (20)

with �, 	 ¼ 0, 1. Finally, we point out that ANc
n�2 is a

group but not a Lie group (because of the discrete Z2

component).
In the following we will focus on the n ¼ 5 case looking

at SO(4,1) and its subgroup AN3 relevant for 4D deformed
special relativity and quantum gravity. Consider the action
of the Lorentz transformations SO(3,1) on AN3. This is not
simple when seen from the 4D perspective, i.e., from the
point of view of AN3 itself. However, it amounts to the
obvious linear action of SO(3,1) on the de Sitter space-time
dS4, �xv ¼ �:v, leaving the fifth component v4 invari-
ant. This leads to a nonlinear action of � 2 SOð3; 1Þ on
AN3 (see, e.g., [25]):

�xhðk�ÞM� � �hðk�ÞM� ~��1 ¼ hðk0�ÞM�0 ; (21)

where ~�, a priori different from �, is the unique Lorentz
transformation ensuring that the resulting group element
lives in ANc

3 � AN3 [ AN3M. An important point is that

it is impossible to neglect the effect of M. Indeed the
Lorentz transformation mixes the two parts of the Iwasawa
decomposition: the subgroup AN3 is not invariant under
the SO(3,1) action but the group ANc

3 is.

It is possible to compute the ‘‘counter-boost’’ ~� for
infinitesimal Lorentz transformations [25]. This leads to
the �-Poincaré algebra presented as a nonlinear realization
of the Poicaré algebra in terms of k�:

½Mi; kj� ¼ �lijkl; ½Mi; k0� ¼ 0; ½k�; k�� ¼ 0

½Ni; kj� ¼ �ij

�
sinh

k0
�
� k2

2�2
ek0=�

�
;

½Ni; k0� ¼ kie
k0=�:

(22)

Finally, we will need an integration measure on AN3 in
order to define a Fourier transform. The group AN3 is
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provided with two invariant Haar measures:

Z
dhL ¼

Z
d4k�;

Z
dhR ¼

Z
eþ3k0=�d4k�; (23)

which are, respectively, invariant under the left and right
action of the group AN3. Let us point out that

Z
dðh�1ÞL ¼

Z
dhR:

We can easily derive this measure from the 5D perspective
using the parametrization (17)

�4
Z

�ðvAv
A � 1Þ
ðv0 þ v4Þd5vA ¼

Z
d4k� ¼

Z
dhL;

(24)

where the 
ðvþÞ function imposes the vþ>0 restriction.

Indeed the SO(4,1) action on the reference vector vð0Þ
generates the whole de Sitter space,

v ¼ gxvð0Þ ¼ hM��xvð0Þ ¼ hM�xvð0Þ:

Therefore the natural measure on AN3 inherited from the
Haar measure on SO(4,1) is left invariant.

A crucial issue is the Lorentz invariance of the measure.
Even though the measure dhL ¼ d4k� looks Lorentz in-

variant, it is not, as the action of the Lorentz group on the
coordinates k� is nontrivial and nonlinear. Actually, one

can show this action does not leave the measure invariant.
What causes the problem is the restriction vþ > 0 (needed
when inducing the measure on AN3 from the Lorentz
invariant measure on dS4) which indeed breaks Lorentz
invariance. In order to get a Lorentz invariant measure, we
need to glue back the two patches vþ < 0 and vþ > 0 (and
actually also the vþ ¼ 0 patch) and define the measure on
the whole de Sitter space. In other words, we write the
same measure as a measure on ANc

3 � AN3 [ AN3M�
dS:

Z
dhL �

Z
AN3

dhþL þ
Z
AN3M

dh�L

¼
Z

�ðvAv
A � 1Þd5v: (25)

Another way to circumvent this problem and obtain a
Lorentz invariant measure is to consider a space without
boundary and work on the so-called elliptic de Sitter space1

dS=Z2 where we identify vA $ �vA, which amounts to
identifying the group elements hðk�Þ $ hðk�ÞM. This

space is indeed isomorphic to AN3 as a manifold. One
way to nicely achieve this restriction at the field theory
level is to consider only fields on de Sitter space (or on
ANc

3) which are invariant under the parity transformation

vA $ �vA [28]. In this case, we recover the measure d4k�
on AN3 � ANc

3=Z2 � dS=Z2.

B. DSR field theory (in a nutshell)

We now present a DSR scalar field theory first as a group
field theory. Then we recall how we can recover the scalar
field theory on � Minkowski using a generalized Fourier
transform. For simplicity, we shall restrict to the case n ¼
5, so that we shall consider the noncompact and nonsemi-
simple groups G ¼ ANc

3, AN3.

We consider the real scalar field �: G ! R, and define
the (free) action

S ð�Þ ¼
Z

dhL�ðhÞKðhÞ�ðhÞ; 8h 2 G; (26)

where KðhÞ is the propagator and dhL is the left-invariant
measure. Contrary to the usual group field theory philoso-
phy, we interpret G as the momentum space.
First let us discuss the possible choices of propagators.

We demandKðhÞ to be a function onG invariant under the
Lorentz transformations. We have showed in the previous
subsection how the Lorentz group is acting on G. It is then
clear that any function KðhÞ ¼ fðv4ðhÞÞ is a good candi-
date, since v4 is by construction a Lorentz invariant quan-
tity. Two main choices have been studied in the literature:

K1ðhÞ ¼ ð�2 � �4ðhÞÞ �m2;

K2ðhÞ ¼ �2 � ð�4ðhÞÞ2 �m2; �4 ¼ �v4:
(27)

The freedom in choosing the propagator is related to the
ambiguity in choosing what we call momentum. To have a
precise candidate for the notion of momentum, one needs
to define first position and define momentum either as the
eigenvalue of the translation operator applied to the plane
wave and/or the conserved charged for the action Sð�Þ
expressed in terms of coordinates associated to the trans-
lations [28,29]. Therefore from the group field theory
perspective, it is necessary to perform a Fourier transform
to obtain more information.
Before introducing the Fourier transform, let us note that

the action (26) is clearly Lorentz invariant if the measure is
Lorentz invariant, since the propagator KðhÞ has been
chosen to be a Lorentz invariant function and the trans-
formation of the fields induced by a Lorentz transformation
on the arguments h is also known, from the previous
subsection. We have also seen that this measure is indeed
a Lorentz invariant measure both in the case of group
manifold ANc

3 and generic scalar fields, and in the case

1Considering deformed special relativity in three dimensions
with Euclidean signature, the group field theory on SU(2) has a
similar feature [26]. SU(2) being isomorphic to the sphere S3 is
indeed also covered by two patches. Note however than in this
case the standard choice of coordinates is not breaking the
Lorentz symmetries. To get rid of one patch, we identify the
two patches and consider instead SOð3Þ ¼ SUð2Þ=Z2 as in
[18,27].
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of elliptic de Sitter space or AN3 when a restriction to
symmetric fields is imposed.

The generalized Fourier transform relates functions on
the group CðGÞ and elements of the enveloping algebra
Uðan3Þ. It is defined, respectively, for G ¼ ANc

3, AN3 as

�̂ðXÞ ¼
Z
AN3

dhþL hðk�Þ�þðkÞ þ
Z
AN3M

dh�L hðk�Þ��ðkÞ;

X 2 an3; �̂ðXÞ 2 Uðan3Þ (28)

�̂ðXÞ ¼
Z
AN3

dhLhðk�Þ�ðkÞ;

X 2 an3; �̂ðXÞ 2 Uðan3Þ (29)

where we used the non-Abelian plane wave hðk�Þ. The
inverse Fourier transform can also be introduced, if one
introduces a measure d4X. For the details we refer to
[28,30]. The group field theory action on G can now be
rewritten as a noncommutative field theory on �
Minkowski (to simplify the notation we restrict our atten-
tion to G ¼ AN3 and thus we implicitly consider symmet-
ric fields)

S ð�Þ ¼
Z

dhL�ðhÞKðhÞ�ðhÞ

¼
Z

d4Xð@��̂ðXÞ@��̂ðXÞ þm2�̂2ðXÞÞ: (30)

The Poincaré symmetries are naturally deformed in order
to be consistent with the nontrivial commutation relations
of the �-Minkowski coordinates. More exactly, if the
Poincaré transformations act in the standard on the coor-
dinates2

T�xX� ¼ ���; NixXj ¼ �ijX0; NixX0 ¼ Xi

RixXj ¼ �kijXk; RixX0 ¼ 0; (31)

its action on the product of coordinates has to be modified
in order to be consistent with the nontrivial commutation
relation (7), that is we demand that

T x½X�; X�� ¼ C�
��TxX�; 8T ¼ T�; Ri; Ni;

and C�
�� is the structure constant of an3. To implement this

one needs to deform the coalgebra structure of the Poincaré

algebra, that is one deforms the coproduct3 �

�T� ¼ T� � 1þ 1 � T� � ��1T0 � T�

�Ni ¼ Ni � 1þ 1 � Ni � ��1T0 � Ni þ ��1�jki Tk � Rj

�Ri ¼ Ri � 1þ 1 � Ri: (33)

Thanks to this new coproduct, the Poincaré transforma-
tions and the commutation relations (7) are consistent, i.e.,
(32) is true. Moreover, using the coproduct, we can act on
the plane wave and deduce the realization of the Poincaré
transformations in terms of the coordinates k�. We recover

precisely the � algebra (22) as one could have guessed.
Finally, as we mentioned earlier, the ‘‘physical’’ notion of
momentum �� can be identified from the action of the

translations on the plane wave

T�xhðk�Þ � ��hðk�Þ:

Direct calculation [28], using again the coproduct shows
that

�� ¼ �v�:

We have therefore a nonlinear relation between the wave
vector k� and the momentum ��. Moreover, using the 5D

bicovariant differential calculus, it was also shown that the
conserved charges, for the free action (30), associated to
the translations are precisely �� [28]. With this choice of

momentum the propagator K2ðhÞ becomes simply
K2ðhÞ ¼ ���

� �m2, thanks to the de Sitter constraint

�A�
A ¼ �2.

IV. DERIVING DEFORMED SPECIAL
RELATIVITY FROM GROUP FIELD THEORY

We now come to the main issue we address in this paper:
to obtain a field theory on �Minkowski (or equivalently on
AN3 momentum space) from a 4D group field theory, in
particular, from one that could be related to 4D quantum
gravity. We have already shown the general construction
leading from a generic 4D GFT to an effective quantum
field theory based on the same group manifold. Now the

2T�, Ni, Ri are, respectively, translations, boosts, and
rotations.

3Indeed, we have, for example, for a translation

T�xðX�X	Þ ¼ T�xmðX� � X	Þ ¼ m½ð�T�ÞxðX� � X	Þ�;
(32)

where m is the multiplication.
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task is to specialize that construction to the case of physical
interest.

We start from the group field theory describing
topological BF theory for the noncompact gauge group
SO(4,1).

There are several reasons of interest in this model. First
of all, the McDowell-Mansouri formulation (as well as
related ones [20]) of general relativity with cosmological
constant defines 4D gravity as a BF theory for SO(4,1) plus
a potential term which breaks the gauge symmetry from
SO(4,1) down to the Lorentz group SO(3,1). On the one
hand, this leads to the idea of understanding gravity as a
phase of a fundamental topological field theory, an idea
that has been put forward several times in the past. On the
other hand, it suggests to try to define quantum gravity in
the spin foam context as a perturbation of a topological
spin foam model for SO(4,1) BF theory. These ideas could
also be implemented directly at the GFT level. If one does
so, the starting point would necessarily be a GFT for
SO(4,1) of the type we use below. Second, as this model
describes SO(4,1) BF theory in a ‘‘3rd quantized’’ setting,
we expect any classical solution of the GFT equations to
represent quantum de Sitter space on some given topology,
analogous to what happens with Minkowski space in the
SO(3,1) case. Such configurations would most likely be
present (and physically relevant) also in a complete non-
topological gravity model obtained starting from the topo-
logical one. Third, and partly as a consequence of the
above, to start from the spin foam/GFT model for
SO(4,1) BF theory seems to be the correct arena to build
a spin foammodel for 4D quantum gravity plus particles on
de Sitter space [31], treating particles as arising from
topological curvature defects for an SO(4,1) connection,
along the lines of what has been already achieved in 3D
gravity [18].

We do not describe the structure of the corresponding
spin foam path integral, as the spin foam (perturbative)
formulation plays no role in our construction. We start
instead directly with the relevant group field theory, and
work only at the level of the GFTaction. As in the compact
group case, we consider a gauge-invariant field on
SOð4; 1Þ�4:

�ðg1; g2; g3; g4Þ ¼ �ðg1g; g2g; g3g; g4gÞ;
8g 2 SOð4; 1Þ;

and the group field action is given by

S4d ¼ 1

2

Z
½dg�3�ðg1; g2; g3; g4Þ�ðg4; g3; g2; g1Þ (34)

� �

5!

Z
½dg�9�ðg1; g2; g3; g4Þ�ðg4; g5; g6; g7Þ

��ðg7; g3; g8; g9Þ�ðg9; g6; g2; g10Þ�ðg10; g8; g5; g1Þ:
(35)

Because of the symmetry requirement, one of the field
arguments in redundant, and one can effectively work
with a field depending on only three group elements.
This is indicated schematically above, where, we integrate
only over three group elements in the kinetic term and nine
in the interaction term in order to avoid redundant integra-
tions, which would lead to divergences due to the non-
compactness of the group SO(4,1). More precisely,
considering the kinetic term, we can fix one of the four
group elements, say g4, to an arbitrary value (usually the
identity I) and integrate over the remaining three group
elements without changing anything to the final result.
Similarly, the restriction to only nine integrations in the
interaction term can be understood as a partial gauge
fixing, avoiding redundancies and associated divergences.
Starting with this group field theory, we want to derive

the DSR field theory as a sector of the full theory. We
follow the same strategy as in the 3-dimensional case and
as outlined earlier for the 4-dimensional case: we search
for classical solutions of the SO(4,1) group field theory and
study specific 2-dimensional field variations around it. We
will naturally obtain an effective field theory living on
SO(4,1). On top of this, we want then to obtain, from
such effective field theory, one that is restricted to the
AN3

3 (or AN3) homogeneous space (subgroup). There are

three main strategies following which this could be
achieved, a priori:
(i) We could derive first an effective field theory on

SO(4,1) and then study the possibility and mecha-
nism for a decoupling of theANc

3 degrees of freedom

from the ones living on the Lorentz SO(3,1) sector of
the initial SO(4,1) group.

(ii) We could try to identify some special classical
solutions of the fundamental SO(4,1) group field
theory, which are such that the effective matter field
would naturally result in being localized on ANc

3.

(iii) We could modify the initial SO(4,1) group field
theory action in such a way that, after the same
procedure, the resulting effective matter field is
automatically localized on ANc

3 (or AN3).

Anticipating the results of this section, we will see that
the first strategy leads naturally to a DSR kinetic term,
depending only on AN3 degrees of freedom, and thus with
an exact decoupling of the SO(3,1) modes. As for the
second strategy, we will see that it does not work as simply
as stated, and it requires necessarily a modification of the
initial group field theory action, i.e., to some version of the
third strategy. We will discuss some ways in which this can
be implemented, but we will see that the simplest way to
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achieve this is to start directly with a group field theory for
BF theory with gauge group ANc

3.

A. Deformed special relativity as a phase
of SO(4,1) GFT

Let us start from the action above defining the group
field theory for the SO(4,1) BF theory. The first task is to
write the field equations and identify classical solutions.
This works as in the compact group case presented in
Sec. II. We use the same ansatz:

�ð0ÞðgiÞ ¼
ffiffiffiffiffi
4!

�

3

s Z
SOð4;1Þ

dg�ðg1gÞFðg2gÞ ~Fðg3gÞ�ðg4gÞ;

where the functions F and ~Fmust satisfy the normalization
condition

R
F ~F ¼ 1. Moreover, we also require that

R
F

and
R
~F be finite in order to get a meaningful effective

action for the 2D field variations around the classical
solutions.

The ansatz that we choose is tailored to lead us to the
DSR field theory4:

FðgÞ ¼ �ðv4ðgÞ þ aÞ#ðgÞ; ~FðgÞ ¼ �ðgÞ: (36)

The function v4 is defined as matrix element of g in the
fundamental (nonunitary) 5-dimensional representation of

SO(4,1), v4ðgÞ ¼ hvð0Þjgjvð0Þi, where vð0Þ ¼ ð0; 0; 0; 0; 1Þ
is, as previously, the vector invariant under the SO(3,1)
Lorentz subgroup. #ðgÞ is a cutoff function providing a
regularization of F, so that it becomes an L1 function.
We first check the normalization condition

R
F ~F ¼ �ðaþ

1Þ#ðIÞ ¼ 1, and, assuming that #ðIÞ ¼ 1, we require � ¼
ðaþ 1Þ�1 in order for it to be satisfied.
Then we can derive the effective action around such

classical solutions for 2D field variations just as in the
compact group case given in (5):

Seff½c � ¼ 1

2

Z
c ðgÞc ðg�1Þ

�
1� 2c2 � #2ðgÞ 2cðaþ v4ðgÞÞ2

ðaþ 1Þ2
�
� c

� ffiffiffiffiffi
�

4!

3

s �Z
c ðg1Þ . . . c ðg3Þ�ðg1 . . . g3Þ½cþ Fðg3Þ�

� c

� ffiffiffiffiffi
�

4!

3

s �
2 Z

c ðg1Þ . . . c ðg4Þ�ðg1 . . . g4Þ � �

5!

Z
c ðg1Þ . . . c ðg5Þ�ðg1 . . . g5Þ; (37)

where c ¼ R
F. Thus the last issue to address in order to

properly define this action is to compute the integral of F.
The function v4ðgÞ is invariant under the Lorentz group
SO(3,1). Using the Iwasawa decomposition g ¼ h� with
h 2 ANc

3 and� 2 SOð3; 1Þ, it is easy to see that the matrix
element v4ðgÞ actually only depends on h. Therefore it is
natural to split the cutoff function #ðgÞ in factors indepen-
dently regularizing the integrals over ANc

3 and over
SO(3,1):

#ðgÞ ¼ �ðhÞ
ð�Þ: (38)

To keep calculations simple, we assume that we choose the
function 
ð�Þ to be a Gaussian function, or any other
function peaked on � ¼ I, such that 
ðIÞ ¼ 1 and

R

 ¼

1. Then using the isomorphism between ANc
3 and the

de Sitter space vAv
A ¼ 1, we choose the cutoff function

on ANc
3 to be L1 and symmetric under v4 $ �v4: the

simplest choice is to bound jv0j � V, which automatically
also bounds v4 and v. We get

c ¼
Z

F ¼
Z

dh�ðhÞ aþ v4ðhÞ
aþ 1

¼
Z
½d5vA��ðv2

4 þ v2 � v2
0 � 1Þ�ðvAÞaþ v4

aþ 1

¼ a
R
dS �

aþ 1
; (39)

since v4 is a odd function on the de Sitter space. For our
simplest choice of the � function imposing a straightfor-
ward bound on v0, we easily evaluate

Z
dS
�ðvÞ ¼ 4�

Z V

�V
dv0

Z ffiffiffiffiffiffiffiffiffi
1þv2

0

p

�
ffiffiffiffiffiffiffiffiffi
1þv2

0

p dv4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

0 � v2
4

q

¼ 4�2

3
VðV2 þ 3Þ: (40)

For more generic choices of cutoff functions �, the last
factor

R
dS � is at most quartic5 in the cutoff value V.

4We can also choose a more symmetric ansatz with FðgÞ ¼
~FðgÞ which would correspond to a group field satisfying the
reality condition. The resulting calculations would be more
involved, and this is why we do not discuss in detail this choice.
However, it can be easily checked that, with a similar regulari-
zation, the final result would be the same.

5As an example, for a cutoff function � implementing directly
a bound on v4 and the 3-vector v, we have

Z
dS
�ðvÞ ¼ 4�

Z þV

�V
dv4

Z þV
dv

v2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ v2

4 � 1
q / V3 lnV:
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If we want to remove the cutoff and reabsorb all the
infinities due to the noncompactness of the group, we could
now send the cutoff V to 1, and then we also send the
factor a to 0, scaling it as a / 1=V3. In this way, we keep c
finite. This is the simplest method to achieve the result, but
of course others can be considered. We point out that this
renormalization is done at the classical level in the defini-
tion of our classical solution and not at the quantum level

like in quantum field theory. In other words, this regulari-
zation is necessary in order to obtain a true and well-
defined classical solution of the equations of motion, and
meaningful variations around it.
After all these regularization details, in the double scal-

ing limit6 a ! 0 and L ! 1 while keeping c finite, we
have derived an effective theory for a field c ðgÞ living on
SO(4,1):

Seff½c � ¼ 1

2

Z
c ðg1Þc ðg2Þ½1� 2c2 � 2cv4ðh1Þ2�ðh1Þ2
ð�1Þ2��ðg1g2Þ �

ffiffiffiffiffi
�

4!

3

s Z
c ðg1Þ . . . c ðg3Þ�ðg1 . . .g3Þ½c2 þ cFðg3Þ�

� c

� ffiffiffiffiffi
�

4!

3

s �
2Z

c ðg1Þ . . . c ðg4Þ�ðg1 . . .g4Þ � �

5!

Z
c ðg1Þ . . . c ðg5Þ�ðg1 . . .g5Þ: (41)

We recognize the correct kinetic term for a DSR field
theory. However, the effective matter field is a priori still
defined on the full SO(4,1) momentum manifold. The only
remaining issue is therefore to understand the ‘‘localiza-
tion’’ process of the field c to ANc

3. Having done this, we
would truly have derived a scalar field theory in deformed
special relativity from the group field theory defining
topological SO(4,1) BF theory, and thus a sector of 4D
quantum gravity.

Let us consider the second strategy envisaged above. A
possible solution to the localization issue is, the strategy
goes, to use the classical solution F itself to localize the
field on the ANc

3 manifold. For example, one may require

that the regularizing function 
ð�Þ forces the SO(3,1)
group element to be, say, the identity element, � ¼ I.
The simplest choice is to use a delta function on SO(3,1).
This however causes two problems. First, both 
ð�Þ and

ð�Þ2 appear in the action above, and of course the square
of the � distribution is not well defined. One can devise
methods to overcome this purely mathematical problem,
by using suitable ‘‘smoothed’’ delta distributions, which
achieve the same localization, but are L2 functions. The
second problem is however more fundamental. By con-
struction, this method forces the group element g to lay in
ANc

3 only in the terms containing some factors FðgÞ, i.e.,
depending in a nontrivial way (not as an overall constant)
on the classical solution chosen. Thus the mass term and
most of the interaction terms are completely transparent to
this way of projecting on ANc

3. We conclude that it is not

enough to use the classical solution to achieve this reduc-
tion from the full group SO(4,1) to the submanifold ANc

3.

We then look more carefully at the first strategy outlined
above. We see immediately that the kinetic term (contain-
ing the differential operator defining the propagation of the
field degrees of freedom, as well as the symplectic struc-
ture in a canonical setting), does not show any dependence
on the Lorentz sector. Indeed, through our choice of clas-
sical solution, we obtained a kinetic term in v4ðgÞ which
depends only on the ANc

3 part h of the group element g ¼
h�. This suggests that the SO(3,1) degrees of freedom are
nondynamical and that the restriction of the domain of
definition of the field c to ANc

3 group elements defines a

dynamically stable phase of the theory. This would be
trivially true if not for the fact that the interaction term
does, a priori, depend also on the Lorentz degrees of
freedom, and couples them among the different interacting
fields. Therefore, we see three different simple ways to
attempt to project this effective field theory down to ANc

3:

(i) We can choose a decoupled ansatz for the perturba-
tion field c and assume it has a product structure

c ðgÞ ¼ ~c ðhÞ�ð�Þ. As far as the kinetic term is
concerned, the only contribution from the Lorentz
sector is a constant multiplicative termR
SOð3;1Þ d��ð�Þ�ð�Þ [and

R
��
2 ��ðIÞ2].

Thus we get the exact kinetic term for a �-Poincaré
invariant free field theory. However, the vertex term
still couples the Lorentz andANc

3 degrees of freedom

and the �-Poincaré symmetry is broken; the pure
DSR-like form lost. To simplify the interaction
term, we can further assume that the dependence of
the perturbation field on the Lorentz sector is trivial,
i.e., assume �ð�Þ � 1. This naturally gives an ef-
fective field theory based only on the AN3 subgroup
and it seems that we obtain a nice DSR field theory.
However, the interaction term still causes a problem.
The Lorentz sector is still coupled to the DSR de-
grees of freedom due to the momentum conserva-
tion. Indeed, the �ðg1 . . .gnÞ constraint becomes
after integration over the Lorentzian variablesR½d���ðh1�1 . . . hn�nÞ. This is clearly not the mo-

6Obviously, we do not need to take the limit. We could keep a,
L, c all finite and define a solution parametrized by these
constants. As a result, we would simply get extra constant terms
in the action, e.g., terms in a2 and av4ðhÞ in the propagator. The
limiting procedure is implemented only in order to get a simpler
form of the action.
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mentum conservation of a DSR theory, which would be given by the simpler constraint �ðh1 . . . hnÞ. We conclude
that this ansatz does not work since it leads to a DSR interaction which violates the conservation of energy
momentum.

(ii) The next possibility is to project by hand the perturbation field on the ANc
3 sector, i.e., assume c ðgÞ ¼ ~c ðhÞ�ð�Þ.

This actually works and projects the whole field theory on ANc
3:

Sfinal½ ~c � ¼ 1

2

Z
~c ðhÞ ~c ðh�1Þ½1� 2c2 � 2cv4ðhÞ2�ðhÞ2� �

ffiffiffiffiffi
�

4!

3

s Z
~c ðh1Þ . . . ~c ðh3Þ�ðh1 . . . h3Þ½c2 þ cv4ðh3Þ�ðh3Þ�

� c

� ffiffiffiffiffi
�

4!

3

s �
2 Z

~c ðh1Þ . . . ~c ðh4Þ�ðh1 . . . h4Þ � �

5!

Z
~c ðh1Þ . . . ~c ðh5Þ�ðh1 . . . h5Þ; (42)

where all the integrations are done with the left-
invariant measure dhL on ANc

3, which is inherited
from the Haar measure on SO(4,1). The only
subtlety with this approach is that the induced
�ðh1 . . . hnÞ constraints are actually still � distribu-
tion on the full group SO(4,1) and thus do not have
the same density than true � distribution on the
subgroup ANc

3. This usually leads to divergences,
but we leave this technical issue aside for now.

(iii) The third alternative is to argue that the reduction to
the AN3 sector happens dynamically. This dynami-
cal reduction could be seen in two ways. First, one
can expect that transition (scattering) amplitudes
involving only real particles defined on ANc

3, i.e.,

with momenta in this submanifold, does not lead to
creation of particles with Lorentz degrees of free-
dom as well, due to the form of the propagator,
even if in principle they would be allowed by the
enlarged momentum-conservation law coming
from the interaction term, which is defined on the
full SO(4,1) group. The second possibility is that a
proper canonical analysis of the effective field the-
ory would show that the SO(3,1) modes are pure
gauge and can simply be fixed from the start and
thus drop from the action altogether. We leave a
more detailed analysis of this issue for future work.
Whether or not the restriction to AN3 is obtained
automatically, in one of the above ways, or by some
other procedure that will be revealed by a more
detailed analysis, what is certain is that a restricted
theory obtained from the above and living on ANc

3

only is dynamically stable. In fact, if we consider
only excitations of the field in ANc

3, we will never

obtain excitations in SO(3,1) due to momentum
conservation �ðg1 . . .gnÞ since ANc

3 is a subgroup.

Therefore ANc
3 is stable under the dynamics of the

field theory, and thus a restriction to fields on ANc
3

is consistent.
One can compare this situation to the case of a 2D
field theory written in momentum space where the
propagator depends on px and not on py:

Seg½c � ¼
Z

d2 ~pð�p2
xÞc ð ~pÞc ð� ~pÞ

þ
Z
½d2p�n�

�Xn
i

pðiÞ
�Yn

i

c ðpðiÞÞ:

The momentum py does not enter the propagator

and it defines a pure gauge degree of freedom, as it
can be checked by straightforward canonical analy-
sis. Therefore, we can restrict ourselves to the
sector py ¼ 0 without affecting the dynamics of

the field, nor any physical content of the theory. At
the end of the day, we obtain the same effective
field theory (42) as above.

Finally, we have argued that this action (42) encodes the
full dynamics of 2D perturbations, as emergent matter
fields, of the SO(4,1) GFT, around the special classical
solution we have chosen. We have thus finally derived the
scalar field theory for deformed special relativity with a
�-deformed Poincaré symmetry from the SO(4,1) group
field theory defining the transition amplitudes for the to-
pological BF theory. To summarize, this was achieved in
three steps:
(1) Identify the correct regularized classical solution(s)

to the initial group field theory.
(2) Look at the 2-dimensional field variations around

such a classical solution and write the effective
action describing their dynamics.

(3) Localize the field variations on the ANc
3 group

manifold relevant to deformed special relativity.
An important remark is that we have a field theory

already with an in-built cutoff in momentum space due to
the regularizing function �ðhÞ, necessary to define the
classical solution to the group field theory. Of course we
can always send this cutoff to infinity by the double scaling
limit V ! 1, a ! 0. At the quantum level, we would
anyway have to introduce such a momentum cutoff to
define the perturbative expansion of the quantum field
theory in term of Feynman diagrams. Here, on the other
hand, the momentum cutoff is not included to regularize
the Feynman diagrams, i.e., the discrete quantum histories
of the theory, but it appears naturally in our derivation of
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the effective field theory on ANc
3 from the initial group

field theory on SO(4,1). Indeed, we insist on the fact that
the classical solution around which we study the group
field variation cannot be defined without this momentum
cutoff.

B. Starting from a restricted GFT: the AN3 case

Having followed in detail the first strategy outlined
above, and having shown the nonviability of the second,
we now describe the third, and obtain a DSR-like field
theory in a different way. Accordingly, instead of localiz-
ing the field variation on ANc

3 in the final step, having first

derived an effective field theory on SO(4,1), we could
modify our starting group field theory action in such a
way that the effective field theory for perturbations is
automatically localized on ANc

3.

The first case we deal with is the simplest one in which
we choose our initial fundamental theory to be itself a
group field theory for 4D BF theory withANc

3 gauge group.

We can then perform the same analysis as in Sec. II, and
then choose the same classical solution we have used in the
previous section [now seen as a function on the ANc

3

subgroup of SO(4,1) only]. This is naturally to a field
theory on ANc

3 describing a scalar field with deformed

special relativity kinematics. The drawback is that the
link with 4D quantum gravity is now more obscure. It is
still possible that such group field theory is related to the
quantization of theMcDowell-Mansouri formulation of 4D
gravity, but the exact relation is unclear. It still defines a
topological spin foammodel, thus lacking any local gravity
degree of freedom; moreover, it lacks the information
contained in SO(4,1) BF, e.g., the cosmological constant,
and its classical solutions have no immediate space-time
interpretation, contrary to that case.

Still, it represents the easiest route to a DSR field theory
from GFT. The only issue that one has to be careful with in
this case is the question of the measure since we have to
decide whether to use the left or right invariant measure.
Since the left-invariant measure is the one inherited from
the Haar measure on SO(4,1), it seems to be the natural one
to use. As before, we introduce the gauge-invariant group
field on ðANc

3Þ�4:

�ðh1; . . . ; h4Þ ¼ �ðh1h�1; . . . ; h4h
�1Þ; 8h 2 ANc

3;

and the corresponding action

San½�� ¼ 1

2

Z
½dh�3�ðh1; h2; h3; h4Þ�ðh4; h3; h2; h1Þ

� �

5!

Z
½dh�9�ðh1; h2; h3; h4Þ�ðh4; h5; h6; h7Þ

��ðh7; h3; h8; h9Þ�ðh9; h6; h2; h10Þ
��ðh10; h8; h5; h1Þ;

where we have used everywhere the left-invariant measure
dhL on ANc

3. As before we check that the ‘‘flat solution’’

ansatz,

�ð0Þ �
ffiffiffiffiffi
4!

�

3

s Z
dhðLÞ�ðh1h�1ÞFðh2h�1Þ ~Fðh3h�1Þ�ðh4h�1Þ;

(43)

provides a classical solution to the group field theory as
soon as

R
F ~F ¼ 1. Thus we should choose the same ansatz

for the arbitrary functions:

FðhÞ ¼ v4ðhÞ þ a

aþ 1
�ðhÞ; ~FðhÞ ¼ �ðhÞ; (44)

where we choose exactly the same regularizing function
�ðhÞ as in the previous section, e.g., the one imposing the
bound v0ðhÞ2 � V2. We then look at the effective action

for 2-dimensional field variation �ð0Þ þ c ðh1h�1
4 Þ around

the classical solution. Using the left invariance of the
measure, we end up of course with the same effective
scalar field theory (42) living on ANc

3.

As said, this gives the shortest path from a 4-
dimensional group field theory and deformed special rela-
tivity. The natural question in this context is nevertheless
the physical meaning/relevance of 4D BF theory with
gauge group ANc

3, from a 4D quantum gravity standpoint,

as we discussed.

V. CONCLUSION

We have derived a scalar field theory of the deformed
special relativity type, with a �-deformed Poincaré sym-
metry, from the SO(4,1) group field theory defining the
transition amplitudes for topological BF theory in 4 space-
time dimensions. This was done directly at the GFT level,
thus bypassing the corresponding spin foam formulation,
in such a way that matter fields emerge from the funda-
mental model as perturbations around a specific phase of it,
corresponding to a solution of the fundamental equations
of motion, and the noncommutative field theory governs
their effective dynamics. Not only is this the first example
of a derivation of a DSR model for matter from a more
fundamental quantum gravity model, and one further link
between noncommutative geometry and quantum gravity
formulated in terms of spin foam/loop quantum gravity
ideas, but it is of great interest from the point of view of
quantum gravity phenomenology, as we have pointed out
in the Introduction. It represents, in fact, another possible
way of bridging the gap between quantum gravity at
Planck scale and effective (and testable) physics at low
energies.
Obviously, there are many questions left unanswered in

this work. Some concern purely technical details of our
procedure. We have mentioned them in the bulk of this
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paper, so we do not repeat them. We mention here briefly a
few more general ones of these open issues.

The first concern is the role of the SO(3,1) degrees of
freedom in the group field theory we started from, as well
as in the one we have obtained as describing the dynamics
of matter. From the GFT point of view it is utterly unclear
whyANc

3 should be the relevant group for the perturbations

as opposed to some other subgroup of SO(4,1). One can
pose this same question in terms of the classical solution
we have perturbed around. What is the physical meaning of
the solution we have chosen? This is unclear at present,
contrary to the 3D case, where the solutions used can be
related to flat geometries. As mentioned, we expect it to be
related to de Sitter space, but more work is needed to
understand the details of the correspondence. Related to
this, it would be interesting to investigate the role of the
cosmological constant in this GFT context. To start with, it
seems that here the presence of a cosmological constant is
encoded only in the group manifold used in the starting
GFT, i.e., SO(4,1), but we have little control of how this is
done. Second, we have motivated the choice of starting
with this GFT model also by analogy with the McDowell-
Mansouri (and related) formulation of general relativity as
a SO(4,1)-gauge theory, but this works only for a strictly
positive cosmological constant. It is then natural to ask
what happens if we start from SO(3,2) in place of SO(4,1)
in the original model and then carry out the same procedure
for extracting an effective matter field theory. Further
investigations are needed to establish a better link between

our initial GFT model, classical solutions, and effective
field theory on the one hand, and a spin foam formulation
of the Freidel-Starodubstev classical gravity theory [31]
and the particle observable insertions à la Kowalski-
Glikman-Starodubtsev [20] on the other, which represent
another path to deriving an effective deformed special
relativity from spin foam models. Last, we have obtained
a scalar field theory for matter, and thus we should now
look for extensions of our procedure and a result that could
give instead matter fields with nonzero spin, e.g., Dirac
fermions or vector fields. Moreover, we have provided an
example of the emergence of space-time (deformed)
isometries from GFT, but it is natural to wonder if also
gauge symmetries and thus gauge fields can be seen as
emerging from some fundamental (GFT) quantum gravity
model. Higher spins have already encoded in 3D GFT in
[32], but never in 4D and in the usual sense of coupling
matter degrees of freedom to quantum gravity ones, instead
of having the first emerge from the second, as in the present
work. Therefore, this is an area of research that is still wide
open to be explored. We leave all these questions for future
work.
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