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Abstract. In cosmology an important role is played by homogeneous and isotropic
solutions of the Einstein–Euler equations and linearized perturbations of these. This
paper proves results on the asymptotic behavior of scalar perturbations both in the
approach to the initial singularity of the background model and at late times. The main
equation of interest is a linear hyperbolic equation whose coefficients depend only on
time. Expansions for the solutions are obtained in both asymptotic regimes. In both cases,
it is shown how general solutions with a linear equation of state can be parametrized by
certain functions which are coefficients in the asymptotic expansion. For some nonlinear
equations of state, it is found that the late-time asymptotic behavior is qualitatively
different from that in the linear case.
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1. Introduction

Astronomical observations allow information to be collected about the distribution
of matter in the universe. This distribution contains structures on many different
scales. Astrophysicists would like to provide a theoretical account of how these
structures formed. In particular, cosmologists would like to do this for structures
on the largest scales which can be observed. This means for instance giving an
explanation of the way in which galaxies cluster. The most powerful influence on
the dynamics of the matter distribution on very large scales is gravity. The most
appropriate description of the gravitational field in this context is given by the
Einstein equations of general relativity. It is also necessary to choose a model of the
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matter which generates the gravitational field. A frequent choice for this is a perfect
fluid satisfying the Euler equations. Thus, from a mathematical point of view, the
basic object of study is the Einstein–Euler system describing the evolution of a
self-gravitating fluid. This is a system of quasilinear hyperbolic equations.

The standard cosmological models are the Friedmann–Lemaitre–Robertson–
Walker (FLRW) models which are homogeneous and isotropic. This means in partic-
ular that the unknowns in the Einstein–Euler system depend only on time and the
partial differential equations reduce to ordinary differential equations. With appro-
priate assumptions on the fluid these ODE’s can be solved explicitly or, at least,
the qualitative behavior of their solutions can be determined in great detail. When
it comes to the study of inhomogeneous structures, however, the FLRW models are
by definition not sufficient. Since fully inhomogeneous solutions of the Einstein–
Euler system are difficult to understand a typical strategy is to linearize the system
about a background FLRW model. Under favorable conditions the linearized per-
turbations could give information about the evolution under the Einstein–Euler
system of initial data which are small but finite perturbations of those for the
FLRW background.

Linearization about a highly symmetric solution is a classical practice in applied
mathematics. For some examples, see [2, 5, 12]. It should be noted, however, that
there is an unusual feature in the case of the Einstein–Euler system which has to
do with the fact that these equations are invariant under diffeomorphisms. This is
related to the fact that the only thing that is of physical significance are equivalence
classes of solutions under diffeomorphisms. Since it is not known how to develop
PDE theory in a manifestly diffeomorphism-invariant way this leads to difficul-
ties. There is a corresponding equivalence relation on linearized solutions. Different
linearized solutions are related by the linearizations of one-parameter families of
diffeomorphisms, which are known in the literature on cosmology as gauge trans-
formations. In the end what is interesting is not the vector space of solutions of
the linearized equations but its quotient by gauge transformations. It is useful to
represent this quotient space by a subspace. This is what is known in the literature
on cosmology as gauge-invariant perturbation theory. This subject would no doubt
benefit from closer mathematical scrutiny but that task will not be attempted in
the present paper.

Instead the following pragmatic approach will be adopted: take an equation
from the astrophysical literature on cosmological perturbation theory and analyze
the properties of its solutions. As a basic source the book of Mukhanov [8] will be
used. The notation in the following will generally agree with that of [8]. It is standard
to classify cosmological perturbations into scalar, vector and tensor perturbations.
These terms will not be defined here. It should be noted that scalar perturbations
play a central role in the analysis of structure formation. This motivates the fact
that the results of this paper are concerned with that case. After a suitable gauge
choice scalar perturbations are described by solutions of a scalar wave equation for
a function Φ which corresponds, roughly speaking, to the Newtonian gravitational
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potential. In order to get definite expressions for the Einstein–Euler system and
its linearization about an FLRW model, it is necessary to choose an equation of
state p = f(ε) for the fluid. Here ε is the energy density of the fluid and p its pres-
sure. A case which is particularly simple analytically is that of a linear equation
of state p = wε where w is a constant. For physical reasons w is chosen to belong
to the interval [0, 1]. In fact the condition w ≥ 0 is necessary in order to make the
Euler equations hyperbolic. The case w = 0, known as dust, is somewhat excep-
tional and does not always fit well with the general arguments in the sequel. Since,
however, dust frequently comes up in the literature on cosmology it is important
to include it. In those cases where the general argument fails for dust this will be
pointed out.

For a linear equation of state as just described the equation for Φ is

Φ′′ +
6(1 + w)
1 + 3w

1
η
Φ′ = w∆Φ. (1.1)

Here a prime stands for d
dη . The time coordinate η belongs to the interval (0,∞).

The spatial variables, which will be denoted collectively by x, are supposed to belong
to the torus T 3. Thus, periodic boundary conditions are imposed. The Laplacian is
that of a fixed flat metric on the torus. Its expression in adapted coordinates agrees
with that for the usual Laplacian on R3. As a consequence of standard theory for
linear hyperbolic equations this equation has a unique solution on the whole time
interval (0,∞) for appropriate initial data given at a fixed time η = η0 > 0. These
are the restrictions of Φ and Φ′ to η = η0.

In the following, after some background and notation has been collected in
Sec. 2, the asymptotics of solutions of Eq. (1.1) is studied in the regimes η → 0
and η → ∞. Theorems and proofs for the first of these cases are given in Sec. 3
(Theorems 3.1 and 3.2) and for the second in Sec. 4 (Theorem 4.2). It is shown how
all solutions can be parametrized by asymptotic data in either of these regimes.
These are alternatives to the usual parametrization of solutions by Cauchy data.
An interesting feature of the expanding direction η → ∞ is that the main part of
the asymptotic data is a solution of the flat space wave equation W ′′ = w∆W .
Many of these results can be extended to more general equations of state. This is
the subject of Theorem 3.3 of Sec. 3 (limit η → 0) and Sec. 5. It is found that
for equations of state with power law behavior p ∼ ε1+σ at low density there is a
bifurcation with a fundamental change in the asymptotic behavior at σ = 1

3 .

2. Preliminaries

As outlined above, we study perturbations of FLRW cosmological models which are
spatially flat and have T 3 spatial topology. The spacetime being perturbed, which
we refer to as the background, is described by a metric of the form

a2(−dη2 + dx2) (2.1)
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on (0,∞)×T 3. Here dx2 indicates the flat metric on T 3 and the scale factor a = a(η)
is a non-decreasing function of the conformal time η. We use x to indicate points
on T 3. The signature used here is the opposite of that used by Mukhanov [8] but
all the equations required in the following are unaffected by this change.

We make use of the perfect fluid matter model, described by the pressure p and
energy density ε of the fluid. In order to specify the matter model completely, one
must provide an equation of state p = f(ε). Under this ansatz, the Einstein–Euler
equations reduce to a coupled system of ODEs for a and ε:

a′′ =
4πG

3
(ε− 3f(ε))a3 (2.2)

ε′ = −3H(ε+ f(ε)). (2.3)

As mentioned in the introduction, ( )′ indicates a derivative with respect to η.
Here G is Newton’s gravitational constant and H is the conformal Hubble param-
eter, given by H = a−1a′. We note the following useful relation (known as the
Hamiltonian constraint)

H2 =
8πG

3
a2ε. (2.4)

For a linear equation of state f(ε) = wε, solutions a(η) of (2.2) are explicitly
given by

a(η)
a(η0)

=
(
η

η0

)2/(1+3w)

, (2.5)

for some arbitrarily fixed η0 ∈ (0,∞). As the scale factor a vanishes as η → 0, the
spacetime develops a curvature singularity in that limit, which is known as a “big-
bang” type singularity and is viewed as being in the past of η0. Likewise the limit
as η → ∞ is referred to as “late times” as it corresponds to the distant future of η0.
Note that spacetimes described by these models are expanding, in the sense that
the scale factor is an increasing function of η. Note also that, since ε′ is negative,
large values of η correspond to small values of ε and vice-versa.

We study behavior near the singularity and at late times for those perturbations
to the metric (2.1) which are of the type usually referred to as scalar perturbations.
They satisfy evolution equations obtained by linearizing the Einstein equations
about the FLRW background. For the perfect fluid matter model all such pertur-
bations can be described, up to gauge freedom, by a single function Φ(η, x). Using
a certain gauge, the conformal-Newtonian gauge, the metric takes the form

a2[−(1 + 2λΦ)dη2 + (1 − 2λΦ)dx2] (2.6)

up to an error which is quadratic in the expansion parameter λ. The first order
perturbation satisfies the linearized Einstein–Euler equations provided

Φ′′ + 3(1 + f ′(ε))HΦ′ + 3
(
f ′(ε) − f(ε)

ε

)
H2Φ − f ′(ε)∆Φ = 0, (2.7)
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where ∆ is the Laplacian for the flat metric on T 3. For a derivation of this equation,
we refer the reader to [8, Sec. 7.2]. The corresponding perturbations to the energy
density, denoted by δε, are determined by

δε =
1

4πGa2
(−3HΦ′ − 3H2Φ + ∆Φ) (2.8)

and thus can be computed once (2.7) is understood.
The quantity f ′(ε) represents the square of the speed of sound for the fluid.

For physical reasons we require that f ′ always take values in the interval [0, 1], i.e.
that the speed of sound be real and not exceed the speed of light. A special case of
particular interest is that of a linear equation of state p = wε. In this situation, the
speed of sound is constant and Eq. (2.7) reduces to (1.1). Before the asymptotics
of solutions of (2.7) can reasonably be studied a prerequisite is a theorem which
guarantees global existence of solutions on the interval (0,∞). In order to get this
from the standard theory of hyperbolic equations, it is necessary to assume that f ′

never vanishes. In the following, it is always assumed that this holds except in the
special case of dust which is discussed separately.

Our analysis below relies on establishing a number of energy-type estimates for
solutions to (2.7). As the coefficients of this linear equation depend only on η, any
spatial derivative of Φ satisfies the same equation. Thus, any estimate we obtain for
Φ,Φ′, or ∇Φ (the gradient of Φ with respect to the flat metric on T 3) holds also for
all spatial derivatives of those quantities. One may then make use of the Sobolev
embedding theorem in order to establish pointwise estimates. We also make use
of the Poincaré estimate which implies that quantities having zero (spatial) mean
value are controlled in L2 by the norm of their (spatial) gradient.

Each of these norms is defined on the η-constant “spatial” slices of (0,∞)× T 3

with respect to the flat (η-independent) metric induced on T 3 by viewing T 3 as
a quotient of Euclidean space. All integration on T 3 is done with respect to the
corresponding volume element which we suppress in our notation. We generally
suppress dependence of functions on the spatial variable x, except in situations
where the inclusion of such dependence provides additional clarity. When necessary,
we denote Cartesian coordinates on T 3 by x = (xi); the corresponding derivatives
are denoted ∂i.

3. Asymptotics in the Approach to the Singularity

The purpose of this section is to analyse the asymptotics of solutions of (1.1) in the
limit η → 0 and to give some extensions of these results to more general equations
of state which need not be linear. Define ν = 1

2 (5+3w
1+3w ). Note that ν belongs to the

interval [1, 5/2].

Theorem 3.1. Let Φ(η) be a smooth solution of (1.1) on (0,∞)×T 3. Then, there
are coefficients Φk,l with k ≥ −2ν belonging to an increasing sequence of real num-
bers tending to infinity and l ∈ {0, 1}, smooth functions on T 3, such that the formal
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series
∑

k(Φk,0 +Φk,1 log η)ηk is asymptotic to Φ(η) in the limit η → 0 in the sense
of uniform convergence of the function and its spatial derivatives of all orders. All
coefficients can be expressed as linear combinations of Φ−2ν,0,Φ0,0 and their spatial
derivatives. If ν is not an integer, then all coefficients with l = 1 vanish. For any
value of w the coefficients Φk,l with l = 1 and k < 0 vanish.

In more detail, Φk,0 may only be nonzero when k is of the form −2ν + 2i or 2i
for a non-negative integer i while Φk,1 may only be nonzero for k of the form 2i with
i a non-negative integer. These coefficients are related by the following equations :

k(k + 2ν)Φk,0 = w∆Φk−2,0 − (2k + 2ν)Φk,1 (3.1)

and

k(k + 2ν)Φk,1 = w∆Φk−2,1. (3.2)

Proof. The basic tool which allows the solutions to be controlled is provided by
energy estimates. Let

E1(η) =
1
2

∫
T 3

|Φ′(η)|2 + w|∇Φ(η)|2. (3.3)

It satisfies the identity

d

dη
[η2(2ν+1)E1(η)] = (2ν + 1)η4ν+1

∫
T 3
w|∇Φ(η)|2. (3.4)

Since the right-hand side is manifestly non-negative it can be concluded that if
an initial time η0 is given then η2(2ν+1)E1(η) is bounded for η ≤ η0. Any spatial
derivative of Φ satisfies the same equation as Φ. Thus, corresponding bounds can be
obtained for the L2 norms of all spatial derivatives. Applying the Sobolev embedding
theorem then provides pointwise bounds for Φ and its spatial derivatives of all orders
in the past of a fixed Cauchy surface. These estimates can now be put back into
the equation to obtain further information about the asymptotics. To do this, it is
convenient to write (1.1) in the form

d

dη
[η2ν+1Φ′(η)] = η2ν+1w∆Φ(η). (3.5)

It can be deduced that

Φ′(η) = η−2ν−1

[
η2ν+1
0 Φ′(η0) − w

∫ η0

0

ζ2ν+1∆Φ(ζ)dζ + w

∫ η

0

ζ2ν+1∆Φ(ζ)dζ
]
.

(3.6)

The bounds already obtained guarantee the convergence of the integrals. This for-
mula allows the asymptotic expansions to be derived inductively. Using the fact
that the second integral is O(η2) already gives a one-term expansion for Φ′ and this
can be integrated to give a one-term expansion for Φ. Analogous expansions can be
obtained for all spatial derivatives of Φ in the same way using the corresponding
spatial derivatives of (3.6). When an asymptotic expansion with a finite number of
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explicit terms is substituted into the right-hand side of (3.6), an expansion for Φ′

(and thus by integration for Φ) with additional explicit terms is obtained. If the
last explicit term in the input is a multiple of ηp with p < −2, then there is one new
term in the output and it is a multiple of ηp+2. If the last explicit term is a multiple
of η−2, there is one new term and it is a multiple of log η. If the last explicit term
is a multiple of log η, then there are two new terms, one a multiple of η2 log η and
one a constant. If the last explicit term is ηp or ηp log η with p > −2, then there
is one new term and it is a multiple of ηp+2 or ηp+2 log η respectively. These state-
ments rely on the fact that when any of the terms in the asymptotic expansion is
substituted into the last integral in (3.6) the power −1 never arises. These remarks
suffice to prove the first part of the theorem. The resulting series is by construction
a formal series solution of the original equation. Comparing coefficients gives the
rest of the theorem.

Note that the only two values of w in the range of interest where logarithmic
terms occur in the expansions of the theorem are w = 1

9 and w = 1 corresponding
to ν = 2 and ν = 1 respectively. The two cases of most physical interest, w = 0
(dust) and w = 1

3 (radiation), are free of logarithms. In the case w = 0, most of
the expansion coefficients vanish and the two non-vanishing terms define an explicit
solution which is a linear combination of two powers of η.

The relative density perturbation is given by

δε

ε
= −2Φ − 2H−1Φ′ +

2
3
H−2∆Φ. (3.7)

Now H = 2
(1+3w)η . Substituting this relation and the asymptotic expansion for Φ

into the expression for the density perturbation gives:

δε

ε
=

∑
k

[
−(k(1 + 3w) + 2)Φk,0 − (1 + 3w)Φk,1 +

1
6
(1 + 3w)2∆Φk−2,0

+ (−(k(1 + 3w) + 2)Φk,1 +
1
6
(1 + 3w)2∆Φk−2,1 log η

]
ηk. (3.8)

The relations in Theorem 3.1 place no restrictions on the coefficients Φ−2ν,0

and Φ0,0 and so it is natural to ask if these can be prescribed freely. In other
words, if two smooth functions on T 3 are given, is there a smooth solution of the
equations in whose asymptotic expansion for η → 0 precisely these functions occur
as the coefficients Φ−2ν,0 and Φ0,0? The next theorem answers this question in the
affirmative. Since the proof is closely analogous to arguments which are already in
the literature, it will only be sketched.

Theorem 3.2. Let Ψ1 and Ψ2 be smooth functions on T 3. Then, there exists a
unique solution of (1.1) of the type considered in Theorem 3.1 with Φ−2ν,0 = Ψ1

and Φ0,0 = Ψ2.
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Proof (sketch). The proof of this theorem uses Fuchsian techniques. It implements
the strategy applied in [9] to prove theorems on the existence of solutions of the
vacuum Einstein equations belonging to the Gowdy class with prescribed singularity
structure. In the present situation, some simplifications arise in comparison to the
argument for Gowdy due to the fact that the equation being considered is linear.
The procedure is to first treat the case of analytic data and then use the resulting
analytic solutions to handle the smooth case. To reduce the equation to Fuchsian
form, the following new variables are introduced. First, define a function v(η, x) by
the relation

Φ(η) = Ψ1η
−2ν +

∑
−2ν<k<0

Φk,0η
k + Φ0,1 log η + Ψ2 + v(η). (3.9)

Here it is assumed that the consistency relations (3.1) hold for −2ν ≤ k ≤ 0. As a
consequence of these relations and the original equation, v satisfies

v′′ +
2ν + 1
η

v′ − w∆v = w∆Φ0,1 log η + w∆Ψ2 + w
∑

0<k<2

∆Φk,0η
k. (3.10)

Note that the last sum will contain one non-vanishing term for ν not an integer
and none for ν an integer. Denote the right-hand side of (3.10) by Q. This equation
can be reduced to a first order system by introducing new variables v0 = ηv′ and
vi = η∂iv. Let V be the vector-valued unknown with components (v, v0, vi). Then,
the first order system is

η∂ηV +NV = ηζf(η, V,DV ) (3.11)

where

N =


0 −1 0
0 2ν 0
0 0 0


 and f =




0

η1−ζw∂iv
i + η2−ζQ

η1−ζ∂i(v0 + v)


 . (3.12)

Here ζ is any positive real number less than one and DV denotes the collection
of spatial derivatives of V . It will be shown that this equation has a unique solution
v which converges to zero as η → 0. Initially we assume that the functions Ψ1 and
Ψ2 are analytic. Then results proved in [7] can be applied. See also [1, Sec. 4] for
some further information on these ideas. One of the hypotheses required is that
f is regular in the analytic sense defined there. What this means is that f and
all its derivatives with respect to any argument other than η are real analytic for
η > 0 and extend continuously to η = 0. The other hypothesis is that the matrix
exponential σN should be uniformly bounded for all 0 < σ < 1. This follows from
the fact that N is diagonalizable with non-negative eigenvalues.

To extend this result to the smooth case more work is necessary. The basic
idea is to approximate the smooth functions Ψ1 and Ψ2 by sequences of analytic
functions (Ψ1)n and (Ψ2)n, apply the analytic existence theorem just discussed to
get a sequence of solutions Vn of the Fuchsian system and then show that Vn tends
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to a limit V as n → ∞. The function V is then the solution of the problem with
smooth data. To show the convergence of Vn, suitable estimates are required and in
order to obtain these the Fuchsian equation is written in an alternative form which
is symmetric hyperbolic. This rewriting is only possible for w �= 0 but for w = 0
the system, being an ODE, is already symmetric hyperbolic and so the extra step
is not required. In general, a simplification of the system is achieved by introducing
a new time variable by t = ηζ and rescaling f by a factor ζ−1. Then, the system
can be written as

tA0∂tV + tAj∂jV +MV = tg(t, V,DV ), (3.13)

where

M =




0 −1 0

0
2ν
ζw

0

0 0 −1 + ζ

ζ
I



, g =




0

t
2−ζ

ζ Q

0


 (3.14)

and the other coefficient matrices are given by A0 = diag(1, 1
w , I) and

Aj =



0 0 0

0 0 −ζ−1t
1−ζ

ζ ej

0 −ζ−1t
1−ζ

ζ ej 0


 (3.15)

with ej the jth standard basis vector in R3. This is a symmetric hyperbolic system.
A disadvantage is that in passing from N to M positivity is lost.

The fact that M has a negative eigenvalue can be overcome by subtracting an
approximate solution from v to obtain a new unknown. Expressing the equation in
terms of the new unknown leads to a system which is similar to that for v but with
M replaced by M + nI for an integer n. For n sufficiently large, this means that
the replacement for M is positive definite. With this choice the system is both in
Fuchsian form and symmetric hyperbolic. The necessary approximate solution can
be taken to be a formal solution of sufficently high order as introduced in [9, Sec. 2].
The fact that the system is symmetric hyperbolic leads to energy estimates which
can be used to prove the convergence of the sequence of analytic solutions to a
solution corresponding to the smooth initial data, thus completing the proof of the
existence part of the theorem. Uniqueness can be proved using an energy estimate
as has been worked out in [9].

It would presumably be possible to extend the above results to the case that
the data are only assumed to belong to a suitable Sobolev space. An alternative
approach to doing so would be try to apply ideas in the paper [6] of Kichenassamy.

The proofs just presented have been strongly influenced by work on Gowdy
spacetimes. For a special class of these, the polarized Gowdy spacetimes, the basic
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field equation is Ptt+t−1Pt = Pxx. Evidently this is closely related to (1.1) although
they are not identical for any choice of w, even if attention is restricted to solutions
of (1.1) depending on only one space variable. The energy arguments above were
inspired by those applied to the polarized Gowdy equation in [3]. The following
analogue of Theorem 3.2 is a special case of a result in [9]. If smooth periodic
functions k(x) and ω(x) are given with k everywhere positive, there is a smooth
solution of the polarized Gowdy equations which satisfies

P (t, x) = k(x) log t+ ω(x) + o(1) (3.16)

as t → 0. It is plausible that the positivity restriction on k, while very important
for general (non-polarized) Gowdy spacetimes, should be irrelevant in the polarized
case. It turns out that following the arguments used above to analyze (1.1) allows
this intuition to be proved correct.

One way of attempting to reduce the polarized Gowdy equation to Fuchsian
form is to mimic (3.9) and write P = k log t+ω+v. This fails because the analogue
of the matrix N has ν replaced by zero. Thus, the matrix has all eigenvalues zero
and includes a nontrivial Jordan block. To access the Fuchsian theory in the analytic
case, the expansion for P may be replaced by

P = k log t+ ω + tδv (3.17)

for a small positive δ. With this modification the reduction procedure applied
to (1.1) gives a Fuchsian system. It can be concluded that k and ω can be pre-
scribed in the case that they are analytic. Once this has been achieved the smooth
case can be handled just as in the proof of Theorem 3.2.

It will now be shown that some of the results which have been proved for a
linear equation of state can be extended to more general equations of state. In the
discussion which follows, it will be convenient to exclude the case of a linear equation
of state which has been treated already. This in particular excludes dust so that
by our general assumptions f ′ never vanishes. In this case, we consider solutions
to (2.7) rather than (1.1). Choose an initial time η0 and for a given background
solution let ε(η0) = ε0. From the condition that f ′(ε) ≤ 1, it follows that

Λ := sup
(ε0,∞)

∣∣∣∣f ′(ε) − f(ε)
ε

∣∣∣∣
1/2

(3.18)

is strictly positive and finite. It will be assumed in addition that the equation of
state satisfies the condition

sup
(ε0,∞)

∣∣∣∣
(
ε+ f(ε)
f ′(ε)

)
d2f

dε2

∣∣∣∣ <∞. (3.19)

Using the fact that Λ > 0, it follows that there exists a positive number λ satisfying
the following three inequalities:

2λ
df

dε
≥ 3(ε+ f(ε))

d2f

dε2
, (3.20)
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4λ2 − 2
[
6(1 + f ′(ε)) +

(
1 +

3f(ε)
ε

)]
λ

+ 6(1 + f ′(ε))
(

1 +
3f(ε)
ε

)
− Λ−2

∣∣∣∣Λ2 − 3
(
f ′(ε) − f(ε)

ε

)∣∣∣∣
2

≥ 0 (3.21)

and

λ ≥ 3(1 + f ′(ε)). (3.22)

That (3.20) can be satisfied follows from (3.19). The fact that f ′(ε) and f(ε)/ε are
bounded means that the first term in the expression on the left-hand side of (3.21)
dominates the other terms for λ sufficiently large and so the second condition on
λ can also be satisfied. The constant λ can be chosen to satisfy (3.22) since the
right-hand side of that inequality is bounded. Note for comparison that for a linear
equation of state Λ = 0. In that case λ can be taken to be the larger root of
the expression obtained from the left-hand side of (3.21) by omitting the term
containing Λ. This root is 3(1+w). Define the following generalization of the energy
functional (3.3):

E2(η) =
1
2

∫
T 3

|Φ′(η)|2 + f ′(ε)|∇Φ(η)|2 + ΛH2|Φ(η)|2. (3.23)

(Note that we suppress the dependence of ε and H on η.) A computation shows
that if a denotes the scale factor, then due to the inequalities (3.20)–(3.22)

d

dη
[a2λE2(η)] ≥ 0. (3.24)

In more detail, computing the time derivative of a2λE2 and using Eq. (2.7) along
with the equations satisfied by the background quantities ε and H gives an integral
where the integrand is a sum of terms each of which has a factor Φ2, |Φ′|2,ΦΦ′ or
|∇Φ|2. The aim is to show that the sum of these terms is non-negative. To do this,
it is first assumed that the coefficient of |∇Φ|2 is non-negative. This leads to the
condition (3.20). Next, it is shown that the quadratic form in Φ and Φ′ is positive
semidefinite. This can be done by using the inequality

|ΛHΦΦ′| ≤ δ

2
Λ2H2Φ2 +

1
2δ

(Φ′)2, (3.25)

which holds for any δ > 0, to estimate the quadratic form from below by the
following sum of a term containing Φ2 and one containing |Φ′|2:

1
2
Λ2H2

[
2λ−

(
1 +

3f(ε)
ε

)
− δΛ−1

∣∣∣∣Λ2 − 3
(
f ′(ε) − f(ε)

ε

)∣∣∣∣
]

Φ2

+
1
2

[
2λ− 6(1 + f ′(ε)) − Λ−1

δ

∣∣∣∣Λ2 − 3
(
f ′(ε) − f(ε)

ε

)∣∣∣∣
]
|Φ′|2. (3.26)

It remains to ensure that the coefficients of these terms are non-negative and this
follows from (3.21) and (3.22), choosing δ sufficiently small. It can be concluded
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from (3.24) that E2(η) = O(a(η)−2λ) as η → 0. As in the case of a linear equation
of state, corresponding estimates hold for spatial derivatives and pointwise estimates
follow by Sobolev embedding. An integral formula for Φ′ can be obtained as in the
case of a linear equation of state. It reads (with some arguments suppressed; recall
ε and H depend on η)

Φ′(η) = (f(ε) + ε)
[

Φ′(η0)
f(ε0) + ε0

−
∫ η

η0

1
f(ε) + ε

(
f ′(ε)∆Φ + 3

(
f ′(ε) − f(ε)

ε

)
H2Φ

)]
. (3.27)

If no further assumptions are made on the equation of state, then using the
known boundedness statements and repeatedly substituting into the right-hand
side of (3.27) would lead to unwieldy expressions involving iterated integrals. Sim-
pler results can be obtained if it is assumed that in the limit ε→ ∞ the function f
is linear in leading order with lower powers as corrections. In other words, for this
assume that f admits an asymptotic expansion of the form

f(ε) ∼ wε+
∞∑

j=1

fjε
aj (3.28)

as ε → ∞. Here the fj are constants while {aj} is a decreasing sequence of real
numbers all of which are less than one and which tend to −∞ as j → ∞. Assume
further that the relation obtained by differentiating this expansion term by term
any number of times is also a valid asymptotic expansion. To have a concrete exam-
ple, consider the polytropic equation of state which is given parametrically by the
relations

ε = m+Knm
n+1

n , p = Km
n+1

n (3.29)

with constantsK and n satisfying 0 < K < 1 and n > 1. In this case, the asymptotic
expansion is of the form

f(ε) = n−1ε+ n−1(Kn)
1

n+1 ε
n

n+1 + · · · . (3.30)

Returning to the more general case (3.28), define a quantity m by

m(ε) = exp
{∫ ε

1

(ξ + f(ξ))−1dξ

}
. (3.31)

Substituting the asymptotic expression (3.28) into (3.31) gives a corresponding
asymptotic expansion for the function m(ε) as a sum of powers of ε with the leading
term being proportional to ε

1
w+1 . It follows from the continuity equation (2.3) for

the fluid that m is proportional to a−3. This leads to an asymptotic expansion for
ε in terms of a. Equation (2.4) implies that a′ =

√
8πG/3ε1/2a2; substituting for ε

in terms of a gives rise to a relation which can be integrated to give an asymptotic
expansion for a in terms of η in the limit η → 0. The leading term is proportional
to η

2
3w+1 . Substituting this back in leads to an asymptotic expansion for a′ from
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which an asymptotic expansion for H can be obtained. An asymptotic expression
for ε in terms of η can also be derived. Thus in the end, there are expansions for
all the important quantities in the background solution in terms of η. In all cases,
the leading term in the expansion agrees with that in the case of a linear equation
of state. The result is an integral equation which can be written in the form

Φ′(η) = h1(η)
[
C −

∫ η0

0

h2(ζ)∆Φ(ζ) − h3(ζ)Φ(ζ)dζ

+
∫ η

0

h2(ζ)∆Φ(ζ) + h3(ζ)Φ(ζ)dζ
]
, (3.32)

where C is a constant depending only on the data at time η0 and asymptotic
expansions are available for the functions h1, h2 and h3. The leading terms in h1

and h2 are constant multiples of the corresponding powers of η for a linear equation
of state. To see the leading order behavior of h3 recall that in (3.32), the coefficient
of Φ is

3
(
f ′(ε) − f(ε)

ε

)
H2. (3.33)

Hence if fj is the first non-vanishing coefficient in the expansion (3.30), then the
leading order power in h3 is less than that in h2 by α = 2− 6(1+w)(1−aj)

1+3w . To obtain
estimates close to η = 0, the estimate for the energy can be applied starting from
η very small. In other words, ε0 can be chosen as large as desired. Then, all the
coefficients in the left-hand side of (3.21) not involving Λ are as close as desired
to those for the corresponding linear equation of state. Since Λ is arbitrarily small,
the coefficient involving Λ is also arbitrarily small. It follows that λ can be chosen
to have any value strictly greater than 3(1 + w). Hence, E can be bounded by
any power greater than the power in the corresponding linear case. This is enough
to proceed as in the proof of Theorem 3.1 to obtain an asymptotic expansion for
Φ where each invidual term is a constant multiple of an expression of the form
ηk(log η)l with l = 0 or l = 1 and the leading term is just as in Theorem 3.1 with
the corresponding value of w. The key thing that makes this work is that α < 2
so that no logarithms are generated when evaluating the integral in (3.32) in the
course of the iteration. The results of this discussion can be summed up as follows.

Theorem 3.3. Let Φ be a smooth solution of (2.7) on (0,∞)×T 3. Suppose that the
equation of state has an asymptotic expansion of the form (3.28). Then, there are
coefficients Φk,l with k ≥ −2ν belonging to an increasing sequence of real numbers
tending to infinity and l ∈ {0, 1}, smooth functions on T 3, such that the formal
series

∑
k Φk,l(log η)lηk is asymptotic to Φ in the limit η → 0. All coefficients in

the expansion are determined uniquely by Φ−2ν,0 and Φ0,0.

4. Late-Time Asymptotics for a Linear Equation of State

In this section, information is obtained about the asymptotics of solutions of
Eq. (1.1) in the limit η → ∞; some extensions of these results to more general
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equations of state are derived in Sec. 5. Once again energy estimates play a funda-
mental role. In this case, it is convenient to treat homogeneous solutions separately.
By a homogeneous solution, we mean one which does not depend on the spatial coor-
dinates. These can be characterized as the solutions whose initial data on a given
spacelike hypersurface do not depend on the spatial coordinates. For this class of
Eq. (1.1) solutions can be solved explicitly with the result that Φ = A+Bη−2ν for
constants A and B. A general solution can be written as the sum of a homogeneous
solution and a solution such that Φ has zero mean on any hypersurface of constant
conformal time. Call solutions of the latter type zero-mean solutions. Then, in order
to determine the late-time asymptotics for general solutions, it suffices to do so for
zero-mean solutions. In this case, define ψ(η) = ην+ 1

2 Φ(η). Then, ψ satisfies the
equation

ψ′′ = w∆ψ +
(
ν2 − 1

4

)
η−2ψ. (4.1)

Define an energy by

E3(η) =
1
2

∫
T 3

|ψ′(η)|2 + w|∇ψ(η)|2. (4.2)

Then

E′
3(η) = 2

(
ν2 − 1

4

)
η−2

∫
T 3
ψ(η)ψ′(η). (4.3)

The integral on the right-hand side of this equation can be bounded, using the
Cauchy–Schwarz inequality, in terms of the L2-norms of ψ′ and ψ. The first of
these can be bounded in terms of the energy and due to the fact that the mean
value of ψ is zero, the same is true of the second. Thus, E′

3(η) ≤ Cη−2E3(η) for a
constant C. By Gronwall’s inequality, it follows that E3 is globally bounded in the
future. These arguments apply equally well to spatial derivatives of ψ of any order.
By the Sobolev embedding theorem, it can be concluded that ψ and its spatial
derivatives of any order are bounded. The energy bounds and the basic equation
then imply that all spacetime derivatives of any order are uniformly bounded in
time.

Let ηj be a sequence of times tending to infinity and consider the translates
defined by ψj(η) = ψ(η + ηj). The sequence ψj satisfies uniform C∞ bounds. Con-
sider the restriction of this sequence to an interval [η0, η1]. By the Arzelà–Ascoli
theorem, the sequence of restrictions has a uniformly convergent subsequence. By
passing to further subsequences and diagonalization, it can be shown that ψ and
its spacetime derivatives of all orders converge uniformly on compact subsets to a
limit W . Passing to the limit in the evolution equation for ψ along one of these
sequences shows that W satisfies the flat-space wave equation W ′′ = w∆W . Note
that a priori the function W could depend on the sequence of times chosen. This
issue is examined more closely below.
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Given a smooth solution of (4.1), it is possible to do a Fourier transform in space
to get the equation

ψ̂′′ = −w|k|2ψ̂ +
(
ν2 − 1

4

)
η−2ψ̂ (4.4)

which is referred to below as the mode equation. Here k is a vector. The restriction
to zero-mean solutions implies that the case k = 0 of (4.4) can be ignored.

Lemma 4.1. Any solution φ̂ of Eq. (4.4) has an asymptotic expansion of the form

φ̂(η) = W̄k cos(
√
w|k|(η − η̄k)) +O(η−1), (4.5)

for constants η̄k and W̄k, in the limit η → ∞.

Proof. To prove the lemma, it is convenient to introduce polar coordinates associ-
ated to the variables ψ̂ and 1√

w|k| ψ̂
′. Thus, ψ̂ = r cos θ and 1√

w|k| ψ̂
′ = r sin θ. This

leads to the equations:

r′ =
1√
w|k|

(
ν2 − 1

4

)
rη−2 sin θ cos θ, (4.6)

θ′ = −√
w|k| + 1√

w|k|
(
ν2 − 1

4

)
η−2 cos2 θ. (4.7)

It follows from (4.7) that

θ(η) = −√
w|k|(η − η̄k) +O(η−1) (4.8)

for a constant η̄k. From (4.6), it follows that

r(η) = W̄k(1 +O(η−1)) (4.9)

for a constant W̄k. As a consequence of (4.8), we have

cos(η(θ)) = cos(
√
w|k|(η − η̄k)) +O(η−1). (4.10)

Together with (4.9) this gives the conclusion of the lemma.

Consider a zero-mean solution of the type considered before. Let a function W

be defined by taking the sequence ηj used above to consist of integer multiples
of 2π. We now show that the function ψ −W tends to zero as η → ∞. In order
to do this, it suffices to show that it does so along a subsequence of an arbitrary
sequence of values ζj of η tending to infinity. By passing to a subsequence, as before
it can be arranged that the translates by the amounts ζj converge uniformly on
compact subsets as j → ∞. Call the limit Y . The aim is to prove that Y = 0. If
not there must be some mode Ŷ which is nonzero. It can be obtained as the limit
of some ψ̂− Ŵ . From Lemma 4.1, it can be seen that Ŵ = W̄k cos(

√
w|k|(η− ηk)).

Hence, ψ̂ − Ŵ = O(η−1) and so Ŷ = 0, a contradiction. Convergence of deriva-
tives can be obtained in a corresponding way. Thus any solution can be written as
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Φ(η, x) = η−ν− 1
2 (W (η, x) + o(1)). A similar result for the polarized Gowdy equation

with a sharper estimate on the error term was proved in [4].
A late-time asymptotic expansion has now been derived which involves a solution

W of the flat-space wave equation. Comparing with the results on parametrizing
solutions by the coefficients in an asymptotic expansion near the singularity it is
natural to ask if the function W can be prescribed freely. It will now be shown
that this is the case by following the proof of an analogous result for the polarized
Gowdy equation due to Ringström [11]. Write an arbitrary zero-mean solution in
the form

Φ(η, x) = η−ν− 1
2W (η, x) + ω(η, x). (4.11)

Then, ω satisfies the equation

ω′′ + η−1ω′ − w∆ω =
(
ν2 − 1

4

)
η−ν− 5

2W. (4.12)

Define

H(η) =
1
2

∫
T 3

|ω′(η)|2 + w|∇ω(η)|2 (4.13)

and

Γ(η) =
1
2η

∫
T 3
ω(η)ω′(η). (4.14)

The aim is to study late times and attention will be restricted to the region where
η ≥ w−1. At this point it is necessary to assume that w > 0. The following inequal-
ities show the equivalence of H and H + Γ as norms of (ω′,∇ω):

|Γ(η)| ≤ 1
2wη

H(η),
1
2
H ≤ H + Γ ≤ 3

2
H. (4.15)

Now

d

dη
[H + Γ] = −1

η
(H + Γ) − 4ν + 3

2η
Γ +

(
ν2 − 1

4

)
η−ν− 5

2

∫
T 3
ω′W

+
1
2

(
ν2 − 1

4

)
η−ν− 7

2

∫
T 3
ωW. (4.16)

Using the equivalence of H + Γ and H this can be used to derive the following
differential inequality

d

dη
[H + Γ] ≥ −

(
1
η

+
4ν + 3
2wη2

)
(H + Γ)

− η−ν− 5
2 ‖W‖L2

(
ν2 − 1

4

) (
2 +

√
w√

2

)
(H + Γ)1/2. (4.17)

By analogy with [11, Eq. (3.7)] define

E4(η) = ηe
4ν+3
2ηw (H(η) + Γ(η)). (4.18)
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This quantity satisfies an inequality of the form

E′
4(η) ≥ −Cη−ν−2‖W (η)‖L2E4(η)1/2 (4.19)

for a positive constant C depending on w. Since η−ν−2 is integrable at infinity
this inequality can be used in just the same way as the corresponding inequality
in [11]. In this way, it can be proved that given a solution W of the flat space
wave equation there is a corresponding solution Φ of (1.1). It follows from the proof
that E4(η) = O(η−2ν−2). Hence, H(η) = O(η−2ν−3) and the solution decays like
η−3/2−ν .

The information obtained concerning the asymptotics of the solutions con-
structed starting from a solution W of the wave equation is stronger that what
was proved about general solutions of (1.1) up to this point. This can be improved
on as follows. Given a solution Φ of (1.1) a solution W of the flat space wave
equation is obtained. From there a solution Φ̃ of (1.1) is obtained with stronger
information on the asymptotics. The aim is now to show that Φ̃ = Φ. To do this,
it is enough to show that each Fourier mode agrees. This means showing that a
solution ψ̂ of (4.4) vanishes if it tends to zero as η → ∞. That the latter statement
holds follows easily from (4.6). What has been proved can be summed up in the
following theorem.

Theorem 4.2. Let Φ be a global smooth solution of (1.1). Then, there exist con-
stants A and B and a smooth solution W of the equation W ′′ = w∆W with zero
spatial average such that

Φ(η, x) = A+W (η, x)η−ν− 1
2 +Bη−2ν +O(η−ν− 3

2 ). (4.20)

This asymptotic expansion may be differentiated term by term in space as often as
desired.

Note that the third explicit term in this asymptotic expansion is often no larger
than the error term. The function W can be prescribed freely.

5. Late-Time Asymptotics for a General Equation of State

It will now be investigated how the results of the previous section can be extended
to the case of a more general equation of state. The class of equations of state which
will be treated is defined by requiring that they admit an asymptotic expansion of
the form

f(ε) ∼ wε+
∞∑

j=1

fjε
aj (5.1)

for ε → 0. Here w ≥ 0, the coefficients aj are all greater than one and form an
increasing sequence. To ensure the positivity of f ′, it is assumed that if w = 0
the coefficient f1 is positive. This form of the equation of state may be compared
with that of (3.28). It is further assumed that this expansion retains its validity
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when differentiated term by term as often as desired. An example is given by the
polytropic equation of state (3.29). In that case w = 0, f1 = K and a1 = n+1

n . With
this assumption information can be obtained on the leading order asymptotics of
the background solution as η → ∞. To simplify the notation define σ = a1−1. It is
convenient to use the mass density once more, writing (3.31) in the equivalent form

m(ε) = exp
{
−

∫ 1

ε

(ξ + f(ξ))−1dξ

}
. (5.2)

Then, m(ε) has an expansion about ε = 0 where the leading term is proportional to
ε

1
w+1 . In particular, when w = 0 the leading term is linear. Using the fact that m is

proportional to a−3 for any equation of state leads to an asymptotic expansion for ε
in terms of a. Putting this information into (2.4) shows that a(η) has an expansion
in the limit η → ∞ with the leading term proportional to η

2
3w+1 . Finally, it follows

that ε and H have expansions with leading terms proportional to η−
6(1+w)
1+3w and η−1

respectively. With the leading asymptotics of the background solution having been
determined, it is possible to derive asymptotics for the coefficients in the equation
for Φ.

As in the case of a linear equation of state, it is convenient to treat homogeneous
and zero-mean solutions separately. The homogeneous solutions will be analysed
first. This leads to consideration of the equation obtained from (2.7) by omitting
the term containing spatial derivatives. It is convenient here to exclude the case of
a linear equation of state which was previously analysed so as to ensure that σ is
defined uniquely in terms of the equation of state. The coefficients satisfy:

3(1 + f ′(ε)) = 3(1 + w + (σ + 1)f1η−β) + o(η−β) (5.3)

and

3
(
f ′(ε) − f(ε)

ε

)
= 3f1ση−β + o(η−β), (5.4)

where β = 6σ(1−w)
1+3w . Define

F =
1
2
Φ′2 + αη−2−βΦ2, (5.5)

where α is a positive constant which needs to be chosen appropriately in what
follows. Computing the derivative of F with respect to η and using the equation
gives a sum of terms involving Φ′2,Φ2 and ΦΦ′. The aim is to show that F is bounded
and to do this it suffices to consider arbitrarily late times. The leading order terms
in the coefficients of Φ2 and Φ′2 are − 6(1+w)

1+3w η−1 and −Aη−3−β respectively, where
A is a positive constant. The coefficient of ΦΦ′ has a leading term proportional to
η−2−β for a general choice of α. However, if α is chosen to be half the coefficient
of the leading order term in the expansion of the coefficient of Φ in (2.7), then a
cancellation occurs and the coefficient becomes o(η−2−β). This choice is made here.
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The aim is to show that the term containing ΦΦ′ can be absorbed by the sum of
the other two so as to leave a non-positive remainder. To do this the inequality

|η−2−βΦΦ′| ≤ 1
2
(η−1Φ′2 + η−3−2βΦ2) (5.6)

is used. The powers of η which arise from this inequality match those in the leading
order terms in the coefficients of the manifestly negative terms in the expression
for the derivative of F with respect to η. Thus, at late times the cross-term can be
absorbed in the terms with the desired sign. The conclusion is that F is bounded. In
fact, this can be improved somewhat. The derivative of F can be estimated above by
−2γη−1F for any positive constant γ < 2ν+1. This means that Φ′ decays like η−γ .
It can be concluded that Φ is bounded. From the evolution equation for Φ and the
boundedness statements already obtained, it follows that (η2ν+1Φ′)′ is integrable.
Thus, Φ = A+Bη−2ν + · · · for constants A and B and the leading order behavior
is as in the case of a linear equation of state.

It turns out to be useful for the analysis of the zero-mean solutions in the
expanding direction to introduce a new time variable τ satisfying the relation
dτ/dη =

√
f ′(ε). Substituting the asymptotics of f ′(ε) in terms of η into this

provides an asymptotic expansion for τ in terms of η. For w > 0 a linear relation is
obtained in leading order while for w = 0 and σ �= 1

3 the expansion reads

τ = C1η
1−3σ + τ∞ + · · · (5.7)

for constants C1 and τ∞. Note that the second term in this expansion is only smaller
than the first for σ < 1

3 . For w = 0 and σ = 1
3 , the power in this expression gets

replaced by log η. From these facts, it can be seen that τ → ∞ for η → ∞ when
w > 0 or when w = 0 and σ ≤ 1

3 . In contrast τ tends to the finite limit τ∞ for
η → ∞ when w = 0 and σ > 1

3 . This is a symptom of a bifurcation where the
asymptotics of the linearized solution undergoes a major change. For convenience
we say that the dynamics for an equation of state with an asymptotic expansion of
the form (5.1) is underdamped if w > 0 or σ < 1

3 , critical if w = 0 and σ = 1
3 and

overdamped if w = 0 and σ > 1
3 .

Next, the late-time behavior will be analysed for zero-mean solutions with an
equation of state corresponding to underdamped dynamics. The first step is to
introduce the time variable τ into (2.7) with the result:

Φττ + 3ZH̃Φτ + 3Y H̃2Φ − ∆Φ = 0, (5.8)

where

Y = f ′(ε) − f(ε)
ε
, (5.9)

Z = 1 + f ′(ε) − 1
2

(ε+ f(ε))f ′′(ε)
f ′(ε)

(5.10)

and H̃ = a−1aτ . Derivatives with respect to τ are denoted by subscripts. Next, the
term containing Φτ will be eliminated by multiplying Φ by a suitable factor Ω−1.
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Choose Ω to satisfy

Ωτ

Ω
= −3

2
ZH̃. (5.11)

For all three types the behavior of Ω as a function of a in the limit ε → 0 can
be determined. The result is that the leading order term in Ω is proportional to
a−

3
2 (1+w) for w > 0 and proportional to a−

3
2 (1−σ

2 ) for w = 0. The function Ψ =
Ω−1Φ satisfies an equation of the form

Ψττ = A(ε)H̃2Ψ + ∆Ψ, (5.12)

whereA(ε) is a rational function of ε, f(ε), f ′′(ε) and f ′′′(ε). Under the given assump-
tions on the equation of state it is bounded. Proving this requires examining many
terms but is routine. For example, the only term containing the third derivative
of f is 3(ε+f(ε))2f ′′′(ε)

2f ′(ε) . The leading order terms in the asymptotic expansions of
numerator and denominator are both proportional to εσ. Note also that the leading
order term in the expansion for H̃ is proportional to τ−1 for any σ < 1

3 . Note for
comparison that H̃ tends to a constant value as τ → ∞ in the case σ = 1

3 .
Define an energy by

E5(τ) =
1
2

∫
Ψ2

τ + |∇Ψ|2. (5.13)

Then, using the same techniques as in previous energy estimates shows that there
is a constant C such that

dE5

dτ
≤ C|A|H̃2E5. (5.14)

Using the information available concerning A and H̃ shows that E5 is bounded in
the future. Taking derivatives of the equation and using the same arguments as in
previous cases shows that Ψ and its derivatives of all orders with respect to x and
τ are bounded. It follows that any sequence of translates Ψ(τ + τn) for a sequence
τn tending to infinity has a subsequence which converges on compact subsets to a
limit W .

Doing a Fourier transform of Eq. (5.12) in space leads to the mode equation

Ψ̂ττ = −|k|2Ψ̂ +AH̃2Ψ̂. (5.15)

Introducing polar coordinates in the ( Ψ̂
|k| ,

Ψ̂τ

|k| )-plane leads to the system

dr

dτ
=

1
|k|ArH̃

−2 sin θ cos θ, (5.16)

dθ

dτ
= −|k| + 1

|k|AH̃
−2 cos2 θ. (5.17)

This implies that

θ(τ) = −|k|(τ − τ̄k) +O(τ−1) (5.18)
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and

r(τ) = W̄k(1 +O(τ−1)), (5.19)

for some constants τ̄k and W̄k. Arguing as in the case of a linear equation of state
leads to the relation Ψ(τ, x) = W (τ, x)+ o(1) where W is a solution of the equation
Wττ = ∆W . Using the form of the leading order term in Ω as a function of a,
it can be shown that the leading order term in Ω as a function of τ is given by

τ−
3(1+w)
1+3w = τ−ν− 1

2 and τ−
3(1− σ

2 )
(1−3σ) in the cases w > 0 and w = 0 respectively. Note

that the first of these reproduces the result in the case of a linear equation of state.
It does not seem to be possible to write the expansion directly in terms of η in
such a way that it gives more insight than the expression in terms of τ . The leading
asymptotics of a zero-mean solution is obtained by taking a solution of the flat space
wave equation, distorting the time variable by a diffeomorphism and multiplying
by a power of the time coordinate which has been explicitly computed.

Consider next the case w = 0, σ > 1
3 (overdamped case). The time coordinate τ

tends to the finite limit τ∞ as η → ∞. Define G = H̃−2∂τ H̃. The function G tends
to the limit 3

2 (σ − 1
3 ) as τ → τ∞. Let

E6 =
∫

Φ2
τ + |∇Φ|2 + Λ2H̃2Φ2 (5.20)

for a constant Λ which remains to be chosen. For a constant λ computing ∂τ (a2λE6)
gives rise to a sum of expressions containing Φ2,Φ2

τ ,ΦΦτ and |∇Φ|2. Using the
inequality

H̃2ΦτΦ ≤ 1
2δ

H̃Φ2
τ +

δ

2
H̃3Φ2 (5.21)

leads to an inequality where the term involving ΦΦτ has been eliminated. To obtain
some control on the energy by means of the inequality, the coefficients Λ and λ

should be chosen in such a way that all terms on the right-hand side are manifestly
non-positive. The conditions for this to happen are the inequalities λ ≤ 0,

1
2δ

|Λ2 − 3Y | ≤ 3Z − λ (5.22)

and

δ

2
|Λ2 − 3Y | ≤ −Λ2(λ +G). (5.23)

Note that these inequalities imply in particular that λ < 0. Consider now the
limit τ → τ∞ where Y behaves asymptotically like f1σεσ and Z → 1 − 1

2σ. In
this limit the inequality (5.23) reduces to λ ≤ − 3

2 (σ − 1
3 ) − δ

2 . Suppose therefore
that λ < − 3

2 (σ − 1
3 ). Then by choosing δ sufficiently small, it can be arranged

that the limiting inequality is satisfied. In the limit the inequality (5.22) reduces
to Λ2

2δ ≤ 3 − 3
2σ − λ. Choose Λ so that this inequality is satisfied strictly. With

these choices both inequalities are satisfied strictly in the limit. For τ sufficiently
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close to τ∞ the coefficients in (5.22) and (5.23) are as close as desired to their limit-
ing values. Making them close enough ensures that these two inequalities continue
to be satisfied. It follows that with these choices of the parameters ∂τ (a2λE6) is
non-positive at late times. It can be concluded that E6 = O(a−2λ). This gives a
limit on the growth rate of E6 in terms of that of the scale factor. As in previous
cases corresponding estimates can be obtained for derivatives and as a consequence
pointwise estimates derived. It follows that Φ = O(a−λH̃−1). From what is known
about the background solution, it follows that H̃ is proportional to a

3
2 (σ− 1

3 ). Thus,
if ρ = − 3

2 (σ − 1
3 ) − λ then Φ = O(aρ). This power is positive but may be made as

small as desired by choosing λ suitably. By the usual methods, similar bounds can
be obtained for spatial derivatives of Φ.

To get more information about the asymptotics as τ → τ∞, it is convenient to
rewrite the equation in terms of the new time variable s = τ∞ − τ . The resulting
equation is

Φss − 3ZH̃Φs + 3Y H̃2Φ − ∆Φ = 0. (5.24)

As s → 0 the coefficient Z tends to 1 − σ
2 while H̃ and Y H̃2 are proportional in

leading order to s−1 and s
2

3(σ−1/3) respectively. The last exponent is positive for any
σ > 1/3 so that the corresponding coefficient tends to zero as s → 0. Let B be a
positive solution of the equation dB

ds = −3ZH̃B. Then, (5.24) implies the following
integral equation:

Φs =
1
B

(
Φ̄1 +

∫ s

0

B(−3YH2Φ + ∆Φ)
)

(5.25)

for a function Φ̄1(x). Here, the fact has been used that the integral occurring in this
equation converges. This follows from the fact that in leading orderB is proportional
to s−

σ−2
σ−1/3 and the bounds already obtained for Φ and its derivatives. When B−1

diverges faster than s−1 in the limit s → 0, which happens for σ < 7
6 , the known

bounds on Φ imply that Φ̄1 = 0. Hence, Φ is bounded in the limit s→ 0 in that case.
When σ > 7

6 it can also be concluded that Φ is bounded. For σ = 7
6 a logarithmic

divergence of Φ is not ruled out. In all cases, the integral equation can be used to
obtain an asymptotic expansion for Φ. Schematically this expansion is of the form

Φ(η, x) =
∑

i

Φi(x)ζi(η) (5.26)

for some functions ζi with ζi+1(η) = O(ζi(η)) for each i. This is very different
from the expansion in the limit η → ∞ obtained when w > 0 or σ < 1

3 . In the
present case, scaling the solution by a suitable function of η gives a result which
converges to a function of x as η → ∞. In the other case, a similar rescaling can
lead to a profile which moves around the torus with constant velocity. (In general, it
leads to a superposition of profiles of this kind.) In the latter case, there are waves
which continue to propagate at arbitrarily late times. In the case σ > 1

3 , the waves
“freeze”. This is reminiscent of the late-time asymptotics of the gravitational field
in spacetimes with positive cosmological constant (cf. [10]).
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To make this argument more concrete, consider the special case where the equa-
tion of state is f(ε) = f1ε

σ+1 for some σ between 1
3 and 7

6 . Using the conver-
gence of the integral, it follows immediately that Φ(s, x) = Φ0(x) + O(s2) for
some function Φ0. Putting this information back into the integral equation gives
Φ(s, x) = Φ0(x) + σ−1/3

4−2σ ∆Φ0(x)s2 + · · · .
Consider finally the case w = 0, σ = 1

3 (critical case). Then, η = η0e
τ

C1 + · · ·
where η0 is a constant and C1 corresponds to the constant appearing in (5.7). The
arguments leading to the estimate Φ = O(τρ) can be carried out as in the case
σ > 1

3 . The only difference is that the limit τ → τ∞ is replaced by τ → ∞. In the
case σ = 1

3 , the quantity H̃ tends to a constant for τ → ∞ and Y H̃2 is proportional

to e−
6

C1
τ in leading order. A quantity B can be introduced as before and an integral

equation obtained. In this case, B is a decaying exponential. Unfortunately, it does
not seem to be possible to use this integral equation to refine the asymptotics in
this case and this matter will not be pursued further here.
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