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A general class of four dimensional, stationary solutiointhe Einstein-Maxwell system with a conformally
coupled scalar field is constructed in this paper. The statipcase is presented and shown to belong to the
Plebanski-Demianski family which implies that the statietric has the form of the C-metric. It is shown that
in the static, AdS case, a new family of Black Holes ariseseyTturn out to be cohomogeneity two, with
horizons that are not Einstein neither homogenous massifolthe usual conical singularities present in the
C-metric are automatically removed from the spacetime dubé backreaction of the scalar field. The scalar
field carries a continuous parameter that resembles theé asceleration present in the C-metric. When this
parameter vanishes the static family it is shown to contitlireeto the dyonic Bocharova-Bronnikov-Melnikov-
Bekenstein solution or the dyonic extension of the Martiieancoso-Zanelli black holes, depending on the
value of the cosmological constant.

PACS numbers: 04.20.Jb 04.40.Nr 04.70.Bw

I. INTRODUCTION, DISCUSSION AND CONCLUSIONS of a quartic self interaction of the scalar field is necessary
when the cosmological constant is included and it is also
considered. In order to show that all the known solutions are

The scalar hair have played an important réle in our un- N . . )
derstanding of four dimensional black holes as fundamenincluded within this new family, section two is devoted te th

tal objects, characterized by a small set of parametersa(for the anal_ysis of the stafic case. There s shown_ that the yamil
short review see [1]). Within all the possible hairs the con—of metric pregented here, : be5|des_ reproducing the known
formal scalar hair is particularly interesting: it not ordgn- solutions provides the dyonic extension of [6].

tains a well known family of/ (1) charged, stationary, black

holes [2], [3], [5] , [6], [7], it also has the property thateth e gatic solution, being of the form of the C-metric, is
asymptotically locally AdS solutions, when mapped to theyoana)yzed in the last section and a number of remarkable fea
Einstein frame, can be embedded in string theory [8] that they,res are observed to occur. First, the conical singudsritre
are stable against linear perturbations [9] and provide$ar ey yed due to the back reaction of the scalar field, thistis no
vant arena for the gravitational description of supercatahs  jone at the expense of changing the asymptotic behavior of
[10]. the spacetime (as opossite of the embedding of Ernst [12]);
These interesting features are in contrast with the exiguthis seems to implies that the scalar field can be regarded as
ous knowledge of exact solutions of this system. Moreoverihe source of the acceleration in the classical interpicetatf
the question on the existence of stationary axisymmetrc sathis spacetime [13]. Second, as was pointed out in [14], the
lutions was already pointed out to be of relevance in one opdS C-metric can be interpreted as a single black hole in a
the seminal papers of the subject [3] and, until now, there igertain range of the parameters. This new AdS black hole is
no explicit construction of it. This is the first of a series of geometrically characterized and it turns out to be a cohomo-
papers that will improve the situation on these regardss Thigeneity two black hole whose event horizon is not an Einstein
will be done taking advantage of the well known fact that, theneither a homogenous manifold, resembling the five dimen-
traceless of the energy momentum tensor for the conformallgional structure of the stationary black holes construated
coupled scalar field implies that any space of constant Ricqi15]. Third, this new family of static black holes are contin
scalar could in principle support its backreaction. Being t ously connected with the maximally symmetric configuration
Plebanski-Demianski family of solutions [11] the most gen-viz AdS. It turns out that in the limit where the spacetime is
eral Petrov type D, Einstein-Maxwell spacetime, it progide of constant curvature the scalar field develops a non-trivia
the natural starting point to further explore the space ef soyacuum expectation value: the energy momentum tensor van-
lutions of the Einstein-Maxwell system and the conformallyishes but there is a explicit dependence on the spacetime poi
coupled scalar hair. in the scalar field. These peculiar configurations were disco
Thus, in section one the most general solution, withinered in [16], however it was not known how they connect to
the Plebanski-Demianski family, of the Einstein-Maxwell- non conformally flat spacetimes.

Conformally coupled scalar field is constructed. The additi o ) ) . )
The elimination of conical singularities from the C-metric

due to the scalar field backreaction, is an interesting rasal

deserves some comments. The conical defects associated to
*Electronic addressanabal on- at - aei . npg. de the acceleration_ can be neatly described as follows: given t
TElectronic addresshi deki - at - cecs. cl charged C-metric
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proved below, it is supported due to the existence of Killing
d? 4o horizons of positive scalar curvature in the vanishimgmit.
ds? = 1 ( p + X (p)do® + q —Y(g)dt? |, The present construction could have many applications.
A2%(q—p)* \ X(p) Y(q) One of the most interesting, in our view, is when the metric is
X(p) = (1—=p*)(1+ Aryp)(1 + Ar_p), Y (q) = — X (q),locally asymptotically AdS but, due to the accelerationihor
zon, not asymptotically static. The explicit, and intrygime
dependence in the asymptotic region would allow to study the
r4 =m £ \/m? — Q? (2.1)  elusive out of equilibrium phenomena in the dual condense
matter system. In an accompanying paper we will further dis-
it is possible to compute the “surface gravity” (in the termi cuss the rotating case, its thermodynamics and some of the
nology of [17]),k = ‘1“65# of the angular killing vector ~ physical interpretations of these spacetimes [20].
Our notations follows [21]. The conventions of curvature
1 =C0, = 0y (1.2)  tensorsarév,,V,|V* = R,V andR,, = R’,,,. The
metric signature is taken to be mostly plus, greek lettegs ar
spacetime indices and we set 1.

at the degeration surfacgs= +1:

2/ 242 2 Note added in proof: An abstract of part of this work was
kp—t1 = C° (A°Q° + 1£24m)". (1.3) submitted on June 19 to the “Fifth Aegean Summer School”

From the previous expression it seems to be impossible; keeg"9a@nized by one of the authors (E.P.) of [23], who informs us
ing the acceleration, to have the same normalization at eac! SOme overlap with their still unpublished work. Although
one of the degeneration surfaces (unless the mass vanished i€ ine element in the static case coincide with the one of
which case the charged C-metric metric represent a naked siﬁg]' their study is exclusively devoted to the case when the
gularity). This is equivalent to say that there is a coniaal d ¢~ térm of (1.1) is positive. What makeSche inclusion of a
fect (or excess) in, at least, one of the “poles” of the corhpac scalar field special is th_at it allows for thig term to not be _
spacelike section, defined at constant the_ square of the electric charge. Actually_ it can be negativ
The situation completely changes in the presence of scald¥Nich is the case analyzed in the last section.

fields. Slowly decaying scalar fields have a non-trivial con- Il. THE STATIONARY SOLUTION

tribution to the mass of the spacetime [18], [19]. Thus it is

possible to eliminate thex parameter from the metric func-  The Einstein-Maxwell-conformally coupled scalar field
tions, and thus the conical singularities, and still haveaxs-  with quartic selfinteraction can be defined by the set of equa-
time with positive mass. Although this last pointis notclsi  tions:

1 1
Ry = 50 R+ Mg = T (FnF) = Q0P F) 46T, R=4A, F=dA, (2.1)
1 1
T;fu = 8M¢al/¢ - ig;u/gaﬁaa¢aﬁ¢ + 6 [guuD - vuvu + Guu] ¢2 - O‘guu¢47 (22)

wherex := 87G andA is a cosmological constant. The other the time of solving them.
field equations follows as consistency conditions of theipre
ous ones. The above form of the equations will be useful at Given the Pleabanski-Demianski ansatz:

2oL for oy (@0, AN XE) gy Y@ e
ds_(l—qpf{(” ) (i + iy ) + s e+ )’ = 0 (ar =)’ (29)

it is possible to integrate the metric functions from the -con the full set of field equations we found that the most general
dition that the Ricci scalar is constant. Replacing it batk i solution with a non-trivial scalar field is given by:



A A
X(p) = ao+ azp® + asp®, Y(q) = —as — 37 asq® — ((Io + g) q*, (2.4)
c1q + cap C2q — C1D
A = 22y =2 o, VBT 25
PR T+ pq - ¢ = 1+pq (2.5)
B - 3 (3k (¢ + ¢3) + 247 (as + ag) + 87A) 7 . _A. (2.6)

4k (3a0 + 3a4 + A) 6B

In [20] it will be shown that the above spacetime has non+urthermore, in order to have non-singular limit we fouratth
trivial angular momentum and that for certain values of theit is convenient to use another parametrization for the imetr
parameters it represent a black hole. In what follows the disfunctions.

cussion will be focussed on the static limit.

I11. CONTRACTIONSTO THE KNOWN SOLUTIONS

In this section an acceleration parametewill be intro- With the above remarks in mind we just state the result; the
duced. This will allow us to recover the known solutions. static limit is given by:

ds? L ( dq” Y (q)dr? dp’ (p)d 2) A = c1qdr + capd (3.1)
= — T g 5 - T g, .
(¢ —Bp)* \Y(q) X(p) ' ’
a1 2 3 2 4 2 2 3 s A
X(p) =a0+EP+G2P + Bazp” + B aap”, Y(q) = =B a0 — a1q — a2q” — azq”’ — asq” — 3 (3.2)
(4a2a4 — a%) Op — 3 (/-@c% + Hcg + 8ﬂ'a4) A
=03——5 53— =+ - B = =——. 3.3
ar=as 8a? ’ ¢ = \/_Bp +4q —|— T dkTay ’ @ 68 (3:3)
|
The limit ﬁ — 0 makes sense ifi; = 0 or if ay = 4“—3. and the parameters, = —M?2G?, a3 = 2MG, ¢1 = e,co =
Whenaz; = 0 the limit implies a constant scalar field and g, a2 = —1, ag = 1, provides the dyonic extension of the
the discussion of the last section of [6] applies. In the moredlack hole [6]:
2
interesting casey, = 5734 the change of coordinategs= <
i = —frar+ T 2 () g A =Sdr + gpdo (34)
f(r) 1—p? ’ r ’ '
3 VMG —e?—g? MG A, (e*+¢%) 2N,
= Fy/— 1-—) - = ~ G+ 2 35
¢ =7 47 r— MG ’ Jr) = < T > 3 M? " 9a (3.5)
|
In the same way is possible to prove that all the known so-V. NEW STATIC, COHOMOGENEITY TWO ADSBLACK
lutions of the relevant system are contained within thiticta HOLES
family.

Now, let us study the above solution in all its generality. To
this end we parameterize the solution in terms of the roots of



4

the metric functions, after a shift in the coordinates tladist  of the horizon let us expand around the degeneration points,

metric becomes: let us set a perioo_lic coordina)zee [_O_, 2m), related witho as
o = Cx, whereC'is obtained requiring (4.3) equals one, and
2 2
p = —& + 55, p = & — 35 Using these coordinates it is
X(p)=b(p"-&) (*-&), (4.1)  possible to show that the degeneration surface are smooth:
A
V() == (¢" - &) (¢ - &) — 3 (4.2)
1
2 2 2 2
Let us set; < &. The manifold associated to the coordi- T (qu + 61)? (da? + 27dx*)  (4.8)
nates(p, o) is Euclidean and compact#¢; < p < &. The 1
same condition that follows from the field equations, namely dS%{‘IZ_O (qn — &2 (d:c% =+ IngQ) (4.9)
the fact that there are no linear neither cubic term in theimet qH ~ <1
functions implies that the spacetime is free of conical ging The hori looks locall 0 h in cl
larities. Indeed, from equation (1.2) we obtain € horizon 100Ks locally as a two Sphere, in close resem-
blance with [15].
5 L . .
kp—e, = kp__g, = C2b1e2 (§f _ 53) _ (4.3) ;Lr;? metric is asymptotically locally AdS in the sense

Infinity is located atp = ¢ and for vanishing cosmological
constant there is an event horizongat= &. WhenA # 0
the horizon is located at the largest rogt;, of (4.2). In the
case of positive and vanishing cosmological constant tisere
a further horizon and the asymptotic region is no longefcstat
The asymptotic region is static ferA > 3b2¢7¢3. Itis also  Indeed, this is a local statement. In the AdS case exists ac-
interesting to note that acceleration horizon is extrentednv ~ celeration horizons for certain values of the parameteinss T
—A = 3b%¢2€2. There is a curvature singularity at= co.  allows to have a non-stationary behavior (because theaixpli
From the above discussion it follows that the allowed ramk fo time dependence) of the asymptotic metric. In the case when
qisp < g < oo. the acceleration horizon is extremal (which only can occur
Although the geometry is regular the scalar field divergesvhenA < 0) it has been recently shown that the conformal
outside the horizon. In this coordinates it is proporticoal structure of the C-metric is topologically® [22]. A further
study of the conformal structure in the case presented Bere i
ﬂ7 (4.4) hecessary to understand the properties of the theory induce
p+q in the boundary. The dual, condense matter description of

. L _ these spacetimes, as well as the thermodynamics properties
so, although it goes to zero at infinity and is regular on the

e . R are better understood in the Einstein frame. Thus, this
killing horizon it is divergent on the surfage+ ¢ = 0. From discussion will be postponed for a further work [20].
(3.3) it is possible to check that setting fitgt=c¢; = c2 =0
and theruy = 0, the space becomes of constant curvature and
the scalar field is nothing but an stealth field [18],[ Indeed,
although it is non trivial,

_A (646 — 615%) (4.10)
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