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A general class of four dimensional, stationary solutions of the Einstein-Maxwell system with a conformally
coupled scalar field is constructed in this paper. The stationary case is presented and shown to belong to the
Plebanski-Demianski family which implies that the static metric has the form of the C-metric. It is shown that
in the static, AdS case, a new family of Black Holes arises. They turn out to be cohomogeneity two, with
horizons that are not Einstein neither homogenous manifolds. The usual conical singularities present in the
C-metric are automatically removed from the spacetime due to the backreaction of the scalar field. The scalar
field carries a continuous parameter that resembles the usual acceleration present in the C-metric. When this
parameter vanishes the static family it is shown to contain either to the dyonic Bocharova-Bronnikov-Melnikov-
Bekenstein solution or the dyonic extension of the Martinez-Troncoso-Zanelli black holes, depending on the
value of the cosmological constant.
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I. INTRODUCTION, DISCUSSION AND CONCLUSIONS

The scalar hair have played an important rôle in our un-
derstanding of four dimensional black holes as fundamen-
tal objects, characterized by a small set of parameters (fora
short review see [1]). Within all the possible hairs the con-
formal scalar hair is particularly interesting: it not onlycon-
tains a well known family ofU(1) charged, stationary, black
holes [2], [3], [5] , [6], [7], it also has the property that the
asymptotically locally AdS solutions, when mapped to the
Einstein frame, can be embedded in string theory [8] that they
are stable against linear perturbations [9] and provides a rele-
vant arena for the gravitational description of superconductors
[10].

These interesting features are in contrast with the exigu-
ous knowledge of exact solutions of this system. Moreover,
the question on the existence of stationary axisymmetric so-
lutions was already pointed out to be of relevance in one of
the seminal papers of the subject [3] and, until now, there is
no explicit construction of it. This is the first of a series of
papers that will improve the situation on these regards. This
will be done taking advantage of the well known fact that, the
traceless of the energy momentum tensor for the conformally
coupled scalar field implies that any space of constant Ricci
scalar could in principle support its backreaction. Being the
Plebanski-Demianski family of solutions [11] the most gen-
eral Petrov type D, Einstein-Maxwell spacetime, it provides
the natural starting point to further explore the space of so-
lutions of the Einstein-Maxwell system and the conformally
coupled scalar hair.

Thus, in section one the most general solution, within
the Plebanski-Demianski family, of the Einstein-Maxwell-
Conformally coupled scalar field is constructed. The addition
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of a quartic self interaction of the scalar field is necessary
when the cosmological constant is included and it is also
considered. In order to show that all the known solutions are
included within this new family, section two is devoted to the
the analysis of the static case. There is shown that the family
of metric presented here, besides reproducing the known
solutions provides the dyonic extension of [6].

The static solution, being of the form of the C-metric, is
reanalyzed in the last section and a number of remarkable fea-
tures are observed to occur. First, the conical singularities are
removed due to the back reaction of the scalar field, this is not
done at the expense of changing the asymptotic behavior of
the spacetime (as opossite of the embedding of Ernst [12]);
this seems to implies that the scalar field can be regarded as
the source of the acceleration in the classical interpretation of
this spacetime [13]. Second, as was pointed out in [14], the
AdS C-metric can be interpreted as a single black hole in a
certain range of the parameters. This new AdS black hole is
geometrically characterized and it turns out to be a cohomo-
geneity two black hole whose event horizon is not an Einstein
neither a homogenous manifold, resembling the five dimen-
sional structure of the stationary black holes constructedin
[15]. Third, this new family of static black holes are continu-
ously connected with the maximally symmetric configuration,
viz AdS. It turns out that in the limit where the spacetime is
of constant curvature the scalar field develops a non-trivial
vacuum expectation value: the energy momentum tensor van-
ishes but there is a explicit dependence on the spacetime point
in the scalar field. These peculiar configurations were discov-
ered in [16], however it was not known how they connect to
non conformally flat spacetimes.

The elimination of conical singularities from the C-metric,
due to the scalar field backreaction, is an interesting result and
deserves some comments. The conical defects associated to
the acceleration can be neatly described as follows: given the
charged C-metric
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ds2 =
1

A2(q − p)2

(

dp2

X(p)
+ X(p)dσ2 +

dq2

Y (q)
− Y (q)dt2

)

,

X(p) = (1 − p2)(1 + Ar+p)(1 + Ar−p), Y (q) = −X(q),

r± = m ±
√

m2 − Q2 (1.1)

it is possible to compute the “surface gravity” (in the termi-

nology of [17]),k =
gµν ∂µl2∂ν l2

4l2
, of the angular killing vector

l = C∂σ = ∂χ (1.2)

at the degeration surfacesp = ±1:

kp=±1 = C2
(

A2Q2 + 1 ± 2Am
)2

. (1.3)

From the previous expression it seems to be impossible, keep-
ing the acceleration, to have the same normalization at each
one of the degeneration surfaces (unless the mass vanishes in
which case the charged C-metric metric represent a naked sin-
gularity). This is equivalent to say that there is a conical de-
fect (or excess) in, at least, one of the “poles” of the compact,
spacelike section, defined at constantq.
The situation completely changes in the presence of scalar
fields. Slowly decaying scalar fields have a non-trivial con-
tribution to the mass of the spacetime [18], [19]. Thus it is
possible to eliminate them parameter from the metric func-
tions, and thus the conical singularities, and still have a space-
time with positive mass. Although this last point is not strictly

proved below, it is supported due to the existence of Killing
horizons of positive scalar curvature in the vanishingm limit.

The present construction could have many applications.
One of the most interesting, in our view, is when the metric is
locally asymptotically AdS but, due to the acceleration hori-
zon, not asymptotically static. The explicit, and intrinsic, time
dependence in the asymptotic region would allow to study the
elusive out of equilibrium phenomena in the dual condense
matter system. In an accompanying paper we will further dis-
cuss the rotating case, its thermodynamics and some of the
physical interpretations of these spacetimes [20].

Our notations follows [21]. The conventions of curvature
tensors are[∇ρ,∇σ]V µ = Rµ

νρσV ν andRµν = Rρ
µρν . The

metric signature is taken to be mostly plus, greek letters are
spacetime indices and we setc = 1.

Note added in proof: An abstract of part of this work was
submitted on June 19 to the “Fifth Aegean Summer School”
organized by one of the authors (E.P.) of [23], who informs us
on some overlap with their still unpublished work. Although
the line element in the static case coincide with the one of
[23], their study is exclusively devoted to the case when the
Q2 term of (1.1) is positive. What makes the inclusion of a
scalar field special is that it allows for thisQ2 term to not be
the square of the electric charge. Actually it can be negative,
which is the case analyzed in the last section.

II. THE STATIONARY SOLUTION

The Einstein-Maxwell-conformally coupled scalar field
with quartic selfinteraction can be defined by the set of equa-
tions:

Rµν − 1

2
gµνR + Λgµν =

κ

4π
(FµλF λ

ν − 1

4
gµνFτλF τλ) + κT φ

µν , R = 4Λ, F = dA, (2.1)

T φ
µν = ∂µφ∂νφ − 1

2
gµνgαβ∂αφ∂βφ +

1

6
[gµν� −∇µ∇ν + Gµν ] φ2 − αgµνφ4, (2.2)

whereκ := 8πG andΛ is a cosmological constant. The other
field equations follows as consistency conditions of the previ-
ous ones. The above form of the equations will be useful at

the time of solving them.

Given the Pleabanski-Demianski ansatz:

ds2 =
1

(1 − qp)
2

[

(p2 + q2)

(

dp2

X(p)
+

dq2

Y (q)

)

+
X(p)

p2 + q2

(

dτ + q2dσ
)2 − Y (q)

p2 + q2

(

dτ − p2dσ
)2

]

, (2.3)

it is possible to integrate the metric functions from the con-
dition that the Ricci scalar is constant. Replacing it back in

the full set of field equations we found that the most general
solution with a non-trivial scalar field is given by:
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X(p) = a0 + a2p
2 + a4p

4, Y (q) = −a4 −
Λ

3
− a2q

2 −
(

a0 +
Λ

3

)

q4, (2.4)

A =
c1q + c2p

q2 + p2
dτ + pq

c2q − c1p

q2 + p2
dσ, φ = ±

√
B

1 − pq

1 + pq
, (2.5)

B =
3

(

3κ
(

c2
1 + c2

2

)

+ 24π (a4 + a0) + 8πΛ
)

4κπ (3a0 + 3a4 + Λ)
, α = − Λ

6B
. (2.6)

In [20] it will be shown that the above spacetime has non-
trivial angular momentum and that for certain values of the
parameters it represent a black hole. In what follows the dis-
cussion will be focussed on the static limit.

III. CONTRACTIONS TO THE KNOWN SOLUTIONS

In this section an acceleration parameterβ will be intro-
duced. This will allow us to recover the known solutions.

Furthermore, in order to have non-singular limit we found that
it is convenient to use another parametrization for the metric
functions.

With the above remarks in mind we just state the result; the
static limit is given by:

ds2 =
1

(q − βp)2

(

dq2

Y (q)
− Y (q)dτ2 +

dp2

X(p)
+ X(p)dσ2

)

, A = c1qdτ + c2pdσ, (3.1)

X(p) = a0 +
a1

β
p + a2p

2 + βa3p
3 + β2a4p

4, Y (q) = −β2a0 − a1q − a2q
2 − a3q

3 − a4q
4 − Λ

3
, (3.2)

a1 = a3

(

4a2a4 − a2
3

)

8a2
4

, φ = ±
√

B
βp − q

βp + q + a3

2a4

B =
3

(

κc2
1 + κc2

2 + 8πa4

)

4κπa4

, α = − Λ

6B
. (3.3)

The limit β → 0 makes sense ifa3 = 0 or if a2 =
a2

3

4a4

.
When a3 = 0 the limit implies a constant scalar field and
the discussion of the last section of [6] applies. In the more

interesting case,a2 =
a2

3

4a4
the change of coordinatesq = 1

r

and the parametersa4 = −M2G2, a3 = 2MG, c1 = e,c2 =
g, a2 = −1, a0 = 1, provides the dyonic extension of the
black hole [6]:

ds2 = −f(r)dτ2 +
dr2

f(r)
+ r2

(

dp2

1 − p2
+

(

1 − p2
)

dφ2

)

, A =
e

r
dτ + gpdσ, (3.4)

φ = ∓
√

3

4π

√

M2G − e2 − g2

r − MG
, f(r) =

(

1 − MG

r

)2

− Λ

3
r2,

(

e2 + g2
)

M2
= G +

2Λ

9α
G2. (3.5)

In the same way is possible to prove that all the known so-
lutions of the relevant system are contained within this static
family.

IV. NEW STATIC, COHOMOGENEITY TWO ADS BLACK
HOLES

Now, let us study the above solution in all its generality. To
this end we parameterize the solution in terms of the roots of
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the metric functions, after a shift in the coordinates the static

metric becomes1:

X(p) = b2
(

p2 − ξ2
1

) (

p2 − ξ2
2

)

, (4.1)

Y (q) = −b2
(

q2 − ξ2
1

) (

q2 − ξ2
2

)

− Λ

3
(4.2)

Let us setξ1 < ξ2. The manifold associated to the coordi-
nates(p, σ) is Euclidean and compact if−ξ1 ≤ p ≤ ξ1. The
same condition that follows from the field equations, namely
the fact that there are no linear neither cubic term in the metric
functions implies that the spacetime is free of conical singu-
larities. Indeed, from equation (1.2) we obtain

kp=ξ1
= kp=−ξ1

= C2b4ξ2
1

(

ξ2
1 − ξ2

2

)2
. (4.3)

Infinity is located atp = q and for vanishing cosmological
constant there is an event horizon atq = ξ2. WhenΛ 6= 0
the horizon is located at the largest root,qH , of (4.2). In the
case of positive and vanishing cosmological constant thereis
a further horizon and the asymptotic region is no longer static.
The asymptotic region is static for−Λ > 3b2ξ2

1ξ2
2 . It is also

interesting to note that acceleration horizon is extremal when
−Λ = 3b2ξ2

1ξ2
2 . There is a curvature singularity atq = ∞.

From the above discussion it follows that the allowed rank for
q is p < q < ∞.

Although the geometry is regular the scalar field diverges
outside the horizon. In this coordinates it is proportionalto

q − p

p + q
, (4.4)

so, although it goes to zero at infinity and is regular on the
killing horizon it is divergent on the surfacep + q = 0. From
(3.3) it is possible to check that setting firsta3 = c1 = c2 = 0
and thena4 = 0, the space becomes of constant curvature and
the scalar field is nothing but an stealth field [16],[? ]. Indeed,
although it is non trivial,

φS = ±
√

6

κ

q − p

p + q
, (4.5)

its energy momentum tensor vanishesTµν (φ = φS) = 0 if
and only if the metric is of constant curvature.

The horizon metric is

ds2
H =

1

(qH − p)2

(

dp2

X(p)
+ X(p)dσ2

)

(4.6)

which is not an Einstein neither an homogeneous manifold. In
the caseΛ = 0 its scalar curvature is

RH = 2b2(3p + ξ2) (ξ2 − p)3 . (4.7)
Note that suitable values of the roots can make the scalar cur-
vature everywhere positive. To understand better the geometry

of the horizon let us expand around the degeneration points,
let us set a periodic coordinateχ ∈ [0, 2π), related withσ as
σ = Cχ, whereC is obtained requiring (4.3) equals one, and

p = −ξ1 +
x2

1

2C
, p = ξ1 − x2

2

2C
Using these coordinates it is

possible to show that the degeneration surface are smooth:

ds2
H

∣

∣

x1=0
−→ 1

(qH + ξ1)2
(

dx2
1 + x2

1dχ2
)

(4.8)

ds2
H

∣

∣

x2=0
−→ 1

(qH − ξ1)2
(

dx2
2 + x2

2dχ2
)

(4.9)

The horizon looks locally as a two sphere, in close resem-
blance with [15].

The metric is asymptotically locally AdS in the sense
that

R
µν
··λρ

∣

∣

∣

p=q
=

Λ

3

(

δ
µ
λδν

ρ − δµ
ρ δν

λ

)

(4.10)

Indeed, this is a local statement. In the AdS case exists ac-
celeration horizons for certain values of the parameters. This
allows to have a non-stationary behavior (because the explicit
time dependence) of the asymptotic metric. In the case when
the acceleration horizon is extremal (which only can occur
whenΛ < 0) it has been recently shown that the conformal
structure of the C-metric is topologicallyℜ3 [22]. A further
study of the conformal structure in the case presented here is
necessary to understand the properties of the theory induced
in the boundary. The dual, condense matter description of
these spacetimes, as well as the thermodynamics properties
are better understood in the Einstein frame. Thus, this
discussion will be postponed for a further work [20].
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