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1 Introduction

Recently, Hořava constructed an intriguing theory of gravity in four dimensions [1]. Moti-

vated by models for condensed matter systems that exhibit anisotropic scaling phenomena,

this Hořava-Lifshitz gravity (HLG) lacks four-dimensional Lorentz invariance but seem-

ingly has better UV properties than Einstein gravity. A neat aspect of HLG is that for

a particular choice of parameters the theory has a classical Weyl gauge symmetry while

remaining second order in the time derivatives. This leads to a natural question: is the

Weyl invariance anomalous?

In this note we study a technically simpler but related question: a matter system

exhibiting appropriate anisotropic scaling may be coupled to HLG in a Weyl-invariant

fashion; is there a Weyl anomaly for the matter system in the HLG background? We study

the problem for a z = 3 free Lifshitz scalar in d = 4 and find an anomaly.

To describe our result, it is useful to recall the work of [2] on the classification of Weyl

anomalies in Lorentz-invariant theories in even dimensions. Consider the renormalized
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effective action W[g;µ] obtained by integrating out the matter fields. Here g is the back-

ground metric and µ is a mass scale which may arise in removing logarithmic divergences.

The Weyl anomaly is given by

A(x) ≡ δ

δϕ(x)
W[e2ϕg;µ]

∣∣∣∣
ϕ=0

. (1.1)

Following the terminology of [2], dilatation-invariant (i.e. µ-independent) terms in W give

rise to “type A” terms in A, while µ-dependent terms give rise to “type B” anomaly terms.

Recall that in two dimensions there is only a type A anomaly, while in four dimensions the

result is

A|d=4 = −a(Euler) + c(Weyl)2 + b2R. (1.2)

The first of these is of type A, the second is the type B anomaly, and the third may be

removed by a local counter-term.

These anomalies may be uncovered by studying n-point functions of the energy mo-

mentum tensor in flat space. The d = 2 case is a text-book example (see, e.g. [3]), where

the study of the two-point function 〈Tµν(x)Tρσ(0)〉 quickly leads to the anomaly. In four

dimensions, since the non-trivial terms on the right-hand side of (1.2) are quadratic in cur-

vature, a study of three-point functions is necessary to directly determine a and c. However,

the scale dependence of W[g;µ] is apparent at the level of the two-point functions. To see

this, note that the scale dependent term has a schematic form

W[g;µ] = c

∫
d4x

√
gC log(2/µ2)C, (1.3)

where C is the Weyl tensor and 2 is the covariant Laplace operator. It follows that

µ
d

dµ
〈Tµν(x)Tρσ(0)〉 = c∆µνρσδ(4)(x), (1.4)

where ∆µνρσ is a fourth-order derivative operator consistent with T µ
µ = 0, ∂µTµν = 0 and

Bose symmetry. Indeed, as shown in [4], a naive position-space computation of the two-

point function yields a singular distribution, and the expected scale dependence may be

uncovered by carefully regularizing this distribution. Thus, the coefficient of the B-type

anomaly may already be extracted from the two-point function.

We have studied the two-point functions of the conserved quantities for the z = 3

Lifshitz scalar. We find that while no type A terms arise at this order in the background,

a logarithmic divergence leads to a scale dependence of the two-point functions and thus

to a type B anomaly.

Our result, while perhaps not very surprising, merits attention for several reasons.

First, it bears on the UV behavior of HLG theories coupled to matter. As observed in [1],

to achieve the desired UV improvements, it is necessary to work at points of enhanced

gauge symmetry. Classically, the Weyl-invariant point is one such choice, and our results

rule it out quantum mechanically once HLG is coupled to a scalar. Second, our work is an

illustration of the complexity associated to even the simplest computations in anisotropic

theories of gravity, and we hope that the techniques developed herein may be of use in
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further investigations. Finally, the Weyl anomaly in a Lorentz-invariant theory is well-

known to contain important physical information; our work may be viewed as a first step

in learning how to quantify and extract this information in anisotropic theories.

The rest of the paper is organized as follows. In section 2, we introduce the z = 3 free

Lifshitz scalar, compute its propagator and couple it to the Weyl-invariant HLG theory.

In section 3, we develop some position-space techniques and test these in the familiar

relativistic d = 2 and d = 4 examples. Finally, in section 4, we apply these techniques to

2-point functions of conserved quantities in the z = 3 theory and find the scale dependence

symptomatic of a type B anomaly. We conclude with a brief discussion of our results

and some observations on possible type A anomaly terms that follow from Wess-Zumino

consistency conditions.

2 The Lifshitz scalar in a gravitational background

2.1 The free scalar in flat space

Our starting point is the free scalar with dynamical exponent z in d = 4. The Euclidean

action is

S =
1

2

∫
dτd3x

{
φ̇2 + φ(−∂2)zφ

}
, (2.1)

where ∂2 = ∂i∂i is the spatial Laplacian, and φ̇ = ∂τφ. The propagator for φ has a simple

Fourier space representation. Defining ∆(τ, x) as a solution to

(−∂2
τ + (−∂2)z)∆(τ, x) = δ(τ)δ(3)(x) ≡ δ(4)(τ, x), (2.2)

we see that

∆(τ, x) =

∫
dωd3k

(2π)4
eiωτ+ikx

ω2 + (k2)z
. (2.3)

For our purposes, an explicit position-space representation will be useful. Performing the

ω and angular integrations leads to

∆(τ, x) =
|τ | z−3

z

4π2z

∫ ∞

0
dv v

3−2z
z e−v sin(v

1

z u
1

2 )

v
1

z u
1

2

, (2.4)

where u = x2(τ2)−1/z. Performing the remaining integral, we have

∆(τ, x) =
|τ | z−3

z

4π2z

∞∑

n=0

Γ(3+2n
z − 1)

Γ(2n + 2)
(−u)n. (2.5)

Plugging in z = 1, we find the usual propagator for a relativistic massless particle. Our

interest is in the more exotic limit of z = 3, which leads to

∆(τ, x)|z=3 =
1

12π2

[
G(u) − 1

2
log(τ2m2)

]
, (2.6)

where m is a scale introduced to make sense of the logarithm and to absorb an infinite

constant; u = x2(τ2)−1/3, and

G(u) =

∞∑

n=1

Γ(2n
3 )

Γ(2n + 2)
(−u)n. (2.7)
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G(u) is an analytic function in the complex plane. As we will see, the relative complexity

of ∆(τ, x) at z = 3 makes even free field theory computations a bit more laborious than in

the familiar z = 1 case. We also note that z = 3 is a natural limiting case, in which φ has

zero scaling dimension and ∆(τ, x) acquires the log τ2m2 term.

2.2 The scalar in a curved HLG background

The z = 3 Lifshitz scalar has a natural coupling to z = 3 HLG; moreover, it is easy

to construct a Weyl-invariant coupling. To describe this, we will first review some basic

features of z = 3 HLG. We follow [1].

The HLG theory is defined on a four-dimensional space-time equipped with a co-

dimension one foliation, where the latter structure encodes the privileged role of the time

direction. The degrees of freedom are familiar from the ADM decomposition in Einstein

gravity: there is a metric on spatial slices, gij(τ, x), a shift one-form Ni(τ, x), and a lapse

function ν(τ, x). The action is given by

SHLG =

∫
dτd3x

√
gν

[
2

κ2
(KijK

ij − λK2) +
κ2

2w4
CijC

ij

]
, (2.8)

where κ,w and λ are undetermined parameters, Cij is the Cotton tensor constructed from

gij , and

Kij = ġij −∇iNj −∇jNi (2.9)

is the extrinsic curvature. The connection ∇ is the Levi-Civita connection associated to g.

SHLG is invariant under spatial diffeomorphisms, time reparametrizations, and for

λ = 1/3 under local Weyl rescaling. Denoting the infinitesimal parameters for these trans-

formations by ξi(τ, x), f(τ), and ω(τ, x), the action on the fields is

δg = Lξg + f∂τg + 2ωg,

δN = LξN + ∂τ (fN) + ∂τξxg + 2ωN,

δν = Lξν + ∂τ (fν) + 3ων. (2.10)

Here Lξ denotes the Lie derivative with respect to the vector field ξ, and x denotes the

interior product, viz. (ξxg)i = ξjgji. It is a simple matter to show that the algebra closes.

Having described the gravitational theory we have in mind, we now turn back to the

z = 3 scalar. An action in the curved background that reduces to the correct flat space

limit and has diffeomorphism and time reparametrization invariances is given by

S =

∫
dτd3x

√
g

{
1

2ν
(φ̇ − gijNi∂jφ)2 − ν

2
φ(∇2)3φ

}
. (2.11)

S is invariant, provided φ transforms as a scalar:

δφ = ξi∂iφ + fφ̇. (2.12)

In fact, the kinetic term is also Weyl invariant if φ has (as expected) Weyl weight zero. So,

to construct a Weyl-invariant action we just need to make a suitable modification of the

potential term. This is easily achieved by introducing a Weyl-covariant derivative ∇̃.

– 4 –



J
H
E
P
0
9
(
2
0
0
9
)
1
3
0

To describe the construction, let ∇̂ denote the Levi-Civita connection associated to

the Weyl-invariant metric ĝ = ν−2/3g. Given a tensor T with Weyl weight q, we define

∇̃T via

∇̃T = ∇̂T − qA ⊗ T, (2.13)

where A = 1
3d log ν. It is easy to see that under a Weyl transformation δω∇̃T = qω∇̃T .

Furthermore, since dA = 0, the curvature associated to ∇̃ is just the Riemann curvature

associated to the metric ĝ. Finally, two useful properties of ∇̃ are

∇̃ν = 0, ∇̃g = 0. (2.14)

Using the connection ∇̃ we can construct a Weyl-invariant potential term. In fact,

many choices are possible. In what follows, we will restrict our considerations to a two-

parameter family of terms, replacing νφ(∇2)3φ with

SV =
1

2

∫
dτd3x

√
gν

[
α∇̃i∇̃j∇̃kφ∇̃i∇̃j∇̃kφ + β∇̃2∇̃kφ∇̃2∇̃kφ + γ∇̃k∇̃2φ∇̃k∇̃2φ

]
, (2.15)

with non-negative parameters α, β, γ constrained by α + β + γ = 1. Note that we have

chosen these terms to keep the improved action positive-definite. Such a requirement, while

not very sensible for theories coupled to Einstein gravity, does seem to make sense in the

context of HLG, since the latter minimal action is itself positive-definite.

2.3 Conservation laws in flat space

Having derived the curved-space action, we can follow the usual logic to find the conserva-

tion laws in the flat background (i.e. N = 0, ν = 1, gij = δij). To this end, we compute

δS|flat =

∫
dτd3x

[
−δνE − 1

2
δgilT

il − δNiP
i

]
, (2.16)

with1

Pi = φ̇φi, (2.17)

E =
1

2
φ̇2 +

5α

6
φ2

ijk +
β − 4α − 3γ

6
(∂2φi)

2 +
β − α − γ

3
φi(∂

2)2φi

+
α + 3β + 2γ

3
∂2φ(∂2)2φ − γφjk∂

2φjk, (2.18)

and

Til = −δil

[
1

2
φ̇2 +

α

2
φ2

jkm +
β − γ

2
(∂2φk)

2 + βφk(∂
2)2φk + β∂2φ(∂2)2φ − γφjk∂

2φjk

]

−αφijkφljk + (β + γ)∂2φi∂
2φl + (2α − γ)φilk∂

2φk + 2αφiljkφjk − γφil(∂
2)2φ

−(α + γ)∂2φil∂
2φ + φl(∂

2)2φi + φi(∂
2)2φl − α(φik∂2φlk + φlk∂

2φik)

−(α + γ)∂2φilkφk. (2.19)

1We will use a short-hand: φi1···in
≡ ∂i1 · · · ∂in

φ.
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By using the variations in (2.10), we extract the following conservation laws. Time

reparametrization invariance leads to

Ė ≡
∫

d3x∂τE = 0; (2.20)

spatial diffeomorphism invariance leads to

Jm ≡ ∂τPm + ∂nTnm = 0; (2.21)

and, finally, Weyl invariance implies

W ≡ 3E + Tii = 0. (2.22)

A short computation shows W = 0 identically, while Ė = 0 and Jm = 0 hold modulo the

equation of motion.

2.4 Quantum corrections and the anomaly

Having described the classical conservation laws in flat space, we have two possible routes to

determining the form of the anomaly. The first, which would produce the most satisfactory

results, would be to construct the renormalized quantities Pi, Tij and E in an arbitrary

gravitational background. This sort of computation is already quite heroic in relativistic

theories [5] and would be challenging to implement here. The second, which is how the

relativistic conformal anomaly was discovered in the first place [6], is to study the n-point

functions of Pi, Tij and E in flat space and extract the presence of the anomaly from these.

It is this second method we will pursue below.

In order to preserve the conservation laws Jm = 0, Ė = 0, and W = 0 we must find

local counter-terms so that, for example,

〈(Ṗi + ∂jTji)(x)E(0)〉 + ∂τ 〈Pi(x)E(0)〉ct + ∂j〈Tji(x)E(0)〉ct = 0. (2.23)

In Lorentz-invariant theories this would be a simple one-loop computation, easily per-

formed in either momentum or position space. In case of a Lifshitz theory, the problem is

more involved. Some methodology is available for handling loop integrals in Lifshitz theo-

ries [7], but the expressions for even simple diagrams with non-zero external momenta are

quite forbidding. The expressions simplify for one-loop graphs with zero external momenta,

leading to, for instance, tractable computations of beta functions and gap equations [8–10].

To compute correlators at non-zero external momenta, we found it easier to consider the

computation in position space. Setting up this computation in a convenient regularization

scheme will occupy us in what follows.

3 A regularization and position space computations

In this section we present a regularization scheme and apply it to anomaly computations

for relativistic scalars, where the results are well-known.

– 6 –
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3.1 The regularization scheme

In the course of position-space computations in a relativistic, d-dimensional, scale-invariant

theory, one typically encounters singular distributions such as |x|−2d. A nice way to deal

with these distributions is via the method of differential regularization [4, 11]. However,

since our final goal is to study the anisotropic theory, we will instead introduce a smeared

propagator as was considered in [12]. That is, we introduce a scale ǫ and replace the

standard propagator ∆(x2) with

∆ǫ(x
2) = ∆(x2 + ǫ2). (3.1)

This leads to a representation of the Dirac δ-function via Green’s equation,

δǫ(x) ≡ −∂2∆ǫ(x
2) , (3.2)

since

lim
ǫ→0

∫
ddx δǫ(x)f(x) = f(0) (3.3)

for any bounded function f(x).

In our computations we will encounter distributions Dǫ(x) that satisfy two basic prop-

erties: Dǫ(x) is a smooth bounded function with limǫ→0 Dǫ(x) = 0 for any x 6= 0; and

Dǫ(x) ∼ ǫk|x|−n for large |x|, with k > 0 and n > d. We can find a convenient represen-

tation for such distributions by integrating them against a smooth, bounded test function

f(x). Specifically, we have

∫
ddx Dǫ(x)f(x) =

∫
ddy D1(y)ǫk−n+df(ǫy) (3.4)

=

∫
ddyD1(y)ǫk−n+d

[
n−d−k∑

m=0

ǫm

m!
yi1 · · · yim∂i1···imf(0)

]

+

∫
ddyD1(y)ǫk−n+d

[
f(ǫy) −

n−d−k∑

m=0

ǫm

m!
yi1 · · · yim∂i1···imf(0)

]
.

Since f(x) is smooth and bounded and
∫

ddyD1(y)|y|m < ∞ for m < n− d, it follows that

the second line is a convergent integral for ǫ 6= 0. Furthermore, by Taylor’s theorem the

integrand in the second line scales as ǫ for small ǫ, so that this remainder term vanishes in

the ǫ → 0 limit. Keeping the terms that do not vanish as ǫ → 0, we obtain a representation

for the distribution:

Dǫ(x) →
n−d−k∑

m=0

ǫm+k+d−n(−)m

m!
Si1···im∂i1···imδ(d)(x), (3.5)

where the coefficients Si1···im are obtained by computing the convergent integrals

Si1···im =

∫
ddy D1(y)yi1 · · · yim. (3.6)

– 7 –
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This regularization may be adapted to the Lifshitz scalar with two noteworthy modi-

fications. First, a look at the z = 3 propagator given in (2.6) shows that it is sufficient to

do the smearing in the time direction. That is, we will replace

∆(τ2, x2) → ∆ǫ(τ
2, x2) = ∆(τ2 + ǫ6, x2). (3.7)

Second, while integrating the distributions we will encounter against a smooth bounded

test function still leads to sensible representations, the integrals that must be evaluated are

quite a bit more difficult, involving a large number of terms of products of hypergeometric

functions. We have opted to handle these numerically.

3.2 The relativistic scalar in two dimensions

As a warm up exercise we treat the well-known case of the relativistic scalar in two dimen-

sions using the prescription of ǫ regularization introduced above.

The action of a free scalar in two dimensions is

S =

∫
d2x ∂µφ∂µφ , (3.8)

where µ, ν, · · · = 1, 2 and we work in a Euclidean signature so indices are raised and lowered

using the metric δµν . The regularized scalar propagator is

∆ǫ(x) = − 1

4π
log(x2 + ǫ2) , (3.9)

leading to a representation for the Dirac δ-function

δǫ =
ǫ2

π(x2 + ǫ2)2
. (3.10)

The energy-momentum tensor is

Tµν = ∂µφ∂νφ − 1

2
δµν∂λφ∂λφ . (3.11)

This tensor is conserved up to the equations of motion and is identically traceless.

The first step in the analysis of the anomaly is to check whether the symmetry under

diffeomorphisms is violated quantum mechanically in the presence of a gravitational back-

ground. This is captured to first order in the metric perturbation by the two-point function

Cναβ = 〈∂µTµν(x)Tαβ(0)〉 . (3.12)

Performing the Wick contractions and using the regularized propagator we have

Cναβ = ∂α∂2∆ǫ(x)∂βν∆ǫ(x) + ∂β∂2∆ǫ(x)∂αν∆ǫ(x) − δαβ∂λ∂2∆ǫ(x)∂νλ∆ǫ(x) =

= − 2ǫ2

π2(x2 + ǫ2)4

[
xαδβν + xβδαν +

x2 − ǫ2

x2 + ǫ2
δαβxν − 4

x2 + ǫ2
xαxβxν

]
. (3.13)

– 8 –
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Note that limǫ→0 Cναβ |x 6=0 = 0, so as expected, the violation of the energy-momentum

conservation is local. In order to extract the local contact-terms the procedure outlined in

subsection 3.1 is used. One then has
∫

d2xCναβ(x)f(x) = − 2

π2

∫
d2y

1

ǫ3(y2 + 1)4

[
yαδβν + yβδαν +

y2 − 1

y2 + 1
δαβyν −

− 4

y2 + 1
yαyβyν

]
f(ǫy) , (3.14)

where we have changed the integration variable to x = ǫy. Expanding f(ǫy) in powers of ǫ

and doing the angular integration (keeping in mind that terms with odd powers of y vanish

in the integration due to the spherical symmetry) we finally get

Cναβ =

[
1

6πǫ2
Pµναβ∂µ +

1

48π
(δµαδνβ + δµβδνα) ∂µ∂2 − 1

24π
∂ναβ

]
δ(2)(x) ,

Pµναβ =
1

2
(δµαδνβ + δµβδνα − δµνδαβ) , (3.15)

where only the terms which do not vanish in the limit ǫ → 0 have been kept. Hence, we

see that energy-momentum conservation is violated quantum mechanically.

In order to preserve energy-momentum conservation (and the related symmetry under

diffeomorphism) we introduce the following local counter-term

〈Tµν(x)Tαβ(0)〉ct =
[
bPµναβ + a(δβν ∂̃µ∂̃α + δβµ∂̃ν ∂̃α + δαν ∂̃µ∂̃β + δαµ∂̃ν ∂̃β)

]
δ(2)(x) ,

(3.16)

where ∂̃µ = ǫµν∂ν . Restoration of energy-momentum conservation requires that

a = − 1

48π
, b = − 1

6πǫ2
. (3.17)

However, this clashes with the Weyl symmetry since

〈T µ
µ (x)Tαβ(0)〉ct = − 1

12π
∂̃α∂̃βδ(2)(x) . (3.18)

Hence, the regularization scheme used here reproduces the familiar Weyl anomaly (e.g.

in [3]).

Finally, in order to determine the type of the anomaly we follow [4] and compute the

dependence of the two-point function on the regularization scale ǫ

ǫ
∂

∂ǫ
〈Tµν(x)Tρσ(0)〉 . (3.19)

Treating the resulting distribution using the regularization scheme, we find

ǫ
∂

∂ǫ
〈Tµν(x)Tρσ(0)〉 =

1

6π

[
− 2

ǫ2
Pµνρσ − δµνδρσ∂2 +

1

2
(δµρδνσ + δµσδνρ)∂

2 +

+Iµνρσ − 1

2
(Iµρνσ + Iµσνρ)

]
δ(2)(x) + O(ǫ) ,

Iµνρσ ≡ δµν∂ρσ + δρσ∂µν . (3.20)
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At first sight, it seems as if the logarithmic derivative has a finite term and a scale µ needs

to be introduced to properly define 〈TµνTρσ〉. However, the indices in two dimensions can

take only two values, so the finite term actually vanishes and

ǫ
∂

∂ǫ
(〈Tµν(x)Tρσ(0)〉 + 〈Tµν(x)Tρσ(0)〉ct) = 0 . (3.21)

As expected, the anomaly is type A in two dimensions.

3.3 The relativistic scalar in four dimensions

In order to demonstrate the regularization method applied to a known case when there

is a type B Weyl anomaly, we consider a scalar field coupled conformally to gravity. The

regulated propagator in this case is

∆ǫ(x) =
1

4π2

1

x2 + ǫ2
, (3.22)

and the regularized version of the δ-function satisfying ∂2∆ǫ(x) = −δǫ(x) is given by

δǫ(x) =
2ǫ2

π2(x2 + ǫ2)3
. (3.23)

The improved energy-momentum tensor is [4]

Tµν = ∂µφ∂νφ − 1

12
(δµν∂2 + 2∂µ∂ν)φ2 . (3.24)

The first thing to be done is to compute the violation of the energy-momentum con-

servation in the two-point function. Using the same techniques as in the d = 2 example,

we find

〈∂µTµν(x)Tρσ(0)〉 =
1

60π2

{
1

ǫ4

[
A1δρσ∂ν + A2(δνρ∂σ + δνσ∂ρ)

]
+ (3.25)

+
1

ǫ2

[
A3∂νρσ + A4δρσ∂ν∂2 + A5(δνρ∂σ + δνσ∂ρ)∂

2
]

+

+
[
A6∂ρσν + A7δρσ∂ν∂

2 + A8(δνρ∂σ + δνσ∂ρ)∂
2
]
∂2

}
δ(4)(x),

where the coefficients are

A1 = A2 = 1 , A3 = −1

6
, A4 = − 1

12
,

A5 =
1

8
, A6 = − 1

24
, A7 = − 7

192
, A8 =

1

64
. (3.26)

Next, we turn to the violation of the Weyl symmetry in the two-point function. Here

the four-dimensional theory differs from the two-dimensional one since the trace only van-

ishes up to the equation of motion. The most general possible contact term allowed by

Lorentz and Bose symmetries and dimensional arguments is

〈T µ
µ (x)Tρσ(0)〉 =

1

60π2

[
1

ǫ4
B1δρσ +

1

ǫ2
(B2δρσ∂2 + B3∂ρ∂σ) + (B4δρσ∂2 +

+B5∂ρ∂σ)∂2

]
δ(4)(x) . (3.27)
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Direct computation leads to the coefficients

B1 = 6 , B2 = − 1

12
, B3 = −1

6
, B4 = −11

96
, B5 = − 1

24
. (3.28)

On the other hand, the most general local counter-term consistent with Lorentz and

Bose symmetries and dimensional analysis is

〈Tµν(x)Tρσ(0)〉ct =
1

60π2

{
1

ǫ4
[C1δµνδρσ + C2(δµρδνσ + δµσδνρ)] +

+
1

ǫ2

[
C3Iµνρσ + C4(Iµρνσ + Iνρµσ) + C5δµνδρσ∂2 +

+C6(δµρδνσ + δµσδνρ)∂
2
]
+ C7δµνδρσ(∂2)2 +

+C8(δµρδνσ+δµσδνρ)(∂
2)2+C9Iµνρσ∂2+C10(Iµρνσ+Iµσνρ)∂

2 +

+C11∂µνρσ

}
δ(4)(x) . (3.29)

By requiring these counter-terms to cancel the contact terms in (3.26) and (3.27), we get

a one-parameter family of solutions:

C1 = C2 = −1 , C3 = − 1

12
, C4 =

1

8
, C5 =

1

6
,

C6 = −1

4
, C7 =

11

192
− C11

2
, C8 = − 3

64
+

3C11

4
,

C9 = − 1

48
+

C11

2
, C10 =

1

32
− 3C11

4
. (3.30)

So after adding the counter-terms the energy-momentum tensor is conserved and traceless

in the two-point function. This matches the well-known result that the trace is non-

vanishing only in the three-point function.

However, by considering the logarithmic derivative

ǫ
∂

∂ǫ
〈Tµν(x)Tρσ(0)〉 =

1

60π2

{
1

ǫ4

[
D1δµνδρσ + D2(δµρδνσ + δµσδνρ)

]
+

1

ǫ2

[
D3δµνδρσ∂2 +

+ D4(δµρδνσ + δµσδνρ)∂
2 + D5Iµνρσ + D6(Iµρνσ + Iνρµσ)

]
+

+ D7δµνδρσ(∂2)2 + D8(δµρδνσ + δµσδνρ)(∂
2)2 + D9Iµνρσ∂2 +

+ D10(Iµρνσ + Iνρµσ)∂2 + D11∂µνρσ

}
δ(4)(x) (3.31)

it is possible to determine whether a scale signaling the violation of the Weyl symmetry

is introduced. Direct computation of the coefficients using the regularization and the

techniques presented above yields

D1 = D2 = −4 , D3 =
1

3
, D4 = −1

2
, D5 = −1

6
, D6 =

1

4
,

D7 =
1

24
, D8 = − 1

16
, D9 = − 1

24
, D10 =

1

16
, D11 = − 1

12
. (3.32)
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The logarithmic derivative of the renormalized energy-momentum two-point function

(which includes the contribution for the counter-terms) is

ǫ
∂

∂ǫ
(〈Tµν(x)Tρσ(0)〉 + 〈Tµν(x)Tρσ(0)〉ct) =

1

2880π2

[
2δµνδρσ(∂2)2−3(δµρδνσ + δµσδνρ)(∂

2)2

−2Iµνρσ∂2 + 3(Iµρνσ + Iνρµσ)∂2 − 4∂µνρσ

]
δ(4)(x) . (3.33)

We see that the terms which diverge as ǫ → 0 are canceled by the counter-terms and only

the finite piece remains. This result matches the one in [4] up to a minus sign coming from

the derivative being with respect to a length scale and not a mass scale — lending credence

to our regularization method. Integrating the above equation leads to a logarithmic term

log(µǫ) with µ being a scale introduced in order to make the argument of the logarithm

dimensionless. Thus the renormalized two-point function and hence the effective action

contain a scale µ. This signals that the Weyl symmetry is broken by a type B anomaly.

4 The Weyl anomaly

In this section we show that the conformally-coupled scalar in a Hořava-Lifshitz background

induces a Weyl anomaly.

The propagator of a scalar coupled conformally to a flat Hořava-Lifshitz back-

ground (3.7), together with the Green’s equation 2∆ǫ(τ, x) = −δǫ(τ, x), where 2 ≡
∂2

τ + (∂2)3, leads to the regularized δ-function

δǫ(τ, x) =
ǫ6

18π2(τ2 + ǫ6)2

(
uǫ

∂

∂uǫ
+ 3

)
F (uǫ) ,

F (u) ≡
∞∑

n=0

Γ
(

2n
3 + 1

)

(2n + 1)!
(−u)n , (4.1)

where uǫ = x2

(τ2+ǫ6)1/3
. We demonstrate in appendix A that

∫
dτd3x δǫ(τ, x) = 1 . (4.2)

4.1 Counter-term analysis

As in the relativistic examples, we begin with the quantum violation of energy and mo-

mentum conservation Ward identities. As expected from dimensional analysis, rotational

invariance, parity and time reversal symmetry, they are of the form

〈Ė(τ)E(0, 0)〉 =

(
1

ǫ6
AEE1 + AEE2∂

2
τ

)
∂τ δ(τ) , (4.3)

〈Ė(τ)T ij(0, 0)〉 = δij

(
1

ǫ6
AET1 + AET2∂

2
τ

)
∂τδ(τ) , (4.4)

〈Ė(τ)P i(0, 0)〉 = 0 , (4.5)

〈J i(τ, x)P j(0, 0)〉 =

[
1

ǫ2
AJP1δ

ij∂τ + (AJP2∂
ij + AJP3δ

ij∂2)∂τ

]
δ(4)(τ, x) , (4.6)
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〈J i(τ, x)T lm(0, 0)〉 =

{
(δmiδkl + δilδmk)∂k

[
1

ǫ6
AJT1 +

1

ǫ4
AJT2∂

2 +
1

ǫ2
AJT3(∂

2)2 +

+AJT4(∂
2)3 + AJT5∂

2
τ

]

+δlm∂i

[
1

ǫ6
AJT6 +

1

ǫ4
AJT7∂

2 +
1

ǫ2
AJT8(∂

2)2 + AJT9(∂
2)3 +

+AJT10∂
2
τ

]

+∂ilm

[
1

ǫ4
AJT11 +

1

ǫ2
AJT12∂

2 + AJT13(∂
2)2

]}
δ(4)(τ, x) , (4.7)

〈Jm(τ, x)E(0, 0)〉 = ∂m

[
1

ǫ6
AJE1 +

1

ǫ4
AJE2∂

2 +
1

ǫ2
AJE3(∂

2)2 + AJE4(∂
2)3 +

+AJE5∂
2
τ

]
δ(4)(τ, x) . (4.8)

The Weyl Ward identity is not corrected before the introduction of counter-terms since it

vanishes identically.

We now illustrate the procedure for computing the coefficients in the contact terms by

evaluating AJP1, AJP2 and AJP3 in (4.6). The Wick contractions yield

Cij = 〈J i(τ, x)P j(0, 0)〉 = −∂i∂τ∆ǫ(τ, x)∂jδǫ(τ, x) − ∂ij∆ǫ(τ, x)∂τ δǫ(τ, x) . (4.9)

Substituting the expressions for ∆ǫ and δǫ, it can be verified that this distribution meets the

requirements listed in subsection 3.1 and the use of the test function approach is possible.

To extract the expression for the distribution we consider

I =

∫
dτd3xCri(τ, x)f(τ, x) (4.10)

for a smooth and bounded test function f(τ, x). We first change variables to xi = ǫui,

τ = ǫ3t, and expand the test function f(ǫu, ǫ3t) in powers of ǫ. Performing the angular

integration and changing variables to v = u2/(t2 + 1)1/3 in order to disentangle the u and

t integrations, we obtain I = I1 + I2, where

I1 =
1

27π3ǫ2
∂τfδri

∫ ∞

−∞

dt t2

(t2 + 1)17/6

∫ ∞

0
duu1/2

(
2

3
uH1(u) + H2(u)

)
,

I2 =
1

54π3
∂τ∂klf

∫ ∞

−∞

dt t2

(t2 + 1)5/2

[
2

15
(δriδkl + 2δrkδil)J1 +

1

3
δriδklJ2

]
, (4.11)

F1(u) =
1

3

(
u

∂

∂u
+ 3

)
F (u) ,

H1(u) = (G′ + 2uG′′)F ′
1 + 6G′′F1 ,

H2(u) = uG′F ′
1 + 6G′F1 , (4.12)

and

J1 =

∫ ∞

0
duu5/2H1(u) ,

J2 =

∫ ∞

0
duu3/2H2(u) . (4.13)
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J1 and J2 have been evaluated numerically and are convincingly given by

J1 = −1

4
J2 , J2 = −27

16
π . (4.14)

Hence,

AJP1 = 2.02 × 10−3, AJP2 = − 1

720π2
, AJP3 =

1

160π2
. (4.15)

The rest of the coefficients are determined by the same procedure. The numeric results are

given in appendix B.

The most general local counter-terms with the appropriate dimension consistent with

three-dimensional rotational symmetries, parity, time reversal and Bose symmetry are

〈EE〉ct =

[
1

ǫ6
CEE1 +

1

ǫ4
CEE2∂

2 +
1

ǫ2
CEE3(∂

2)2 + CEE4(∂
2)3 +

+CEE5∂
2
τ

]
δ(4)(τ, x) , (4.16)

〈ET ij〉ct =

{
δij

[
1

ǫ6
CET1 +

1

ǫ4
CET2∂

2 +
1

ǫ2
CET3(∂

2)2 + CET4(∂
2)3 + CET5∂

2
τ

]
+

+∂ij

[
1

ǫ4
CET6 +

1

ǫ2
CET7∂

2 + CET8(∂
2)2

]}
δ(4)(τ, x) , (4.17)

〈EP i〉ct = CEP1∂
i∂τ δ(4)(τ, x) , (4.18)

〈P iP j〉ct =

[
δij

(
1

ǫ2
CPP1 + CPP2∂

2

)
+ CPP3∂

ij

]
δ(4)(τ, x) , (4.19)

〈P iT jk〉ct =
[
δjkCPT1∂

i∂τ + (δij∂k + δik∂j)CPT2∂τ

]
δ(4)(τ, x) , (4.20)

〈T ijT kl〉ct =

{
δijδkl

[
1

ǫ6
CTT1 +

1

ǫ4
CTT2∂

2 +
1

ǫ2
CTT3(∂

2)2 + CTT4(∂
2)3 + CTT5∂

2
τ

]
+

+(δikδjl + δilδjk)

[
1

ǫ6
CTT6 +

1

ǫ4
CTT7∂

2 +
1

ǫ2
CTT8(∂

2)2 +

+CTT9(∂
2)3 + CTT10∂

2
τ

]
+ Iijkl

[
1

ǫ4
CTT11+

1

ǫ2
CTT12∂

2+CTT13(∂
2)2

]
+

+∂ijkl

(
1

ǫ2
CTT14 + CTT15∂

2

)
+ (Iikjl + Iiljk)

[
1

ǫ4
CTT16 +

+
1

ǫ2
CTT17∂

2 + CTT18(∂
2)2

]}
δ(4)(τ, x) . (4.21)

The counter-terms can restore both diffeomorphism and Weyl symmetries if the coefficients

of the quantum corrections satisfy

3AJE5 + 3AJT10 + 2AJT5 = 0 ,

3AJE4 + AJT13 + 2AJT4 + 3AJT9 = 0 ,

AEE2 + AET2 = 0 ,

3AJE1 + 2AJT1 + 3AJT6 = 0 ,

AET1 − AJE1 = 0 ,
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3AEE1 − 2AJT1 − 3AJT6 = 0 ,

3AJE2 + AJT11 + 2AJT2 + 3AJT7 = 0 ,

3AJE3 + AJT12 + 2AJT3 + 3AJT8 = 0 . (4.22)

The numerically-computed values of the coefficients satisfy the relations (4.22) — the

Ward identities are preserved at the two-point function level.

4.2 Scale dependence

We turn our attention to the derivatives of the two-point functions with respect to the

regularization scale. These are local, so it makes sense to use the test function procedure.

The derivatives of the correlation functions

ǫ
∂

∂ǫ
〈P i(x, τ)P j(0, 0)〉 =

[
δij

(
1

ǫ2
Alog

PP1 + Alog
PP2∂

2

)
+ Alog

PP3∂
i∂j

]
δ(4)(x, τ) , (4.23)

ǫ
∂

∂ǫ
〈E(x, τ)E(0, 0)〉 =

[
1

ǫ6
Alog

EE1 +
1

ǫ4
Alog

EE2∂
2 +

1

ǫ2
Alog

EE3(∂
2)2 + Alog

EE4(∂
2)3 +

+Alog
EE5∂

2
τ

]
δ(4)(x, τ) (4.24)

are indeed non-zero and in particular Alog
PP3 is independent of α, β and γ (see appendix B).

Therefore, the correlation functions must have a log(µǫ) term regardless of the values of

the couplings, signaling the existence of a type B Weyl anomaly in the theory.

5 Discussion

We have shown through an explicit computation that the z = 3 Lifshitz scalar has a

type B Weyl anomaly when coupled to a background of Hořava-Lifshitz gravity introduced

in [1]. We suspect a similar result will hold in pure HLG itself. Experience with relativistic

theories would suggest that exact Weyl invariance only comes at the price of perturbative

unitarity.2 It is conceivable, though perhaps unlikely, that anisotropic gravity might evade

the positivity requirements. In that case, a modification of HLG involving additional

degrees of freedom and gauge symmetries (such as might follow from considering some

anisotropic locally supersymmetric theory) could be Weyl invariant. Such developments

might be interesting, but the idea is uncomfortably reminiscent of the familiar “Stone

Soup” tale.

The computational technique we use is difficult to extend to three-point functions,

which would be required to find a type A anomaly. It would be useful to develop more

powerful techniques for flat space computations. A more ambitious and difficult undertak-

ing would be to generalize the point-splitting techniques reviewed in [5] to the anisotropic

case and thereby compute the renormalized Tij, E and Pi in an arbitrary HLG background.

2It has been shown that conformal supergravity coupled to a certain super Yang-Mills theory has no

Weyl anomaly [13]; however, that theory is haunted by the ghosts of conformal graivty. Moreover, it has

been argued in [14] that unitarity implies positivity of the anomaly coefficient a in (5.3).
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Together with results on chiral anomalies, such as obtained in [8], these will yield impor-

tant constraints on the structure of correlators of conserved currents in Lifshitz theories,

analogous to those obtained in [4] for conformal theories.

A natural step in studying the structure of anomalies is to consider the Wess-Zumino

consistency conditions.3 We will end our work with a brief look at the consistency condition

for Weyl invariance. Consider the one-loop effective action W[g,N, ν] and assume there

exists a regulator that preserves diffeomorphism and time reparametrization invariances.

On general grounds the Weyl variation of W is given by a local functional

δωW =

∫
dτd3x

√
gνA ω, (5.1)

where the local function A transforms as a scalar under diffeomorphisms and time-

reparametrizations and satisfies the Wess-Zumino consistency condition:

[δω1
, δω2

]W =

∫
dτd3x

√
gν [ω2δω1

− ω1δω2
]A = 0. (5.2)

In Lorentz-invariant theories this is a constraining requirement. For example, in d = 4 it

allows just three independent purely gravitational parity-invariant terms in A [16]:

A = −a(Euler) + c(Weyl)2 + b2R. (5.3)

In the anisotropic HLG theory many more terms are possible. Let R̂ij be the Ricci

tensor constructed from the Weyl-invariant metric ĝ = ν−2/3g. Clearly, any scalar A of

the schematic form

A = ∇̂R̂∇̂R̂ + R̂∇̂∇̂R̂ + R̂R̂R̂, (5.4)

where the indices are contracted with the metric g, will trivially satisfy the consistency

condition. These include the square of the Cotton tensor but clearly contain additional

terms. It would be interesting to classify these and to determine which, if any, may be

eliminated by local counter-terms.

Acknowledgments

We thank A. Casher, A. Degeratu, Y. Oz, A. Schwimmer and S. Yankielowicz for useful

discussions. I.A. thanks Tel-Aviv University for hospitality while some of this work was

being done. This work was supported in part by the German-Israeli Project cooperation

(DIP H.52) and the German-Israeli Fund (GIF).

A The regularized anisotropic δ-function

We show here that (4.1) satisfies

I =

∫
dτd3x δǫ(τ, x) = 1, (A.1)

3These are concisely reviewed in the context of Weyl anomalies in [15].
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as required by a representation of Dirac’s δ-function. Changing variables x = ǫu, τ = ǫ3t

and doing the angular integration and then changing variables again v = u2(t2 + 1)−1/3 to

disentangle the t and v variables yields

I =
1

9π

∫ ∞

−∞

dt

(t2 + 1)3/2

∫ ∞

0
dv

√
v

(
v

∂

∂v
+ 3

)
F (v) . (A.2)

Plugging in the result of the t integration and integrating by parts in v, we have

I =
1

3π

∫ ∞

0
dvv1/2F (v) =

2

9π

∫ ∞

0
dv F (v2/3) . (A.3)

Fortunately, F (v2/3) has a nice integral representation

F (v2/3) = lim
p→1/3

∫ ∞

0
dy

sin
[
y1/3vp

]

y1/3vp
e−y . (A.4)

Interchanging the v and y integrations and using the integral

∫ ∞

0
dx

sin(axp)

axp
=

√
π2(1−2p)/pa−1/pΓ( 1

2p)

pΓ(3p−1
2p )

, p > 1 , a > 0 (A.5)

to analytically continue to p = 1/3, one finally finds I = 1.

B Counter-term coefficients

In this section we give the results of numeric computations for the contact term coefficients

arising in section 4. In the coefficients that follow we have extracted an over-all factor

of 10−3.

AEE1 = 1.41, AEE2 =
1

4
AEE1, AET1 = −AEE1, AET2 = −1

4
AEE1; (B.1)

AJP1 = 2.02 , AJP2 = −0.14 , AJP3 = 0.63 (B.2)

AJE1 = −AEE1, AJE5 = −1

2
AEE1,

AJE2 = −0.02 − 0.79α − 2.46β − 1.35γ,

AJE3 = 0.35 + 0.79α − 1.40β − 0.09γ,

AJE4 = 0.30 + 1.24α − 0.62β + 0.26γ; (B.3)

AJT1 = 2.53, AJT2 = 0.22, AJT3 = −0.04,

AJT4 = 0.27, AJT5 = 0.63, AJT6 = −AJT10 = −0.28,

AJT7 = 0.02 − 0.70α + 1.81β + 0.14γ,

AJT8 = −0.35 − 1.96α + 1.33β − 0.64γ,

AJT9 = −0.30 − 1.98α + 0.81β − 0.51γ,

AJT11 = 4.03α + 1.52β + 3.19γ,

AJT12 = 3.60α + 0.30β + 2.28γ,

AJT13 = 1.70α − 1.10β + 0.22γ. (B.4)
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In the logarithmic derivatives we get

Alog
PP1 = −4.04 ,

Alog
PP2 = −3.80 ,

Alog
PP3 = −1.27 ,

Alog
EE1 = −6.33 + 4.22(α + β + γ) − 6.33α2 − 12.67αβ − 6.33β2 − 80.21αγ +

+ 4.22βγ − 56.99γ2 ,

Alog
EE2 = −4.47 − 2.83α + 3.07β − 0.86γ + 11.32α2 + 8.89αβ − 2.44β2 −

− 78.27αγ + 28.38βγ − 65.51γ2 ,

Alog
EE3 = −2.17 − 7.15α + 3.62β − 1.77γ + 2.59α2 + 8.33αβ − 3.69β2 −

− 54.66αγ + 14.58βγ − 43.82γ2 ,

Alog
EE4 = −1.20 − 5.42α + 2.45β − 0.27γ − 13.40α2 + 2.37αβ − 1.13β2 −

− 31.02αγ + 3.54βγ − 16.81γ2 ,

Alog
EE5 = 0 . (B.5)
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