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Loss of convexity and embeddedness for geometric evolution
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Abstract. We show that for a large class of geometric evolution equations of immersed surfaces in the
Euclidean space, there are compact embedded surfaces that lose their embeddedness and compact strictly
convex surfaces that lose their convexity under these evolution equations.

1. Introduction

For many geometric evolution equations of second order such as the curve shrink-
ing flow and the mean curvature flow, the parabolic maximum principle implies that
embedded curves stay embedded under this flow and convex curves stay convex and
even shrink to round points (cf. [1–3]). However, there is evidence that geometric evo-
lution equations of higher order do not share these properties. For the surface diffusion
flow there are analytic proofs that neither embeddedness nor convexity is preserved
under the flow (cf. [4,5]) and for the surface diffusion equation of curves we know
that strictly convex curves can become nonconvex [6]. For the Willmore flow, loss of
embeddedness is proven in [7], while numerical experiments indicate that convexity
can be lost as well [8].

These results are special cases of a general theorem we prove in this short note. We
consider smooth families of immersions ft : Mn → R

n+1, t ∈ [0, T ), of an n-dimen-
sional, orientable manifold Mn without boundary that satisfy a geometric evolution
equation of the form

∂t ft =
(
(−� ft )

p H ft + B
(
∇2p−1

ft
S ft ,∇2p−2

ft
S ft , . . . , S ft , ν ft

))
ν ft (1)

Here, ν ft denotes the unit normal along ft ,� ft the Laplace–Beltrami operator, S ft :=
−Dν ft the shape operator, H ft = tr(S) the mean curvature, ∇ ft the covariant deriva-
tive along ft , and B is a smooth function on
(
(T M∗

n )
2p ⊗ T Mn

)
×

(
(T M∗

n )
2p−1 × T Mn

)
× · · · × (

T M∗
n ⊗ T Mn

) × R
n+1.
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Then, the following statement holds:

THEOREM 1.1. 1. There is a compact strictly convex hypersurface that loses
its convexity under the flow (1).

2. There is a compact and embedded hypersurface that loses its embeddedness
under the flow (1).

The proof of Theorem 1.1 consists of two parts. First one constructs an initial surface
that has nearly all the properties claimed. For the first part we will construct a convex
hypersurface that is not strictly convex and show that it loses its convexity under the
flow using simple local calculations. Concerning the embeddedness, we construct a
surface that touches itself at precisely one point and show that it develops self intersec-
tion under the flow. In this step we will use Lemma 2.2 to show that the specific surface
loses its convexity or embeddedness. This Lemma shows that for graphs the leading
term of the evolution equations for the surface itself and of the evolution equation of
its mean curvature is just a power of the Laplacian.

After that, we will disturb these initial surfaces and use the stability of our flow
(Theorem 2.1) to derive the full result.

2. General remarks

First, let us recapitulate a known existence and stability result for equations of
type (1).

Let Imm(Mn,R
n+1) denote the space of smooth immersions of Mn into R

n+1. From
Theorem 7.17 in [9] we get that for every f0 ∈ Imm(Mn,R

n+1) there is a smooth,
non-extendable solution f : Mn × [0, T ( f0)) → R

n+1 of (1) with initial data f0. For
V := {(g, t) ∈ Imm(Mn,R

n+1)× R+ : t < T (g)} let us define

� : V → Imm
(
Mn,R

n+1)

by letting �( f0, ·) be the unique solution of (1) with initial data f0. A small modifi-
cation of the proof of Theorem 7.17 leads to

THEOREM 2.1 (Theorem 7.17 in [9]). The function � is continuous with respect
to the C∞ topology on Imm(Mn,R

n+1) and the function T is lower semicontinuous.

Let κ1, . . . , κn denote the principle curvatures of an immersion g ∈ C∞(Mn,R
n+1)

and let ‖Ag‖2 := ∑n
i=1 κ

2
i . It is well known that for a solution f of (1), the mean

curvature evolves according to

∂t H f (·,t) = (
� f (·,t)V f (·,t) + ‖A f (·,t)‖2V f (·,t)

)
(2)

where

Vg = (−�g)
p Hg + B

(∇2p−1
g Sg,∇2p−2

g Sg, . . . , Sg, ng
)

(3)

for any embedding g ∈ C∞(Mn,R
n), (cf. [9, Theorem 3.2]).
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Let us consider the right-hand sides of the Equations (1) and (2) for the graph of
a function u. The next lemma tells us that at points with Du = 0 the part of highest
order of these terms is simply a power of the Laplacian on R

n .

LEMMA 2.2. There are smooth functions B̃ and ˜̃B with the following property:
For u ∈ C∞(U,R), U ⊂ R

n open, x0 ∈ U with Du(x0) = 0 we set

f : U → R
n+1

f (z) = (z, u(z))

and take the mean curvature with respect to the upward pointing unit normal ν f =
(−∇u, 1)/

√
1 + ‖∇u‖2. Then,

V f |(x0,u(x0)) = −(−�Rn )p+1u(x0)+ B̃(D2p+1u(x0, . . . , Du(x0), u(x0))

and

(
� f V f + ‖A f ‖2V

)∣∣
x0,u(x0)

= (−�Rn )p+2u(x0)+ ˜̃B(
D2p+3u(x0), . . . , Du(x0), u(x0)

)
.

Proof. In this case, the first fundamental form can be expressed by gi j = δi j +∂i u∂ j u
and the second fundamental form with respect to the upward pointing unit normal

ν f = (−∇u, 1)/
√

1 + ‖∇u‖2

reads

hi j = ∂i j u√
1 + ‖∇u‖2

.

The Laplace–Beltrami operator is known to be

� f = 1√
g
∂i

(√
ggi j∂ j

)
.

Together with the product rule one gets

V = (−1)pgi1 j1 , . . . , gi p jp∂i1, j1,...,i p+1, jp+1 u + B̃(D2p+1u, D2pu, . . . , u)

and

�V + ‖A‖2V

= (−1)pgi1 j1, . . . , gi p+1 jp+2∂i1, j1,...,i p+2, jp+2 u + B̃(D2p+1u, D2pu, . . . , u).

Using gi j |x0,u(x0) = δi j , the claim follows. �
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3. Loss of embeddedness

We start by constructing a family of immersions fα such that fα are embeddings
for all α > 0 and f0 develops a selfintersection under the flow (1). We will achieve the
latter constructing f0 in such a way that it contains parts of the graphs of the functions

uM : R
n → R

uM (x) := (−1)p+1 M‖x‖2(p+1) + ‖x‖2p

and −uM , that lie in a small ball around the origin. Using Lemma 2.2, we will see that
f0 develops selfintersections if M is big enough. Note that uM > 0 on B 1√

M
(0)−{0}.

In the following, S
n is always considered as the subset {x ∈ R

n+1|‖x‖ = 1}.
LEMMA 3.1. For all M > 1 there is a continuous family of smooth immersions

fα : S
n → R

n+1, α ∈ [0, 1] such that

1. For all α > 0, fα is an embedding.
2. There are two disjoint topological discs D−, D+ ⊂ S

n with

f0(D+) = graph

(
uM |B 1

2
√

M
(0)

)

and

f0(D−) = graph

(
− uM |B 1

2
√

M
(0)

)
.

Proof. We choose a smooth cutoff function φ ∈ C∞(Rn, [0, 1]) with φ = 1 on
B 1

2
√

M
(0) and spt φ ⊂⊂ B 1√

M
(0). Furthermore, let 	 : R

n+1 → R
n be defined by

	(x1, . . . , xn+1) := (x1, . . . , xn). We then set

fα(p) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
	(p)

(1 − φ(p)) · √
1 − ‖	(p)‖2 + φ(p) · (uM (	(p))+ α))

)
if pn+1 ≥ 0

(
	(p)

−(1 − φ(p)) · √
1 − ‖	(p)‖2 − φ(p) · (uM (	(p))+ α))

)
else

(4)

and see that this defines a family with the properties claimed. �

Proof of the first part of Theorem 1.1. Let fα be the family of immersion from
Lemma 3.1 and let p− ∈ D−, p+ ∈ D+ be such that f0(p−) = 0 = f0(p+).
Furthermore, let T : V → (0,∞] be the time of existence and � be the semiflow of
Theorem 2.1. We then have by Lemma 2.2

d

dt
�( f0, t)(p+)|t=0 = − d

dt
�( f0, t)(p−)|t=0

= −Mn p+1(2p + 2)! + B̃(0, (2p + 1)!, 0, . . . , 0) < 0
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if M is large enough. Using the shape of f0 and the continuity of�( f0, ·), this implies
that there is a small δ0 > 0 such that

inf
p∈∂D+

〈�( f0, δ0)(p), en+1〉 > 0,

sup
p∈∂D−

〈�( f0, δ0)(p), en+1〉 < 0,

〈�( f0, δ0)(p+), en+1〉 < 0,

and

〈�( f0, δ0)(p−), en+1〉 > 0.

Since T is lower semicontinuous, and since the functionα → �( fα, δ0) is continuous,
there is an α0 > 0 such that

inf
p∈∂D+

〈�( fα, δ0)(p), en+1〉 > 0,

sup
p∈∂D−

〈�( fα, δ0)(p), en+1〉 < 0,

〈�( fα, δ0)(p+), en+1〉 < 0,

and

〈�( fα, δ0)(p−), en+1〉 > 0

for all 0 ≤ α ≤ α0. Let 0 < α < α0. Then, fα is an embedding and the above
relations imply that for all 0 < α < α0 there are p̃− ∈ D− and p̃+ ∈ D+ with
�( fα, δ0)(p+) = �( fα, δ)(p−). Hence�( fα, δ0) is not embedded which proves the
theorem.

4. Loss of convexity

To show that the surfaces can lose convexity as well, we construct an initial surface
by cutting a small hole out of a sphere and fill it with a small part of the graph of the
function

uM : R
n → R

n+1 (5)

x → M(−1)p+1‖x‖2p+4 + ‖x‖2p+2 (6)

in such a way that we get a convex C1,1 hypersurface. Lemma 2.2 and Equation (2)
show that

∂t H = −Mn(p+2)(2p + 4)! + ˜̃B(0, (2p + 2)!, 0, . . . , 0) < 0 (7)

if M is large enough. As H = 0 in 0, this will imply that the surface loses its convexity.
We set M̃ := M (2p+4)(2p+3)

(2p+2)(2p+1) and note that uM is strictly convex on B 1√
M̃

(0).

Let us make this construction more precise.
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LEMMA 4.1. For all M > 1 there is a smooth convex embedding f0 : S
n → R

n+1

such that there is a topological open disc D ⊂ S
n such that

f0(D) = graph

(
uM |B 1

2
√

M̃

(0)

)
.

Proof. Let ũM : R → R be defined by ũM (r) := M(−1)p+1r2p+4 + r2p+2. For

a := M̃−1/2/ũ′(M̃−1/2)+ ũ(M̃−1/2), R :=
√(

a − ũ(M̃−1/2)
)2 + 1/M̃ we set

ûM (r) :=
{

ũ(r) if |r | ≤ 1/
√

M̃

a − √
R2 − ‖r‖2 else.

The choice of R and a guarantees ûM ∈ C1,1
loc (−R, R) ∩ C∞((−R, R)/{±1/

√
M̃})

and is strictly convex on (−R, R)/{±1/
√

M̃}. Hence, due to the result of Ghomi in
[10] there is a convex function ˜̃uM ∈ C∞((−R, R)) such that

ûM = ˜̃uM on (−R, R)/
(

Bε(−M̃−1/2) ∪ Bε(M̃
−1/2)

)

where ε = 1
2 min{M̃−1/2, R − M̃)−1/2}. We set

f0(p) :=

⎧⎪⎪⎨
⎪⎪⎩

(
R	(p)

˜̃uM (R	(p)))− a

)
if pn+1 ≤ 0

R p + R en+1 else.

(8)

�
LEMMA 4.2. For all M > 1 there is a smooth family of embeddings fα : S

n → R
3,

α ∈ [0, 1], such that

1. For all α > 0, fα is strictly convex.
2. There is a topological disc D ⊂ S

2 and an ε > 0 with

f0(D) = graph

(
uM |B 1

2
√

M
(0)

)
.

Proof. Let f̃t , t ∈ [0, T ) be a solution of the mean curvature flow with initial data f0

from Lemma 4.2. Since f0 is convex, it is well known that ft is strictly convex for all
0 < t < T . We finish the proof by setting fα := f̃αT/2. �

Proof of the second part of Theorem 1.1. Let fα be the family of embeddings from
Lemma 4.2 and T ,� be as in the statement of Theorem 2.1. Furthermore, let p ∈ D be
such that f0(p) = 0. Then, Equation (7) implies that d

dt H f0 < 0 if M is large enough.
Together with H f0 = 0, we then obtain Hψ( f0,δ0) < 0 for some δ0 < T ( f0). Since T
is lower semicontinuous, and since the function α → �( fα, δ0) is continuous, there
is an α0 > 0 such that

Hψ( fα,δ0) < 0
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for all 0 ≤ α < α0. Hence, all the strictly convex surfaces fα , 0 < α < α0 lose their
convexity under the evolution equation (1).
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Sūrikaisekikenkyūsho Kōkyūroku, (1105):10–21, 1999. Nonlinear evolution equations and
applications (Japanese) (Kyoto, 1998).

[7] Uwe F. Mayer and Gieri Simonett. Self-intersections for Willmore flow. In Evolution equations:
applications to physics, industry, life sciences and economics (Levico Terme, 2000), volume 55 of
Progr. Nonlinear Differential Equations Appl., pages 341–348. Birkhäuser, Basel, 2003.

[8] Uwe F. Mayer and Gieri Simonett. A numerical scheme for axisymmetric solutions of curvature-
driven free boundary problems, with applications to the Willmore flow. Interfaces Free Bound.,
4(1):89–109, 2002.

[9] Gerhard Huisken and Alexander Polden. Geometric evolution equations for hypersurfaces. In
Calculus of variations and geometric evolution problems (Cetraro, 1996), volume 1713 of Lecture
Notes in Math., pages 45–84. Springer, Berlin, 1999.

[10] Mohammad Ghomi. The problem of optimal smoothing for convex functions. Proc. Amer. Math.
Soc., 130(8):2255–2259 (electronic), 2002.

S. Blatt
Albert-Einstein Institut,
Am Mühlenberg 1,
14476 Postdam-Golm, Germany
E-mail: simon.blatt@aei.mpg.de


	Loss of convexity and embeddedness for geometric evolution equations of higher order
	Abstract
	1. Introduction
	2. General remarks
	3. Loss of embeddedness
	4. Loss of convexity
	REFERENCES



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


