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Abstract

We investigate D-branes on the product G×G of two group manifolds described as Wess-
Zumino-Novikov-Witten models. When the levels of the two groups coincide, it is well known
that there exists permutation D-branes which are twisted by the automorphism exchanging
the two factors. When the levels are different, the D-brane charge group demands that there
should be generalisations of these permutation D-branes, and a geometric construction for
them was proposed in hep-th/0509153. We give further evidence for this proposal by showing
that the generalised permutation D-branes satisfy the Dirac-Born-Infeld equations of motion
for arbitrary compact, simply connected and simple Lie groups G.
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1 Introduction

In background geometries that contain the product of two identical factors, M ×M , there
exist so-called permutation branes which are dimM-dimensional submanifolds that lie di-
agonally in the product M ×M . On the world-sheet of an open string, they are described
by permutation gluing conditions where the chiral left-movers of one factor theory are glued
to the corresponding right-moving fields in the second factor and vice versa. When the
theory on M is given by a rational conformal field theory (CFT), the boundary states of
the permutation branes can be explicitly constructed [1] (see also [2, 3, 4, 5]).

It was observed in several instances that these permutation branes play an important
role for the D-brane charge group of the background (see e.g. [6, 7, 8, 9]). In [10] it was noted
that in Gepner models a further construction is needed to explain all the charges, some gen-
eralisation of the permutation branes for products of N = 2 minimal models with different
central charges. These have been constructed as matrix factorisations in a Landau-Ginzburg
description [10], but no general geometric or boundary conformal field theory construction
of these branes is known (see however [11] for the CFT construction in a particular product
of minimal models). Earlier there had been a proposal [8] for a generalisation of permutation
D-branes in the product of two Wess-Zumino-Novikov-Witten (WZNW) models at different
levels, Gk1 ×Gk2 . Also there it was found that these generalisations are necessary to explain
the charge groups predicted by twisted topological K-theory.

In this note we want to further substantiate the proposal of [8] by verifying that the
generalised permutation branes satisfy the Dirac-Born-Infeld (DBI) equations of motion.
Such a check has been performed in [8] for the case of G = SU(2), we shall extend it here
to arbitrary compact, simply-connected, simple Lie groups G.

Let us briefly review the geometry of generalised permutation branes in Gk1 ×Gk2 that
was suggested in [8]. Write ki = k′ik where k = gcd(k1, k2) is the greatest common divisor of
the levels, so that k′1 and k′2 are relatively prime. Then the simplest generalised permutation
brane∗ is described by the embedding

G ∋ g 7→
(
gk

′

2, g−k
′

1
)
∈ G×G . (1.1)

This embedding is motivated by the requirement that the H-field on the brane has to
be exact: as the H-field is proportional to the level, the induced H-field has vanishing
cohomology on the brane.

We shall check in this paper that the D-brane described by the embedding (1.1) together
with the boundary two-form given in (1.5) (the gauge field on the brane) satisfies the DBI
equations of motion, and thus – at least in the geometric limit k → ∞ – defines a consistent
D-brane.

The structure of the paper is as follows. In the remainder of the introduction we shall set
up the DBI equations of motion in the form that is most useful for us. Section 2 introduces
our choice of coordinates on the groups. Finally, the actual computation will be performed
in section 3.

∗Notice that there are higher dimensional cousins of (1.1), which are not considered in this note.

2



1.1 DBI analysis

The dynamics of geometric D-branes are described by the Dirac-Born-Infeld (DBI) the-
ory [12, 13, 14]. In the next paragraphs we shall review the DBI equations of motion,
following the formulation in [15]. Consider a brane that is parameterised by coordinates xa

with an embedding in the target space (coordinates Xµ) given by

xa 7→ Xµ(xa) . (1.2)

In our case, the target space index runs over the two group factors (µ = 1, . . . , 2d, d is the
dimension of each group factor G in the target space), xa will run over the d coordinates of
the embedded sub-manifold. We shall distinguish quantities on the brane from target space
objects by hats, so ĝ and B̂ are the induced metric and B-field on the brane, respectively.

Our aim is to verify that the proposed embedding (1.1) minimises the Dirac-Born-Infeld
effective action,

SDBI ∝

∫

ddx

√

det(ĝ + B̂ + F̂ ) , (1.3)

where F̂ is the gauge field strength on the brane. The combined object

ω̂ = B̂ + F̂ (1.4)

is the gauge-invariant boundary two-form. For the generalised permutation brane (1.1) it
has been proposed in [8] to be (adapted to our normalisation)

ω̂ = −
k1

2

k′2−1
∑

j=1

(k′2 − j) tr
(
Adgj(g−1dg) ∧ g−1dg

)

−
k2

2

k′1−1
∑

j=1

(k′1 − j) tr
(
Adg−j (gdg−1) ∧ gdg−1

)
. (1.5)

The DBI equations of motion are obtained from a variation of the DBI action (1.3). In a
gauge-invariant formulation they read (see [15]),

[
(ĝ + ω̂)−1

]ba
Ωµ
ab = 0 (1.6)

[
(ĝ + ω̂)−1

]ab

antisym
∂b
√

det(ĝ + ω̂) = 0 . (1.7)

Here, Ω is defined to be a generalisation of the second fundamental form,

Ωµ
ab := ∂a∂bX

µ + Γ′µ
νλ∂aX

ν∂bX
λ − Γ̂′c

ab∂cX
µ, (1.8)

with the connections entering this formula being defined in terms of the H-field H = dB,

Γ′ := Γ −
1

2
H . (1.9)
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The first equation (1.6) corresponds to a variation of the embedding, the second equation
(1.7) comes from the variation of the F-field. For our problem at hand we shall compute the
generalised second fundamental form (1.8) explicitly in section 3, with all the geometrical
quantities involved. This will then be used to check that the equations (1.6) and (1.7)
are indeed satisfied for the generalised permutation branes.† To turn the computation
manageable we need to find good coordinates on the brane and on the groups. This will be
done in the next section.

2 Coordinates on the group

Our analysis starts by choosing a convenient parameterisation of the single group manifold
G. It was already suggested in [8] that generalised permutation branes are best described
with a specific choice of coordinates. These coordinates (described e.g. in [16]) use the
triangular decomposition of the Lie algebra; every group element is written as an element
of a conjugacy class of an element of the Cartan torus.

A convenient basis for a simple Lie algebra is given by the Cartan-Weyl basis that consists
of r (the rank of the algebra) commuting generators Hi of the Cartan subalgebra, and the
ladder operators Eα associated to the roots α. They satisfy the commutation relations

[Hi, E
α] = αiE

α , [Hi, Hj] = 0, i, j = 1 . . . r (2.1)

[Eα, Eβ] =







∑

i αiHi if β = −α
NαβE

α+β if α + β ∈ ∆
0 otherwise

. (2.2)

By ∆ we denoted the set of all roots {α}, Nαβ is some constant. We follow the usual
convention that the norm squared of a long root is 2, and that

tr
(
HiHj

)
= δij , tr

(
EαEβ

)
= δα,−β . (2.3)

Now let us choose our parameterisation. Following [16] we write

g(χ, θ) := h−1(θ)t(χ)h(θ) , (2.4)

where t is an element of the Cartan torus T , t(χ) = exp(iHjχ
j) , with j running from 1 to

r, and h ∈ G is only defined up to left translations by T (so it really lives in the quotient
space G/T ).

One of the beautiful features of this parameterisation is that it allows us to compute
quite simply powers of a generic group element,

gn = h−1tnh . (2.5)

This is particularly useful for the description of generalised permutation branes, because
the embedding (1.1) involves powers of group elements.

†In [8] it was already argued that (1.7) holds for arbitrary simple Lie groups. The argument given there,
however, was not completely correct and missed out a subtle point. See also footnote ‡.
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To complete the parameterisation we need in addition to the coordinates χ on the Car-
tan torus to specify good coordinates on the quotient space G/T . Following [16] we first
introduce the one forms θα by decomposing dh h−1 in the Cartan-Weyl basis,

dh h−1 =
∑

α>0

i
[
θαEα + θ−αE−α

]
+ iζ iHi . (2.6)

Note that under a change of a representative h of G/T , h→ h′ = fh with f = exp(iφjHj) ∈
T , the decomposition (2.6) changes to

dh′ h′−1 =
∑

α>0

i
[
eiα·φθαEα + e−iα·φθ−αE−α

]
+ i(ζ i + dφi)Hi . (2.7)

So we see that the θα only change by phases, whereas the torus part ζ remains invariant
only under constant rotations f . Up to the problem with the phases, the one-forms θα are
well-defined objects on G/T , they will be used to locally introduce coordinates on G/T .

We can express the metric and the H-field on the group by the coordinates χ and the
one-forms θα. Following again [16, 8], on a single group factor G at level k one finds

ds2 = −
k

2
tr[g−1dg ⊗s g

−1dg] (2.8)

=
k

2

[∑

α>0

4 sin2 χ
iαi
2

[
θα ⊗ θ−α + θ−α ⊗ θα

]
+

r∑

j=1

dχj ⊗ dχj
]

. (2.9)

The phase ambiguity of the θα obviously drops out, because θα and θ−α change by opposite
phases. We can also express the H-field in this parameterisation,

H = dB = kd
[

i
∑

α>0

(
χjαj − sinχjαj

)
θα ∧ θ−α

]

. (2.10)

Note that again the phase ambiguity in the θα drops out. As H is not exact, the B-field
defined by (2.10) is not globally well-defined, it is singular at those t = exp(iH · χ) ∈ T
different from the identity, whose conjugacy class degenerates (and thus has dimension
smaller than G/T ).

It is instructive to see how the parameterisation in terms of χ and the θ’s depend on
the choice of a Cartan torus T . Suppose we choose a different torus T ′. By a well-known
theorem, the two tori are conjugate (see e.g. [17, Chapter IV, Theorem 1.6]), and there is a
g0 ∈ G with

T ′ = g0Tg
−1
0 . (2.11)

The decomposition of a group element g with respect to T is then related to the one with
respect to T ′ in a simple way,

g = h−1th = (g0h)
−1g0tg

−1
0 (g0h) = h′−1t′h′ , (2.12)
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where now t′ = g0tg
−1
0 and h′ = g0h. To find the coordinates χ′ and the one-forms θ′α we

have to use the changed basis of generators, E ′α = g0E
αg−1

0 and H ′
i = g0Hig

−1
0 . Then

t′ = g0tg
−1
0 = g0e

i
P

Hjχ
j

g−1
0 = ei

P

H′

jχ
j

, (2.13)

so that χ′j = χj. On the other hand we have

dh′ h′−1 = g0(dh h
−1)g−1

0 =
∑

α>0

i
[
θαE ′α + θ−αE ′−α

]
+ iζ iH ′

i , (2.14)

so that θ′α = θα. The parameterisation is therefore independent of the choice of the Cartan
torus.

We have seen that the parameterisation (2.4) in terms of χ and θ has very nice prop-
erties. On the other hand we still face the problem that θα are just one-forms and not
yet coordinates. If they were exact, we could introduce coordinates by setting θα = dzα.
However, as we shall see shortly, the one-forms θα are not even closed. Still it is possible
to introduce coordinates z locally around g = t(χ) that capture all of the nice features and
satisfy

θα = dzα + O(z) . (2.15)

Namely we shall parameterise h by

h = ei(
P

α∈∆ zαEα) = 1 + i
∑

α∈∆

zαE
α + O(z2) . (2.16)

To get the one-forms θα in terms of the variables z, we expand dh h−1 in z,

dh h−1 =
∑

α,β∈∆+

[(

iEαdzα−
1

2

[
Eα, Eβ

]
dzαzβ

)

+
(

iE−αdz̄α−
1

2

[
E−α, E−β

]
dz̄αz̄β

)]

+O(z2) .

(2.17)
By ∆+ ⊂ ∆ we denoted the set of all positive roots. From this expression we can extract
the one-forms θα, θ−α by using (2.6) and (2.3),

iθα = tr
(
E−αdh h−1

)
= idzα − 1

2
dzβzγ tr

(

E−α
[
Eβ , Eγ

])

+ O(z2),

iθ−α = tr
(
Eαdh h−1

)
= idz̄α − 1

2
dz̄β z̄γ tr

(

Eα
[
E−β, E−γ

])

+ O(z2),

(2.18)

We can further simplify the formulae (2.18) using the Cartan-Weyl structure equations (2.2),
and using the fact that N−α,−β = −Nαβ ,

θα = dzα +
i

2

∑

β,γ∈∆+

Nβγdz
βzγδβ+γ,α + O(z2) (2.19)

θ−α = dz̄α −
i

2

∑

β,γ∈∆+

Nβγdz̄
β z̄γδβ+γ,α + O(z2). (2.20)
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We see now explicitly that the θα are in general not closed, even if we sit on the Cartan
torus (z = 0),

dθα|z,z̄=0 = −
i

2

∑

β,γ∈∆+

Nβγδβ+γ,α dz
β ∧ dzγ 6= 0 in general (2.21)

dθ−α|z,z̄=0 =
i

2

∑

β,γ∈∆+

Nβγδβ+γ,α dz̄
β ∧ dz̄γ 6= 0 in general. (2.22)

Expanding the metric (2.9) in z we find

ds2 =
k

2

[ ∑

α∈∆+

4 sin2 χiαi

2

[
dzα ⊗ dz̄α + dz̄α ⊗ dzα

]
+

r∑

j=1

dχj ⊗ dχj
]

+
k

4

[ ∑

α,β,γ>0

4 sin2 χiαi

2
δβ+γ,α

[
iNβγz

γ (dzβ ⊗s dz̄
α) − iNβγ z̄

γ (dzα ⊗s dz̄
β)
]]

+ O(z2) . (2.23)

The first line of the previous expression is a real quadratic form; the second line involves a
hermitian bilinear, as one can easily check. The H-field on the other hand takes the following
form:

H = kd
[

i
∑

α>0

(
χjαj − sinχjαj

)
dzα ∧ dz̄α

]

+
ik

2
d
[ ∑

α,β,γ>0

δβ+γ,α

(
χjαj − sinχjαj

) [
iNβγz

γ (dzβ ∧ dz̄α) − iNβγ z̄
γ (dzα ∧ dz̄β)

]]

+ O(z2) . (2.24)

2.1 An example: coordinates on SU(2)

We shall illustrate our choice of coordinates in the case of SU(2). Consider a standard
parameterisation of SU(2),

g(ψ, ϑ, φ) =

(
cosψ + i cosϑ sinψ sinψ sin ϑeiφ

− sinψ sin ϑe−iφ cosψ − i cosϑ sinψ

)

= h(ϑ, φ)t(ψ)h(ϑ, φ)−1, (2.25)

with

t(ψ) =

(
eiψ 0
0 e−iψ

)

, (2.26)

h(ϑ, φ) =

(

cos ϑ
2

−i sin ϑ
2
eiφ

−i sin ϑ
2
e−iφ cos ϑ

2

)

. (2.27)

Using the standard form for the generators,

E+ =

(
0 1
0 0

)

, E− =

(
0 0
1 0

)

, (2.28)
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we can extract the one-forms θ+ and θ− from (2.6) and find

θ+ = −
1

2
eiφdϑ−

i

2
sin ϑeiφdφ, θ− = θ+ . (2.29)

Let us now identify the z, z̄ variables in this simple case. Following the definition (2.16) we
write

h = ei(zE
++z̄E−) =

(

cos |z| i z
|z|

sin |z|

i z̄
|z|

sin |z| cos |z|

)

. (2.30)

The connection of the coordinates z, z̄ to the old parameterisation is given by

z = −
ϑ

2
eiφ , (2.31)

and the one-forms θ+, θ− (see (2.29)) read now

θ+ =
(1

2
+

1

4

sin 2|z|

|z|

)

dz +
(1

2
−

1

4

sin 2|z|

|z|

)z

z̄
dz̄

= dz +
1

3
(z2dz̄ − |z|2dz) + O(|z|4) , (2.32)

and θ− = θ+. These one-forms are not closed,

dθ+ =
sin2 |z|

z̄
dz ∧ dz̄ , (2.33)

but dθ+ vanishes at z = 0. In contrast, for a generic Lie group, dθα does not have to vanish
at z = 0 (see (2.21,2.22)). This is because in SU(2) there are no non-trivial relations among
the positive roots, as there is only one.

3 The DBI equations of motion

We now want to check the DBI equations of motion. As the computations are rather
involved, we shall first outline the general strategy.

3.1 The general strategy

To check the equations of motion for the generalised permutation branes at a given point of
the brane parameterised by g ∈ G, we choose a Cartan torus T containing g. (This is always
possible, see e.g. [17].) Then we can introduce coordinates χj and zα locally around g as
in section 2. We want to check the equations at g, that is at zα = 0, but as the equations
of motion contain also first derivatives of the geometric data (metric, B-field), we have to
keep terms up to linear order in z. The function describing the embedding (1.1) enters even
with second derivatives, but it can be chosen such that it is exactly linear and its second
derivatives vanish,

(χ, z, z̄) 7→
(
(k′2χ, z, z̄), (−k

′
1χ, z, z̄)

)
. (3.1)
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This simple form of the embedding will in particular be very practical when computing the
connections.

The computations, although they are rather involved, simplify because of two reasons:
firstly, the target space is a direct product of two – up to the level – identical factors, so
that the target space data has a natural block structure. Secondly, our choice of the coordi-
nate system allows us to factorise the geometry in a toroidal part (the directions belonging
to the Cartan torus), and a non-toroidal part. We can then introduce “matryoshka” ma-
trices, namely blocks of block matrices such that many of the blocks are trivial and the
computations can be reduced considerably.

Before we start with the computation, let us introduce some notations and conventions.
For the brane we shall use the coordinates

(xa) = (χi, zm, z̄n) , (3.2)

where the first r = rankG coordinates xa denote the toroidal parameters χi followed by the
remaining d − r coordinates corresponding to the d − r roots. Similarly, we parameterise
the target space by coordinates Xµ where for µ = 1, . . . , d they denote the coordinates
(χi(1), z

m
(1), z̄

n
(1)) of the first group factor, and for µ = d + 1, . . . , 2d they are given by the

coordinates of the second group factor. Hats ˆ denote quantities on the brane, a tilde ˜
denotes a geometric object of a single factor of the product target space.

We divide the computations in several steps. First we determine the expressions for the
target space data in our coordinate system (section 3.2). Then all quantities on the brane
will be determined in section 3.3, and in section 3.4 the second fundamental form will be
computed. In section 3.5 the equations (1.7) and (1.6) will be checked showing that the
generalised permutation branes are extremal points of the DBI action.

3.2 Target space Objects

The target space metric is just given by the metrics (2.23) of the two group factors,

ds2 =
∑

j=1,2

{

kj
2

[∑

α>0

4 sin2 χi
(j)
αi

2

[
dzα(j) ⊗ dz̄α(j) + dz̄α(j) ⊗ dzα(j)

]
+

r∑

l=1

dχl(j) ⊗ dχl(j)

]

+
ikj
4

[ ∑

α,β,γ>0

4 sin2 χi
(j)
αi

2
δβ+γ,α

[
Nβγz

γ

(j) (dzβ(j) ⊗s dz̄
α
(j)) −Nβγ z̄

γ

(j) (dzα(j) ⊗s dz̄
β

(j))
]]
}

+ O(z2) . (3.3)

Writing the metric Gµν as a matrix it takes a block form,

(
G(X1, . . . , X2d)

)

µν
=

1

2

(

k1G̃(X1, . . . , Xd)

0
︸ ︷︷ ︸

d

0

k2G̃(Xd+1, . . . , X2d)

)

︸ ︷︷ ︸

d

. (3.4)
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The blocks of d× d-matrices are separated by double lines. The constituent square matrix
G̃ has again a block structure with respect to toroidal and non-toroidal directions (indicated
by single lines),

G̃(y, z, z̄) =






1r 0

0
0 γ(y)

γ(y)T 0




+ O(z2) . (3.5)

︸︷︷︸

r

︸ ︷︷ ︸

d−r

The square matrix γ has size (d− r)/2, and it is given by

γmn(y) =







4 sin2
(ykαn

k

2

)
+ O(z2) for m = n

2i sin2 χjαn
j

2
Nαm,αn−αmzα

n−αm

for αn − αm ∈ ∆+

−2i sin2 χjαm
j

2
N̄αn,αm−αn z̄α

m−αn

for αm − αn ∈ ∆+ .

(3.6)

Notice that the off-diagonal terms are all at least linear in z, and that the diagonal does not
have any linear contribution in z.

The background H-field is also just the sum of the H-fields (2.24) of the two factors,

H =
∑

j=1,2

ikj
2
d

[
∑

α>0

2
(

χk(j)αk − sinχk(j)αk

)

dzα(j) ∧ dz̄
α
(j)

+
∑

α,β,γ>0

δβ+γ,α

(

χk(j)αk − sinχk(j)αk

) [
iNβγz

γ

(j) (dzβ(j) ∧ dz̄
α
(j)) − iNβγ z̄

γ

(j) (dzα(j) ∧ dz̄
β

(j))
]

]

+ O(z). (3.7)

Writing H as 2d× 2d matrices Hµ = (Hµνλ)νλ we have again a block structure,

Hµ =







(

k1H̃µ(X
1 . . .Xd)

0

0

0

)

for µ = 1, . . . , d

(

0

0

0

k2H̃µ(X
d+1 . . .X2d)

)

for µ = d+ 1, . . . , 2d.

(3.8)

The form of the d × d-matrices H̃µ is different for toroidal and non-toroidal directions µ.
For toroidal directions we have

(
H̃χi

)

ab
(y) =





0 0

0
0 β,i (y)

− β,Ti (y) 0



+ O(z),
i = 1 . . . r
a, b = 1 . . . d

(3.9)

Here we have introduced the diagonal matrix β of size (d− r)/2,

βmn(y) =

{

2i
[

ykαnk − sin ykαnk

]

+ O(z2) for m = n

O(z) for m 6= n ,
(3.10)
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and its derivatives β,i (y) := ∂iβ(y). For the non-toroidal directions it will be sufficient for
the computation to observe that H has the form

(
H̃zm

)

ab
(y) =





0 ∗

∗
0 �

� 0



+ O(z) , (3.11)

where ∗ denotes an arbitrary contribution, whereas � denotes a matrix that has vanishing
diagonal, �ij = 0 for i = j.

The only target space data that is still missing for the computation is the connection,

Γµλν :=
1

2

(

∂λGµν + ∂νGµλ − ∂µGνλ

)

. (3.12)

Again we write it in matrix form where it assumes a block structure,

(Γµ)νλ =







1
2

(

k1Γ̃µ(X
1 . . .Xd)

0

0

0

)

for µ = 1, . . . , d

1
2

(

0

0

0

k2Γ̃µ(X
d+1 . . .X2d)

)

for µ = d+ 1, . . . 2d

(3.13)

with

(
Γ̃χi

)

ab
(y) = −

1

2





0 0

0
0 γ,i (y)

γ,i (y) 0



+ O(z),
i = 1 . . . r
a, b = 1 . . . d

(3.14)

(
Γ̃zm

)

ab
=





0 ∗

∗
0 �

� 0



+ O(z) , (3.15)

where as before ∗ is not further specified, and � is a matrix with vanishing diagonal terms.

3.3 Brane quantities

The quantities on the world-volume of the brane that are important in our analysis are first
of all the induced metric ĝ and the boundary two-form ω̂, which we have to determine up
to linear order in z, and then their derivatives, namely the connection Γ̂ and the induced
H-field Ĥ, for which we only need the expressions at z = 0.

We start with the induced metric, determined by

ĝab := Gµν∂aX
µ∂bX

ν . (3.16)

The contributions from the two factors add up and we find

(
ĝ
)

ab
=






k′1k
′

2(k1+k2)

2
1r 0

0 1
2

(
0 γ̂
γ̂T 0

)




+ O(z2) , (3.17)
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where the matrix γ̂ of size (d− r)/2 is given in terms of γ (defined in (3.6)),

γ̂(χ) = k1γ(k
′
2χ) + k2γ(−k

′
1χ) . (3.18)

The connection Γ̂ corresponding to the induced metric ĝ,

Γ̂cab :=
1

2

(

∂bĝca + ∂aĝcb − ∂cĝab

)

, (3.19)

is then obtained as

(

Γ̂χi

)

ab
= −

kk′1k
′
2

4





0 0

0
0 γ,i (k

′
2χ) − γ,i (−k

′
1χ)

γ,i (k
′
2χ) − γ,i (−k

′
1χ) 0



 + O(z)

(3.20)

(

Γ̂zm

)

ab
=





0 ∗

∗
0 �

� 0



+ O(z) . (3.21)

In addition to the metric data, we also have to specify the gauge field living on the brane,
which is specified by the boundary two-form ω̂ given in (1.5). It is not difficult to show that
in terms of χ and θ it can be expressed as

ω̂ =

[

i
∑

α>0

(
k2 sin k′1χ

jαj − k1 sin k′2χ
jαj
)
θα ∧ θ−α

]

. (3.22)

Expressed in the local coordinates (χ, z, z̄) it has the form

(
ω̂
)

ab
=






0 0

0 1
2

(

0 β̂

−β̂T 0

)




 + O(z2) , (3.23)

where β̂ is expressed by β (defined in (3.10)),

β̂(χ) = k1β(k′2χ) + k2β(−k′1χ) . (3.24)

The exterior derivative of the boundary two-form gives the induced H-field, Ĥ = dω̂,

(

Ĥχi

)

ab
= −

kk′1k
′
2

2





0 0

0
0 β,i (k

′
2χ) − β,i (−k

′
1χ)

−β,i (k
′
2χ) + β,i (−k

′
1χ) 0



 + O(z)

(3.25)

(

Ĥzm

)

ab
=





0 ∗

∗
0 �

� 0



+ O(z) (3.26)

Now we have all geometric data at our disposal to compute the (generalised) second funda-
mental form that appears in the DBI equations of motion.
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3.4 Generalised second fundamental form

The generalisation of the second fundamental form Ωµ
ab in the presence of a background

H-field is given in (1.8). As our embedding (3.1) is linear, the second derivatives ∂a∂bX
µ

vanish, and Ωµ
ab is just

Ωµ
ab = Γ′µ

νλ∂aX
ν∂bX

λ − Γ̂′c
ab∂cX

µ =: Ω
(TS)µ
ab − Ω

(WS)µ
ab . (3.27)

In the following, we shall use the notation

G
±
i (y) = γ,yi (y) ± β,yi (y) . (3.28)

If µ corresponds to a torus direction, the quantities Ω(TS)µ and Ω(WS)µ have relatively simple
expressions,
(

Ω(TS)µ
)

ab
=
(

Γµλν −
1

2
Hµ
λν

)

∂aX
λ∂bX

ν = Gρµ
(

Γρλν −
1

2
Hρλν

)

∂aX
λ∂bX

ν

=







−1
2





0 0

0
0 G

+
i (k′2χ)

(G −
i )T (k′2χ) 0



+ O(z) for µ ∼= χi(1)

−1
2





0 0

0
0 G

+
i (−k′1χ)

(G −
i )T (−k′1χ) 0



+ O(z) for µ ∼= χi(2)

(3.29)

and
(

Ω(WS)µ
)

ab
=
(

Γ̂cab −
1

2
Ĥc
ab

)

∂cX
µ =

(

Γ̂nab −
1

2
Ĥnab

)

ĝnµk′2

=







−1
2

k2
k1+k2





0 0

0
0 G

+
i (k′2χ) − G

+
i (−k′1χ)

(G −
i )T (k′2χ) − (G −

i )T (−k′1χ) 0





+O(z) for µ ∼= χi(1)

1
2

k1
k1+k2





0 0

0
0 G

+
i (k′2χ) − G

+
i (−k′1χ)

(G −
i )T (k′2χ) − (G −

i )T (−k′1χ) 0





+O(z) for µ ∼= χi(2)
(3.30)

The expressions for Ωµ for non-toroidal directions µ are more involved, we however only
need the block structure,

Ωµ =





0 ∗

∗
0 �

� 0



+ O(z) for µ ∼= zm, z̄m . (3.31)
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3.5 Checking the equations of motion

Now we have all the elements to check that the proposed geometry (1.1) satisfies the DBI
equations of motion (1.6) and (1.7). An important quantity in the DBI equations is the
sum ĝ + ω̂. From the equations (3.17) and (3.23) we find

(
ĝ + ω̂

)

ab
=







[k′1k
′

2

2
(k1 + k2)

]1r 0

0 1
2

(

0 γ̂ + β̂

γ̂T − β̂T 0

)







+ O(z2) . (3.32)

The explicit expression for the constituent matrices is

1

2

(
γ̂ ± β̂

)

mn
=

{

k1 + k2 −
(
k1e

±ik′2(χkαn
k
) + k2e

∓ik′1(χ
kαn

k
)
)

+ O(z2) for m = n

O(z) for m 6= n .
(3.33)

Notice again that there are no linear terms in z on the diagonal, and that the off-diagonal
terms are all at least of linear order.

We are now prepared to check the equations of motion. Let us start with the equation
coming from the variation of the gauge field.

3.5.1 Gauge field equation of motion

Let us recall the gauge field equation of motion (see (1.7)),

[
(ĝ + ω̂)−1

]ab

antisym
∂b
√

det(ĝ + ω̂) = 0 . (3.34)

From the explicit form (3.32) of ĝ + ω̂, we see that for toroidal directions, a ∼= χi, we have

[
(ĝ + ω̂)−1

]χib

antisym
= 0 at z = 0 , (3.35)

so that the equation of motion (3.34) is satisfied for toroidal directions a.
For the non-toroidal directions we have to investigate the determinant of ĝ + ω̂,

det(ĝ + ω̂) ∝ | det(γ̂ + β̂)|2 + O(z2) . (3.36)

Now the matrix structure of γ̂ + β̂ comes into play, which is of the form (see (3.33)),

γ̂ + β̂ = D + (�) · O(z) + O(z2) , (3.37)

so the O(1) contribution is some diagonal matrixD, and the linear terms are all off-diagonal.
That means that the determinant of γ̂ + β̂ has no linear term and hence its derivative with
respect to any zm vanishes at z = 0. This shows‡ that the equation of motion (3.34) is also
satisfied for non-toroidal directions a.

‡The gauge field equations of motion were also investigated in [8], and for the toroidal directions the
correct argument was already given there. For the non-toroidal directions, however, it was implicitly assumed
that already the matrix γ̂ + ω̂ has no linear terms in z which is in general not correct.
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3.5.2 Embedding equations of motion

It remains to check the equation of motion (1.6) that comes from the variation of the
embedding of the brane,

[
(ĝ + ω̂)−1

]ba
Ωµ
ab = 0 . (3.38)

For non-toroidal directions µ, the block structure of the matrices that are involved is enough
to verify the equation of motion,

tr
(
(ĝ + ω̂)−1Ωµ

)∣
∣
z=0

= tr









∗ 0

0
0 D

D̄ 0









0 ∗

∗
0 �

� 0







 = tr





0 ∗

∗
� 0
0 �



 = 0 .

(3.39)
Here, D is a placeholder for an arbitrary diagonal matrix, and � for any off-diagonal matrix.

For a toroidal direction, µ ∼= χl(i) (i = 1, 2), one needs the explicit expressions for the
matrices,

(
Ω
)µ

ab

∣
∣
∣
z=0

= −
1

2





0 0

0
0 ∆µ

∆̄µ 0



 , (3.40)

with

∆µ
mn =

k1

k1 + k2
(G +

l )mn(k
′
2χ) +

k2

k1 + k2
(G +

l )mn(−k
′
1χ)

=
2iαnl
k1 + k2

[

k1 + k2 −
(
k1e

ik′2(χkαn
k
) + k2e

−ik′1(χ
kαn

k
)
)
]δmn for µ ∼= χl(1,2). (3.41)

Comparing this result with the expressions (3.33) that we got for the constituent matrices
γ̂ + β̂ of ĝ + ω̂, we find the relationship

∆µ
mn =

iαnl
k1 + k2

(γ̂ + β̂)mn + O(z) for µ ∼= χl(1,2). (3.42)

This is the crucial property that helps us to verify the equations of motion (3.38):

tr
[(
ĝ + ω̂

)−1
Ωµ
]

= −tr













[
k1+k2
k′1k

′

2

]1r 0

0

(

0 γ̂ + β̂

γ̂T − β̂T 0

)−1











0 0

0
0 ∆µ

∆̄µ 0











= −
1

k1 + k2
tr

[( (
iαnl δmn

)

mn
0

0
(
− iαnl δmn

)

mn

)]

(µ ∼= χl(1,2))

= 0 . (3.43)

This finally shows that the generalised permutation brane given by the embedding (1.1) and
the boundary two-form ω̂ stated in (1.5) is a solution of the DBI equations of motion.
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4 Further directions

We have shown in this paper that the generalised permutation branes are solutions of the
DBI equations for products Gk1 ×Gk2 with an arbitrary compact simply connected, simple
Lie group G. A natural extension of this work would be to investigate generalised per-
mutation D-branes in products of coset models. As mentioned in the introduction, such
generalisations have been formulated in the Landau-Ginzburg description of N = 2 minimal
models, which can also be described as cosets SU(2)/U(1), their geometric interpretation
is however unclear. Proposals for the geometries of such D-branes in coset models G/H
have been made in [8, 18], but it is questionable whether any of these proposals is cor-
rect, as no successful DBI analysis could be carried out so far. Another approach to find
the geometries of these branes in products like SU(2)/U(1) × SU(2)/U(1) is by starting
with generalised permutation branes on SU(2) × SU(2), and then marginally perturb the
SU(2)’s by current-current deformations (see e.g.[19]). At the end-point of the deformation
one expects a decoupling of one dimension and the SU(2)’s reduce essentially to cosets
SU(2)/U(1) (see e.g.[20]). In general it can happen that the branes start to flow when the
background is deformed (see e.g.[21]), but it is conceivable that it is possible to tune the
deformations of the two factors such that the generalised permutation brane does not flow.
This is currently under investigation.
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