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Abstract We consider the stationary solutions of N = 4 supergravity coupled to
n vector multiplets that define linear superpositions of non-interacting extremal black
holes. The most general solutions of this type are derived from the graded decompo-
sitions of so(8, 2 + n) associated to its nilpotent orbits. We illustrate the formalism
by giving explicitly asymptotically Minkowski non-BPS solutions of the most exotic
class depending on 6 + n harmonic functions.
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1 Introduction

When considering BPS solutions within supergravity theories, one can solve the
Einstein equations by considering the much simpler first order equations defining
the supersymmetry variations of the fermions. For example, the most general BPS
asymptotically Minkowski black holes of pure N = 4 supergravity depending on four
harmonic functions have been derived in [1]. Nonetheless, the equations of motions
of N = 4 supergravity coupled to n vector multiplets are not very different from the
more general ones of gravity coupled to n + m abelian vector fields and scalar fields
parametrising a symmetric space of the form

SL(2,R)/SO(2) ∪ SO(m, n)/(SO(m) × SO(n)) (1.1)
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540 G. Bossard

which only define the bosonic sector of supersymmetric theories for m = 2 and 6
(which are then N = 2 and N = 4, respectively). One would thus expect to be able
to derive such solutions of Papapetrou–Majumdar type [2,3] systematically, without
referring to supersymmetry.

Stationary solutions of N = 4 supergravity coupled to n vector multiplets satisfy
the equations of motion of a non-linear sigma model defined over the pseudo-Rieman-
niann symmetric space SO(8, 2 + n)/(SO(6, 2) × SO(2, n)) coupled to Euclidean
gravity in three dimensions. Within this formulation, the construction of multi-black
hole solutions depending on arbitrary harmonic functions amount to resolving an
algebraic equation (2.18) [4]. It has been explained in a recent publication [5] that the
general solutions of this equation can be derived from the graded decompositions of
the Lie algebra so(8, 2 + n) associated to its nilpotent orbits [5] (or more generally
of the simple Lie algebra g for any non-linear sigma model over a symmetric space
G/H∗). Moreover, referring to the general classification of [6], one can distinguish
from those solutions which are the ones that define regular space-time in which all the
singularities are covered by an horizon.

One motivation for considering the particular example of N = 4 supergravity
comes from the recent discovery of non-BPS extremal solutions within the ST U
model [7,8] (i.e. for m = n = 2 within (1.1)). Such extremal solutions can be derived
from a ‘fake superpotential’ [9] within the formalism of the attractor mechanism
[10,11]. A systematic way of deriving the attractor superpotential from the nilpotent
orbit of the Noether charge may shed some light on the counting of non-BPS black
holes microstates [12].

From another point of view, N = 4 supergravity theories provide a large class of
theories that can be studied in the framework of [5], and which are simple enough to
allow for an explicit computation of the solutions. For instance, the general method
defined in [5] permits to derive in a straightforward way the solutions of the three-
dimensional non-linear sigma model in the symmetric gauge. Nevertheless, in order
to read of the explicit solution in term of the four-dimensional fields, and thus to
extract the physical quantities such as the horizon area of the black holes, one must
then rotate the coset representative into a specific parabolic gauge. This last step can
be technically difficult, as for instance in the case of maximal supergravity for which
one must consider the multiplication of elements of E8(8) which smallest irreducible
representation is 248-dimensional. As we are going to see, such computation can be
carried out much more easily in the case of orthogonal groups.

The paper starts by a brief revue of the method derived in [5]. We then display
in detail the different classes of solutions of Papapetrou–Majumdar type of N = 4
supergravity. They come into three classes, the first one being the known linear super-
positions of 1

4 BPS black holes preserving four identical supersymmetry charges. The
second corresponds to linear superpositions of non-BPS black holes, which central
charges vanish at the horizon. The latter can be understood from the former within
N = 4 supergravity coupled to 6 vector multiplets, by simply permuting the vector
fields belonging to the gravity multiplets and those belonging to the vector multiplets.
More generally, they are 1

2 BPS within an N = 2 supergravity theory which bosonic
sector defines a consistent truncation of the N = 4 theory, such that the N = 2
graviphoton lies inside a vector multiplet of the latter. The last class corresponds to
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The extremal black holes of N = 4 supergravity 541

linear superpositions of non-BPS black holes which central charges are non-zero at
the horizon. These more exotic solutions are not BPS solutions of an appropriated
N = 2 truncation of the theory and involve the whole field content of the latter [5].
We will give explicitly a large class of such solutions depending on 6 + n harmonic
functions in Sect. 5.

It is argued in [5] that the most general regular Papapetrou–Majumdar type solu-
tions can be extracted from the five-graded decomposition of so(8, 2 + n) associated
to the dimensional reduction from four to three dimensions (2.16). We prove in the last
section that all the solutions involving higher order nilpotent orbits do indeed carry
naked singularities. We also provide some strong evidence that the result extends to
maximal supergravity as well.

2 Extremal solutions and nilpotent orbits

The bosonic field content of N = 4 supergravity is given by the gravity multiplet,
that is the metric, six abelian vector fields, and the axion/dilaton scalar fields para-
metrising the symmetric space SL(2,R)/SO(2), and by n vector multiplets, con-
taining n abelian vector fields and scalar fields parametrising the symmetric space
SO(6, n)/(SO(6) × SO(n)). The 6 + n vector fields transform in the vector repre-
sentation of the isometry group SO(6, n), and SL(2,R) mixes the ‘electric’ and the
‘magnetic components’. The stationary solutions of the theory satisfy the equations of
motion of a non-linear sigma model over SO(8, 2+n)/(SO(6, 2)×SO(2, n)) coupled
to Euclidean gravity in three dimensions. For a coset representative V in SO(8, 2+n)/

(SO(6, 2)×SO(2, n)), one decomposes the Maurer–Cartan form V−1dV into its coset
and its so(6, 2) ⊕ so(2, n) components,

V−1dV = Q + P
Q ≡ Qµdxµ ∈ so(6, 2) ⊕ so(2, n)

P ≡ Pµdxµ ∈ so(8, 2 + n) � so(6, 2) ⊕ so(2, n)
(2.1)

and the equations of motion read

d � V PV−1 = 0, Rµν = Tr Pµ Pν (2.2)

where � is the Hodge star operator associated to the three-dimensional Riemannian
metric g.

In order to exhibit the field content of the four-dimensional theory it is convenient
to consider the coset representative V in the spinor representation of Spin(8, 2 + n).
One defines then the Clifford algebra of Spin(8, 2 + n) as the tensor product of the
Clifford algebra of Spin(2, 2) ∼= SL(2,R) × SL(2,R) and the Clifford algebra of
Spin(6, n), such that SL(2,R) × SL(2,R) × Spin(6, n) is the product of the Ehlers
group and the duality symmetry group of the four-dimensional theory. This way one
writes the coset representative V as a four by four matrix valued in the Clifford algebra
of Spin(6, n),
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V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

H
1
2 H− 1

2
(
B − 1

2 [/U, /A]) H̄
1
2 /U H̄− 1

2
(
/A + B̄ /U

)

0 H− 1
2 0 0

0 −H− 1
2 /A H̄

1
2 H̄− 1

2 B̄

0 H− 1
2 /U 0 H̄− 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

v (2.3)

where v is the coset representative of the scalars in SO(6, n)/(SO(6) × SO(n)) in
the spinor representation of Spin(6, n), and H̄ and B̄ are the dilaton and the axion
fields in the parabolic gauge of SL(2,R)/SO(2). Note that we identify the identity 1

of the Clifford algebra associated to Spin(6, n) with the real unit 1 in the formulas.
The electric and the magnetic components /U and /A of the vector fields are contracted
with the Spin(6, n) gamma matrices. After dualization of B according to its equation
of motion,

d B̂ = −H−2 �

(
d B + 1

2
{/U, d /A} − 1

2
{ /A, d/U }

)
(2.4)

one recovers the vector field B̂µ defining altogether with H the metric through the
Kaluza–Klein ansatz

ds2 = −H
(

dt + B̂µdxµ
)2 + H−1gµνdxµdxν (2.5)

And dualizing as well the SO(6, n) vector /A according to its equation of motion,

(
d /̂A + /Ud B̂

)
= −(H H̄)−1 �

(
d /A + B̄d/U

)
(2.6)

one recovers the vector fields /̂Aµ defining altogether with /U the SO(6, n) vector AI

of abelian vector fields, through the Kaluza–Klein ansatz

√
8πGAI = {� I , /U }

(
dt + B̂µdxµ

)
+ {� I , /̂Aµ}dxµ (2.7)

The spherically symmetric black holes (including the asymptotically Taub–NUT ones)
are entirely characterised by their SO(8, 2 + n)-Noether charge

Q ≡ 1

4π

∫

∂V

�V PV−1 (2.8)

and the asymptotic value of the scalars fields V0 ∈ SL(2,R) × SO(6, n) at spatial
infinity. Actually, it will be more convenient to characterise the solutions in term of a
modified conserved charge C obtained by rotating Q back into the coset

C ≡ V0
−1QV0 ∈ so(8, 2 + n) � (so(6, 2) ⊕ so(2, n)) (2.9)
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which we will call the ‘Noether charge’ for simplicity (this designation being unam-
biguous since we will never refer to Q itself). It has the following form

C =

⎛
⎜⎜⎜⎜⎜⎝

M + /σ N −/Q + /q /p − /P

N −M + /σ −/p − /P /Q + /q

/Q + /q −/p + /P � + /σ �

/P + /p −/Q + /q � −� + /σ

⎞
⎟⎟⎟⎟⎟⎠

(2.10)

where M and N are the mass and the NUT charge, /Q and /P are the SO(6) vec-
tors of electric and magnetic components of the central charges contracted with the
Spin(6, n) gamma matrices, /q and /p are the SO(n) vectors of electric and magnetic
charges of the vector fields of the vector multiplets generalising the central charges,
contracted with the Spin(6, n) gamma matrices as well. � and � are the dilaton and
the axion charge, respectively, and /σ is the so(6, n) � (so(6) ⊕ so(n)) charge associ-
ated to the coset scalars of SO(6, n)/(SO(6)×SO(n)). Note that we have rescaled all
the electro-magnetic charges by a factor of

√
2 with respect with the usual conventions

[1] in the sake of simplicity of the formulas. The reader must also keep in mind that /Q,
/P , /q and /p are the charges in the vector representations of SO(2) × SO(6) × SO(n)

that generalise the central charges, and not the electromagnetic charges transforming
with respect with SL(2,R) × SO(6, n).

As stated in [6], regular black holes admit a Noether charge C which satisfy the
characteristic equation

C 3 = c2C (2.11)

where c defines the normalised trace of C 2

c2 = M2 + N 2 − 2Q2 − 2P2 − 2q2 − 2p2 + �2 + �2 (2.12)

which is proportional to the product of the horizon area AH and the surface gravity
κ for regular spherically symmetric black holes [5],

AH κ = 4π c (2.13)

The cubic equation (2.11) determines the scalar charges �, � and /σ in function of the
others, although they are irrational functions of the mass, NUT and electromagnetic
charges in general. For extremal black holes, it follows from (2.11) and (2.13) that the
Noether charge is then nilpotent

C 3 = 0 (2.14)

and one can then write done the expression of the scalar charges in function of the
others in closed form.

The complex O(10 + n,C) orbit of a generic solution of Eq. (2.14) is dense in
the set of solutions of this equation in so(10 + n,C) [13]. To any representative E of
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a general nilpotent orbit of so(10 + n,C), one can associate a corresponding sl2(C)

triplet (H, E, F) such that [13]

[H, E] = 2E, [H, F] = −2F, [E, F] = H (2.15)

and such that H defines a graded decomposition of so(10 + n,C) which characterises
uniquely the orbit. When the O(10 +n,C) orbit admits a non-trivial intersection with
so(8, 2 + n), the triplet can be chosen to define an sl2 triplet of so(8, 2 + n) and H
defines a unique graded decomposition of so(8, 2 + n). The graded decomposition
associated to Eq. (2.14) is the one associated to the dimensional reduction from four
to three dimensions,

so(8, 2 + n) ∼= 1(−4) ⊕ (2 ⊗ (6 + n))(−2)

⊕ (gl1 ⊕ sl2 ⊕ so(6, n))(0) ⊕ (2 ⊗ (6 + n))(2) ⊕ 1(4) (2.16)

Representatives of the orbits are generic elements of the grade two component (2.15)
that define sl2 doublets of orthogonal non-null vectors of SO(6, n). For n > 2 there
are three real orbits of SO(8, 2+n) associated to this graded decomposition. They cor-
respond to sl2 doublets of orthogonal non-null vectors of SO(6, n) in (2 ⊗ (6 + n))(2)

which are either both time-like (i.e. of isotropy subgroup SO(4, n) ⊂ SO(6, n)), both
space-like (i.e. of isotropy subgroup SO(6, n −2) ⊂ SO(6, n)), or of mixed type (i.e.
of isotropy subgroup SO(5, n − 1) ⊂ SO(6, n)). They are are commonly labelled as
(+ − +)2, (− + −)2 and (+ − +)(− + −), respectively [13].1

Interestingly, each real orbit of SO(8, 2 + n) can be associated to one single
SO(6, 2) × SO(2, n) orbits of regular extremal black holes [6]. In order to deter-
mine the corresponding non-trivial intersections of (2 ⊗ (6 + n))(2) with so(8, 2 + n)

� (so(6, 2) ⊕ so(2, n)) in which the corresponding Noether charge C lies, one iden-
tifies a triplet such that both E and F lie in the coset component, and such that H
lies in so(6, 2) ⊕ so(2, n). As we are going to see, the orbit (+ − +)2 correspond to
1
4 BPS solutions, the orbit (−+−)2 to non-BPS solutions for which the central charges
vanish at the horizon, and the orbit (+ − +)(− + −) to non-BPS solutions for which
the central charges do not vanish at the horizon.

We consider an Ansatz of the form

V = V0 exp

(
−

∑
n

HnCn

)
(2.17)

for some functions Hn and Lie algebra elements Cn all lying in the intersection of
(2 ⊗ (6 + n))(2) with so(8, 2 + n) � (so(6, 2) ⊕ so(2, n)). Then, it follows from the
grading (2.16) that

1 For n = 2 the real orbit of O(8, 2 + n) associated to a doublet of space-like vectors decomposes into
two orbits of the connected component SO0(8, 2 + n). For n = 1 the latter orbit does not exist, and the one
associated to a doublet of vector of mixed type decomposes into two distinct orbits of SO0(8, 2 + n). For
n = 0 there is one single orbit.
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[Cm, [Cn,Cp]] = 0, Tr CmCn = 0 (2.18)

such that the equations of motions reduce to the linear equations [4]

Rµν − 1

2
gµν R = 0, d � dHn = 0 (2.19)

One has then general Papapetrou–Majumdar solutions with gµν being the flat Euclid-
ean metric and Hn arbitrary asymptotically flat harmonic function of R3. It has been
argued in [5] that the most general solutions of this type (2.17, 2.18) for which all
singularities are covered by an horizon are the ones associated to the three orbits
(+ − +)2, (− + −)2 and (+ − +)(− + −). This proposition will be proven explicitly
in the last section. We will now discuss the various solutions associated to these three
orbits.

3 BPS black holes

We will consider first the BPS multi-black hole solutions. In this case it is well known
that BPS black holes preserving four identical supersymmetry charges do not interact,
such that the corresponding linear superpositions define well behaved Papapetrou–
Majumdar solutions.

For BPS solutions, it is more convenient to consider SO(2, 6) as the quotient of
the R-symmetry group Spin∗(8) by the Z2 kernel of its chiral spinor representation,2

and to combine the charges into complex combinations

W ≡ M + i N , Zi j ≡ 1√
2
[C /Q]i j+ + i√

2
[C /P]i j+

z A ≡ q A + i pA, ς ≡ � + i� (3.1)

where we use the homomorphism Spin(6) ∼= SU (4) to write down the central charges
as an antisymmetric tensor of SU (4). We define similarly the complex selfdual tensor
�A

i j+ from /σ . Using a fermionic harmonic oscillator basis for so∗(8), one can write
down the Noether charge C as an SO(2, n) vector of Majorana–Weyl spinors |C 〉 of
Spin∗(8) [6],

|C 〉 =

⎛
⎜⎜⎝

1
2

(
W + ς̄ + (

Zi j + 1
2εi jkl Zkl

)
ai a j + 1

24εi jkl(ς + W̄)ai a j akal
) |0〉

i
2

(
W − ς̄ + (

Zi j − 1
2εi jkl Zkl

)
ai a j + 1

24εi jkl(ς − W̄)ai a j akal
) |0〉

(
z A + �A

i j+ai a j + 1
24εi jkl z̄ Aai a j akal

) |0〉

⎞
⎟⎟⎠

(3.2)

2 We recall that SO∗(8) and SO(2, 6) are inequivalent Z2 quotient of Spin∗(8) ∼= Spin(2, 6) which are
related by triality.
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which we will write

|C 〉 =
( (

W + Zi j ai a j + 1
24εi jklς ai a j akal

) |0〉(
z A + �A

i j+ai a j + 1
24εi jkl z̄ Aai a j akal

) |0〉

)
(3.3)

for simplicity.

3.1 1
4 BPS solutions

Four real Killing spinors can be chosen in an appropriated basis to satisfy

ε1
α + εαβε

β
2 = 0, ε3

α = ε4
α = 0 (3.4)

such that the ‘Dirac equation’ defining the BPS condition [6]

(
εi
αai + εαβε

β
i ai

)
|C 〉 = 0 (3.5)

reads
(

a1 − a2
)

|C 〉 =
(

a1 + a2

)
|C 〉 = 0 (3.6)

The general solution of which is

|C 〉 =
(

(1 + a1a2)
(

W + z a3a4
)

|0〉, (1 + a1a2)
(

z A + z̄ A a3a4
)

|0〉
)

(3.7)

From the point of view of the associated nilpotent orbit, |C 〉 is defined equivalently
from the so∗(8) generator

H 1
4

≡ 2a1a2 − 2a1a2 (3.8)

by the equation3

H 1
4
|C 〉 = 2|C 〉 (3.9)

The generator H 1
4

decomposes so∗(8) as

so∗(8) ∼= 1(−4) ⊕ (2 ⊗ 4)(−2) ⊕ (gl1 ⊕ sl2 ⊕ so(4))(0) ⊕ (2 ⊗ 4)(2) ⊕ 1(4) (3.10)

and decomposes as well the coset component of so(8, 2 + n),

so(8, 2 + n) � (
so∗(8) ⊕ so(2, n)

)
∼= (2 ⊗ (2 + n))(−2) ⊕ (4 ⊗ (2 + n))(0) ⊕ (2 ⊗ (2 + n))(2) (3.11)

3 This is easily seen to be equivalent to (3.6) by noting that a1a2 −a1a2 = 1−a1(a1 −a2)−a1(a1 +a2).
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The general 1
4 solutions are thus defined by choosing 4 + 2n harmonic functions

with associated charge matrix lying in the (2 ⊗ (2 + n))(2) component, that are of the
form (3.7).

The variety of charges lying in (2 ⊗ (2 + n))(2) associated to regular black holes
is a stratified space which can be embedded into the stratified space of charges defin-
ing regular black holes through a filtration preserving homeomorphism. The R∗+ ×
SL(2,R) × SO(2, n) orbit of a generic regular charge of (2 ⊗ (2 + n))(2) is dense
in the subset of (2 ⊗ (2 + n))(2) associated to regular black holes. We are now going
to describe the various orbits of R∗+ × SL(2,R) × SO(2, n) of charges preserving
four identical supersymmetry generators, and their embedding inside the correspond-
ing SO(6, 2) × SO(2, n) orbits of charges associated to regular extremal spherically
symmetric black holes (which are displayed in [6]).

The 1
4 BPS multi-black holes solutions include generic 1

4 BPS black holes, whose
charges satisfy

|W |2 > |z|2 2|W |2 > z Az̄ A +
√

(z Az̄ A)2 − |z Az A|2
(
|W |2 + |z|2 − z Az̄ A

)2
>

∣∣∣2W z̄ − z Az A

∣∣∣2
(3.12)

where the last condition is the positivity of the SL(2,R)× SO(6, n) quartic invariant

♦(W− 1
2 Zi j , W− 1

2 z A) ≡ |W |−2
(

2Zi j Z i j − z Az̄ A

)2

−
∣∣∣W̄

−1εi jkl Z i j Zkl − W−1z Az A

∣∣∣2
(3.13)

(see [6] for the extra-phase factor required in the presence of a non-zero NUT charge).
Such charges lye in the R∗+ × SL(2,R) × SO(2, n) orbit of sl2 doublets of linearly
independent time-like vectors of SO(2, n),4

R∗+ × SL(2,R) × SO(2, n)

SO(2) × SO(n)
⊂ SO(6, 2) × SO(2, n)

Ic(SO(2) × SO(4)) × SO(n)
(3.14)

In the limit for which one of the vectors of the doublet becomes null,

(
|W |2 + |z|2 − z Az̄ A

)2 =
∣∣∣2W z̄ − z Az A

∣∣∣2
(3.15)

the corresponding black hole has a vanishing horizon area, and the corresponding orbit
is

SL(2,R) × SO(2, n)

R × I SO(n − 1)

⊂ SO(6, 2) × SO(2, n)

(SO(1, 1) × SO(4)) � ((1 ⊕ 4)(1) ⊕ 4(2) ⊕ 1(3)) × I SO(n − 1)
(3.16)

4 Where Ic(SO(2) × SO(m)) ∼= (SO(2) × SO(m)) �

(
(2 ⊗ m)(1) ⊕ 1(2)

)
, see [6].
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When the two independent vectors become null,

|W |2 + |z|2 = z Az̄ A, 2W z̄ = z Az A (3.17)

the corresponding black hole has one charge associated to the vector multiplets which
is saturated, i.e. z Az̄ A + √

(z Az̄ A)2 − |z Az A|2 = 2|W |2,

SL(2,R) × SO(2, n)

R × Ic (SO(1, 1) × SO(n − 2))

⊂ SO(6, 2)×SO(2, n)

(GL(2,R) × SO(4) × SO(n−2)) �

(
1(−2) ⊕ (2 ⊗ 4)(−1) ⊕ (2 ⊗ (n−2))(1) ⊕ 1(2)

)

(3.18)

When the two vectors of the doublet coincide, but remain time-like (or equivalently
when one of the vector vanishes), the corresponding black hole is a generic 1

2 BPS
black hole (|z|2 = |W |2),

SL(2,R) × SO(2, n)

R × SO(1, n)
⊂ SO(6, 2) × SO(2, n)

I SO(5, 1) × SO(1, n)
(3.19)

and when the vector is moreover null, all the charges of the black holes are saturated,

z Az̄ A = 2|z|2 = 2|W |2, 2W z̄ = z Az A (3.20)

and the latter would be 1
2 BPS within N = 8 supergravity,

SL(2,R) × SO(2, n)

I GL(1,R) × I SO(1, n − 1)
⊂ SO(6, 2) × SO(2, n)

R∗+ × I SO(5, 1) × I SO(1, n − 1)
(3.21)

As it is well established, all these solutions can be understood within the N = 2
truncation of the N = 4 theories corresponding to N = 2 supergravity coupled to
1 + n vector multiplets, with the special Kähler homogeneous geometry of the coset
SL(2,R)/SO(2) × SO(2, n)/(SO(2) × SO(n)), which leads after time-like dimen-
sional reduction to the non-linear sigma model over the coset space SO(4, 2 + n)

/(SO(2, 2) × SO(2, n)). The generator H 1
4

decomposes so(2, 2) as

so(2, 2) ∼= 1(−4) ⊕ (gl1 ⊕ sl2)
(0) ⊕ 1(4) (3.22)

and the coset component of so(4, 2 + n) as follows

so(4, 2 + n) � (so(2, 2) ⊕ so(2, n)) ∼= (2 ⊗ (2 + n))(−2) ⊕ (2 ⊗ (2 + n))(2) (3.23)

Note nonetheless that the asymptotic values of the scalar fields are restricted to lie
inside the subspace SL(2,R)/SO(2)× SO(2, n)/(SO(2)× SO(n)) within the trun-
cated theory.
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3.2 1
2 BPS solutions

Using again the ‘Dirac equation’ (3.5), one finds that solutions that preserve eight
supersymmetry charges associated to the Killing spinors

εi
α + εαβ�i jε

j
β = 0 (3.24)

(where �i j is a non-degererate antisymmetric real tensor satisfying �ik�
jk = δ

j
i )

must have a charge matrix that verifies

|C 〉 =
(

W e
1
2 �i j ai a j |0〉, �A e

1
2 �i j ai a j |0〉

)
(3.25)

with real �A satisfying �A�A ≤ 2|W |2. The associated generator H 1
2

of so∗(8)

H 1
2

≡ 1

2

(
�i j a

i a j − �i j ai a j

)
(3.26)

defines |C 〉 as well from the condition H 1
2
|C 〉 = 2|C 〉 and decomposes so∗(8) as

follows,

so∗(8) ∼= 6(−2) ⊕ (
gl1 ⊕ su∗(4)

)(0) ⊕ 6(2) (3.27)

such that

so(8, 2+n) � (
so∗(8) ⊕ so(2, n)

) ∼= (2+n)(−2) ⊕ (6⊗(2+n))(0) ⊕ (2+n)(2) (3.28)

The 1
2 BPS multi-black solutions thus depend on 2 + n harmonic functions associated

to non-space-like vectors of SO(2, n). Each black hole can be either a generic 1
2 BPS

black hole corresponding to a time-like vector (�A�A < 2|W |2) lying in the orbit,

R∗+ × SO(2, n)

SO(1, n)
⊂ SO(6, 2) × SO(2, n)

I SO(5, 1) × SO(1, n)
(3.29)

or a black hole with all charges saturated corresponding to a null vector (�A�A =
2|W |2) lying in the orbit,

SO(2, n)

I SO(1, n − 1)
⊂ SO(6, 2) × SO(2, n)

R∗+ × I SO(5, 1) × I SO(1, n − 1)
(3.30)

4 Non-BPS solutions

There are two SO(6, 2)×SO(2, n) orbits of non-BPS spherically symmetric extremal
black holes of non-vanishing horizon area. One corresponds to black holes for which
the matter charge z A z̄ A+

√
(z A z̄ A)2−|z Az A|2 is saturated, i.e.
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|W |4 − |W |2z Az̄ A + |z Az A|2 = 0 (4.1)

Such black hole are similar to the 1
4 black holes and would be in the same Spin∗(16)

orbit of 1
8 BPS black holes within maximal supergravity. The corresponding multi-

black hole solutions are associated to the decomposition of so(2, n):

so(2, n) ∼= 1(−4) ⊕ (2 ⊗ (n − 2))(−2)

⊕ (gl1 ⊕ sl2 ⊕ so(n − 2))(0) ⊕ (2 ⊗ (n − 2))(2) ⊕ 1(4) (4.2)

which gives rise to the following decomposition of the coset component of so(8, 2+n),

so(8, 2+n)�(
so∗(8)⊕so(2, n)

)∼= (2⊗ 8)(−2) ⊕ ((n−2) ⊗ 8)(0) ⊕ (2 ⊗ 8)(2) (4.3)

Such solutions thus depend on 16 independent harmonic functions associated to sl2
doublets of non-space-like vectors of SO(2, 6). As in the case of the 1

4 BPS black holes,
the black holes associated to a doublet for which one of the SO(2, 6) vectors is null
have a vanishing horizon area. They are 1

4 BPS if the two vectors are null, and 1
2 BPS if

the two vectors moreover coincide. The black holes corresponding to coincident time-
like vectors have all their matter charges saturated, i.e. z Az̄ A ±√

(z Az̄ A)2 − |z Az A|2 =
2|W |2, while they do not preserve any supersymmetry. Although they do not preserve
any supersymmetry, these solutions correspond to 1

2 -BPS solutions of the N = 2
supergravity coupled to seven vector multiplets whose bosonic sector defines the con-
sistent truncation of theN = 4 theory obtained by disregarding all the vector multiplets
whose associated charges vanish on the horizons. The corresponding non-linear sigma
model of the latter N = 2 truncation is defined over

SO(8, 4)/(SO(6, 2) × SO(2, 2)) ⊂ SO(8, 2+n)/(SO(6, 2) × SO(2, n)) (4.4)

The other SO(6, 2) × SO(2, n) orbit of non-BPS spherically symmetric extremal
black holes correspond to black holes for which none of the charges are saturated,
and that would not be BPS within maximal supergravity. They are associated to the
following decomposition of so(6, 2) ⊕ so(2, n),

so(6, 2) ⊕ so(2, n) ∼= (6− ⊕ n+)(−2) ⊕ (gl1 ⊕ so(1, 1) ⊕ so(5, 1) ⊕ so(1, n − 1))(0)

⊕ (6+ ⊕ n−)(2) (4.5)

which gives rise to the decomposition of the coset component of so(8, 2 + n),

so(8, 2 + n) � (
so∗(8) ⊕ so(2, n)

)
∼= 1(−4) ⊕ (n− ⊕ 6+)(−2)

⊕ (1−− ⊕ 6 ⊗ n ⊕ 1++)(0) ⊕ (n+ ⊕ 6−)(2) ⊕ 1(4) (4.6)

where the indices ± indicate the weight with respect with so(1, 1). The component
(n+ ⊕ 6−)(2) ⊕ 1(4) defines an abelian sub-algebra Rn+6+1, and one has associated
multi-black holes solutions depending on n + 7 harmonic functions.
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The grading (4.5) associated to the non-BPS extremal solutions can be defined for
example by the so(6, 2) ⊕ so(2, n) generator (satisfying H3 = 4H),

H ≡

⎛
⎜⎜⎝

0 0 /̂Q −/̂p
0 0 −/̂p /̂Q
/̂Q /̂p 0 0
/̂p /̂Q 0 0

⎞
⎟⎟⎠ (4.7)

where the hats mean that the vectors are normalised, such that /̂Q2 = 1 and /̂p2 = −1
according to the Spin(6, n) Clifford algebra. Of course the whole SO(6, 2)×SO(2, n)

orbit of this generator defines equivalent graded decompositions. According to the
decomposition (4.6), there is one single charge matrix of grade four with respect with
this generator, which corresponds to the pure NUT maximally supersymmetric charge
matrix

C (4) = N

⎛
⎜⎜⎝

/̂Q/̂p Q̂ /̂p −/̂Q
Q̂ /̂Q/̂p −/̂Q /̂p
/̂p /̂Q /̂Q/̂p Q̂
/̂Q /̂p Q̂ /̂Q/̂p

⎞
⎟⎟⎠ (4.8)

The charges matrix of grade two depend on an SO(1, 5) and an SO(1, n − 1) vector
which decompose as /p and a vector /P of SO(6) orthogonal to /Q, and as /Q and a vector
/q of SO(n) orthogonal to /p, respectively. It is given by

C (2) =

⎛
⎜⎜⎜⎝

Q + p + /̂Q/q + /P/̂p 0 − /Q + /q /p − /P
0 −Q − p + /̂Q/q + /P/̂p −/p − /P /Q + /q

/Q + /q −/p + /P −Q + p + /̂Q/q + /P/̂p 0
/P + /p − /Q + /q 0 Q − p + /̂Q/q + /P/̂p

⎞
⎟⎟⎟⎠

(4.9)

which is linear in the norms Q and p of /Q and /p, respectively, and in /q and /P .
We see that having chosen H such that the grade two charge matrix have a vanishing
NUT charge, the grade four matrix has a vanishing mass and a non-zero NUT charge.
If one wants to consider asymptotically Minkowski multi-black holes solutions one
has therefore to restrict to charge matrices lying in the grade two component. Note
nevertheless that the black holes of charge matrix of the form C (2) would still satisfy
a no force property inside the maximally supersymmetric Taub–NUT space-times
associated to black holes of charge matrix C (4).

Black holes carrying a charge matrix C (2) have a mass

M = Q + p (4.10)

It is saturated, if and only if either P = p, in which case the solution is 1
4 BPS,

or q = Q, in which case the solution is still non-BPS within N = 4 supergravity.
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The conditions for such solutions to be regular are thus,

q ≤ Q, P ≤ p (4.11)

which mean that the corresponding vector of SO(1, n − 1) and SO(1, 5) have to be
non-space-like. As we will see in the next section, the horizon area of such black hole
is given by

AH = 16π

√
(Q2 − q2)(p2 − P2) (4.12)

which is nothing else than the square root of −♦(Z) > 0.
The generic black holes thus correspond to combinations of time-like vectors of

SO(1, 5) and SO(1, n − 1) (i.e. such that q < Q and P < p), which lie in the orbit

R∗+ × SO(1, 1) × SO(1, 5) × SO(1, n − 1)

SO(5)×SO(n − 1)
⊂ SO(6, 2)×SO(2, n)

R× I SO(5)× I SO(n − 1)
(4.13)

If the vector of SO(1, 5) is null (i.e. P = p), the corresponding black hole is 1
4 BPS

(because then M = Q + P) and has a vanishing horizon area.

SO(1, 1) × SO(1, 5) × SO(1, n − 1)

I SO(4) × SO(n − 1)

⊂ SO(6, 2)×SO(2, n)

(SO(1, 1)×SO(4)×SO(n−1)) � ((1 ⊕ 4 ⊕ n−1)(1) ⊕ 4(2) ⊕ 1(3))
(4.14)

If the SO(1, n − 1) vector is null (i.e. Q = q), the corresponding black hole has a
saturated matter charge (M = q + p) and a vanishing horizon area.

SO(1, 1) × SO(1, 5) × SO(1, n − 1)

SO(5) × I SO(n − 2)

⊂ SO(6, 2)×SO(2, n)

(SO(1, 1) × SO(5) × SO(n−2)) �

(
(1⊕5⊕n−2)(1) ⊕ n−2(2)⊕1(3)

) (4.15)

When both vectors are null the corresponding black hole is 1
4 BPS and has a saturated

matter charge (i.e. M = Q + P = q + p).

SO(1, 1) × SO(1, 5) × SO(1, n − 1)

I SO(4) × I SO(n − 2)

⊂ SO(6, 2) × SO(2, n)

(GL(2,R) × SO(4) × SO(n−2)) � (1(−2)⊕(2⊗4)(−1) ⊕ (2⊗(n − 2))(1)⊕1(2))

(4.16)
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If the SO(1, 5) vector vanishes (P = p = 0) the corresponding black hole is 1
2 BPS

(M = Q),5

SO(1, 1) × SO(1, 5) × SO(1, n − 1)

SO(1, 5) × SO(n − 1)
⊂ SO(6, 2) × SO(2, n)

I SO(5, 1) × SO(1, n)
(4.17)

and if the SO(1, n − 1) vector vanishes (Q = q = 0), the corresponding black hole
has its two matter charges saturated (M = p).

SO(1, 1) × SO(1, 5) × SO(1, n − 1)

SO(5) × SO(1, n − 1)
⊂ SO(6, 2) × SO(2, n)

SO(6, 1) × I SO(1, n − 1)
(4.18)

The black holes associated to a null vector of either SO(1, 5) or SO(1, n − 1) and
a vanishing vector of the other group both correspond to 1

2 BPS black holes with all
the charges saturated, that would be 1

2 BPS within maximal supergravity (then either
M = Q = q and P = p = 0 or M = P = p and Q = q = 0).

SO(1, 1) × SO(1, 5) × SO(1, n−1)

I SO(4) × SO(1, n − 1)
∪ SO(1, 1) × SO(1, 5) × SO(1, n−1)

SO(1, 5) × I SO(n−2)
∪R

⊂ SO(6, 2) × SO(2, n)

(SO(1, 1) × SO(5, 1) × SO(1, n − 1)) � (6(1) ⊕ n(−1))
(4.19)

One can check the nilpotency conditions stated in [6] associated to the amount of
saturated charges in each case.

5 A class of explicit solutions

Let us illustrate the abstract formalism we introduced in this paper by using it to
derive the explicit non-BPS multi-black hole solutions of N = 4 supergravity cou-
pled to n ≥ 2 vector multiplets. As a matter of fact, the formulas of this section
generalise trivially to gravity coupled to scalar fields lying in the homogeneous space
SL(2,R)/SO(2) ∪ SO(n, m)/(SO(n) × SO(m)) and abelian vector fields in the
vector representation of SO(n, m), but we will restrict ourselves to N = 4 supergrav-
ity for the sake of clarity. For simplicity we will restrict ourselves to solutions with
trivial moduli in the asymptotic region (i.e. with V0 = 1). The general solutions can
be obtained straightforwardly by acting on the solutions with the four-dimensional
duality group SL(2,R) × SO(6, n).

The general solutions associated to charges of the form (4.9) in the symmetric gauge
V = exp(−∑

m HmC (2)
m ) is easy to get, but it does not exhibit the expressions of the

four-dimensional fields. For this purpose one needs to write down the coset represen-
tative V in the parabolic gauge (2.3). One can carry out this rotation by multiplying V
to the right by an element of SO(6, 2) × SO(2, n) of the form

5 Recall that P = 0 implies that Zi j is complex self-dual, and thus that |z1| = |z2| = Q.
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u =

⎛
⎜⎜⎜⎜⎜⎝

a+b+ α−β− α−b+ −a+β−
α+β+ a−b− −a−β+ α+b−
α+b+ a−β− a−b+ −α+β−
a+β+ α−b− −α−β+ a+b−

⎞
⎟⎟⎟⎟⎟⎠

(5.1)

where the Clifford algebra elements a±, b±, α± and β± are defined in function of the
two orthogonal vectors of SO(6), /X and /Y , and the two orthogonal vectors of SO(n),
/x and /y, as follows

a± ≡ (1 + x)(1 + X) ± /X/x√
(1 + 2x)(1 + 2X)

b± ≡ (1 + y)(1 + Y ) ± /Y/y√
(1 + 2y)(1 + 2Y )

α± ≡ (1 + x)/X ± (1 + X)/x√
(1 + 2x)(1 + 2X)

β± ≡ (1 + Y )/y ± (1 + y)/Y√
(1 + 2y)(1 + 2Y )

(5.2)

with X, Y, x and y being the norm of these vectors, and /X, /Y, /x and /y being parallel to
/Q, /P, /q and /p, respectively. To simplify notations we will refer to exp(−C (2)) rather
than V , the latter being obtained trivially from the former by substituting the harmonic
functions to the corresponding charges. C (2)3 = 0 and thus exp(−C (2)) takes the
simple form

exp(−C (2)) =

⎛
⎜⎜⎝

Q−P− χ−π− χ−P− −Q−π−
χ+π+ Q+P+ Q+π+ −χ+P+

−χ+P− Q+π− Q+P− χ+π−
−Q−π+ P+χ− χ−π+ Q−P+

⎞
⎟⎟⎠ (5.3)

where

Q± ≡ 1 ± Q − /̂Q/q

χ± ≡ /Q ± /q

P± ≡ 1 ± p − /P/̂p

π± ≡ /p ± /P
(5.4)

The conditions for exp(−C (2)) · u to be of the form (2.3),6 are Q+α+ = χ+a+ and
P+β+ = π+b+, which read

(1 + Q − q + X) /x = /q
(1 + x) (/X − /Q) = −qx /̂Q

(1 + p − P + y) /Y = /P
(1 + Y ) (/y − /p) = −PY /̂p

(5.5)

6 Note that Q± commute with both b± and β± and that χ± commute with b± and anticommute with β±;
and so do respectively P± and π± with respect with a± and α±.
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and have as relevant solutions

x =
√

1 + 2Q + 2q − √
1 + 2Q − 2q

2
√

1 + 2Q − 2q

Y =
√

1 + 2p + 2P − √
1 + 2p − 2P

2
√

1 + 2p − 2P

X = Q −
√

1 + 2Q + 2q − √
1 + 2Q − 2q√

1 + 2Q + 2q + √
1 + 2Q − 2q

q

y = p −
√

1 + 2p + 2P − √
1 + 2p − 2P√

1 + 2p + 2P + √
1 + 2p − 2P

P

(5.6)

In order to write down the general solution, we define a basis of 5 normed SO(6)

vectors /̂Pa orthogonal to /̂Q, as well as a basis of n − 1 normed SO(n) vectors /̂qm

orthogonal to /̂p, and the following 6 + n harmonic functions

H0 ≡ 1 + 2
∑

A

Q A

|x − xA|
K0 ≡ 1 + 2

∑
A

pA

|x − xA|

Hm ≡ 2
∑

A

qm
A

|x − xA|
Ka ≡ 2

∑
A

Pa
A

|x − xA|
(5.7)

which verify for each pole xA that

Q A
2 ≥

n−1∑
m=1

qm
A

2 pA
2 ≥

5∑
a=1

Pa
A

2 (5.8)

The fields of the Kaluza–Klein ansatz (2.3) are given by

H =
(
H0

2 −
∑

Hm
2
)− 1

2
(
K0

2 −
∑

Ka
2
)− 1

2

H̄ =
(
H0

2 −
∑

Hm
2
) 1

2
(
K0

2 −
∑

Ka
2
)− 1

2

U 0 ≡ 1

2
{/̂Q, /U } = 1 − H0

H0
2 − ∑Hm

2 U m ≡ 1

2
{/̂qm, /U } = Hm

H0
2 − ∑Hn

2
(5.9)

A0 ≡ 1

2
{/̂p, /A} = 1 − K0

K0
2 − ∑Ka

2 Aa ≡ 1

2
{ /̂Pa, /A} = Ka

K0
2 − ∑Kb

2

v =

(
H+ − 2

∑ Hm /̂Q /̂q m

H+

) (
K+ − 2

∑ Ka /̂P a /̂p
K+

)

4
(
H0

2 − ∑Hn
2
) 1

4
(
K0

2 − ∑Kb
2
) 1

4

where v is in the symmetric gauge (i.e. ln v ∈ so(6, n) � (so(6) ⊕ so(n))) and

H+ ≡
(

H0 +
(∑

Hm
2
) 1

2
) 1

2

+
(

H0 −
(∑

Hm
2
) 1

2
) 1

2

(5.10)

K+ ≡
(

K0 +
(∑

Ka
2
) 1

2
) 1

2

+
(

K0 −
(∑

Ka
2
) 1

2
) 1

2

and all the other fields are trivially zero.
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One computes easily that in the vicinity of a pole xA of the harmonic functions, the
function H defining the metric behaves as

H = |x − xA|2
4
√(

Q A
2 − ∑

qm
A

2) (
pA

2 − ∑
Pa

A
2) + O

(
|x − xA|4

)
(5.11)

such that the corresponding horizon area is

AHA = 16π

√(
Q A

2 −
∑

qm
A

2
) (

pA
2 −

∑
Pa

A
2
)

(5.12)

as stated in the preceding section. If Q A
2 was strictly inferior to

∑
qm

A
2, the function

H would diverge at a positive value of |x − xA|, and the solution would exhibit a naked
singularity. For example, H would diverge at r = 2(q − Q) in the case of a spherically
black hole. The discussion is equivalent for pA

2 < Pa
A

2.
The most general solution of this kind can straightforwardly be obtained by acting

with SO(6, 2) × SO(2, n) on the coset representative (2.3). For example, one can
generate solutions with a non-trivial axion field by an SO(2) rotation

H̄(α) =
(
H0

2 − ∑Hm
2
) 1

2
(
K0

2 − ∑Ka
2
) 1

2

cos2 α
(
K0

2 − ∑Ka
2
)

+ sin2 α
(
H0

2 − ∑ Hn
2
)

B̄(α) = 1

2
sin 2α

K0
2 − ∑Ka

2 − H0
2 + ∑Hm

2

cos2 α
(
K0

2 − ∑Ka
2
)

+ sin2 α
(
H0

2 − ∑Hn
2
)

/U (α) = cos α /̂Q − sin α /̂p − cos α
H0 /̂Q + ∑Hm /̂qm

H0
2 − ∑ Hn

2 + sin α
K0 /̂p + ∑Ka /̂Pa

K0
2 − ∑Kb

2

/A(α) = − cos α /̂p − sin α /̂Q + cos α
K0 /̂p + ∑Ka /̂Pa

K0
2 − ∑Kb

2

+ sin α
H0 /̂Q+∑Hm /̂qm

H0
2−∑Hn

2

(5.13)

There is still one missing free parameter for the most general asymptotically
Minkowski solution of this type with trivial moduli (i.e. with V0 = 1), which can
be generated by the nilpotent generator of grade −2 of so(6, 2) ⊕ so(2, n)

⎛
⎜⎜⎜⎜⎜⎝

0 0 /̂p /̂Q

0 0 −/̂Q −/̂p

−/̂p −/̂Q 0 −2

/̂Q /̂p 2 0

⎞
⎟⎟⎟⎟⎟⎠

3

= 0 (5.14)
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Asymptotically Taub–NUT space-times of this kind also exist of course, and can be
obtained by acting with the Ehlers SO(2). Then, all the Q A + pA have to be inte-
gral multiplier of a given fundamental charge in order to avoid Dirac–Misner string
singularities [15,16].

Note that although these solutions can be embedded into maximal supergravity for
n ≤ 6, they do not define the most general non-BPS multi-black holes solutions of this
kind within maximal supergravity, which would depend on 28 independent harmonic
functions and not only 12 (for n = 6).

Let us consider the case of a spherically symmetric black hole. It is interesting
to compute the scalar dependent combinations of the charges generalising the central
charges (by including the charges associated to the vector multiplet) on the horizon H .
We assume for this purpose that the horizon has a non-vanishing horizon area.

(
H̄− 1

2 v−1
)

|H (/Q + /q) (v)|H = 4
√(

Q2 − q2
) (

p2 − P2
)

/̂Q
(5.15)(

H̄
1
2 v−1

)
|H (/p + /P) (v)|H = 4

√(
Q2 − q2

) (
p2 − P2

)
/̂p

These charges are thus uniquely determined by the so(6, 2) ⊕ so(2, n) generator H
characterising the nilpotent orbit of the Noether charge, and by the horizon area. And
inversely, the expression of the ‘generalised central charges’ at the horizon determine
uniquely the generator H and the horizon area. Note that this is valid for any asymp-
totic value of the scalar fields since the ‘generalised central charges’ at the horizon do
not depend on them because of the attractor mechanism phenomena [10].

6 Higher order orbits

In principle one could have more general multi-black holes solutions associated to
higher order orbits. Indeed, as explained in [5], any grading associated to a nilpo-
tent orbit which generic representative vanish at the sixth power in the adjoint rep-
resentation (i.e. adE

6) defines a linear space n(2) ∼= ⊕
p≥2(g − h∗)(p) of elements

satisfying equations (2.18). For example, consider that two charges C1 and C2 define
regular spherically symmetric black holes, such that the linear combination E(α) =
αC1 + (1 − α)C2 does not satisfy E(α)3 = 0, but satisfies nonetheless adE(α)

6 = 0
such that Eq. (2.18) is satisfied. Then, one would have regular Papapetrou–Majumdar
solutions of a more general type than the one discussed in the preceding sections.
Nevertheless, it was argued in [5] that solutions associated to higher order orbits
always carry naked singularities. We are now going to prove this proposition within
N = 4 supergravity coupled to n vector multiplets. We will then provide some strong
evidence that it is also the case in maximal supergravity.

We recall that the regular generic spherically symmetric extremal black holes (i.e.
with a non-vanishing horizon area) carry a Noether charge which isotropy subgroup of
SO(6, 2)×SO(2, n) is a contracted form of SO(6)×SO(2)×SO(n) [6]. This comes
from the fact that such black holes appear as particular limit of regular non-extremal
spherically black holes which all lie in the SO(6, 2) × SO(2, n) orbit of a Schwarzs-
child solution [14], and which therefore carry a Noether charge of isotropy subgroup
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SO(6)× SO(2)× SO(n). More generally, the isotropy subgroups of Noether charges
associated to regular spherically symmetric black holes have been classified in [6].

As we are going to see, whenever the linear combination E(α) of two Noether
charges satisfying C1

3 = C2
3 = 0 lies in the intersection of a higher order orbit with

the coset component so(8, 2 + n) � (so(6, 2) ⊕ so(2, n)), their isotropy subgroup is
always such that they correspond to singular black holes without horizon.

The nilpotent O(10 + n,C)-orbits of so(10 + n,C) are in one to one correspon-
dence with the partitions of 10 + n carrying an even number of each even integer
involved in the partition [13]. For example, (4)2(3)1(2)2(1)1 states for the partition
16 = 4 + 4 + 3 + 2 + 2 + 1. The partitions (2)2s(1)10+n−4s are associated to nilpo-
tent orbits of dimension 2s(9 + n − 2s) for which adE

3 = 0, and E1+s = 0 in the
spinor representation. The partitions (3)1+p(2)2s(1)7+n−3p−4s are associated to nilpo-
tent orbits of dimension p(16+2n−3p−2s)+2s(8+n− p−2s) for which adE

5 = 0,
and E2+p+s = 0 in the spinor representation. They are all the orbits we are interested
in because the partitions involving higher integers all satisfy adE

6 �= 0.7 The char-
acteristic equation E3 = 0 restricts to the orbits of partition (3)p(2)2s(1)10+n−3p−4s

with p + s ≤ 2, which correspond to regular spherically symmetric extremal black
holes. The nilpotent orbits associated to generic extremal solutions correspond to the
partition (3)2(1)4+n , and so nilpotent linear combinations of such elements which
vanish at the sixth power in the adjoint representation lye in a nilpotent orbit associ-
ated to a partition (3)2+p(2)2s(1)4+n−3p−4s [18]. For a non-zero s, the ninth-graded
decomposition associated to such orbit is

so(8, 2 + n) ∼= 1
2 (p + 2)(p + 1)

(−4) ⊕
(
(p + 2) ⊗ 2s

)(−3)

−
⊕

(
(p + 2) ⊗ (6 + n − 2p − 4s) ⊕ s(2s − 1)−−

)(−2)

⊕
(
(p + 2) ⊗ 2s+ ⊕ 2s ⊗ (6 + n − 2p − 4s)−

)(−1)

⊕ (
gl1 ⊕ so(1, 1) ⊕ sl2+p ⊕ sl2s ⊕ so(6 − p − 2s, n − p − 2s)

)(0)

⊕ (
(p + 2) ⊗ 2s− ⊕ 2s ⊗ (6 + n − 2p − 4s)+

)(1)

⊕ (
(p + 2) ⊗ (6 + n − 2p − 4s) ⊕ s(2s − 1)++

)(2)

⊕ ((p + 2) ⊗ 2s)(3)

+ ⊕ 1
2 (p + 2)(p + 1)(4) (6.1)

where the ± subscripts state for the corresponding representation of so(1, 1). The cor-
responding representative E are generic elements of the grade two component, that
involve a (p + 2)-plet of orthogonal non-null vectors of SO(6 − p − 2s, n − p − 2s)
and a non-degenerated component in the s(2s − 1) of SL(2s,R), which altogether are
left invariant by a subgroup

7 To see this, one computes that the elements of the orbits associated to the partitions (4)2(1)2+n and
(5)(1)5+n only vanish at the seventh power in the adjoint representation. The result for the other orbits then
follows from the closure ordering of the nilpotent orbits [13,17].
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SO(p+, 2 + p − p+) × Sp(2s,R)

× SO(6 − p+ − p − 2s, n − 2 + p+ − 2p − 2s) (6.2)

of the Levy subgroup (grade zero component) of SO(8, 2+n) associated to (6.1). For
s = 0, the graded decomposition (6.1) then simplifies to a five-graded decomposition

so(8, 2 + n) ∼= 1
2 (p + 2)(p + 1)

(−4) ⊕
(
(p + 2) ⊗ (6 + n − 2p)

)(−2)

⊕ (
gl1 ⊕ sl2+p ⊕ so(6 − p, n − p)

)(0)

⊕ ((p + 2) ⊗ (6 + n − 2p))(2) ⊕ 1
2 (p + 2)(p + 1)(4) (6.3)

The corresponding orbits of SO(8, 2 + n) are associated to the (2 + p)-plets of non-
null orthogonal vectors of SO(6− p, n − p) with a given number of time-like vectors
p+, and they are commonly labelled as (+ − +)p+(− + −)2+p−p+ [18,19].8 The
generic linear combinations of nilpotent elements lying in one of the orbit associated
to (3)2(1)4+n correspond to linear combinations of k doublet of orthogonal non-null
vectors of SO(6 − p, n − p), which define 2k-plets of non-null vectors.

In order for these linear combinations to give rise to Papapetrou–Majumdar solu-
tions, they must moreover lye in the coset component so(8, 2+n)�(so∗(8)⊕so(2, n)).
As a matter of fact, the grade zero component of any graded decomposition of so∗(8)⊕
so(2, n) contains at least the compact Lie algebra so(4) ⊕ so(n − 2). It follows from
(6.1)9 that the orbits associated to the partitions (3)p(2)2s(1)10+n−3p−4s have no inter-
section with so(8, 2 + n) � (so∗(8) ⊕ so(2, n)) for p + 2s > 4, and the only higher
order nilpotent orbits to consider (with p + s > 2) are the ones associated to the
partitions (3)3(1)1+n and (3)4(1)n−2.

The orbits associated to the partition (3)3(1)1+n correspond to triplet of non-null
vectors of SO(5, n − 1) in the grade two component of the following five graded
decomposition of so(8, 2 + n),

so(8, 2 + n) ∼= 3(−4) ⊕ (
3̄ ⊗ (4 + n)

)(−2) ⊕ (gl1 ⊕ sl3 ⊕ so(5, n − 1))(0)

⊕ (3 ⊗ (4 + n))(2) ⊕ 3̄(4) (6.4)

There are four nilpotent orbits associated to this decomposition, each orbit is deter-
mined by the number of time-like vectors versus the number of space-like vectors

8 There is an extra-degenerance when either the number of time-like vectors in the (2 + p)-plets is equal
to the critical value 6 − p, or the number of space-like vectors to the critical value n − p.
9 The five-graded decomposition associated to the partition (2)2s (1)10+n−4s being

so(8, 2 + n) ∼= s(2s − 1)
(−2) ⊕ (

2s ⊗ (10 + n − 4s)
)(−1)

⊕ (
gl1 ⊕ sl2s ⊕ so(8 − 2s, 2 + n − 2s)

)(0)

⊕ (2s ⊗ (10 + n − 4s))(1) ⊕ s(2s − 1)(2)
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of the triplet. There are only two five graded decompositions of so∗(8) ⊕ so(2, n)

compatible with this five-graded decomposition of so(8, 2 + n), namely

so∗(8) ⊕ so(2, n) ∼= 1(−4)

−− ⊕ ((2 ⊗ 4)− ⊕ n++)(−2) ⊕ gl1

⊕ (so(1, 1) ⊕ sl2 ⊕ so(4) ⊕ so(1, n − 1))(0)

⊕ ((2 ⊗ 4)+ ⊕ n−−)(2) ⊕ 1(4)

++ (6.5)

for which the nilpotent element can be chosen to carry a non-zero component in 4(2)
−−

and a doublet of orthogonal non-null vectors of SO(1, n − 1) inside (2 ⊗ n)
(2)

+ ; and

so∗(8) ⊕ so(2, n) ∼= 1(−4)

−− ⊕ ((2 ⊗ (n − 2))− ⊕ 6++)(−2) ⊕ gl1

⊕ (so(1, 1) ⊕ sl2 ⊕ so(n − 2) ⊕ so(5, 1))(0)

⊕ ((2 ⊗ (n − 2))+ ⊕ 6−−)(2) ⊕ 1(4)

++ (6.6)

for which the nilpotent element can be chosen to carry a non-zero component in
(n − 2)

(2)
−− and a doublet of linearly independent non-null vectors of SO(5, 1) inside

(2 ⊗ 6)
(2)

+ .
The first embedding (6.5) gives rise to two nilpotent SO(6, 2) × SO(2, n) orbits

in so(8, 2 + n) � (so∗(8) ⊕ so(2, n)): one (+ − +)2(− + −) of isotropy subgroup

(SO(1, 1) × SO(3) × SO(n − 2)) �

(
(2 ⊗ 3 ⊕ 2 ⊕ n − 2)(1) ⊕ 1(2)

)
(6.7)

which interpolates between three nilpotent SO(6, 2)× SO(2, n) orbits, one (+−+)2

and two (+ − +)(− + −) of isotropy subgroup

I SO(4, 1) × I SO(n − 1) × R and
Ic (SO(1, 1)×SO(4)) × SO(1, n − 1)

I SO(4, 1)× I SO(1, n − 2)×R
(6.8)

respectively; and one (+ − +)(− + −)2 of isotropy subgroup

(SO(2) × SO(3) × SO(1, n − 3)) �

(
(2 ⊗ 3 ⊕ 2 ⊕ n − 2)(1) ⊕ 1(2)

)
(6.9)

which interpolates between the two nilpotent SO(6, 2) × SO(2, n) orbits (+ − +)

(− + −) and (− + −)2 of isotropy subgroup

I SO(4, 1) × I SO(1, n − 2) × R and

Ic (SO(2) × SO(4)) × SO(2, n − 2) (6.10)

respectively.
The second embedding (6.6) gives rise to two nilpotent SO(6, 2) × SO(2, n) orbit

in so(8, 2 + n) � (so∗(8) ⊕ so(2, n)) as well: one (+ − +)2(− + −) of isotropy
subgroup

(SO(2) × SO(3, 1) × SO(n − 3)) �

(
(2 ⊕ 4 ⊕ 2 ⊗ (n − 3))(1) ⊕ 1(2)

)
(6.11)
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which interpolates between the two nilpotent SO(6, 2) × SO(2, n) orbits (+ − +)2

and (+ − +)(− + −) of isotropy subgroup

SO(4, 2) × Ic (SO(2) × SO(n − 2)) and

I SO(4, 1) × I SO(1, n − 2) × R (6.12)

respectively; and one (+ − +)(− + −)2 of isotropy subgroup

(SO(1, 1) × SO(4) × SO(n − 3)) �

(
(2 ⊕ 4 ⊕ 2 ⊗ (n − 3))(1) ⊕ 1(2)

)
(6.13)

which interpolates between three nilpotent SO(6, 2) × SO(2, n) orbits, two
(+ − +)(− + −) and one (− + −)2 of isotropy subgroup

SO(5, 1) × Ic (SO(1, 1) × SO(n−2))

I SO(4, 1) × I SO(1, n−2) × R
and SO(5) × I SO(1, n−2) × R (6.14)

respectively.
As a result, such higher order orbits do not permit to interpolate between charge

matrix lying in the SO(6, 2) × SO(2, n) orbits of isotropy subgroup

Ic (SO(2) × SO(4)) × SO(n)

SO(6) × Ic (SO(2) × SO(n − 2))
and I SO(5) × I SO(n − 1) × R (6.15)

which are the ones which correspond to non-singular black holes [6]. For instance, the
appearance of I SO(4, 1) in the isotropy group implies that the solutions associated
to the corresponding orbit carry one central charge which is larger than the mass, e.g.
p < P ⇒ M < Q + P in (4.9); and the appearance of I SO(1, n − 2) corresponds in
the same way to solutions with a matter electromagnetic charge larger than the mass,
e.g. Q < q ⇒ M < q + p in (4.9). The isotropy subgroup Ic (SO(1, 1) × SO(4)) ×
SO(1, n −1) correspond to BPS solutions for which the SL(2,R)× SO(6, n) quartic

invariant
(|W |2 + |z|2 − z Az̄ A

)2 − ∣∣2W z̄ − z Az A
∣∣2

is strictly negative, as the isotropy
subgroup SO(5, 1) × Ic (SO(1, 1) × SO(n − 2)) corresponds to extremal solutions
carrying one saturated matter charge z Az̄ A + √

(z Az̄ A)2 − |z Az A|2 = 2|W |2 and a
strictly negative SL(2,R) × SO(6, n) quartic invariant.

The orbits associated to the partition (3)4(1)n−2 correspond to quartet of non-null
vectors of SO(4, n − 2) lying in the grade two component of the five-graded decom-
position

so(8, 2 + n) ∼= 6(−4) ⊕ (
4 ⊗ (2 + n)

)(−2)

⊕ (gl1 ⊕ sl4 ⊕ so(4, n − 2))(0) ⊕ (4 ⊗ (2 + n))(2) ⊕ 6(4) (6.16)

There is only one five-graded decomposition of so(6, 2) ⊕ so(2, n) compatible with
this graded decomposition, which is
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so(6, 2) ⊕ so(2, n) ∼= (1++ ⊕ 1−−)(−4) ⊕ (2 ⊗ 4+ ⊕ 2 ⊗ (n − 2)−)(−2)

⊕ (gl1 ⊕ so(1, 1) ⊕ sl2 ⊕ sl2 ⊕ so(4) ⊕ so(n − 2))(0)

⊕ (2 ⊗ 4− ⊕ 2 ⊗ (n − 2)+)(2) ⊕ (1++ ⊕ 1−−)(4) (6.17)

As a result, among the six orbits associated to the partition (3)4(1)n−2, only the
(+ − +)2(− + −)2 one admits a non-trivial intersection with the coset component
so(8, 2 + n) � (so(6, 2) ⊕ so(2, n)), leading to one single corresponding SO(2, 6)

×SO(2, n)orbit. A similar determination of the SO(6, 2)×SO(2, n)orbits (3)2(1)4+n

admitting a representative in the component of grade two (2 ⊗ 4)+ ⊕ (2 ⊗ (n − 2))−
shows that they all correspond to singular black holes of the same kind as the one
appearing in the case of the (3)3(1)1+n orbits.

The last step before to conclude is to check that one can not build multi-black
holes solutions involving only black holes with vanishing horizon area that would
not correspond to linear combinations of nilpotent elements lying in an orbit associ-
ated to the partition (3)2(1)4+n . Representatives of the orbits associated to the parti-
tion (3)(2)2(1)3+n within the five-graded decompositions (6.16) involve a vector of
either SO(4) or SO(n − 2) of the grade two component, as well as a null-vector of
SO(2, 2) ∼= SL(2,R) ×Z2 SL(2,R) of the grade four component. We computed the
associated isotropy subgroups to be

(
R∗+ × SO(4, 1) × SO(n − 2)

)
�

(
(1 ⊕ 5 ⊕ (n − 2))(1) ⊕ (n − 2)(2) ⊕ 1(2)

)
(6.18)(

R∗+ × SO(4) × SO(1, n − 2)
)

�

(
(1 ⊕ 4 ⊕ (n − 1))(1) ⊕ 4(2) ⊕ 1(2)

)

They correspond to black holes for which the SL(2,R) × SO(6, n) quartic invariant
vanishes and either, one central charge is saturated and one matter charge is larger
than the mass (e.g. p = P and q > Q), or, one matter charge is saturated and
one central charge is larger than the mass (e.g. Q = q and P > p), respectively.
Any linear interpolation of elements of this nilpotent orbit which lye in an orbit associ-
ated to the partition (3)3(1)1+n involves such elements as well. Similarly, one finds that
the linear combinations of elements of the nilpotent orbits associated to the partition
(3)(1)7+n in the higher order orbits always involve elements of SO(6, 2) × SO(2, n)

orbits of isotropy subgroup SO(5, 2)× I SO(1, n − 1) or I SO(5, 1)× SO(2, n − 1).
They correspond to singular black holes which carry either saturated matter charges
and central charges larger than the mass (e.g. p = P = 0 and q > Q), or saturated
central charges and matter charges larger than the mass (e.g. Q = q = 0 and P > p).
Within the graded decomposition (6.17), the representatives of elements of the nilpo-
tent orbits associated to the partitions (2)4(1)2+n and (2)2(1)6+n lye in the grade four
component (2 ⊗ 2)(4), in such a way that any linear combination of such elements lies
in a lower order orbit. Similarly within the graded decompositions associated to the
partition (3)3(1)1+n , such elements only involve two null-vectors, such that any linear
combination of them turns out to satisfy the cubic characteristic equation (2.11).

We have thus proved that all the solutions of Papapetrou–Majumdar type associ-
ated to higher order orbits carry naked singularity, and it follows that the multi-black
holes solutions discussed in the preceding section define the most general solutions of
Papapetrou–Majumdar type within N = 4 supergravity coupled to n vector multiplets.
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As we are going to see, the situation is very similar in maximal supergravity,
although we have not completed the proof in this case. The nilpotent orbits of e8 are
labelled by their so-called weighted Dynkin diagram. One can always define the sl2
triplet (2.15) associated to a nilpotent orbit such that the element HN lies in a chosen
Cartan subalgebra. The triplet is then called a normal triplet [13]. A e8 weighted Dyn-
kin diagram coordinatises HN as a vector of the Cartan subalgebra of e8 and determines
in a unique way the corresponding complex orbit. The real orbits of e8(8) are in one to
one correspondence with the Spin(16,C) orbits in the coset e8 � so(16,C) through
the Kostant–Sekiguchi correspondence. One can always define the sl2 triplet associ-
ated to a nilpotent orbit such that both EC and FC lie in e8 � so(16,C) and such that
HC lies in a chosen Cartan subalgebra of so(16,C). The triplet is then called a Caley
triplet [13]. An so(16,C) weighted Dynkin diagram coordinatises HC as a vector of
the Cartan subalgebra of so(16,C) and determines in a unique way the corresponding
real orbit. The so(16,C) weighted Dynkin diagrams associated to the various E8(8)

orbits lying in a given complex orbit also determine all the graded decompositions
of so(16,C) consistent with the corresponding graded decomposition of e8. The non-
trivial intersection with e8(8) � so∗(16) correspond to such graded decompositions
that define a graded decomposition of so∗(16) compatible with the one of e8(8). Since
e8(8) is split, its Cartan subalgebra is the direct sum of eight copies of gl1, and there
is a graded decomposition of e8(8) associated to each e8 weighted Dynkin diagram.
On the other hand, so∗(16) is only half split and its Cartan subalgebra is the direct sum
of four copies of gl1(C) such that only the so(16,C) weighted Dynkin diagrams of

the form
[

0
· a b 0 c 0 d 0

]
with a, b, c, d ∈ N, define graded decompositions of so∗(16).

Let us give an example. The minimal nilpotent orbit of e8(8) is associated to the e8
weighted Dynkin diagram

[
0

0 0 0 0 0 0 1

]
and the so(16,C) weighted Dynkin diagram[

0· 1 0 0 0 0 0 0

]
. The associated graded decompositions of e8(8) and so∗(16), i.e.

e8(8)
∼= 1(−2) ⊕ 56(−1) ⊕ (

gl1 ⊕ e7(7)

)(0) ⊕ 56(1) ⊕ 1(2)

(6.19)
so∗(16) ∼= 28

(−1) ⊕ (
gl1 ⊕ su∗(8)

)(0) ⊕ 28(1)

are compatible, such that there is an associated non-trivial Spin∗(16) orbit, which turns
out to be homeomorphic to the moduli space of spherically symmetric 1

2 BPS black
holes [6]. Note that the set of zeros of the weighted Dynkin diagram draws the Dynkin
diagram of the grade zero component. Let us consider the higher order orbit for which
the representative vanishes at the fourth power in the adjoint representation. The latter
is associated to the weighted Dynkin diagrams

[
1

0 0 0 0 0 0 0

]
and

[
0· 0 0 1 0 0 0 1

]
of e8

and so(16,C), respectively. The associated graded decomposition of so(16,C) does
not define a graded decomposition of so∗(16) because sl4 ⊕ sl4 /⊂ so∗(16), and the
corresponding real orbit does not intersect with the coset component e8(8) � so∗(16).

Exploiting the tables of [13,20], one finds that there are two real orbits of e8(8)

of degree six in the adjoint (i.e. which representatives satisfy adE
6 = 0) which

do not intersect with the coset component, as well as nine higher order orbits of
degree five (which representatives satisfy adE

5 = 0 and E5 �= 0 in the 3875), from
which only seven admit potentially a non-trivial intersection with the coset com-
ponent. They are, the two real orbits associated to the weighted Dynkin diagram
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[
0

1 0 0 0 0 0 1

]
, which unique compatible seven-graded decomposition of so∗(16) is

associated to the weighted Dynkin diagram
[

0· 1 0 0 1 0 0 0

]
, the two real orbits associ-

ated to the weighted Dynkin diagram
[

0
0 0 0 0 1 0 0

]
, which unique compatible nine-

graded decomposition of so∗(16) is associated to the weighted Dynkin diagram[
0· 0 1 0 0 0 1 0

]
, and the three real orbits associated to the weighted Dynkin diagram[

0
2 0 0 0 0 0 0

]
, which unique compatible graded decomposition of so∗(16) is associ-

ated to the weighted Dynkin diagram
[

0· 0 0 0 2 0 0 0

]
. The latter decompositions are

even (i.e. all the entries are even integers), and the associated HN is just twice the
one associated to the Spin∗(16) orbit of spherically symmetric 1

4 BPS black holes.
This is very similar to the case of N = 4, since the graded decompositions associated
to the partition (3)4(1)n−2 are also even, and the associated H is just twice the one
associated to the SO(6, 2) × SO(2, n) orbit of spherically symmetric 1

4 BPS black
holes with one matter electromagnetic charge saturated (e.g. Q = q and p = P),
which can be seen as 1

4 BPS black holes of maximal supergravity for n ≤ 6 [6]. The
graded decomposition associated to the weighted Dynkin diagram

[
0

2 0 0 0 0 0 0

]
,

e8(8)
∼= 14(−4) ⊕ 64

(−2) ⊕ (gl1 ⊕ so(7, 7))(0) ⊕ 64(2) ⊕ 14(4) (6.20)

can indeed be truncated to (6.17) by considering the embedding SO(3, 3)×
Spin(4, 4) ⊂ SO(7, 7). In the same way, the graded decomposition associated to
the weighted Dynkin diagram

[
0

0 0 0 0 1 0 0

]
,

e8(8)
∼= 3(−4) ⊕ 16(−3) ⊕ (

3̄ ⊗ 10
)(−2) ⊕ (

3 ⊗ 16
)(−1)

⊕ (gl1 ⊕ sl3 ⊕ so(5, 5))(0) ⊕ (
3 ⊗ 16

)(1) ⊕ (3 ⊗ 10)(2) ⊕ 16
(3) ⊕ 3̄(4) (6.21)

can be truncated to (6.4) by disregarding the components of odd degree. We thus expect
these graded decomposition to only possibly define singular Papapetrou–Majumdar
solutions as in the case of N = 4. The two real orbits associated to the weighted
Dynkin diagram

[
0

1 0 0 0 0 0 1

]
have no equivalent in N = 4, nevertheless, the one

associated to the weighted Dynkin diagram
[

1· 0 0 0 0 0 1 1

]
only contains orbits asso-

ciated to BPS solutions in its boundary, whereas the one associated to the weighted
Dynkin diagram

[
0· 1 0 0 1 0 0 0

]
does not contains the orbit associated to the generic 1

8
BPS solutions in its boundary [20]. These orbit thus do not permit to define multi-black
hole solutions involving both, generic 1

8 BPS black holes and non-BPS extremal black
holes.
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