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Abstract: In this pedagogically structured article, we describe a generalized harmonic

formulation of the Einstein equations in spherical symmetry which is regular at the origin.

The generalized harmonic approach has attracted significant attention in numerical rela-

tivity over the past few years, especially as applied to the problem of binary inspiral and

merger. A key issue when using the technique is the choice of the gauge source functions,

and recent work has provided several prescriptions for gauge drivers designed to evolve

these functions in a controlled way. We numerically investigate the parameter spaces of

some of these drivers in the context of fully non-linear collapse of a real, massless scalar

field, and determine nearly optimal parameter settings for specific situations. Surprisingly,

we find that many of the drivers that perform well in 3+1 calculations that use Cartesian

coordinates, are considerably less effective in spherical symmetry, where some of them are,

in fact, unstable.
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1. Introduction

Solving Einstein equations numerically is a notoriously difficult task. After many years

of research, several well-posed formulations of the Einstein equations have been proposed

and tested. These include constrained Arnowitt-Deser-Misner (ADM) [1, 2], hyperbolic

Baumgarte-Shapiro-Shibata-Nakamura (BSSN) [3] and characteristic evolution [4], just to

name a few: we refer the reader to [5, 6, 7] for reviews of these and other approaches.

Among the ingredients that are key to the success of any particular formulation are 1)

an appropriate choice of dynamic variables that results in a well-posed system, and 2)

a choice of coordinates that remain regular during the course of the evolution. In this

paper we focus on a specific well-posed approach known as the generalized harmonic (GH)

formulation. This form of the Einstein equations has recently attracted significant attention

in the numerical relativity community, in large part because of its use in obtaining the first

long-term evolution of binary black-hole inspiral and merger [8, 9, 10].

In essence, the GH approach is a way to write the field equations such that the resulting

system is manifestly hyperbolic, taking the form of a set of quasi-linear wave equations for

the metric components. The basic idea underlying the strategy has a long and distinguished

history: specifically, the use of harmonic coordinates has been instrumental in establishing

many fundamental results in General Relativity (GR) including the characteristic structure

of the theory [11], and the well-posedeness of the Cauchy problem for Einstein’s equations

[12, 13]. However, from the computational point of view, harmonic gauge1 can be too

restrictive, and numerical implementations using it may develop coordinate pathologies, as

described, for instance, in [14] and [15]. More recently, it was realized by Friedrich [16],

and independently by Garfinkle [17], that much of the coordinate freedom apparently lost

by the specific choice of harmonic gauge could be regained through the introduction of

certain gauge source functions, while at the same time maintaining the desirable property

of strong hyperbolicity of the field equations. In fact, the source functions can be thought

of as representing the coordinate freedom of the Einstein equations, and when construct-

ing solutions of the equations, via an initial value approach, for example, they must be

completely specified in some fashion.

Following Garfinkle’s pioneering use of the generalized harmonic approach in his study

of generic singularity formulation in cosmologies with scalar field matter [17], the technique

was successfully employed by Pretorius [8, 9, 10], and subsequently by others [18, 19, 20],

for simulations of binary black hole coalescence. However, the total number of physical

scenarios studied so far using the GH approach is limited, and there is an argument to

be made for a more systematic exploration of the method’s potential. This is especially

the case given the relative lack of proven prescriptions for choosing the gauge functions

appropriately in instances where the gravitational field is highly nonlinear and dynamic.

Moreover, in order to expedite experimentation with the approach, we feel that it is useful

to start with systems with a high degree of symmetry. Restriction to highly symmetric

spacetimes reduces the effective spatial dimensionality of the partial differential equations

that must be solved, yields algebraically simpler equations, and, overall, leads to enormous

1In this paper “gauge” means “coordinate choice”, and we use both expressions interchangeably.
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savings in the computational resources required to simulate a single spacetime. This in turn

allows for much more detailed and thorough surveys of the multi-dimensional parameter

spaces that typically arise from a given choice of gauge functions.

In this paper, then, we focus on the application of the generalized harmonic approach

to the problem of gravitational collapse in spherically symmetric D-dimensional spacetime.

Even with the restriction to spherical symmetry, we find that the strong-field aspects of the

collapse process present significant challenges regarding the choice of the gauge functions.

Ironically, some of these challenges may in fact be related to the symmetry restriction

itself. As usual, in situations where a black hole forms, care must be taken to avoid the

central singularity. This can be done through the use of singularity-avoiding coordinates,

by excising the singularity from the computational domain, or with a combination of both

strategies. Within the context of the GH formulation any such strategy must also be

preserve the strong hyperbolicity of the field equations.

Although we view our study of the GH approach for spherically symmetric collapse

as interesting in its own right, a primary goal of this research is to prepare for an inves-

tigation of axially symmetric systems using an analogous formulation. We thus consider

our spherically-symmetric set up as a valuable toy model for the phenomenologically richer

axisymmetric situation. In both cases it is natural to use coordinates in which the sym-

metries of the spacetime are explicit. These coordinates, however, are formally singular:

at the origin in spherical symmetry, and on the axis in axial symmetry. Thus, in both

instances the field equations have to be regularized in numerical implementations, and one

of the results of our work is a regularization procedure that is compatible with the GH

approach. Moreover, we expect that the experience gained from our spherically symmetric

calculations concerning how to choose gauge source functions will also prove useful for the

more general case of axisymmetric computations.

In order to maximize the usefulness of this paper to other researchers interested in

experimenting with the generalized harmonic approach, we have attempted to make the

following presentation reasonably self-contained and pedagogical in nature. We thus begin

in Sec. 2 with a brief presentation of the basic GH formulae in full generality, along with a

discussion of the constraint equations. Although the constraints are consistently preserved

by the GH evolution equations in the continuum limit, in numerical calculations at finite

resolution, deviations from the constraints generically develop. In order to maintain sta-

bility these deviations must be damped and we describe a method that effectively achieves

this damping. Sec. 3 is devoted to a detailed discussion of coordinate conditions. One key

issue that we consider is the non-trivial problem of prescribing the GH source functions to

mimic some of the more popular and successful coordinate conditions that have historically

been used in numerical relativity calculations. Following recent proposals [9, 10, 18, 19] we

describe the formulation of the gauge conditions as hyperbolic evolution equations: is this

approach the gauge functions are evolved, or “driven”, to desired targets in a controlled

way, rather than being fixed instantly.

In Sec. 4 we adapt the GH formulae to the case of asymptotically flat, spherically

symmetric configurations in D spacetime dimensions. We derive the field equations, cast

them into a form suitable for numerical solution, discuss initial and boundary conditions,
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and regularize the singular origin by introducing a new variable. Since we use spherical

coordinates adopted to the symmetry, the GH source functions appear to diverge at the

origin as 1/r. Hence, we regularize these functions as well by subtracting off the singular

contribution that appears in the flat spacetime limit. The operators that appear in the

various gauge drivers then act on the regularized source functions.

In order to endow our model with non-trivial dynamics, we introduce a minimally

coupled, real, massless scalar field. The initial distribution of the scalar matter is freely

specified and our results are grouped according to the “strength” of the initial data. In

each case we simulate the time evolution of a single Gaussian pulse of scalar field that is

initially centered at the origin. The weak and the intermediate data correspond to the

dispersion of relatively dilute pulses, while a typical strong data configuration collapses to

form a black hole or nearly does so.

Mathematically, the task of treating the coupled Einstein-scalar system involves the

solution of a set of several quasi-linear wave equations. (Here we note that some of the gauge

drivers involve auxiliary variables that obey first-order-in-time differential equations.) Our

numerical approach to solving this system using finite difference techniques is detailed in

Sec. 5. We compactify the spatial (radial) dimension into a finite region and cover it by

a discrete lattice. This allows us to include spatial infinity on the finite difference mesh,

which has the advantage of enabling us to set exact boundary conditions corresponding to

asymptotic flatness. Following [8, 9] we directly discretize the second-order-in time-wave-

equations on the mesh, and use a point-wise Gauss-Seidel relaxation method to update

the discrete unknowns at each time step. In order to damp high-frequency components of

the numerical solution—which can generically lead to instabilities—we incorporate explicit

dissipation of the Kreiss-Oliger type. [30] This dissipation is also essential for attenuating

spurious reflections from the outer region of the compactified domain that would otherwise

quickly contaminate the solution in the interior (i.e. near the origin).

For the case of black hole formation we have investigated both of the approaches

mentioned above for avoiding the central physical singularity. On the one hand, we have

implemented an excision technique, in which an excision surface is chosen so that all char-

acteristics on it are pointing inwards, obviating the need for explicit boundary conditions

for the evolution equations. On the other hand, we have also experimented with the use of

singularity avoiding slicing conditions, that “freeze” the evolution in the strong curvature

regions. However, we find that in our case the calculations using singularity-avoiding slic-

ings tend not to run as long as those with excision and appear to crash prematurely due

to numerical errors that build up in the strong curvature regions.

Sec. 6 is devoted to a discussion of our detailed investigation of the performance of

several coordinate conditions as applied to calculations involving various strengths of ini-

tial data. As already mentioned, the parameter spaces associated with many of the gauge

drivers that we consider here are multidimensional. Thus, even with the significant reduc-

tion in needed computational resources that the restriction to spherical symmetry provides,

we have not found it feasible to identify optimal parameters in all cases. In some instances

then, we simply report what appears to be typical behavior for a particular gauge, while still

trying to explore the effects of the variation of key parameters on the quality of the solutions.
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Interestingly, we find that several of the gauge drivers that have been successfully used in

the 3 + 1 simulations of black hole collisions that use Cartesian coordinates [9, 10, 18, 19]

are considerably less effective for our spherically symmetric calculations. In particular, it

is not always possible to drive the lapse to a certain value as reported in [9, 10], nor is

it always possible to enforce a desired gauge for a long time by using one of the drivers

described in [18]. Overall, our calculations seem to be more sensitive to the specific choices

of parameters for the drivers than the Cartesian computations, and this is an issue which

warrants further investigation.

Nevertheless, our results indicate that with a certain amount of parameter tuning,

several of the gauge conditions that we investigate facilitate the simulation of many inter-

esting scenarios. We are thus encouraged by this particular application of the generalized

harmonic approach, and our conclusions and discussion in Sec. 7 includes an outline of

some future extensions of the work.

2. Generalized harmonic formulation

We consider the Einstein equations on a D-dimensional spacetime and written in the form

Rµν = 8πGN T̄µν ≡ 8πGN

(

Tµν − 1

D − 2
gµνT

)

, (2.1)

where gµν is the metric, Rµν is the Ricci tensor, Tµν is the energy-momentum tensor of the

matter with trace T , and GN is the D-dimensional Newton constant. Hereafter, we adopt

units for which 8πGN = 1.

The Ricci tensor that appears in the left-hand-side of (2.1) contains various second

derivatives of the metric components gµν : these second derivatives collectively constitute

the principal part of Rµν , viewed as an operator on gµν . This principal part can be decom-

posed into a term gαβ∂αβgµν , plus mixed derivatives of the form gαγ∂αµgγν . Without the

mixed derivatives, (2.1) would represent manifestly (and strongly) hyperbolic wave equa-

tions for the gµν [21]. Strong hyperbolicity is a highly desirable property since mathematical

theorems then ensure (local) existence and uniqueness of solutions at the continuum level.

This, in turn, means that it should be possible to construct stable (convergent) numerical

discretizations of the field equations.

One can view the generalized harmonic (GH) formulation of general relativity as a

particular method that eliminates the mixed second derivatives appearing in (2.1) [16, 17,

8, 10, 22]. As the name suggests, the technique generalizes the harmonic approach in which

the spacetime coordinates, xµ, satisfy the harmonic coordinate condition

�xα = 0. (2.2)

Here we have

�xα =
1√−g∂ν

(√−ggαν
)

= −Γα ≡ −gγβΓα
γβ, (2.3)

where Γα
γβ are the usual Christoffel symbols.
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It was realized by Friedrich [16] and also by Garfinkle [17], that it is possible to elim-

inate the mixed derivatives in the principal part of the Einstein equations while largely

recovering the coordinate freedom than is lost by choosing the harmonic gauge. Instead of

(2.2), one requires that that the coordinates satisfy

�xα = Hα, (2.4)

where Hα ≡ gαβH
β are arbitrary “gauge source functions” 2 which are to be viewed as

specified quantities. One then defines the GH constraint

Cα ≡ Hα − �xα, (2.5)

which clearly must vanish provided (2.3) holds, and then modifies the Einstein equations

as follows:

Rµν − C(µ;ν) = T̄µν . (2.6)

This last equation can be written more explicitly as

−1

2
gαβgµν,αβ − gαβ

(,µgν)β,α −H(µ,ν) +HβΓβ
µν − Γα

νβΓβ
µα = T̄µν . (2.7)

Now, provided that the Hα are functions of the coordinates and the metric only, but not of

the metric derivatives—namely Hα = Hα(x, g)—the field equations (2.7) form a manifestly

hyperbolic system. We reemphasize that the source functions Hα are arbitrary at this

stage and that their specification is equivalent to choosing the coordinate system for the

spacetime under consideration (“fixing the gauge”). Determining an effective prescription

for the source functions is thus crucial for the efficacy of the GH approach, and several

strategies for fixing the Hα are discussed in the next section.

Having prescribed the coordinates we integrate the equations forward in time. Con-

sistency of the scheme requires that the GH constraint (2.5) be preserved in time. The

contracted Binachi identities guarantee that this is indeed the case, since, using those

identities, one can show [8, 22] that Cα itself satisfies a wave equation,

�Cα +Rα
ν C

ν = 0. (2.8)

Thus, assuming that the evolution is generated from an initial hypersurface on which

Cα = ∂tC
α = 0, (2.8) guarantees that Cα = 0 for all future (or past) times.

Although the GH constraint is preserved at the continuum level, in numerical calcu-

lations, where equations are discretized on a mesh with some characteristic mesh scale, h,

the constraint cannot be expected to hold exactly. More troublingly, experience shows that

numerical solutions of (2.7)—particularly in strong field cases, such as those involving black

holes—can admit “constraint violating modes”, with the result that the desired continuum

solution is not obtained in the limit h → 0. Fortunately, an effective way of preventing

2In a slight abuse of notation and terminology we will refer to both Hα and Hα as “the” gauge source
functions.
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the development of such modes in numerical calculations exists: one adds terms to the

field equations that are explicitly designed to damp constraint violations (see e.g. [23]). In

our implementation we follow Pretorius [8, 10] by adding constraint damping terms in a

fashion inspired by studies of the so-called γ-systems [24, 25]. The modified equations take

the form

− 1

2
gαβgµν,αβ − gαβ

(,µgν)β,α −H(µ,ν) +HβΓβ
µν − Γα

νβΓβ
µα −

− κ

(

n(µCν) −
1

2
gµν n

β Cβ

)

= T̄µν . (2.9)

Here, nα is the future-directed, unit time-like vector normal to the t = const. hypersurfaces,

which can be written as

nα ≡ −
(

1/
√

−gtt
)

∂αt, (2.10)

and κ is an adjustable parameter that controls the damping timescale. Specifically, as

discussed in [25], small constraint perturbations about a fixed background decay exponen-

tially with a characteristic timescale of order κ. We note that the constraint damping

term contains only first derivatives of the metric and hence does not affect the principal

(hyperbolic) part of the equations.

3. Coordinate conditions

As we have already mentioned, fixing the coordinates in the GH approach amounts to

specifying the source functions Hα. In this regard, it is instructive to examine the rela-

tionship between the Hα and the lapse function and shift vector that appear in the ADM,

or space-plus-time, formulation of general relativity. We recall that in the ADM formalism

the line element can be written as

ds2 = −α2dt2 + γij

(

dxi + βidt
) (

dxj + βjdt
)

, (3.1)

where α is the lapse function, βi is the shift vector, and γij is the spatial metric of the

t = const. hypersurfaces. Using this form of the spacetime metric in (2.4) yields

∂tα− βk∂kα = −α (Hn + αK) ,

∂tβ
i − βk∂kβ

i = αγij
[

α
(

Hj + (D−1)Γjklγ
kl
)

− ∂jα
]

, (3.2)

where Hn ≡ nµHµ = (Ht − βiHi)/α is the normal component of the source function Hµ,

K is the trace of the extrinsic curvature tensor of the t = const. slices, and the (D−1)Γjkl

are Christoffel symbols associated with the spatial γij . Bearing in mind that the temporal

component of the source function is thus determined by Ht = αHn + βiHi, these last

equations clearly exhibit the connection between the gauge source functions and the time

evolution of the lapse and shift.

In his groundbreaking application of the GH approach [9, 10], Pretorius used insight

derived from considering this relationship between theHα and the ADM kinematic variables
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to devise a methodology that generates effective gauge source functions for the problem

of binary black hole collisions. His strategy elevates the status of the Hα to independent

dynamical variables that satisfy time-dependent partial differential equations. Crucially,

the evolution equations for theHα are designed so that the lapse and shift which (implicitly)

result from the time development have certain desirable properties. For example, the

equation for Ht is tailored in an attempt to keep the value of the lapse function of order

unity everywhere—including near the surfaces of the black holes—during the evolution.

One specific prescription for achieving this type of control evolves the gauge source

functions according to

�Ht = −ξ1
α− α0

αq
+ ξ2Ht,µn

µ,

Hi = 0, (3.3)

where � is the covariant wave operator, and α0, ξ1, ξ2 and q are adjustable constants3.

Thus the temporal source function satisfies a wave equation similar to those that govern

the metric components in the system (2.9). The first term on the right-hand-side of (3.3)

is designed to “drive” Ht to a value that results in a lapse that is approximately α0. The

second, “frictional” term tends to confine Ht to this value. For the case of the spatial

coordinates, Pretorius found that the simplest choice of spatially harmonic gauge—Hi =

0—was sufficient in simulations of binary black hole collisions. Importantly, the choice

(3.3) ensures that the hyperbolicity of the combined evolution system is preserved. A

slight generalization of this technique was considered in [19] where instead of using Hi = 0,

the spatial components of the source functions are evolved according to

�Hi = −ξ3
βi

α2
+ ξ2Hi,µn

µ (3.4)

where ξ3 is an additional parameter.

One possible problem with the specific driver approach outlined above is that the

coordinates that result do not correspond to those produced by any of the more familiar

coordinate conditions typically used in numerical relativity. Recently, Lindblom et al [18]

proposed driver conditions that are crafted so that the source functions that result imply

particular conditions on the corresponding lapse and shift. We now proceed to a review of

this interesting and promising approach.

We begin by observing that many traditional coordinate conditions of numerical rel-

ativity can be written as Fα = Fα(x, g, ∂g) where the Fα are to be viewed as “effective”

gauge source functions which could be computed, for example, were the entire spacetime in

hand. Within the GH approach, enforcing such a condition algebraically by simply setting

Hα = Fα will generally destroy the hyperbolicity of the system, since the H(µ;ν) terms in

(2.7) will generically give rise to mixed second derivatives of the metric. Lindblom et al

3Sometimes it is convenient to assume that ξ1 and ξ2 are given functions of space and time rather than
mere constants. For example, one might require that the gauge driver is switched on gradually in time,
or that it be active only in certain regions, e.g. in the vicinity of a black hole, and that its effect vanish
asymptotically, so that pure harmonic coordinates are recovered at large distances.
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circumvent this difficulty by generalizing (3.3) to

OHα = Qα(x, g, ∂g,H, ∂H), (3.5)

where O is a second order hyperbolic operator and Qα is chosen so that the source functions

evolve towards the concrete Fα = Fα(x, g, ∂g) that define the desired gauge. The combined

system (2.9) and (3.5) will remain hyperbolic provided the Qα depend on at most first

derivatives of the fields. In analogy with (3.3) the authors of [18] choose

Qα = µ2
1 (Hα − Fα) + 2µ2 ∂tHα + ηWα, (3.6)

where µ1, µ2 and η are adjustable parameters, and Wα is assumed to satisfy

∂tWα + ηWα = ÔHα, (3.7)

where Ô is the part of O that contains only spatial derivatives. When the spacetime is

stationary, time-derivatives vanish and equations (3.5) and (3.6) then imply Hα = Fα.

Notice that without the introduction of the auxiliary fields, Wα, this property could not

be attained for general, position dependent gauges [18].

In order to implement this method for a specific desired gauge choice one must first

compute the corresponding target source functions, Fα. Here we focus on gauges of the

schematic form Gα(x, g, ∂g) = 0 for which one can choose [18]

Fα = −Γα − q Gα, (3.8)

where q is a tunable parameter. In the GH formalism, Hα = −Γα, and (3.8) then implies

Hα −Fα = q Gα. This demonstrates that when the GH constraint is satisfied, Hα is driven

to Fα if Gα is driven to zero. We next discuss several specific coordinate choices that are

explored in this paper.

3.1 Slicing conditions

For the particular choices of the slicing conditions that we use in this paper, it is more

convenient to calculate the normal component of the target source functions, Fn ≡ nµFµ =

(Ft − βiFi)/α, than the temporal component, Ft, itself (see (3.2)). Once this is done, then

in conjunction with the shift conditions that fix Fi, the temporal component can be easily

computed via Ft = αFn + βiFi.

• Constant curvature slicing, K = K0. Here we assume that the trace, K(g, ∂g), of

the extrinsic curvature of the spatial slices is constant. When K0 = 0, we have

the famous maximal slicing condition [27] whose significant popularity in numerical

calculations is due in large part to the strong singularity-avoiding property exhibited

by the resulting constant-time surfaces (see Sec. 6). The constant curvature foliation

can be written as Gn = 0, where

Gn = K0 −K = K0 + ∇αnα (3.9)
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• Bona-Masso slicing [29]. This condition can be written as

Gn = (∂tα− βi∂iα) + α2f(α) (K −K0) , (3.10)

where f(α) is an arbitrary function of the lapse.4 The choice f(α) = 2/α corresponds

to the popular 1 + log slicing.

In terms of implementing these slicing conditions, we note that (3.8) implies

Fn = −α−1
(

Γt − βiΓi

)

− qnGn, (3.11)

where qn is a parameter, and that the kinematic quantities such as the lapse and shift

which appear in various formulae above can always be written in terms of the fundamental

dynamical variables of the scheme (i.e. the metric components and their first derivatives).

3.2 Shift conditions

An important class of shift conditions which is often used in numerical relativity employs

versions of the so-called Γ-driver [26]. In this approach, one first introduces the conformally

rescaled spatial metric, γ̃ij = γσ, γij , with γ ≡ det γij and σ an arbitrary parameter, then

computes the contracted Christoffel symbols,

(D−1)Γ̃i =(D−1) Γ̃i
kj γ̃

kj = −γ−σ

[

1 + σ (D − 3)

2
γij∂j log γ + γi

j∂kγ
kj

]

, (3.12)

and imposes certain conditions on their dynamics. The Γ-driver strategy is related to the

minimal distortion condition [27, 28] which is designed to minimize the time variation of

γ̃ij (see e.g. [26]).

• Γ-freezing. Here one requires

∂t
(D−1)Γ̃i = 0, (3.13)

which implies that during the evolution (D−1)Γ̃i is fixed, (D−1)Γ̃i =(D−1) Γ̃i|t=0. Fol-

lowing [18] we attempt to evolve to this choice by choosing

Gi = γ̃ij

(

(D−1)Γ̃j(0) −(D−1) Γ̃j
)

. (3.14)

• Γ-driver. Again following [18] we write the driver condition as

∂tβ
i = ν

[

(D−1)Γ̃i − η2B
i
]

, (3.15)

∂tB
i + η2B

i =(D−1) Γ̃i, (3.16)

where ν and η are adjustable parameters. Then one can choose

Gi = γij

(

∂tβ
j − ν (D−1)Γ̃j + νη2B

j
)

, (3.17)

4Sometimes the geometric derivative ∂nα ≡ (∂tα−βi∂iα)/α is replaced with the partial time derivative
∂tα.
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The auxiliary variable Bi is evolved using (3.16) and it is important to note that

adding this equation to the scheme does not destroy the hyperbolicity of the combined

evolution system [18].

We have also experimented with a geometric version of the driver where the partial

time derivative ∂t in (3.16) is replaced with the covariant derivative nµ∇µ ≡ (∂t −
βk∂k)/α.

Implementation of the above shift conditions is effected by setting the corresponding

spatial target source function defined by (3.8) according to

Fi = −Γi − qiGi, (3.18)

where qi is an adjustable parameter.

4. Spherically-symmetric reduction

Having described the basics of the GH formalism, we now specialize to spherically sym-

metric spacetimes. We consider a D-dimensional spacetime with SO(D − 2) rotational

symmetry, and write the D-dimensional line element in the form

ds2 = g(D)
µν dxµdxν = g

(D)
ab dxadxb + e2 ŜdΩ2

n. (4.1)

Here dΩ2
n is the metric on a unit n-sphere, n ≡ D − 2, a, b = {t, r}, and the metric g

(D)
ab

and scalar Ŝ are functions of t and the radial coordinate, r, alone.

Although we will later specialize to the case of a real, massless scalar field, for generality

we first adopt as a matter source minimally coupled complex scalar field, Φ, with a potential

V (|Φ|). The action that describes the system can be written as

S =

∫
√

−g(D)
(

R(D) − ∂aΦ ∂
aΦ∗ − 2V (|Φ|)

)

dxD. (4.2)

By varying the action with respect to the fields one gets the Einstein equations (2.1) with

the energy-momentum tensor T̄µν = 1
2 (∂µΦ ∂µΦ∗ + ∂µΦ∗ ∂µΦ) + 2/(D − 2)g

(D)
µν V , as well

as the general relativistic Klein-Gordon equation for the scalar field. Specifically, the GH

transformation of the Einstein equations as given by (2.6) reads

R
(D)
ab − C(a;b) =

1

2
(∂aΦ ∂bΦ

∗ + ∂aΦ
∗ ∂bΦ) +

2

D − 2
g
(D)
ab V, (4.3)

R
(D)
θiθi

− C(θi;θi) =
2

D − 2
g
(D)
θiθi

V, (4.4)

�Φ = ∂V/∂Φ∗, (4.5)

where R
(D)
µν is the D-dimensional Ricci tensor and θi are the angular coordinates. In

spherical symmetry it suffices to use any specific angular component of the Ricci tensor,

and for convenience we use R
(D)
θ1θ1

where θ1 is defined by dΩ2
n = dθ2

1 + sin2 θ1dΩ
2
n−1.
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The form of the metric (4.1) is not yet optimal for use in numerical computations. In

this paper we are mostly interested in asymptotically flat solutions and thus the following

section describes a more natural ansatz for use in that instance.

4.1 Spatial asymptotics

In spherical coordinates, flat spacetime can be written as

ds2 = −dt2 + dr2 + r2 dΩ2
n. (4.6)

It follows from (4.1) that asymptotically gab → ηab, where ηab is a Minkowski metric,

and Ŝ → log r, (i.e. Ŝ diverges at spatial infinity). Since this divergence complicates the

numerical implementation of boundary conditions, we introduce a new function, S, defined

by S = Ŝ − log r, which is regular everywhere. We then adopt the following, more regular

form for the line element in the asymptotically flat case:

ds2 = gabdx
adxb + r2 e2 SdΩ2

n. (4.7)

In spherical coordinates, the source function derived from (2.4) does not vanish even in flat

spacetime where it becomes

HMink
µ = −ΓMink

µ = (0, n/r, (n − 1) cot θ1, (n− 2) cot θ2, . . . , cot θn−1, 0). (4.8)

Since near the origin spacetime is locally flat, the radial component of the source function

is generically singular at r = 0, diverging as n/r. To regularize this radial component, we

thus subtract the singular background contribution by transforming Hα → Hα + δr
αH

Mink
r ,

and use the functions Ht and Hr defined by

Hα = (Ht(t, r),Hr(t, r) + n/r, (n − 1) cot θ1, (n − 2) cot θ2, . . . , cot θn−1, 0) . (4.9)

in our formulae.

With the line-element (4.7) and the source functions (4.9), the asymptotic behavior of

the fields is simply

gab → ηab, S → 0, φ→ 0, Ht → 0, Hr → 0 (4.10)

In App. A we also analyze the asymptotically AdS spacetime, which is described in our

model (4.2) for the case that the scalar field potential satisfies V (0) → Λ < 0.

4.2 Center of symmetry, r = 0

Invariance of the line element (4.7) under the reflection r → −r in spherical symmetry

implies that gtr is an odd function of r, while gtt, grr, S and Φ are even in r. Additionally,

the GH constraint (2.4) implies that the source functions Hr, regularized via (4.9), and Ht

are odd and even in r, respectively.
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Moreover, the requirement that the surface area of an n-sphere must vanish at the

origin5 implies grr(t, 0) = e2 S(t,0). We note that this is an extra condition on S, which

thus has to satisfy both this relation, as well as the constraint that it have vanishing radial

derivative at r = 0—specifically that grr − e2 S = O(r2). Therefore, at r = 0 we essentially

have three conditions on the two fields S and grr. In the continuum, and given regular

initial data, the evolution equations will preserve regularity: however, in a numerical code

that solves the equations discretized on a lattice, this will be true only up to discretization

errors. As a general rule-of-thumb, the number of boundary conditions should be equal to

the number of evolved variables in order to avoid regularity problems and divergences of a

numerical implementation.

An elegant way to deal with this regularity issue involves definition of a new variable,

λ:

λ ≡ grr − e2 S

r
. (4.11)

At the origin one then has λ ∼ O(r). Therefore, after changing variables from S to λ by

using S = (1/2) log(grr − r λ) in all equations, and imposing λ(t, 0) = 0 at the origin, one

ends up with a system where there is no over-constraining due to the demand of regularity

at r = 0. In addition, we note that at spatial infinity we have λ = 0, and that the

hyperbolicity of the GH system is not affected by the change of variables.

However, as described in detail in Sec. 5.2, we were able to implement a more straight-

forward regularization method that maintains S as a fundamental dynamical variable, and

thus opted to use that approach in our current calculations.

4.3 The equations

With the metric ansatz (4.7) and the regularized source function (4.9), equations (4.3)–

(4.5) become 5 equations for the 5 variables, gtt, gtr, grr, S and Φ, that schematically can

be written as6

−1

2
gcdgab,cd + · · · =

1

2
(∂aΦ ∂bΦ

∗ + ∂aΦ
∗ ∂bΦ) +

2

D − 2
gabV, (4.12)

gcdS,cd + · · · = − 2

D − 2
V, (4.13)

gcdΦ,cd + · · · = ∂V/∂Φ∗. (4.14)

Here ellipses denote terms that may contain the metric and/or the source functions, as

well as their first derivatives in various combinations (see App. B for the explicit set of

equations in the four-dimensional case). These equations are to be evolved forward in time

starting from the initial (t = 0) time slice, where values for the fields and their first time

derivatives must be prescribed.

5that is, that the radial and areal coordinates coincide at the origin, to avoid a conical singularity there.
6Using λ instead of S does not change this structure since the equation that governs λ is a linear

combination of the equations that govern S and grr.
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4.4 Coordinate choices

Here we adapt the prescriptions for choosing the gauge functions (Ht and Hr) that were

described in Sec. 3, to the case of spherical symmetry. We again note that the radial

source function is singular at the origin in spherical symmetry, and that we thus regularize

it via (4.9). Since this regularization involves subtracting the flat-spacetime singular part

from Hr, any specific coordinate conditions discussed here are thus defined relative to

spherical Minkowski spacetime.

For the case of the gauge condition (3.3) inspired by Pretorius’ original work, we have

�Ht = −ξ1
α− α0

αq
+ ξ2 (∂tHt − β ∂rHt) /α, (4.15)

Hr = 0.

Similarly for the modification of the above proposed in [19], we have (using (3.4))

�Ht = −ξ1
α− α0

αq
+ ξ2 (∂tHt − β ∂rHt) /α, (4.16)

�Hr = −ξ3
β

α2
+ ξ2 (∂tHr − β ∂rHr) /α.

In the above equations � is the regularized scalar wave operator in spherical symmetry,

given by

�Hα = gµν∂µ∂νHα −
(

Γν + grr n

r
δν
r δ

α
r

)

∂ν Hα. (4.17)

Turning now to the case of the gauge drivers introduced by Lindblom et al, we note that

the operator in (4.9) is essentially the vector d’Alambertian7 [18]

OHα = gµν∂µ∂νHα − Γν∂νHα − 2 gµνΓβ
να∂µHβ +

(

Rβ
α − ∂αΓβ

)

Hβ. (4.18)

In order to avoid having second-derivatives of the metric, the Ricci tensor in the last term

should be thought of as being determined by matter sources and replaced with T̄ β
α , in

accordance with the Einstein equations. In addition, using the GH constraint Hα = −Γα,

the term −∂αΓβ Hβ is replaced with −∂αH
β Γβ. Finally, we regularize the operator by

subtracting the irregular contributions that appear in the flat spacetime limit. After these

manipulations we arrive at

OHα = gµν∂µ∂νHα−
(

Γν + grr n

r
δν
r δ

α
r

)

∂ν Hα−2 gµνΓβ
να∂µHβ−

(

T̄ β
α + ∂αH

β
)(

Γβ +
n

r
δαr

)

,

(4.19)

where δν
µ is a Kronecker delta, and there is no summation over the index α.

The target source function, Fn, is determined by (3.9) or (3.10), and by (3.11). The

7Ha does not transform as a vector under gauge transformations, so the equation should be understood
as written in particular global coordinates [18]; in the current case, these are our spherical coordinates.
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lapse and shift are given in terms of the metric components,

α =
√

−gtt + g2
tr/grr, (4.20)

β = gtr/grr,

as is the trace of the extrinsic curvature (see (B.2) for the explicit form).

Our shift conditions involve the contracted conformal Christoffel symbols, Γ̃i, defined

by (3.12), and in spherical symmetry the only non-trivial component is (D−1)Γ̃r, given by

(D−1)Γ̃r = −n (1 + (n − 1)σ) S′ +
1 − σ (n− 1)

2

g′rr

grr
. (4.21)

Here ()′ ≡ ∂r, and we have used the fact that γrr = grr. Once again, in order to obtain a

regular expression we have subtracted the flat-spacetime term, (D−1)Γ̃Mink
r = −n(1 + (n−

1)σ)/r, which is singular at the origin.

The target function for the Γ-freezing condition (3.14) takes the form

Fr = −Γ̂r − qs

[

(D−1)Γ̃r(0, r)

(

grr

grr(0, r)

)σ+1

e2 n σ [S−S(0,r)] −(D−1) Γ̃r

]

, (4.22)

where Γ̂r ≡ Γr + n/r is the D-dimensional connection which has also been regularized via

subtraction of an irregular flat-spacetime term. The explicit expression for Γr is given in

(B.1).

For the case of the Γ-driver condition (3.18) in spherical symmetry, the target source

function is

Fr = −Γ̂r − qs

[

grr β̇
r −(D−1) Γ̃r ν (grre

2 n S)−σ + ν η2 grr B
]

, (4.23)

where an over-dot denotes partial differentiation with respect to t. The auxiliary field B

is evolved using

Ḃ + η2B =(D−1) Γ̃r

(

e2 n S grr

)−σ
/grr. (4.24)

4.5 Initial data

We now consider specification of initial data, which as stated previously, are values for the

fields and their first time derivatives at t = 0. For simplicity (and without much loss of

generality), we restrict attention to time-symmetric initial conditions.

Given the assumption of time symmetry at t = 0, initial data for the scalar field reduces

to the specification of Φ(0, r), which we take to have the form of a Gaussian,

Φ(0, r) = Φ0 e
−(r−r0)2/∆2

, (4.25)

where Φ0, r0 and ∆ are adjustable parameters.

The momentum constraint is trivially satisfied for time-symmetric initial data, and
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writing the initial metric as

ds2 = −α2dt2 + ψ4(dr2 + r2dΩ2
n), (4.26)

the Hamiltonian constraint becomes a non-linear ordinary differential equation for ψ(0, r),

ψ′′ +
n

r
ψ′ + (n− 2)

ψ′2

ψ
+

1

2n

(

1

2
Φ′ Φ∗′ + ψ4 V

)

ψ = 0. (4.27)

This equation is solved using the boundary conditions ψ′(0, r)|r=0 = 0 and ψ(0, r)|r→∞ = 1,

and then once ψ has been determined, the metric components are initialized via

grr = ψ4,

S = 2 logψ, (4.28)

gtr = βr = λ = 0.

For time-symmetric initial data we require that all first time derivatives of the metric

components vanish.

We next determine the initial conditions for the lapse and the variables used in the

gauge drivers. We begin by setting Ht(0, r) = Hr(0, r) = 0. Using

Hr(0, r) = −Γ̂r(0, r) =
α′

α
+ 2(n − 1)

ψ′

ψ
, (4.29)

we obtain an equation relating α(0, r) to the initial value of Hr. With our choice, Hr(0, r) =

0, this equation can be integrated to yield

α(0, r) = ψ(0, r)−2(n−1). (4.30)

Next we require that the target coordinate conditions are initially satisfied, namely that

Fα(r, 0) = Gα(r, 0) = Hα(r, 0) = 0. We note that since time-symmetry implies K(0, r) =

K0 = 0, the normal component of the gauge function for the constant curvature folia-

tion vanishes, Gn(0, r) = qnK0 = 0, as it does for the Bona-Masso slicing, Gn(0, r) =

−qn α(0, r)2f(α(0, r))K0 = 0. The Γ-freezing condition (4.22) obviously satisfies Gi(0, r) =

0, while requiring this for the Γ-driver condition (4.23) will set the initial value of the aux-

iliary field B8,

B(0, r) =(D−1) Γ̃r e
−2 n S σg−σ

rr /η2|t=0. (4.31)

Here the initial value for the radial component of the contracted conformal Christoffel

symbol Γ̃r(r, 0), defined by (4.21), is found using the relations (4.28):

(D−1)Γ̃r(0, r) = −2 (n− 1) (1 + (n+ 1)σ)
ψ′

ψ
. (4.32)

8Note that for time-symmetric initial conditions this consistently coincides with the values of B(0, r)
found from (4.24).
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Figure 1: The compactified domain of integration, and the numerical lattice. Our finite difference
scheme uses three levels in the time direction.

The conditions for the auxiliary variables Wα used in the Lindblom et al drivers are found

from (3.7) to be Wt(0, r) = Wr(0, r) = 0.

5. Numerical Approach

Here we describe our strategy for the numerical solution of the GH system (with a scalar

matter source) in spherical symmetry.

5.1 The numerical grid and the algorithm

We cover the t–r plane by a discrete lattice denoted by (tn, ri) = (n∆t, i∆r), where n

and i are integers and ∆t and ∆r define the grid spacings in the temporal and spatial

directions, respectively. We note that when we perform convergence studies, we keep

the ratio ∆t/∆r constant so that our numerical scheme is generally characterized by a

single discretization scale, h, which we can conveniently identify with ∆r. As described

in the next section, the spatial domain is compactified, and hence a grid of finite size Nr

extends from the origin to spatial infinity. As depicted in Fig. 1, approximations to the

dynamical fields, collectively denoted here by Y , are evaluated at each grid point, yielding

the discrete unknowns Y n
i ≡ Y (tn, ri) = Y (n∆t, i∆r). In the interior of the domain, the

GH equations and the gauge-driver equations are almost always discretized using O(h2)

finite difference approximations (FDAs), which replace continuous derivatives with the

discrete counterparts given in (C.1) and (C.2). As in [8, 9] our scheme directly integrates

the second-order-in-time equations (i.e. we do not rewrite the equations as a system which

is first order in time).

Following discretization, we thus obtain finite difference equations at every mesh point

for each dynamical variable. Denoting any single such equation as

LY |ni = 0. (5.1)
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we then iteratively solve the entire system of algebraic equations as follows.

First, we note that for those variables that are governed by equations of motion that

are second order in time, our O(h2) discretization of the equations of motion results in

a three level scheme which couples advanced-time unknowns at tn+1 to known values at

retarded times tn and tn−1. In order to determine the advanced-time values for such

variables, we employ a point-wise Newton-Gauss-Seidel scheme: starting with a guess for

Y n+1
i (typically, we take Y n+1

i = Y n
i ) we update the unknown using

Y n+1
i → Y n+1

i − RY |ni
JY |ni

. (5.2)

Here, RY is the residual of the finite-difference equation (5.1), evaluated using the current

approximation to Y n+1
i , and the diagonal Jacobian element is defined by

JY |ni ≡ ∂LY |ni
∂Y n+1

i

. (5.3)

In the cases where we used gauge drivers that involve B and Wα, we found that an it-

eration based on an implicit Euler discretization scheme of the corresponding first or-

der equations performed well.9 Specifically, writing any such equation schematically as

Ẏ = fY (Y, ∂Y, . . . ), we update using

Y n+1
i → Y n−1

i + 2∆t fY |n+1
i . (5.4)

We iterate (5.2) and (5.4) over all equations until the overall residual norm10 falls below

some specified convergence threshold.

In order to inhibit high-frequency11 instabilities which often plague finite difference

equations such as ours, we add explicit numerical dissipation of the Kreiss-Oliger type [30]

to our scheme. Following [8], at every grid point and for each dynamical variable we make

the replacement

Yi → Yi − ǫKO di (5.5)

at both the tn−1 and tn time-levels before updating the tn+1 unknowns. Here, di is defined

by

di ≡
1

16
(Yi−2 − 4Yi−1 + 6Yi − 4Yi+1 + Yi+2) . (5.6)

and ǫKO is a positive parameter satisfying 0 ≤ ǫKO ≤ 1 that controls the amount of

dissipation. An extension of the dissipation to the boundaries [8], as well as to the black hole

excision surface (see Sec. 5.3 ), was also tried, but was not found to have any positive effect.

In fact, using dissipation at the outer boundary usually resulted in late-time instabilities

9The advantage of the implicit Euler method is that it is unconditionally stable and easy to implement.
Although it is only first-order accurate—which does impact the overall convergence of the scheme when the
Lindblom et al drivers are used—we have found it useful to achieve our chief current goal of constructing
stable numerical implementations for our GH system.

10defined, e.g. as a sum of absolute values of the individual residuals of the equations, R =
P

Y
|RY |.

11“High-frequency” refers to modes having a wavelength of order of the mesh spacing, h.
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in the code.

5.2 Coordinates and boundary conditions

While the physical, asymptotically flat spacetime extends to spatial infinity, in a numeri-

cal code one can only use grids of finite size. A standard strategy to deal with this issue

involves truncating the solution domain by introducing an outer boundary at some finite

radius where approximate boundary conditions are imposed. When such an approach is

adopted, it is then important to ensure that the computed solutions do not depend sensi-

tively on the truncation radius. However, another technique which has been successfully

used in previous work in numerical relativity, see e.g. [9, 34], involves compactification of

the spatial domain. Paralleling the experience of these earlier studies, we have found that

compactifying the radial direction and imposing the (exact) Dirichlet conditions (4.10) at

the edge of the domain works well, provided that we use sufficient dissipation. In partic-

ular, it is known that due to the loss of resolution near the compactified outer boundary

(assuming a fixed mesh spacing in the compactified coordinate), outgoing waves generated

by the dynamics in the interior will be partially reflected as they propagate towards the

edge of the computational domain, and these reflections will then to tend to corrupt the

interior solution. By adding sufficient dissipation one can damp the waves in the outer

region, attenuating any unphysical influx of radiation, and thus enabling a meaningful use

of compactification.

For the general case where we have more than one spatial dimension, Xi, requiring

compactification, we consider a transformation that maps Xi ∈ [0,∞) onto xi ∈ [0, 1],

Xi = ζi(x
i), (5.7)

where the ζi are monotonic functions, such that ζ ′i(0) = 1, and which will have essential

singularities at xi = 1. The field equations (4.12-4.14) are discretized in the compactified

coordinates after we analytically remove the Jacobian of the transformation (5.7) in all the

differential operators. The general replacement rule for first and second spatial derivatives

is ∂X = e1∂x and ∂2
X = e21∂

2
x + e2∂x, where e1 ≡ 1/ζ ′ and e2 ≡ −ζ ′′/(ζ ′)3, so, for example,

a typical term in (4.12-4.14), ∂gti/∂X
j , would be replaced with (ζ ′j)

−1∂gti/∂x
j .

In the spherically-symmetric calculations considered in this paper we use a specific

compactification

r̃ =
r

1 + r
, (5.8)

where the compactified r̃ ranges from 0 to 1 for values of the original radial coordinate

r ∈ [0,∞). The boundary conditions at r̃ = 1 are then imposed exactly: gtt = −1, gtr =

0, grr = 1, λ = S = 0, and φ = 0. For the gauge source functions we set Hα = 0, as well as

Wα = B = 0.

We have previously described the boundary (regularity) conditions at r̃ = r = 0 in

Sec. 4.2. Denoting by Y n+1
1 the advanced-time value at the origin for any of the variables,

gtt, grr and Ht that have vanishing derivative at r = 0, we use the update Y n+1
1 = (4Y n+1

2 −
Y n+1

3 )/3, which is based on an O(h2) backwards difference approximation (see (C.3)) of
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∂rY = ∂r̃Y = 0. For the quantities gtr and Hr, which are odd in r as r → 0, we simply use

Y n+1
1 = 0.

As discussed in Sec. 4.2, we considered the introduction of a new variable, λ (4.11),

to expedite implementation of the regularity conditions involving grr and S. However, in

the calculations described below we have adopted a simple method that does not involve

λ and that works well in spherical symmetry. 12 In this approach, we retain the original

variables S and grr, and impose g′rr = 0 and S = (1/2) log(grr) at the origin. Then instead

of determining Sn+1
2 (i.e. the advanced value of S at the next-to-extremal grid point) from

the corresponding discrete evolution equation, we perform the update using the O(h2)

backwards FDA to the regularity condition, S′(t, 0) = 0, namely Sn+1
2 = (3Sn+1

1 +Sn+1
3 )/4.

We must also maintain regularity at the origin for the auxiliary functions Wα and B

that are used with some of the gauge driver conditions. We expand the metric functions

in analytic Taylor series around r = 0 and substitute the expansions into the equations

(3.7,4.24) to arrive at

Ḃ + η2B = 0,

Ẇt + gtt

(

ηWt grr − (n+ 1)H ′′

t

)

= 0,

Ẇr + gtt

(

ηWr grr −H ′′

r

)

= 0, (5.9)

which we use to advance B(t, 0) and Wα(t, 0) forward in time. Operationally, the time-

derivatives in the equations are replaced with the FDA expressions (C.1) evaluated at tn,

and the spatial derivatives are replaced with one-sided versions (C.3) evaluated at tn+1.

The values of the functions B(tn+1, 0) and Wα(tn+1, 0) are then algebraically found.

5.3 Apparent horizon and excision

As is well known from many theoretical studies (both closed-form and numerical), a grav-

itational collapse process that concentrates sufficient mass-energy within a small enough

volume can lead to the formation of a black hole. In numerical calculations based on a

space-plus-time split, black hole formation is often inferred by the appearance of appar-

ent horizons. We recall that an apparent horizon is defined as the outermost marginally

trapped surface, and that a marginally trapped surface is one on which future-directed null

geodesics have zero divergence. Specifically, given a surface with outward-pointing space-

like unit normal, sα, embedded in a hypersurface with future-directed timelike unit normal,

nα, the vanishing of the divergence, θ, of the outgoing null rays defined by lα = sα + nα

can be expressed as

θ = (γαβ − sαsβ)∇αlβ = 0. (5.10)

12However, we have checked that the scheme that uses λ performs remarkably well in our 2+1 numerical
implementation [31] that generalizes the present 1 + 1 work.
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In spherical symmetry we have sα = g
−1/2
rr ∂r, and the above equation can be written as13

θ = r ∂tS + (1 + r ∂rS)

(

− gtr

grr
+

√

g2
tr

g2
rr

− gtt

grr

)

= 0, (5.11)

In numerical calculations, one can thus easily locate an apparent horizon by simply search-

ing for zeros of θ: the position of the outermost such zero then coincides with the location,

rAH, of the apparent horizon.

In our code we use excision to (dynamically) exclude from the computational domain

a region interior to the apparent horizon that would eventually contain the black hole sin-

gularity. The success of this approach hinges on the observation that in spacetimes that

satisfy the null energy condition (such as those that we construct) and assuming cosmic

censorship, the apparent horizon is contained within the event horizon, which ensures that

the excluded region is causally disconnected from the non-excised portion of the domain

(see [32] and the references therein for further discussion). Operationally, once an apparent

horizon is found, we introduce an excision radius, rEX, that satisfies rEX < rAH, and verify

that all radial characteristics at r = rEX are pointing inwards. This specific characteristic

structure eliminates the need for boundary conditions at rEX: rather, advanced-time un-

knowns located on the excision surface are computed using finite difference approximations

to the interior evolution equations, but where centered difference formulae are replaced with

the appropriate one-sided expressions given by (C.3).

5.4 Spacetime diagnostics

We employ several diagnostics in order to characterize the geometries of the spacetimes we

construct.

Mass. Far away from an isolated system a natural radial coordinate is defined by the

asymptotic flatness of the spacetime, and the ADM mass of the solution can be found from

the asymptotic radial behavior of the metric functions. In spherical symmetry there is only

one asymptotic constant, r0, that can be determined, for instance, from the fall-off of gtt:

gtt ∼ 1 + rn−1
0 /rn−1. This constant is related to the mass [35] by M = nΩn/(16π)rn−1

0 ,

where Ωn = 2π((n+1)/2)/Γ[(n + 1)/2] is the surface area of a unit n-sphere.

In addition, in spherical symmetry one can define a local mass function, m(t, r), some-

times called the mass aspect

m(r, t) =
nΩnr

n−1

16π

(

1 −R,αR,βg
αβ
)

, (5.12)

where R = r eS is the areal radius. The mass aspect is negative inside a trapped (or

anti-trapped) region, vanishes at its boundaries and is positive outside in regular region.

It grows monotonically and asymptotically coincides with the ADM mass.

13An alternative way to derive this result relies on the fact that the apparent horizon in spherical symmetry
can be defined as a null surface located at constant radius. Equating the time-derivative of the areal radius

along null rays to zero, d(r eS)/dt|lα = r eS∂tS + r eS (1/r + ∂rS)
“

−gtr/grr +
p

g2
tr/g2

rr − gtt/grr

”

= 0,

where the expression in the second brackets is dr/dt|lα , we recover the result in (5.11).
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Figure 2: Outgoing null rays in the t − R̃ plane emitted from the origin at different times (R̃ is
the compactified areal radius). The left panel shows the geometry generated by an initially origin-
centered pulse of matter with Φ0 = 1.6 that disperses infinity. The presence of the matter deflects
the outgoing null rays towards the origin, but the rays eventually escape to infinity. The motion of
the pulse can clearly be traced. The right panel shows the geometry generated by stronger initial
data having Φ0 = 3.0. In this case the matter collapses to form a black hole of mass, MBH ≃ 0.3:
rays emitted before t ≃ 1.25MBH escape to infinity but the rays emitted after that time fall back to
the origin. The null ray that separates the two regimes designates the event horizon and the thick
dashed line is the asymptotic apparent horizon. The thin dashed lines are obtained by integrating
(5.13) backward in time, and are attracted to the event horizon.

Null geodesics. A convenient way to visualize the causal structure of a spherically

symmetric spacetime is to plot a family of outgoing null rays, lα. When plotted in the t–R

plane, the slope, dR/dt|lα , of an outgoing null geodesic is positive outside the apparent

horizon, and asymptotes to the flat-space value of unity for large values of R. Additionally,

the slope vanishes at the apparent horizon, concomitant with the vanishing of the outgoing

null divergence, and becomes negative inside the horizon. All of these features can be seen

in Fig. 2, where the displayed lines are integral curves, R̃(t; t0). Here R̃ is the compactified

areal radius, and the corresponding uncompactified trajectory, R(t; t0), is defined by

R(t; t0) =

∫ t

t0

[(

− gtr

grr
+

√

g2
tr

g2
rr

− gtt

grr

)

∂R

∂r
+
∂R

∂t

]

dt′. (5.13)

Each curve thus represents the path of an outgoing null ray that is emitted from the origin

at a specific time, t = t0.

Event horizon. In contrast to the local definition (5.11) of the apparent horizon, the
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event horizon is a global concept: it is defined by outgoing null rays that neither escape to

future null infinity, nor fall into the black-hole singularity. Clearly, this definition requires

knowledge of the complete time evolution of the system, and hence, assuming a calculation

that is carried out for a finite amount of coordinate (or proper) time, one cannot even

in principle locate event horizons in numerically-generated spacetimes. However, when

a spacetime approaches a stationary state, an approximate event horizon can be found.

We employ the method of Libson et al [33] which is based on the observation that if one

integrates the geodesic equation (5.13) backward in time, the event horizon becomes an

attractor for geodesics that either escape to future null infinity or fall into the singularity

at arbitrarily late times. We have found that in our simulations the event horizon is traced

fairly well by the time development of the apparent horizon. Again this can be seen in

Fig. 2, where the thin dashed lines show the trajectories obtained by integrating (5.13)

backwards in time, and starting with several initial radii.

6. Results

For concreteness, we restrict our numerical experiments to the case of four-dimensional

spacetimes, and take our matter source to be a real, massless scalar field. All of the

results discussed here were generated using an initial scalar field profile of the Gaussian

form (4.25), with fixed values r0 = 0 and ∆ = 0.6, so that the scalar pulse is always

initially centered at the origin. The overall amplitude, Φ0, of the profile (4.25) is then used

as a control parameter: variations of Φ0 produce varying “strengths” of initial data, and

varying degrees of non-linearity in the ensuing evolution. In practice, the maximum value

of 2m(t, r)/R(t, r) (where R is the uncompactified areal radius) that is achieved in a given

calculation is a useful indication of how strong-field the evolution becomes.

We use the above notion of initial data strength to loosely define three classes of

solutions—within a given class we observe that the overall dynamics of each of the scalar

and gravitational fields are similar. Specifically, we consider the following cases: (i) weak

data, defined by Φ0 . 0.5, yielding maxt,r 2m/R ≃ 0.08; (ii) intermediate data, having

0.5 . Φ0 . 1.6, and maxt,r 2m/R ≃ 0.25, and (iii) strong data, with Φ0 & 1.6 and

maxt,r 2m/R > 0.25. While the first two cases describe weakly and mildly gravitating scalar

pulses, respectively, which completely disperse in all instances, the strong data generates

spacetimes in which black holes form, or almost form (i.e. near-critical evolution, see ([36])).

We have also found it useful to use the total ADM mass, MADM, of the spacetime—

which can be computed at t = 0—to normalize certain numerical parameters. In particular,

we set the parameters of the gauge driver (3.3,3.4) using ξ1 = ξ10/M
2
ADM, ξ2 = ξ20/MADM

and ξ3 = ξ30/M
2
ADM, where the “bare” values, κ0, ξ10, ξ20 and ξ30 are generally held fixed

as Φ0 is varied. Moreover, and as discussed in more detail below, we find that the accuracy

of our results is improved if the constraint damping term asymptotically vanishes at large

spatial distances. Accordingly, we typically multiplied κ by the factor 2MADM/R.

Because we use, at least in large part, a time-explicit finite difference scheme, we

expect restrictions on the ratio λC ≡ ∆t/∆r (the Courant factor) that can be used while

maintaining numerical stability. For the case of harmonic gauge, we found that values of
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λC satisfying 0.01 . λC . 0.8 generated stable solutions with roughly constant accuracy,

although somewhat stronger numerical dissipation was required to stabilize runs that used

larger values of λC in that interval. In the results discussed below we have typically taken

0.3 . λC . 0.6 for weak and intermediate data, and 0.1 . λC . 0.2 for the evolution of

strong data. We further found that when any of the other gauge drivers were adopted,

smaller Courant factors (relative to the harmonic case) were required. In those cases our

results were generally computed using 0.05 . λC . 0.1. Typically, in cases where λC

was taken too large, we observed amplification and dominance of numerical errors near

the origin: this lead to high frequency oscillations and, eventually, to divergence of the

numerical solution.

Another crucial numerical parameter is the Kreiss-Oliver dissipation factor, ǫKO, which

we generally set according to 0.1 . ǫKO . 0.7. Finally, it is important to note that we

found that optimal values of both λC and ǫKO were dependent on the spatial resolution:

specifically, as ∆r → 0 somewhat smaller values of λC , as well as larger values of ǫKO were

usually required. The lowest and highest resolution runs reported in this paper typically

had ∆r = 1/64 and ∆r = 1/8192, respectively: runs with ∆r = 1/8192 generally required

λC = 0.05 and ǫKO = 0.7 for stability.

Many of the coordinate conditions discussed and employed in this paper are charac-

terized by several adjustable parameters, and we have by no means carried out exhaustive

parameter space surveys in all cases in an attempt to optimize parameter settings. Rather,

our more limited numerical experimentation indicates that with a certain amount of tuning

of the parameters, it does seem possible, at least in principle, to simulate various interest-

ing situations. Our intent here is chiefly to document the overall behavior of several gauge

conditions as well as to explore some of the effects that specific parameters of the gauge

drivers have on the evolution. Given this primary goal, we also defer most of our discussion

of code convergence and accuracy to Sec. 6.4.

6.1 Weak data

In this section we consider the evolution of weak initial data for which Φ0 . 0.5, yielding

MADM . 0.01 and maxt,r 2m/R . 0.08. In this case there is little interaction between the

scalar and gravitational fields, the scalar pulse entirely disperses to infinity, and we find that

essentially any of the gauge conditions described above can be used to produce long-term

stable evolution. For this type of data we use ǫKO ≃ 0.1 for the Kreiss-Oliger dissipation

parameter, finding that larger values have detrimental consequences for stability. However,

even with dissipation and constraint damping, we find that numerical errors eventually do

grow—on a time scale of order t > 104MADM—and cause the code to crash.

We find that the effect of the constraint damping term depends on whether κ is fixed

or allowed to vary over the integration domain. For fixed κ, it is essential to take κ0 > 0.01,

otherwise high-frequency oscillations quickly ruin convergence. However, if the damping

is too strong, instabilities are also triggered. In fact, we find that the optimal damping

parameter is related to the typical scale over which the scalar field varies. For the Gaussian

initial data that we consider, this scale is ∆, so we take κ ≃ ∆−1. (This observation holds

for intermediate strength data as well, as can be seen in Fig. 4.) On the other hand, when
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we take κ = κ(r), and specifically for the choice κ = κ0(2MADM/R) mentioned previously,

we find that the results are relatively insensitive to the value of κ0, provided κ0 . 100∆−1.

For larger values of κ0 instability is again usually observed.

Our experiments with the gauge drivers proposed by Lindblom et al, have focused on

the specific Bona-Masso slicing condition for which f(α) = 2/α, corresponding to 1 + log

slicing. However, for weak data, we find that other choices of f (such as f(α) = 2α,α2 and

10/α2, to list a few that we have tried) produce qualitatively similar results.

Considering the conditions that determine the shift, we find that the Γ-driver condition

performs somewhat better than Γ-freezing, with the former allowing the evolution to be

controlled for a longer amount of time. There was only mild dependence on the gauge-

driver parameters, µ1,2, η1,2, qs, gn, σ and ν, provided they are all taken in the range 0.01–10

in units of MADM.

In order to assess the performance of the coordinate conditions in driving the source

functions to the target functions, we first follow [18] and define the weighted L2-norm, |Y |,
of a function Y as follows14,

|Y | =

(

∫

e2SY 2r2
√
grrdr

∫

e2Sr2
√
grrdr

)1/2

. (6.1)

A similar, if somewhat less smooth norm, which we also use here, can be defined as

|Y |L2
=

1

Nr

Nr
∑

i=1

|Y |, (6.2)

where | . . . | inside the summation indicates absolute value.

Fig. 3 shows the weighted norms of the differences between the actual and target

source functions from a typical weak-field simulation. It is evident from these plots that

the drivers successfully drive the source functions Hα towards the target functions Fα as

the evolution proceeds.

We now continue to discussions of the evolution of intermediate- and strong-field data,

where the results are more sensitive to the specific driver used, as well as to the parameter

settings for any given driver.

6.2 Intermediate data

Here we consider evolutions characterized by 0.5 . Φ0 . 1.6, where MADM . 0.1 and

maxt,r 2m/R . 0.25. First, for this strength of data, we have found that the pure harmonic

and GH gauges (4.15-4.16) perform comparably. With both choices, we are typically able

to accurately trace the evolution of the initial data for times of the order of 100–600 MADM,

with increasing resolution resulting in increased maximum evolution time.

The causal structure of the spacetime from a typical intermediate strength computation

is displayed in the left panel of Fig. 2. We recall that in this figure the curves represent

trajectories of outgoing null rays that are emitted at regular intervals (in coordinate time)

14The integrals are evaluated on our fixed mesh using the trapezoidal rule.
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Figure 3: The behavior of gauge drivers for the case of Bona-Masso slicing with f(α) = 2/α (left)
and the Γ-driver shift condition (right) in the weak field regime, Φ0 ≃ 0.1

from r = 0. As the evolution proceeds, the pulse, which is initially centered at the origin,

disperses to infinity. The outgoing null rays are bent towards the origin by the presence

of the matter and asymptotically become straight lines with unit slope in the r − t plane.

The position of the scattered pulse of scalar field can be traced through the location of

the “ripple” in each curve, i.e. at the positions where the outgoing null geodesics suffer the

most deflection.

We will discuss issues of code convergence and accuracy in more detail in Sec. 6.4.

However, we note here that constraint norms, |Mα|L2
, defined by (B.11) and computed,

for example, using either (6.1) or (6.2) provide a basic indication of the accuracy of our

numerical method. For the calculation depicted in Fig. 2 that uses a medium resolution,

∆r = 1/1024, we find the initial norms |Mα|L2
of order 10−4, which for roughly the first

half of the evolution then decrease to values of 10−5–10−6. Thereafter we observe a slow

increase in the size of the constraints although—except for the last few time steps before

the code fails— |Mα|L2
remain well below the 10−3 level. Moreover, we generally observe

the expected quadratic convergence of |Mα|L2
as the finite difference mesh is refined.

Another basic indication of numerical accuracy is provided by the the sum of the norms

defined by (6.2) of the residuals of the dynamical equations, |R|L2
=
∑

Y |RY |, where RY

is the FDA residual of the equation that governs the field Y . Fig. 4 shows the behavior

of |R|L2
as a function of the damping parameter, κ0, for calculations with Nr = 513

(moderate resolution), Φ0 = 1.6, and where κ = κ0(2MADM/R). As already noted in the

discussion of the weak field results, the sizes of the constraint and equation residuals tend

to be minimized when κ0 is comparable to the inverse of the typical length scale of the

problem, i.e. to ∆−1 for our initially Gaussian data. This is apparent in the figure, which

shows that for κ0 = 0.5/∆, the residuals remain on the order of 10−5.
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Figure 4: Illustration that the characteristic behavior of the L2 residuals of the evolution equa-
tions depends on the value of the damping parameter. Excessive or insufficient damping degrades
convergence, or leads to divergence. The optimal range for the damping parameter is κ0 ∼ O(1)/∆,
where ∆ is the typical length scale in the problem.

We next experiment with the Lindblom et al drivers, and find that while for Φ0 < 0.7

the dynamics of Hα and Fα is qualitatively similar to that in the weak field regime (shown

in Fig. 3) and essentially independent of the parameters of the gauge drivers, for Φ0 > 0.7

the convergence of the source functions, Hα, towards the target sources, Fα, has stronger

dependence on the parameter settings. The most pronounced feature in this regime is that

the drivers succeed in forcing Hα → Fα only on the length-scale set by the parameter µ1.

In particular, when we start with initial data that has Hα = Fα, we find that for large

values of µ1 the source functions remain close to their targets for a a few tens of MADM,

after which high-frequency oscillations destroy the matching. Conversely, starting from the

same initial set up, but taking µ1 very small, we observe that the source functions quickly

deviate from the targets and never approach them in the subsequent evolution.

Given this observation, and given that our Gaussian initial data generates an evo-

lution characterized by a length scale, ∆, it is thus reasonable to take µ1 ≃ 1/∆ in an

attempt to enforce the desired gauge conditions on that scale. Results from such a com-

putation are shown in Fig. 5, which displays the source and target functions, as well as

their Fourier transforms, from the evolution of initial data with Φ0 = 0.9. The calculations

were performed using target slicing of the Bona-Masso type with f(α) = 2/α, and target

Γ-driver shift conditions with µ1 = 1.3 (recall that ∆ = 0.6 for all of the computations de-

scribed here). In addition, here, and for all of the results discussed in this section, we used

µ2 = η = η2 = 1, qn = qs = 0.5, σ = −1/3 and ν = 0.7. In contrast to the case of µ1, we

find that the calculations are not too sensitive to the settings of these parameters, so long

as their values are all of order unity. In this simulation we begin with initial data satisfying
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Figure 5: The source functions Hα, the target functions Fα, and their Fourier transforms at two
instants. We begin with initial data satisfyingHα = Fα. Within a few dynamical times the functions
deviate, but subsequently are driven towards each other. After a time of 30− 50MADM they match
on length-scales of order 1/µ1. This is illustrated by the spatial spectral decomposition shown in
the right panels: while the lower frequencies of the functions match closely, the higher-frequency
components do not.

Hα = Fα. Within a few dynamical times the functions deviate, but as Fig. 5 demonstrates

the functions are subsequently driven towards each other, when the source functions start

resembling the targets on the spatial scales 1/µ1. Notice that the high-frequency spatial

variations of the target Fα’s are not replicated by the source functions. Similar behavior

was originally observed in [18] for perturbations on a given background.

The manner in which the coordinate conditions evolve in time for this calculation is

shown in Fig. 6, which depicts the norms of the functions Gt and Gr, defined by (3.9)

or (3.10), and (3.14) or (3.17). As described in Sec. 3, enforcing a particular gauge is

equivalent to driving these functions to zero. Since we begin with initial conditions in

which the gauge is exactly fixed, the norms of Gt and Gr are initially zero. Then on a

timescale of order several tens of MADM, the norms grow to some maximum value, after

which they decrease slowly. The details depend on the particular coordinate choices, as

well as on the settings of the driver parameters, but usually it is possible to drive the

L2-norms of Gt and Gr to the level of about 0.01.

Although for smaller initial pulse amplitudes (Φ0 . 1.0) we managed to find parameters

for the Lindblom et al drivers that asymptotically fix the desired gauges, we find that for
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larger amplitudes the effectiveness of the drivers degrades, and for Φ0 & 1.0 we could not

find parameter settings that enforce any of the specific gauges. This does not necessarily

mean that the code diverges: indeed, the evolution often proceeds, but the behavior of the

source function is rather arbitrary. In this regime we find that the evolution systems based

on the Lindblom et al drivers tend to be more dynamical and less stable than one that uses

simple drivers such as (4.15).

6.3 Strong data and black hole formation

Increasing the initial amplitude, Φ0, of the scalar pulse leads to increasingly strong cur-

vature in the development of the initial data. As expected, above a critical value—in the

current case, Φ0 ∼ 2.15—black holes form, as signaled by the appearance of apparent

horizons. We recall that we have already used the trajectories of outgoing null geodesics

to schematically display the causal structure of a typical black hole geometry in the right

panel of Fig. 2.

Our first set of numerical experiments in the strong-field regime compares subcritical

evolution (Φ0 . 2.15) in pure harmonic coordinates to that in the generalized harmonic

gauge given by (4.15). A generic feature of purely harmonic evolution in this case is a fairly

quick collapse of the lapse function towards zero values near and at r = 0. As a result

the evolution in the central region (where the pulse is concentrated) effectively freezes,

and the scalar field remains present near r = 0 even at late (coordinate) times. This is

demonstrated in Fig. 7, which shows the evolution of central proper time

τ(t) ≡
∫ t

0
α(t′, 0)dt′, (6.3)
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Figure 7: Proper time (6.3) at the origin in harmonic evolution as a function of coordinate time for
several initial data strengths. The evolution slows down for stronger data and it effectively freezes
for near critical data.

as a function of the strength of the initial data.

On the other hand, and in accordance with the previous experience of Pretorius [9],

we are able to use the generalized harmonic gauge condition (4.15) to inhibit the collapsing

of the lapse. Specifically, we use α0 = 1 and q = 3 in (4.15), and experiment with

various values for ξ1 and ξ2. In addition, motivated by an observation that we can more

stably evolve subcritical data by gradually “turning-off” the gauge driving at late times, we

actually replace ξ1 and ξ2 in (4.15) by (ξ10/M
2
ADM )/(1 + s tp) and (ξ20/MADM )/(1 + s tp),

respectively, where p and s are additional positive parameters. In practice, we have usually

taken p = 1, leaving s free to control the rate at which the gauge driving is disengaged.

Results from calculations with Φ0 = 1.8 (MADM ≃ 0.125) and using several sets of

values for ξ10, ξ20 and s are shown in Fig. 8. The plots clearly show how judicious choice

of the parameters can prevent the collapse of the lapse. Through experiments with various

subcritical initial data sets we find that parameter values 1 . ξ10 . 5 and 0.5 . ξ20 . 2

produce good results. However, in order to keep the lapse from collapsing for initial data

very close to criticality, we generally needed to increase both ξ10 and ξ20 by factors of

up to 10, while simultaneously increasing s (to values of order 50) and taking p = 2 or

3. For instance, simulations that use 2049 spatial grid points and the driver (4.15) with

the parameters tuned to ξ10 = 50,ξ20 = 30, s = 36 and p = 2 allowed us to explore the

dynamics of solutions with Φ0 = 2.1465 ± 0.0005 without encountering a collapsing lapse.

Unfortunately this is not close enough to the threshold amplitude for us to be able to

observe in detail the distinctive features of scaling and echoing known to appear in the

near-critical regime of this model [36].

We end our discussion of subcritical strong-field evolution with two observations. First,

we note that while we have investigated the use of dynamical conditions such as (4.16)

for Hr, the spatially harmonic choice, Hr = 0, is simpler to implement, and apparently
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Figure 8: Left panel: the proper time (6.3) at r = 0 from an evolution that uses gauge conditions
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evolution freezes near r = 0, in the dynamical gauge (4.15) it continues.

more stable in this regime. Secondly, although we have experimented extensively with the

Lindblom et al drivers in this context, we have not been able to find parameter settings that

prevent coordinate pathologies (premature collapse of the lapse) from quickly developing

for near-critical evolutions.

We now turn to the case of supercritical evolutions, which are characterized by the

formation of black holes. As described in Sec. 5.3, we have implemented black hole excision

techniques in our code: however, due to the strong singularity avoidance property of pure

harmonic gauge, as well as the generalized harmonic modifications (4.15-4.16), we can also

perform computations in which black holes form and are evolved for some amount of time,

but where excision is not used.

For example, Fig. 9 shows metric functions from a calculation with Φ0 = 3.0 that

uses pure harmonic gauge with no excision. We infer the formation of a black hole by

the appearance of an apparent horizon, which at the end of the simulation is located at

a compactified areal radius R̃AH ≃ 0.4. We can then estimate the mass of the black hole

at that time from the apparent horizon location: MBH = 0.5RAH ≃ 0.34, and note that

the total ADM mass in this case is MADM ≃ 0.41. An apparent horizon is first detected

at t ≃ 1.25MBH and Fig. 9 displays the metric functions at two instants: (i) t ≃ 5MBH

(dashed lines), and (ii) t ≃ 20MBH, which is shortly before the simulation crashes (solid

lines). For this specific calculation we used 4097 spatial grid points, and, at the time of
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Figure 9: Illustration of the geometry of black hole formation without excision. The metric
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which forms has a mass MBH ≃ 0.335 with a horizon at R̃ ≃ 0.4 in the compactified areal radial
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Figure 10: Time plot of the central value of the Kretschmann scalar, showing indefinite growth
which signals the development of a curvature singularity.

the code crash, the values of the temporal component of the metric, gtt, near the origin

are of order 10−15 (corresponding to lapse values of order ∼ 10−7). Despite the fact that

all of the metric components displayed in Fig. 9 are tending towards zero at the origin
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uniform match. The sources replicate the targets (not shown) on the scale defined by µ−1

1
which

we take to be of order of RAH.

at late times, the functions remain smooth and regular throughout the evolution. Fig. 10

plots central values for the Kretschmann scalar, RαβγδR
αβγδ, as a function of time. The

apparent divergence of this geometric quantity indicates the development of a curvature

singularity.

We have found that the use of excision can somewhat extend the duration of our

simulations of black hole spacetimes. For comparison, a run with the same parameters

enumerated above, but employing excision, lasted for as long as ∼ 60MBH. We recall that

our simple approach to excision has been described in Sec. 5.3, and note that in practice

we have typically chosen the excision radius, rEX, to satisfy rEX ≤ 0.4rAH. The rest of the

results described in this section were obtained in simulations with excision.

Although we are able to avoid the central singularity using excision, it is clear from

our calculations that the harmonic coordinate system continues to evolve in a highly non-

trivial manner after excision is initiated. This dynamics in the coordinates causes, or is at

least associated with, two main problems. First, the resulting coordinate system does not

approach a stationary state: in particular, the coordinate position of the apparent horizon

evolves with time. Specifically, after formation, the horizon expands outwards and con-

sumes most of the numerical grid. Eventually then, the portion of the spacetime outside
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the horizon—which we recall extends to spatial infinity due to our use of a compactified

coordinate system—is represented by only a small portion of the initial lattice. Conse-

quently, numerical errors that arise near the outer boundary dominate the late stages of

the evolution. The second problem is that the lapse continues to decrease in the vicinity

of rEX, and becomes very small. In this situation truncation errors in quantities near rEX

occasionally cause the computation of non-positive values for the lapse, which immediately

leads to code failure. Both of these problems can be somewhat mitigated by increasing

the numerical resolution. In harmonic gauge, we were able to simulate the formation of

a black hole and resolve it for about t ≃ 70MBH using our finest resolution, Nr = 8193.

However, given these difficulties induced by the late-time dynamics when using harmonic

coordinates, it is quite natural to try to use the coordinate freedom provided by the various

gauge drivers discussed above to a) attempt to minimize the time development of the lapse

following the formation of an apparent horizon, and/or b) implement a non-trivial shift

vector with an aim to minimize the outward expansion of rAH at late times when there is

very little matter falling into the black hole. We thus now summarize our experimentation

with several driver conditions that was focused on realizing these ideas.

As we have already mentioned, one of the main motivations for Pretorius’ development

of the driver condition (4.15) was to keep the lapse from collapsing in the vicinity of

horizons [9]. Following that work then, we first used (4.15) to fix the time slicing, while

maintaining harmonic spatial coordinates (Hr = 0). However, in contrast to the results

reported in [9] (which we note were performed in three spatial dimensions using Cartesian

coordinates), we found the evolution in this case to be significantly less stable than purely

harmonic evolution. For example, even a small value of ξ1 of order 0.01M2
BH resulted in a

code crash at a time about a factor of two earlier than for the harmonic case, irrespective

of the value of the friction parameter, ξ2.

We next used harmonic slicing, Ht = 0, while evolving Hr using the driver (4.16).

Here, we found a modest amount of improvement over the purely harmonic case, in that the

“grid-sucking” phenomenon described above was slowed, with an accompanying reduction

in the development of numerical error in the outer, low-resolution region. For example, the

duration of the evolution of Φ0 = 3 initial data with ξ20, ξ30 ∼ O(10)MBH × (1 + 5t2)−1,

increases by approximately 20% compared to the corresponding harmonic evolution.

Interestingly, we obtained even better results using certain versions of the Lindblom et

al gauge drivers. For the strong-field, supercritical calculations described here, we found

that versions of the drivers that use the simple scalar operator (4.19) performed better than

those that used (4.18). Moreover, we found that drivers based on the Bona-Masso slicing

and Γ-driver shift conditions (with suitably tuned parameters) gave the best results, and

for convenience will hereafter refer to this specific choice as BMGD. In particular, relative

to other driver choices, this combination minimized—but unfortunately did not completely

eliminate—the outward drift of rAH. Our best configuration allowed for accurate simula-

tion of black hole spacetimes for about 100MBH following the formation of an apparent

horizon. After that time, code accuracy typically degraded, numerical errors near the ex-

cision became dominant, and a late-time instability ensued. Based on our experiments,

it remains unclear whether specific parameter choices for the drivers exist that would to-
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tally eliminate the drift of the coordinate position of the apparent horizon and, even more

importantly, the disastrous collapse of the lapse inside the horizon.

We now proceed to some details concerning our experience with the BMGD version

of the Lindblom et al coordinate conditions. The parameters qn and qs that appear in the

driver definitions—see equations (3.11,3.18)—control the relative weight that the gauge

functions, Gα, have in forming the target sources, Fα. We also recall that the Gα vanish

when the specific gauge to which they correspond is attained. We found it crucial not

to choose qn too large: usually values in the range 0.01 − 0.1 resulted in the most stable

evolutions, and would eventually lead to the desired behavior, Hα → Fα and G→ 0. Our

implementation was less sensitive to the value of qs, with results of comparable accuracy

and stability being attained for gs in the range 0.01 − 10.

Having determined good values for qn and qs, we found through further experimenta-

tion that stability is improved when the parameters µ1, µ2 and η are multiplied by a decay

factor 2MADM/R in the region external to the horizon. This localizes the effect of the

coordinate drivers to the near-horizon region, while producing a smooth blend to harmonic

coordinates at spatial infinity. In addition, and in analogy to what we did for the subcrit-

ical calculations in generalized harmonic coordinates described earlier in this section, we

further scale µ1, µ2 and η, as well as qn by 1/(1 + stp). Here, s and p are again positive

tunable quantities—we typically used p = 2 and s = 5—that result in a late-time decay

of the scaled driver parameters. We note that the values quoted below generally refer to

“bare” values for parameters, with the additional scaling factors being implied.

Fig. 11 shows the time development of the deviation between the target and actual
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source functions, Fα and Hα, respectively, as well as the gauge functions, Gα, for a typical

BMGD calculation. The computation was performed with µ1 = 4 ≃ 1/MBH, µ2 = η =

η2 = 10 ν = 1, σ = −1/3, qn = 0.1 and qs = 1. The behavior of the two upper plots in

the figure reflect the fact that the Hα tend to the target source functions soon after an

apparent horizon forms. Detailed examination of the data reveals that the match between

the target and actual source functions is good throughout the entire domain for a certain

amount of time following horizon formation. At late times the level of global agreement

degrades, due to large scale variations in the Fα induced by the portion of the scalar field

that is scattered to infinity. Despite this, we still find that actual sources accurately match

the targets on the scale defined by µ−1
1 ≃ RAH (not shown). The plots of the L2 norms of

the gauge functions, Gα, shown in the bottom half of the figure, reveal a steady decrease

in time, signaling that the desired gauge is being approached asymptotically.

Our investigations of versions of the drivers using target functions corresponding to

“static” gauges, such as maximal slicing and Γ-freezing, were unsuccessful in the sense

that we were not able to find parameter settings that resulted in Gα → 0 as t → ∞.

Interestingly, however, we found that black holes could nonetheless be simulated using these

conditions, with observed stability properties similar to those obtained using “dynamic”

gauge conditions such as BMGD. This indicates that, at least for the type of initial data

considered here, the stability of the drivers (3.5,3.6) does not strongly depend on the target

gauge.

Finally we note that the use of an appropriate amount of constraint damping is im-

portant for computations in which black holes form. Fig. 12 shows the behavior of the

sum of the L2-norms of the constraints, (6.2), in a sample run with Nr = 4097 and using

various values for the damping parameter, κ0. The plots provide clear evidence that the

level of constraint maintenance (as well as the maximum simulation time) is optimized

for κ0 ≃ M−1
BH. Values of κ0 significantly larger than the optimal value produce rapid

code crashes, while those that are significantly smaller lead to poorer preservation of the

constraints.

6.4 Code accuracy, convergence and constraints

In this section we briefly discuss some of the technical issues relating to the basic perfor-

mance of our numerical code, including resolution requirements and checks of convergence.

Not surprisingly, we find that the minimum discretization scale required to produce

an acceptable evolution (for fixed choice of coordinate conditions) depends on the strength

of the initial data. For example, in the case of weak and intermediate initial data, as

defined previously, even a modest lattice size of Nr = 65 is enough to allow for long-time

evolution. However, for stronger data, meshes sizes of at least Nr = 257 are required.

Additionally, our code cannot evolve strong-field data for arbitrary amounts of coordinate

time: generically, numerical problems develop that lead to a code crash on the order of

10-100 MADM, and the precise lifetime of the simulation is dependent on the strength of

the initial data, the resolution, and the details of the coordinate conditions.

Much of the build-up of error that eventually leads to code failure, especially in sub-

critical simulations, can be traced to the use of spatial compactification. In all of our
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calculations, there is outflux of scalar field to spatial infinity, and as the scalar radiation

propagates to large distances it becomes more poorly resolved on the mesh, which has uni-
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form spacing in the compactified radial coordinate. Untreated, this will lead to spurious

reflection of the waves which will corrupt the interior solution, so we add Kreiss-Oliger dis-

sipation to explicitly damp the radiation when its wavelength becomes of order the mesh

scale. Although this damping is imperfect, we find that increasing the resolution is effective

in extending the lifetime of our evolutions. As a specific example, for a calculation which

forms a black hole of size R̃BH ≃ 0.6, and that uses BMGD coordinate conditions and

excision, a grid with Nr = 4097 is sufficient to keep the reflections small during all stages

of the evolution until t ≃ 100MBH. Thereafter, an instability appears near rEX and leads

to a code crash.

A crucial test of any finite difference code for the solution of a system of partial differ-

ential equations involves the investigation of the convergence of the generated numerical

solutions as a function of resolution. We perform straightforward convergence tests based

on the assumption (originally due to Richardson [38]) that for any of the unknown functions,

Y (t, r), appearing in our differential system, the corresponding finite difference quantity,

Yh(t, r) in the limit h→ 0 admits an asymptotic expansion of the form

Yh(t, r) = Y (t, r) + hpep(t, r) + · · · (6.4)

where h is the discretization scale, ep(t, r) is an h-independent error function with smooth-

ness comparable to Y (t, r), and p is an integer which defines the order of convergence of

the scheme. Following standard practice, we consider sequences of three calculations per-

formed with identical initial conditions, but with varying resolutions, h, h/2 and h/4. We
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then form the differences, c1 = Yh − Yh/2 and c2 = Yh/2 − Yh/4, and compute

log2

(

c1
c2

)

≈ p. (6.5)

Fig. 13 shows the results of such a convergence test for the scalar field, Φ(t, r), from

computations in pure harmonic coordinates, and with initial data defined by Φ0 ≃ 0.55.

The plot provides evidence for the expected second order convergence (p = 2) of Φh, and

similar results are observed for the other dynamical variables. We note, however, that

there is an obvious degradation of convergence at the highest resolutions used: this issue

has not been resolved, but may be related to the time-stepping iteration.

As discussed in Sec. 5.1, in the cases where the Lindblom et al drivers were used to

evolve the source functions, we used an implicit Euler method to integrate the correspond-

ing finite difference equations. Since that method is only first-order accurate in time, the

convergence of the overall scheme in only expected to be first order, and this was in fact

observed.

Finally, since we have implemented a free evolution scheme [37], we can also assess the

convergence of our numerical solutions by monitoring discrete versions of the Hamiltonian

and momentum constraints, Mt and Mr, respectively. As usual, these constraints are

defined by contracting the Einstein equations with the unit normal vector to the t =

const. hypersurfaces, i.e. Mα ≡ nα(Gαβ − Tαβ), where Gαβ is the Einstein tensor. In

order to estimate how well the constraints are satisfied, we discretize them to second

order, and then compute their L2-norms, as defined by (6.2), at each time step. Fig. 14

shows a typical plot of the results for weak initial data (MADM ≃ 0.01) evolved with

harmonic coordinates. It is clear from the figure that the constraint violations remain

quite small during the evolution, and that—modulo the previous remark concerning an

apparent problem at higher resolutions—the constraints are increasingly well satisfied as

h→ 0.

7. Conclusions

We have presented a generalized harmonic formulation of the Einstein equations for spher-

ically symmetric D-dimensional spacetimes. Since it is natural to choose coordinates in

which the symmetries of the geometry are explicit, we have adopted the usual spherical

coordinates. This results in a coordinate singularity at the origin, r = 0. While at the

continuum level the equations of motion maintain regularity of a solution which is initially

smooth at the origin, extra care must be exercised so that this property is reflected in

discrete numerical calculations. We have thus described a procedure to ensure that the

origin remains regular in numerical calculations, while preserving the hyperbolicity of the

evolution system.

We have investigated the resulting GH system in the context of fully non-linear gravi-

tational collapse. To this end we introduced a real, massless scalar field, and have used the

specification of the initial scalar field profile to control the ensuing strength of the gravi-

tational interaction. The dynamics that we have considered range from the dispersion of
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weak pulses to the collapse of strong pulses that lead to black hole formation. A key aspect

of our numerical approach was the use of radial compactification which, in conjunction

with sufficient dissipation, provided a viable alternative to the truncation of the spatial

domain and the use of approximate outer boundary conditions. Another ingredient of our

methodology that was vital for long-term stability of the numerical calculations was the

addition of constraint-damping terms to the evolution equations.

Our studies of evolutions using several coordinate drivers lead us to conclude that, in

spherical geometries, the gauge drivers discussed in [9, 10, 18, 19] are less effective relative

to the 3+1 simulations that use Cartesian coordinates, and it would be very interesting to

understand this issue in more detail. Nevertheless, we found that with a certain amount of

parameter tuning many interesting situations could be successfully simulated with drivers

that have been proposed in the literature. Perhaps not surprisingly, depending on the

situation certain drivers performed better than others, leading to longer and/or more ac-

curate simulations. Specifically, the dynamics of weakly gravitating dispersing pulses could

be simulated using any of the considered coordinate choices; however the pure harmonic

gauge arguably provided the cleanest and the simplest choice. For strong-field data, varia-

tions in the performance of the various drivers were more apparent. In particular, for strong

but subcritical pulses, the harmonic gauge quickly lead to coordinate pathologies, signaled

by a collapsing lapse, but this behavior could be partially ameliorated by using one the

drivers given by (3.3) and (3.4). The driver (3.5) could also be used to evolve strong-field

data in some regimes, but the target coordinates which it is designed to asymptotically

enforce, were not achieved, at least not for the range of the parameters that we explored

in this work.

For the case of strong-field, supercritical calculations (i.e. those for which black holes

form), we found that pure harmonic coordinates could still be of use. In the simulations

that used excision, it was possible to evolve black holes for as long as a few tens of dynamical

times. However, the coordinate system remained fairly dynamic even at late times, leading

to collapse of the lapse near the excision surface on one hand, and to the outwards expansion

of the coordinate position of the horizon on the other. We were able to use driver conditions

to moderate the time-dependence, with the best results being obtained through the use of

the drivers (3.5) with the Bona-Masso target slicing and the Γ-driven target shift. It would

be very interesting to find out whether or not parameters and target gauges exist that

not only slow down the time-dependence of the coordinates at late times, but completely

eliminate it.

One of the main goals of this work was to achieve a better understanding of the

generalized harmonic approach as applied to highly symmetric spacetimes, and to prepare

ground for an exploration of various gravitational phenomena in axisymmetry using an

analogous formalism. We expect that the insights gained from our experiments in spherical

symmetry will also prove useful in the axially symmetric case. In particular, coordinates

that are adapted to the axial symmetry are again formally singular on the axis, and the

equations of motion will need to be regularized there. However, the same regularization

described above for spherical symmetry can be readily extended to that case. This allows for

a regular hyperbolic formulation in axial symmetry, which will be discussed in a subsequent
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publication [31].
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A. Asymptotically AdS spacetime

Here we analyze the asymptotics of AdS spacetime, and discuss a convenient metric ansatz

as well as a normalization of the source functions.

The AdSD background can be written in the form,

ds2 = −(1 + ρ2/ℓ2)dτ2 + dρ2/(1 + ρ2/ℓ2) + ρ2 dΩ2
n, (A.1)

where ℓ is the AdS curvature scale. In our model (4.2) we reproduce asymptotically AdS

spacetime by letting V (0) = Λ < 0 that defines ℓ2 = −(D − 1)(D − 2)/Λ.

One of the properties of the AdS space is that its asymptotic boundary is time-like:

in fact, it takes only a finite time for a light signal to propagate to the boundary. Hence,

in numerical implementations, correct treatment of boundary conditions at spatial infinity

is crucial. To this end it is useful to transform to conformal coordinates,

ρ = ℓ tan(r/ℓ), τ = t, (A.2)

in which the AdS metric becomes

ds2 = − cos−2 (r/ℓ)
(

dt2 − dr2
)

+ ℓ2 tan2(r/ℓ) dΩ2
n. (A.3)

We note that the entire space has finite extent r ∈ [0, πℓ/2] in these coordinates, but that

the metric is singular at spatial infinity, r = πℓ/2.

A convenient metric ansatz for evolution using the generalized harmonic approach

explicitly factors out the background and is given by

ds2 = −cos−2 (r/ℓ) gtt

(

dt2 − dr2
)

+ 2gtrdtdr + ℓ2 tan2(r/ℓ) e2 SdΩ2
n. (A.4)

In this case the asymptotic behavior of the fields gab is regular, gab → ηab and S → 0.

The source function obtained from (2.4) does not vanish in spherical coordinates even

in pure AdS where it becomes

HAdS
µ =

(

0, (n/ρ)[1 + ((n+ 2)/n)(ρ2/ℓ2)]/[1 + ρ2/ℓ2], (n − 1) cot θ1, . . . , cot θn−1, 0
)

,

(A.5)

and where ρ is given in (A.2). In analogy with the asymptotically flat case, we subtract

a background contribution, which is singular at ρ = 0, by writing Hα = Hα +HAdS
α , and
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then use the regular source functions

Hα =

(

Ht(t, r),Hr(t, r) +
n

ρ

1 + n+2
n

ρ2

ℓ2

1 + ρ2

ℓ2

, (n− 1) cot θ1, (n− 2) cot θ2, . . . , cot θn−1, 0

)

.

(A.6)

B. Explicit form of the equations

We define g2 ≡ gtt grr−g2
tr, to be the determinant of the 2-metric gab, in (4.7). The complex

scalar field is decomposed as Φ = φr + i φi.

The Christoffel symbols and the trace of the extrinsic curvature are given by

Γt =

(

gtt g
′

tr − gtr g
′

tt −
1

2
gttġtr +

1

2
grrġtt − n g2 Ṡ

)

/g2

Γr = −n
r

+

(

1

2
gtt g

′

rr −
1

2
grr g

′

tt − gtrġrr + grr ġtr − n g2 S
′

)

/g2 (B.1)

K = α

(

−n gtr

r
+

gtr

ngrr
g′rr − g′tr − 2gtr S

′ +
1

2
ġrr + n grr Ṡ

)

/g2, (B.2)

The generalized harmonic equations (4.12,4.13) in 4D become

Rtt − C(t;t) − T̄tt =

−1

4
( ˙grr)

2 (grr)2 + g′tr ˙grr(g
rr)2 + gtt ( ˙gtr)

2 grr − 1

2
g′′ttg

rr + gtrg′tt ˙grrg
rr +

4gtrg′tr ˙gtrg
rr +

(g′tt)
2

2g2
+

3

4
(gtt)2 ( ˙gtt)

2 −
(

φ̇i

)2
−
(

φ̇r

)2
− 2

(

Ṡ
)2

+

(

gtrHt − gttHr

2g2
− gtt

g2r

)

g′tt +

(

2gtt

g2r
+
gttHr − gtrHt

g2

)

˙gtr +

(

grrHt − gtrHr

2g2
− gtr

g2r

)

˙gtt + (gtr)2g′tr ġtt + 2gtrgttg′tt ˙gtt +
1

2
(gtr)2 ˙grr ˙gtt +

2gtrgtt ˙gtr ˙gtt − Ḣt − gtr ˙gtt
′ − 1

2
gttg̈tt − gttV + 2(gtr)2g′tt ˙gtr, (B.3)

– 41 –



Rtr − C(t;r) − T̄tr =

1

2
g′rrg

′

tr(g
rr)2 +

1

2
g′rr ˙grr(g

rr)2 + gtr
(

g′tr
)2
grr +

1

2
gtr ( ˙grr)

2 grr +

1

2
gtrg′rrg

′

ttg
rr − 1

2
g′′trg

rr + gtrg′rr ˙gtrg
rr +

1

2
gtrgtt

(

g′tt
)2

+ gtrgtt ( ˙gtr)
2 −

gtrV +

(

grrHt − gtrHr

2g2
− gtr

g2r

)

g′tt +

(

(gtr)2

2
+ grrgtt

)

g′trg
′

tt −
1

2
H ′

t +

(

gtt

g2r
+
gttHr − gtrHt

2g2

)

˙grr +
1

4

(

(gtr)2 − 2grrgtt
)

g′tt ˙grr + 2gtr2
g′tr ˙gtr +

(

(gtr)2

2
+ grrgtt

)

˙grr ˙gtr +
3

4
(gtr)2g′rr ˙gtt + gtrgttg′tr ˙gtt +

1

2
(gtt)2g′ttġtt +

1

2
(gtt)2 ˙gtr ˙gtt −

1

2
Ḣr − 2φ′iφ̇i − 2φ′rφ̇r − 4S′Ṡ − 2Ṡ

r
− gtr ˙gtr

′ − 1

2
gttg̈tr +

1

2
gtrgtt ˙grr ˙gtt, (B.4)

Rrr − C(r;r) − T̄rr =

1

2
g′rrg

′

tt(g
tr)2 + 2g′tr ˙grr(g

tr)2 + g′rr ˙gtr(g
tr)2 + 2grrg′rrg

′

trg
tr + 2grrg′rr ˙grrg

tr +

gttg′tt ˙grrg
tr + 4gttg′tr ˙gtrg

tr − ˙grr
′gtr +

3

4
(grr)2

(

g′rr

)2
+ grrgtt

(

g′tr
)2 −

(

φ′i
)2 −

(

φ′r
)2 − 2

(

S′
)2

+
( ˙grr)

2

2g2
− grrV +

(

gtt

g2r
+
gttHr − gtrHt

2g2

)

g′rr +

(

grrHt − gtrHr

g2
− 2gtr

g2r

)

g′tr −H ′

r −
4S′

r
+

(

gtr

g2r
+
gtrHr − grrHt

2g2

)

˙grr +

(gtt)2g′tt ˙gtr −
1

4
(gtt)2

(

g′tt
)2 − 1

2
gttg̈rr −

1

2
grrg′′rr, (B.5)

Rθθ − C(θ;θ) − T̄θθ =

−2S′gtt

g2r
− gtt

g2r2
+
e−2S

r2
− V +

2gtrṠ

g2r
+Ht

(

S′gtr

g2
+
gtr

g2r
− grrṠ

g2

)

+

Hr

(

−S
′gtt

g2
− gtt

g2r
+
gtrṠ

g2

)

− 2gtrṠ′ − gttS̈ − grrS′′. (B.6)

Written in full, the constraint damping terms, Zµν = κ
(

n(µCν) − 1
2gµν n

β Cβ

)

, that we
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subtract from the above equations to form (2.9), are

Ztt =

ακ

g2

[

− gtrg
′

rrgtt
2

4 g2
+
grr ˙grrgtt

2

4g2
− gtrHr gtt

2
−
(

grrgtt − 2gtr
2
)

g′trgtt

2g2
+

gtrS
′gtt −

grrgtr ˙gtrgtt

2 g2
+
(

gtr
2 − grrgtt

2

)

Ht +
gtr

(

3 grrgtt − 4gtr
2
)

g′tt
4g2

−

grr

(

grr gtt − 2gtr
2
)

ġtt

4g2
+
(

grrgtt − 2gtr
2
)

Ṡ
]

, (B.7)

Ztr =

ακ

g2

[

− gtt ˙gtrgrr
2

2 g2
+
gtr ˙gttgrr

2

4g2
− gttHr grr

2
+
gtrHtgrr

2
− gtt

2g′rr grr

4g2
+

gtrgttg
′

trgrr

2g2
+

(

grrgtt − 2gtr
2
)

g′ttgrr

4g2
+ gttS

′ grr +
gtrgtt ˙grrgrr

4g2
− gtrṠ grr

]

,(B.8)

Zrr =

ακ

g2

(

− gtt ˙gtrgrr
2

2 g2
+
gtr ˙gttgrr

2

4g2
− gttHr grr

2
+
gtrHtgrr

2
− gtt

2g′rr grr

4g2
+

gtrgttg
′

trgrr

2g2
+

(

grrgtt − 2gtr
2
)

g′ttgrr

4g2
+ gttS

′ grr +
gtrgtt ˙grrgrr

4g2
− gtrṠ grr

]

,(B.9)

Zθθ =

ακ

g2

[ ˙gttgrr
2

4 g2
+
Htgrr

2
+
gttg

′

trgrr

2 g2
− gtrg

′

ttgrr

4g2
−

gtr ˙gtr grr

2g2
− Ṡgrr −

gtrHr

2
− gtr gttg

′

rr

4g2
+ gtrS

′ +

(

2gtr
2 − grrgtt

)

˙grr

4g2

]

. (B.10)

Finally, the Hamiltonian and momentum constraints, Mα ≡ nα(Gαβ − Tαβ), take the

form

Mt = −1

2
g2gtt

(

φ′i
)2 − 1

2
g2gtt

(

φ′r
)2 − 3g2gtt

(

S′
)2

+
1

2
g2grr

(

φ̇i

)2
+

1

2
g2grr

(

φ̇r

)2
−

g2grr

(

Ṡ
)2

− g2
(

g2V r
2 − e−2Sg2 + gtt

)

r2
− 2g2gttS

′′ +
4
(

grrgtrgtt − gtr
3
)

Ṡ

r
+

g′rr

(

grr2S′g2
2 + grrgtrṠg2

2 +
gtt

2

r

)

+ S′

(

−6g2gtt

r
− 8

(

gtr
3 + g2

2grrg
rrgtr

)

Ṡ

)

+

g′tr

(

2grrgtrS′g2
2 + 2grrgttṠg2

2 − 2gtrgtt

r

)

+ g′tt

(

gtr2
S′g2

2 + gtrgttṠg2
2 +

gtr
2

r

)

+

(

2grrgtrgtt − 2gtr
3
)

Ṡ′ − g2 ˙grrṠ. (B.11)
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Mr =
(

gtr
3 + g2

2grrg
rrgtr

) (

φ′i
)2

+ 2g2grrφ̇iφ
′

i +
(

gtr
3 + g2

2grrg
rrgtr

) (

φ′r
)2 −

2g2gtrS
′′ +

(

−S′g2 −
g2
r

)

˙grr + 2g2grrφ
′

rφ̇r +
2g2grrṠ

r
+ 2g2grrṠ

′ +

S′

(

4
(

gtr
3 − grrgtrgtt

)

r
+ 4g2grrṠ

)

+ g′rr

(

−grrgtrS′g2
2 − gtr2

Ṡg2
2 +

gtrgtt

r

)

+

g′tr

(

−2gtr2
S′g2

2 − 2gtrgttṠg2
2 − 2gtr

2

r

)

− 2g2gtr

(

S′
)2

+

g′tt

(

−gtrgttS′g2
2 − gtt2Ṡg2

2 +
grrgtr

r

)

. (B.12)

C. Discretization

The second order accurate finite difference approximations (FDAs) for the time derivatives

on a uniform grid with spacings ∆r,∆t at a point (n, i) (see Fig. 1) are

∂tY
n
i =

Y n+1
i − Y n−1

i

2∆t
,

∂2
t Y

n
i =

Y n+1
i − 2Y n

i + Y n−1
i

(∆t)2
. (C.1)

Here “second order” means that the continuum expression is approached by the FDA

counterpart at a rate O(∆t2). For the spatial and mixed derivatives the stencil is modified

depending on the position of the mesh point relative to the extremities of the grid. We use

second order accurate expressions of the form

• Centered derivative.

∂rY
n
i =

Y n
i+1 − Y n

i−1

2∆r
,

∂2
rY

n
i =

Y n
i+1 − 2Y n

i + Y n
i−1

(∆r)2
,

∂2
rtY

n
i =

Y n+1
i+1 − Y n−1

i+1 − Y n+1
i−1 + Y n−1

i−1

4∆r∆t
(C.2)

• One-sided (backward) derivative.

∂rY
n
i =

4Y n
i+1 − 3Y n

i − Y n
i+2

2∆r
,

∂2
rY

n
i =

2Y n
i − 5Y n

i+1 + 4Y n
i+2 − Y n

i+3

(∆r)2
,

∂2
rtY

n
i =

4Y n+1
i+1 − 3Y n+1

i − Y n+1
i+2 − 4Y n−1

i+1 + 3Y n−1
i + Y n−1

i+2

4∆r∆t
, (C.3)
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