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2 Instituto de Fı́sica y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,
Edificio C-3, Apdo. Postal 2-82, CP 58040, Morelia, Michoacán, Mexico

E-mail: schubert@ifm.umich.mx

Received 12 December 2009, in final form 2 February 2010
Published 9 March 2010
Online at stacks.iop.org/CQG/27/075007

Abstract
We use a recently derived integral representation of the one-loop effective
action in the Einstein–Maxwell theory for an explicit calculation of the part of
the effective action containing the information on the low energy limit of the
five-point amplitudes involving one graviton, four photons and either a scalar
or spinor loop. All available identities are used to get the result in a relatively
compact form.

PACS numbers: 04.60.Cf, 04.60.Ds, 04.62.+v

1. Introduction

In recent years, much effort has been devoted to the study of the structure of graviton
amplitudes. This was largely due to developments in string theory, which led to the prediction
that such amplitudes should be much more closely related to gauge theory amplitudes than
one would suspect by comparing the Lagrangians or Feynman rules of gravitational and gauge
theories. Specifically, the Kawai–Lewellen–Tye (KLT) relations in string theory imply that
graviton amplitudes should be ‘squares’ of gauge theory amplitudes [1–5]. String theory was
also instrumental in providing guiding principles to develop new powerful techniques for the
computation of graviton amplitudes [6–9]. Additional motivation comes from the possible
finiteness of N = 8 supergravity (see [10] and references therein).

This work was largely confined to the case of massless on-shell amplitudes, for which
particularly efficient computation methods are available. Relatively little work seems to have
been done on amplitudes involving the interaction of gravitons with massive matter. At
tree level, there are some classic results on amplitudes involving gravitons [11, 12]. More
recently, the tree-level Compton-type amplitudes involving gravitons and spin zero, half and
one particles were computed [13] to verify another remarkable factorization property [14] of
the graviton–graviton scattering amplitudes in terms of the photonic Compton amplitudes.
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However, we are not aware of results on graviton amplitudes involving a massive loop,
other than the cases of the graviton propagator [15, 16] and of photon–graviton conversion
[17, 18]. We believe that new insight into the structural relations between photon and graviton
amplitudes might be obtained by studying the N-graviton amplitudes involving a massive loop,
and more generally the mixed one-loop graviton–photon amplitudes. Generally, massive one-
loop N-point amplitudes are significantly more difficult to compute than massless ones; on
the other hand, their large mass limit is quite accessible through the effective action. For the
prototypical case, the QED N-photon amplitude, the information on the large mass limit is
contained in the Euler–Heisenberg Lagrangian (‘EHL’) [19]. We recall the standard proper
time representation of this effective Lagrangian:

Lspin = − 1

8π2

∫ ∞

0

dT

T 3
e−m2T

[
(eaT )(ebT )

tanh(eaT ) tan(ebT )
− e2

3
(a2 − b2)T 2 − 1

]
. (1.1)

Here T is the proper time of the loop fermion, m is its mass and a, b are the two Maxwell field
invariants, related to E, B by a2 − b2 = B2 − E2, ab = E · B. The analogous representation
for scalar QED is due to Weisskopf [20].

After expanding the EHL in powers of the field invariants, it is straightforward to obtain
the large mass limit of the N-photon amplitudes from the terms in this expansion involving N
powers of the field. This limit is, of course, also the limit of low photon energies. The result
of this procedure can be expressed quite concisely [21]:

�(EH)
spin

[
ε+

1 ; . . . ; ε+
K; ε−

K+1; . . . ; ε−
N

] = − m4

8π2

(
2ie

m2

)N

(N − 3)!

×
K∑

k=0

N−K∑
l=0

(−1)N−K−l Bk+lBN−k−l

k!l!(K − k)!(N − K − l)!
χ+

Kχ−
N−K. (1.2)

Here the superscripts ± refer to circular polarizations, and Bk are Bernoulli numbers. The
invariants χ±

K are written, in standard spinor helicity notation, as

χ+
K =

(
K
2

)
!

2
K
2

{[12]2[34]2 · · · [(K − 1)K]2 + all permutations},

χ−
N−K =

(
N−K

2

)
!

2
N−K

2

{〈(K + 1)(K + 2)〉2〈(K + 3)(K + 4)〉2 · · · 〈(N − 1)N〉2 + all permutations}.
(1.3)

A very similar formula results for the scalar loop case [21]. For the case of the
‘maximally helicity-violating’ (MHV) amplitudes, which have all ‘+’ or all ‘−’ helicities,
equation (1.2) and its scalar analogue have been generalized to the two-loop level [22]. A
recently discovered correspondence of effective actions points to a relation between scalar
loop MHV photon amplitudes in 2n dimensions and spinor loop graviton amplitudes in 4n

dimensions [23].
One of the long-term goals of the present line of work is to obtain a generalization of

(1.2) to the case of the mixed N-photon/M-graviton amplitudes. As a first step, in [24] the
EHL (1.1) and its scalar analogue were generalized to the case relevant for the case of the
amplitudes involving N photons and just one graviton. This corresponded to calculating
the one-loop effective action in the scalar and spinor Einstein–Maxwell theory, to all orders
in the electromagnetic field strength, and to leading order in the curvature, also including
terms where the curvature tensor gets replaced by two covariant derivatives. These integral
representations are given below in section 2 for easy reference. Although they contain the full
information on the low energy limit of the N-photon/one-graviton amplitudes, it is, contrary
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to the Euler–Heisenberg case, a nontrivial task to expand them out in powers of the field
invariants and extract the explicit form of those amplitudes. In [24] this was done at the F2

level, as a check of consistency with previous results in the literature. In particular, the F2

part for the spinor loop was shown to coincide, up to total derivative terms, with the effective
Lagrangian obtained first by Drummond and Hathrell [25]:

L(DH)
spin = 1

180(4π)2m2

(
5RF 2

μν − 26RμνF
μαF ν

α + 2RμναβFμνF αβ + 24(∇αFαμ)2
)

(1.4)

(here and in the following we will absorb the electric charge e into the field strength tensor F).
In this paper, we present the next order in the expansion of the effective Lagrangians

obtained in [24] in powers of the field strength, i.e. the terms of order RF4 (there are no order
RF3 terms for parity reasons). The explicit form of these Lagrangians is given in section 3, in a
form made as compact as possible by the use of the gauge and gravitational Bianchi identities.

2. Gravitational Euler–Heisenberg Lagrangians to order R

In [24] Euler–Heisenberg-type integral representations were obtained for the scalar and spinor
loop effective Lagrangians in the approximation discussed above. For the spinor loop, the
result reads

LR
spin = − 1

8π2

∫ ∞

0

dT

T 3
e−m2T det−1/2

[
tan(FT )

FT

] {
1 +

iT 2

8
Fμν;αβ Gαβ

B11

(
Ġμν

B11 − 2Gμν

F11

)

+
iT 2

8
(Fμν;βα + Fμν;αβ)Ġμβ

B11G
να
B11 +

T

3
Rαβ Gαβ

B11

− iT 2

24
FλνR

λ
αβμ

(
Ġνμ

B11 G
αβ

B11 + Ġαμ

B11 G
νβ

B11 + Ġβμ

B11 G
να
B11 + 4Gμν

F11 G
αβ

B11

)
+

T

12
Rμαβν

(
Ġμα

B11Ġ
βν

B11 + Ġμβ

B11Ġ
αν
B11 +

(
G̈μν

B11 − 2gμνδ(0)
)
Gαβ

B11

+ Ġαβ

B11 G
μν

F11 + Ġνβ

B11 G
μα

F11 − Gαβ

B11

(
Ġμν

F11 − 2gμνδ(0)
)) − 1

6
T 3Fαβ;γ Fμν;δ

×
∫ 1

0
dτ1

(
Ġαν

B12 Ġ
βμ

B12 G
γ δ

B12 + Ġαν
B12 G

βδ

B12 Ġ
γμ

B12 +
3

2
Gγ δ

B12 G
αμ

F12 G
βν

F12

)}
. (2.1)

Here the determinant factor det−1/2
[ tan(FT )

FT

]
by itself would just reproduce the

(unrenormalized) Euler–Heisenberg Lagrangian (1.1). The integrand involves the worldline
Green’s functions in a constant field, as well as their derivatives. Those Green’s functions can
be written as

GB12 ≡ GB(τ1, τ2) = 1

2Z2

(
Z

sin(Z)
e−iZĠB12 +iZĠB12 − 1

)
,

ĠB12 ≡ ∂

∂τ1
GB(τ1, τ2) = i

Z

(
Z

sin(Z)
e−iZĠB12 − 1

)
,

G̈B12 ≡ ∂2

∂τ 2
1

GB(τ1, τ2) = 2δ(τ1 − τ2) − 2
Z

sin(Z)
e−iZĠB12 , (2.2)

GF12 ≡ GF (τ1, τ2) = GF12
e−iZĠB12

cos(Z)
,

ĠF12 ≡ ∂

∂τ1
GF (τ1, τ2) = 2δ(τ1 − τ2) + 2iGF12

Z
cos(Z)

e−iZĠB12 ,

3
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with ĠB12 = sign(τ1 − τ2) − 2(τ1 − τ2),GF12 = sign(τ1 − τ2). The right-hand sides of
equations (2.2) are to be understood as power series in the matrix Zμν := T Fμν(x0), where the
indices are raised and lowered with gμν(x0). We remark that the explicit δ(0)’s in (2.1) subtract
other δ(0)’s contained in the coincidence limits G̈B11 and ĠF11 [24]. The Green’s functions in
(2.1) with two different indices (i.e. which are not coincidence limits) are understood to have
τ2 = 0.

For the case of a scalar in the loop, the result is somewhat simpler:

LR
scal = 1

16π2

∫ ∞

0

dT

T 3
e−m2T det−1/2

[
sin(FT )

FT

]

×
{

1 − T ξ̄R +
T

3
Gαβ

B11Rαβ +
iT 2

8
Fμν;αβ Ġμν

B11 G
αβ

B11

+
i

8
T 2(Fμν;βα + Fμν;αβ)Ġμβ

B11G
να
B11

− iT 2

24
FλνR

λ
αβμ

(
Ġνμ

B11 G
αβ

B11 + Ġαμ

B11 G
νβ

B11 + Ġβμ

B11 G
να
B11

)
+

T

12
Rμαβν

(
Ġμα

B11Ġ
βν

B11 + Ġμβ

B11Ġ
αν
B11 +

(
G̈μν

B11 − 2gμνδ(0)
)
Gαβ

B11

)
− T 3

6
Fαβ;γ Fμν;δ

∫ 1

0
dτ1

(
Ġαν

B12 Ġ
βμ

B12 G
γ δ

B12 + Ġαν
B12 G

βδ

B12 Ġ
γμ

B12

)}
. (2.3)

Here ξ̄ = ξ − 1
4 where ξ parametrizes the coupling of the loop scalar to the scalar curvature

(see appendix A for our conventions). In the last term it is again understood that τ2 = 0.

3. Effective Lagrangians at order RF4

To obtain the effective Lagrangians at a given order O(Fn) from the integral representations
(2.1), (2.3), first one needs to expand the worldline Green’s functions to the required order.
Adequate formulae for an arbitrary order have been given in appendix B of [24]; here in
appendix B we write down this expansion explicitly to the order required for the present
calculation. The integrals are then elementary, and can be easily done using MATHEMATICA.
However, the form of the result is still highly redundant, and can be considerably reduced
by an application of the gauge and gravitational Bianchi identities. This is by far the most
laborious step of the procedure (we have found the program MathTensor very useful for this
task). We believe that the results given below are in the most compact form which can be
achieved by the use of these identities (further reduction may be possible by the addition of
total derivative terms, but we have not attempted this here). We include also the order O(F 2)

terms for easy reference (although not the pure Euler–Heisenberg terms). Our conventions are
given in appendix A, where we also collect some useful formulae:

LR(4)
scal = 1

16 π2

1

m2

[
1

12

(
ξ̄ +

1

12

)
R(Fμν)

2 +
1

180
RμνF

μαF ν
α

− 1

72
RμναβFμνF αβ − 1

180
(∇αFμν)

2 − 1

72
Fμν�Fμν

]

+
1

16 π2

1

m6

[
− 1

144

(
ξ̄ +

1

12

)
R(Fμν)

4 − 1

180

(
ξ̄ +

1

12

)
R tr[F 4]

4
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− 1

945
Rαβ(F 4)αβ +

1

1080
Rαβ(F 2)αβ(Fγ δ)

2 +
1

540
Rαμβν(F

2)αβ(F 2)μν

− 1

360
Rαμβν(F

3)αμF βν +
1

432
RαμβνF

αμFβν(Fγ δ)
2

− 1

540
(F 3)μν�Fμν +

1

432
Fμν�Fμν(Fγ δ)

2 − 1

1080
Fμν;αβ(F 2)αβFμν

+
1

540
Fμν;αβ(F 2)ανF βμ +

1

1080
(Fαβ;γ )2(Fμν)

2

+
1

1890
Fαβ;γ F

γ

μν; FαμFβν +
1

1890
Fαβ;γ F α

μ ;δF
βμF γδ

+
2

945
F

μ

αβ; F α
μ ;δ(F

2)βδ − 1

1890
Fαβ;γ F β;γ

μ (F 2)αμ

]
, (3.1)

LR(4)
spin = − 1

8π2

1

m2

[
− 1

72
R(Fμν)

2 +
1

180
RμνF

μαF ν
α

+
1

36
RμναβFμνF αβ − 1

180
(∇αFμν)

2 +
1

36
Fμν�Fμν

]

− 1

8 π2

1

m6

[
− 1

432
R(Fμν)

4 +
7

1080
R tr[F 4]

− 1

945
Rαβ(F 4)αβ − 1

540
Rαβ(F 2)αβ(Fγ δ)

2 +
1

540
Rαμβν(F

2)αβ(F 2)μν

+
11

360
Rαμβν(F

3)αμF βν +
1

108
RαμβνF

αμFβν(Fγ δ)
2

− 11

945
Fαβ;γ F β;γ

μ (F 2)αμ +
2

945
F

μ

αβ; F α
μ ;δ(F

2)βδ

+
7

270
(F 3)μν�Fμν +

1

108
Fμν�Fμν(Fγ δ)

2 +
1

216
Fμν;αβ(F 2)αβFμν

+
1

540
Fμν;αβ(F 2)ανF βμ − 1

540
(Fαβ;γ )2(Fμν)

2

− 2

189
Fαβ;γ F

γ

μν; FαμFβν − 2

189
Fαβ;γ F α

μ ;δF
βμF γδ

]
. (3.2)

We remark that the effective Lagrangians (3.1), (3.2) are equivalent to but not identical
with what one would obtain by the more standard heat kernel method; both methods in general
yield effective Lagrangians which differ by total derivative terms. To obtain the heat kernel
form of the effective Lagrangians in the worldline formalism is possible; however, one has
to use a different set of worldline Green’s functions which, contrary to the Green’s functions
(2.2), are not proper-time invariant. For the calculations presented here this would already
imply a significant increase in technical difficulty. See [24] for a discussion of these issues.

4. Conclusions

To summarize, the effective Lagrangians (3.1), (3.2) constitute the natural generalization of
the Drummond–Hathrell Lagrangian (1.4) to the order O(F 4) level, but still at linear order
in the curvature, in the Einstein–Maxwell theory. They contain the full information on the

5
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one-loop amplitude involving four photons and one graviton, with a massive scalar or spinor
in the loop, in the limit where all photon and graviton energies are small compared to the loop
particle mass. In future work, we hope to elaborate these amplitudes in an explicit form, as a
first step towards generalizing the N-photon amplitudes (1.2) to the full N-photon/M-graviton
case.
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Appendix A. Conventions and useful formulae

In our conventions, the Einstein–Maxwell theory is described by

�[g,A] =
∫

dDx
√

g

(
1

κ2
R − 1

4
FμνF

μν

)
(A.1)

where the metric gμν has signature (−, +, +, . . . , +), g = |det gμν |, and κ2 = 16πGN . We
use the following conventions for the curvature tensors:

[∇μ,∇ν]V λ = Rμν
λ
ρV

ρ, Rμν = Rλμ
λ
ν, R = Rμ

μ > 0 on spheres,

[∇μ,∇ν]φ = iFμνφ, (A.2)

where V μ is an uncharged vector and φ is a charged scalar. The one-loop effective action for
the scalar loop is defined by

�[g,A] = ln Det−1(−�A + m2 + ξR) (A.3)

where �A is the gauge and gravitational covariant Laplacian for scalar fields. The parameter ξ

describes an additional non-minimal coupling to the scalar curvature R. For the (Dirac) spinor
loop, we define it by

�[g,A] = ln Det(/∇ + m) (A.4)

where

/∇ = γ aea
μ∇μ, ∇μ = ∂μ + ieAμ + 1

4ωμabγ
aγ b (A.5)

with eμ
a the vielbein and e = det eμ

a , ωμab the spin connection.
The following identities have been used for simplifying the effective Lagrangians (3.1),

(3.2):

Fμα;β Fμβ;α = 1
2Fμβ;α Fμβ;α, (A.6)

F α
μ F

μβ

;αβ = 1
2Fμν�Fμν, (A.7)

Fμν Fαβ Rμανβ = 1
2Fμν Fαβ Rμναβ, (A.8)

(F 3)μν Fαβ Rμανβ = 1
2 (F 3)μν Fαβ Rμναβ, (A.9)

Fαβ;μ F
αβ

;ν (F 2)μν = −2F
μ

αβ; F α
μ ;ν (F 2)βν, (A.10)

Fαβ;γ F
β

μν; Fαν F γμ = − 1
2Fαβ;γ F

γ

μν; Fαμ Fβν, (A.11)

F
μ

αβ; Fμν;γ F αν F βγ = − 1
2Fαβ;γ F

γ

μν; Fαμ Fβν, (A.12)

6
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F α
μ F

μβ

;αβ + F α
μ F

μβ

;βα = 1
2FμνFαβRμναβ + (F 2)αβRαβ + Fμν �Fμν, (A.13)

F
μ

αβ; F
β

μν; (F 2)αν = −F
μ

αβ; F α
μ ;γ (F 2)βγ − Fαβ;γ F β;γ

μ (F 2)αμ, (A.14)

Fαβ;γ F
β

μν; FανF γμ = Fαβ;γ F α
μ ;ηF

βμ F γη − Fαβ;γ F α
μ ;η F βη F γμ, (A.15)

Fαβ;γ F α
μ ;η F βη F γμ = 1

2Fαβ;γ F
γ

μν; Fαμ Fβν + Fαβ;γ F α
μ ;η F βμ F γη, (A.16)

F ν
μν;β F βμ + F ν

μν; β F βμ = − 1
2Fμν Fαβ Rμναβ − (F 2)αβ Rαβ − Fμν �Fμν, (A.17)

(F 2)αν F βμ Fμν;βα − (F 2)αν F βμ Fμν;αβ

= 1
2 (F 3)μν F αβ Rμναβ + (F 2)μα (F 2)νβ Rμναβ, (A.18)

F ν
μν;β (F 3)βμ + F ν

μν; β (F 3)βμ

= − 1
2 (F 3)μν Fαβ Rμναβ − (F 4)αβ Rαβ − (F 3)μν �Fμν. (A.19)

Identities (A.6)–(A.19) are simple consequences of the Bianchi identities

∇αFβγ + ∇βFγα + ∇γ Fαβ = 0, (A.20)

Rαβγ δ + Rβγαδ + Rγαβδ = 0. (A.21)

Appendix B. Expansion of the field-dependent worldline Green’s functions

In this appendix we give the expansion of the constant field worldline Green’s functions
GB, ĠB, G̈B,GF , ĠF to the order O(F 4) required for the present computation. Defining

ḠB12 := |τ1 − τ2| − (τ1 − τ2)
2 (B.1)

those expansions can be written as

GB12 = ḠB12 − 1

6
− i

3
ĠB12ḠB12Z +

(
1

3
Ḡ2

B12 − 1

90

)
Z2 − i

15
ḠB12ĠB12

(
ḠB12 +

1

3

)
Z3

+
1

45

(
2Ḡ2

B12

(
ḠB12 +

1

2

)
− 1

21

)
Z4 + O(Z5), (B.2)

ĠB12 = ĠB12 + 2i

(
ḠB12 − 1

6

)
Z +

2

3
ĠB12ḠB12Z2 + i

(
2

3
Ḡ2

B12 − 1

45

)
Z3

+
2

15
ḠB12ĠB12

(
ḠB12 +

1

3

)
Z4 + O(Z5), (B.3)

G̈B12 = 2δ12 − 2 + 2i ĠB12Z − 4

(
ḠB12 − 1

6

)
Z2 +

4

3
iḠB12ĠB12Z3

−
(

4

3
Ḡ2

B12 − 2

45

)
Z4 + O(Z5), (B.4)

GF12 = GF12 − i GF12ĠB12Z + 2GF12ḠB12Z2 − 1

3
i GF12ĠB12(2ḠB12 + 1)Z3

+
2

3
GF12ḠB12

(
ḠB12 + 1

)
Z4 + O(Z5), (B.5)

ĠF12 = 2δ12 + 2i GF12Z + 2 GF12ĠB12Z2 + 4i GF12ḠB12Z3

+
2

3
GF12ĠB12(2ḠB12 + 1)Z4 + O(Z5). (B.6)
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