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Abstract

The volume operator plays a pivotal role for the quantum dynamics of Loop Quantum Gravity (LQG),
both in the full theory and in truncated models adapted to cosmological situations coined Loop Quantum
Cosmology (LQC). It is therefore crucial to check whether its semiclassical limit coincides with the classical
volume operator plus quantum corrections.

In the present article we investigate this question by generalizing and employing previously defined
coherent states for LQG which derive from a cylindrically consistently defined complexifier operator which
is the quantization of a known classical function. These coherent states are not normalizable due to the
non separability of the LQG Hilbert space but they define uniquely define cut – off states depending on
a finite graph.

The result of our analysis is that the expectation value of the volume operator with respect to coherent
states depending on a graph with only n−valent verticies reproduces its classical value at the phase space
point at which the coherent state is peaked only if n = 6. In other words, the semiclassical sector of LQG
defined by those states is described by graphs with cubic topology! This has some bearing on current
spin foam models which are all based on four valent boundary spin networks.
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1 Introduction

The volume operator for Loop Quantum Gravity1 (LQG) enters the quantum dynamics of the theory in a
prominent way. Without it, Hamiltonian constraint operators [4], Master constraint operators [5] or physical
Hamiltonian operators [6] cannot be defined. This is also true for truncated models of LQG such as Loop
Quantum Cosmology (LQC) [7] which is supposed to describe well the homogeneous sector of the theory.
In LQC one generically finds that the quantum evolution of operators corresponding to classically singular
Dirac observables remain finite. This feature can be traced back to the way that inverse powers of the local
volume, which enter into the expression for the triad, cotriad and other types couplings between geometry
and geometry or geometry and matter, are quantized in the full theory [4]. Namely such derived operators
are obtained as commutators between holonomy operators and powers of the volume operator.

In view of its importance, it is of outmost interest to verify that the classical limit of the LQG volume
operator coincides with the classical volume. By this we mean that the expectation value of the volume
operator with respect to suitable semiclassical states which are peaked on a given point in phase space
coincides with the value of the classical volume at that phase space point up to small corrections and that
its fluctuations are small.

Notice that there are actually two versions of the volume operator discussed in the literature [8, 9] which
result from nonequivalent regularisations of the products of operator valued distributions that appear at
intermediate stages. However, only the operator in [9] survives the consistency test of [10], namely that
writing the volume in terms of triads which then are quantized using the above mentioned commutator,
delivers the same operator up to ~ corrections as the direct quantization. This check is not unimportant as
otherwise we should not trust the triad and cotriad quantisations that enter the quantum dynamics.

The semiclassical analysis of the volume operator has not been carried out yet although in principle
suitable semiclassical (even coherent) states for LQG are available [11]. The reason for this is that the
spectral decomposition (projection valued measure) of the volume operator cannot be computed exactly in
closed form which however is needed in order to do exact practical calculations. More precisely, the volume
operator is the fourth root of a positive operator Q whose matrix elements can be computed in closed form
[12] but which cannot be diagonalized analytically. More in detail, the volume operator has discrete (that is,
pure point) spectrum and it attains a block diagonal form where the blocks are labelled by the graphs and
spin quantum numbers (labelling the edges of the graph) of spin network functions (SNWF) [13]. SNWF’s
form a convenient basis of the LQG Hilbert space [14] which is the unique (cyclic) Hilbert which carries
a unitary representation of the spatial diffeomorphism group and the Poisson∗−algebra of the elementary
(flux and holonomy) variables [15]. The blocks turn out to be finite dimensional matrices whose matrix
elements can be expressed in terms of polynomials of 6j symbols which fortunately can be avoided2 using a
telescopic summation technique [16] related to the Elliot – Biedenharn identity [17] so that a manageable
closed expression results. However, the size of these matrices grows exponentially with increasing spin
quantum numbers and since the expression for coherent states is a coherent superposition of SNWF’s with
arbitrarily large spin quantum numbers, a numerical computation of the expectation value using numerical
diagonalisation techniques which are currently being developed [18] is so far out of reach3

The way to make progress is to use semiclassical perturbation theory developed in [19] and already
applied in [20, 21]. The idea is quite simple: In practical calculations one needs the expectation value of Qq

where q is a rational number in the range 0 < q ≤ 1
4 . Introduce the “perturbation operator” X := Q

<Q> − 1
where the expectation value < Q > of the positive operator Q is exactly computable. Notice that X is
bounded from below by −1. Then trivially < Qq >=< Q >q < [1 + X]q >. Now we use that there exist
positive numbers p such that the classical estimates 1 + qx − px2 ≤ (1 + x)q ≤ 1 + qx are valid for all

1See [1, 2] for recent books and [3] for recent reviews.
2Notice that Racah’s formula provides a closed expression for the 6j symbol but that it involves implicit sums and factorials

involving large integers which quickly becomes unmanageable even numerically.
3The coherent superposition contains a damping factor which suppresses large spins and thus large matrices so that one

may truncate the involved infinite series over spin quantum numbers at finite values making only negligible errors, but still the
computational effort is currently too high for supercomputers, see e.g. the computation time estimates in reported [18].
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x ≥ −1. Finer estimates of this form involving arbitrary powers of x are also available [20]. In view of the
spectral theorem, this classical estimate survives at the quantum level and we have Y− ≤ Y ≤ Y+ where
Y+ = 1 + qX, Y− = Y+ − pX2, Y = (1 + X)q. It follows that < Y >∈ [< Y+ > −p < X2 >,< Y+ >].
However, < Y+ >= 1 and < X2 >= [< Q2 > − < Q >2]/ < Q >2 is proportional to the relative fluctuation
of Q which of order of ~ [11]. It follows that to zeroth order in ~ we may replace < Qq > by < Q >q which
is computable and whose error estimates are also computable as shown above.

While possible, the exact computation of < Q >, < Q2 >, .. is still quite involved. Here the following
result, proved in [11], is convenient: The computation of these expectation values (more generally for low
order polynomials in flux operators) for SU(2) spin network states coincide, to zeroth order in ~, with the
corresponding calculations for U(1)3 spin networks. On those, the volume operator is even diagonal. Hence
we conclude that, as long as we are only interested in the zeroth order in ~ contribution, we may evaluate
the expectation value of the volume operator for a fictive theory in which we may replace the non Abelian
group SU(2) by the Abelian group (U1)3 which makes all calculations dramatically simpler.

The coherent states developed for LQG so far all have been constructed using the complexifier method
reviewed in [22] which generalizes the coherent state construction for phase spaces that are cotangent bundles
over compact groups developed in [23]4. This involves the heat kernel evolution of the delta distribution
(which is the matrix element of the unit operator in the Schrödinger (position) representation) with respect
to a generalized Laplace operator, called the complexifier, followed by a certain analytic continuation. Now
the unit operator in LQG can be written as a resolution of unity in terms of SNWF’s and although the heat
kernel is a damping operator, since the SNWF are not countable (the LQG Hilbert space is not separable),
the resulting expression is not normalizable. It defines a well defined distribution (in the algebraic dual of
the finite linear span of SNWF’s) which can be conveniently written as a sum over cut – off states labelled
by finite graphs. These states, called “shadows” in [23], are normalizable and one can use those in order to
perform semiclassical calculations. Of course, one expects that only cut – off states labelled by graphs which
are sufficiently fine with respect to the classical three metric to be approximated are good semiclassical
states.

Hence we see that the input in the semiclassical calculations consists in the choice of a complexifier and
the choice of a graph. One may wonder why the complexifier has to be chosen and is not dictated by the
dynamics of the theory, that is, that the coherent states remain coherent under quantum time evolution
(e.g. for the harmonic oscillator, the complexifier is strictly the Laplacian on the real line). The reason is
twofold:
On the one hand one could perform constraint quantization and then we are working at the level of the
kinematical Hilbert space on which the quantum constraints have not been imposed yet and all we want to
make sure is that the volume operator, which is not gauge invariant (and thus does not preserve the physical
Hilbert space) has a good classical limit on the kinematical Hilbert space (we would not trust a constraint
quantization for which not even that was true).
On the other hand, one could also work at the level of the physical Hilbert space as outlined in [6] and
then one would expect that the time evolution of any reasonable choice of complexifier coherent states with
respect to the physical Hamiltonian defined there remains coherent (and peaked on the classical trajectory)
for sufficiently short time intervals. Notice that for interacting theories as simple as the an-harmonic
oscillator globally stable coherent states have so far not been found.

The choice of the complexifier will be guided by practical considerations, namely that it be diagonal on
SNWF’s and that it is a damping operator which makes the heat kernel evolution of the delta distribution
restricted to a graph normalizable. Moreover, it should be gauge invariant under the SU(2) gauge group. As
far as the choice of the graph is concerned, for practical reasons one will choose graphs that are topologically
regular, that is, have constant valence for each vertex. Indeed, the semiclassical calculations performed in
[20, 21] were done using graphs of cubic topology with good semiclassical results.

The existing literature on such coherent states for LQG can be divided into two classes, depending on a
certain structure that defines them:

4See also [24] for related ideas valid for Abelian gauge theories such as Maxwell theory or linearized gravity.
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On the one hand, there are gauge covariant flux coherent states which depend on collections of surfaces
and path systems inside them [11]. On the other hand, there are area coherent states which only depend
on collections of surfaces but involve area operators rather than flux operators [22]. We will review and
generalize both constructions. In its most studied incarnations, the collection of surfaces involved in [11] is
defined by a polyhedronal partition of the spatial manifold while the collection involved in [22] is in terms
of a parquette of foliations of the spatial manifold.

The novel results of this article are as follows:

1. Cylindrically consistent complexifier
The important thing to notice is that both constructions are cylindrically consistent: Both derive from
a complexifier which is graph independently defined in terms of the surfaces (and path systems) only
and has consistent cylindrical projections to spin network functions over any graph. We stress this,
because from the discussion in [11] one may get the impression that the states constructed there do
not come from a single complexifier operator. We clarify this in this paper by explicitly constructing
those projections. The apparent contradiction is resolved by observing that in [11] cut – off states
were displayed only for graphs which are dual to a fixed polyhedronal complex. In this paper we treat
the general case which is more complicated. We also give a compact expression for the eigenvalues of
the complexifier of type [22] which is missing there.

2. Graphs of arbitrary valence
The real motivation for the present article is that the calculations performed in [20, 21] raised the
suspicion that the volume operator attains acceptable coherent state expectation values only for graphs
of cubic topology. Therefore in this paper we perform the semiclassical analysis with respect to
topologically regular graphs of valence n with n = 4, 6, 8. Ideally one would like to treat the general
case but this leads to complicated book keeping problems. Fortunately, the cases we consider turn out
to be sufficient to answer the afore posed question.

The outcome of our analysis is that, no matter whether one uses the states [11] or [22], the correct semiclas-
sical limit is attained with these states for n = 6 only. In other words:
Up to now, there are no semiclassical states known for other than cubic graph topology!

We interpret this result as saying that the states we constructed are simply not semiclassical for the
volume operator unless n = 6. The ratio consisting of expectation value of the volume operator with respect
to the coherent states for graphs of valence n 6= 6 divided by the classical value deviates from unity by a
geometrical factor qn depending on n which is of order unity and not at all of order ~. One might argue that
therefore one should rescale the volume operator by 1/qn. However, first of all this is not allowed because
the normalization is fixed [10] and secondly even if one would rescale, the statement would still be that the
correct expectation value is attained for a unique valence only.

It may be that there are other semiclassical states coming from a different complexifier or from an entirely
different method which does not have this problem. However, notice that all coherent states that were
constructed so far for free field theories on Minkowski space come from a complexifier, so the complexifier
method is natural and well tested in other contexts [22]. Secondly, as shown in [22], the choice of a SU(2)
invariant and background metric invariant complexifier for LQG with computable spectrum and the required
damping behavior leaves relatively little possibilities and to the best of our knowledge, the states proposed
in [11, 22] and used here are the simplest and only ones known so far. Therefore, even if better suited states
exist, they will be very hard to guess and even harder to do practical calculations with.

The implication of our result for LQG then seems to be that the semiclassical sector of the theory is
spanned by SNWF based on cubic graphs. This has some bearing for spin foam models [26] which are
supposed to be – but have so far not been proved to be – the path integral formulation of LQG. Spin foams
are certain state sum models based on simplicial triangulations of four manifolds whose dual graphs are
therefore five valent. Since the intersection of this graph with a boundary three manifold is therefore four
valent, we see that spin foam models based on simplicial triangulations corresponds to boundary Hilbert
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spaces spanned by spin network states based on four valent graphs only5.
But even if these mismatches between LQG and spin foams could be surmounted, the result of our

analysis seems to say that the boundary Hilbert space of current spin foam models does not contain any
semiclassical states! This seems to contradict recent findings that the graviton propagator derived from spin
foam models comes out correctly [31]. However, notice that these results only show that the propagator
comes out with the correct fall off behavior while the correct tensorial structure has not been verified yet.
An easy way to possibly repair this is to generalize spin foam models and allow for arbitrary, in particular
cubic, triangulations as suggested in [32, 33].

The outline of this paper is as follows:

In section two we review the general complexifier method and generalize the complexifier coherent states
proposed in [11, 22]. In particular, we review the two families of coherent states introduced so far which are
based on complexifiers constructed from squares of flux or area operators respectively. We also explicitly
compute the corresponding cut – off states for SU(2) and show when and why it is justified to work with a
fictive U(1)3 theory instead as far as the zeroth order in ~ for the expectation values is concerned.

In section three we construct explicitly convenient tetrahedronal, cubical and octaheronal cell decom-
positions of the spatial manifold which also define regular dual n = 4, 6, 8 valent dual graphs. These
constructions are needed for the explicit calculations in section four and for our companion paper [34].

In section four we compute the expectation value of the volume operator for the constant valence cases
n = 4, 6, 8 for the states of type [11]. We will do the same in our companion paper [34] for the states of
type [22]. In addition, in [34] we answer the following question: While the flux complexifier is built from a
discrete set of fluxes, the area complexifier is built from a continuous set of areas whose underlying surfaces
fill all of space. While this makes the calculations more cumbersome, it might improve the quality of the
corresponding coherent states in the sense that the expectation values do not strongly depend on the cut
– off graph chosen (as already mentioned above, at least when the graph has cubic topology). Hence, we
examine the question whether the expectation value of geometrical operators is invariant under Euclidean
transformations of the graph in case that the spatial metric to be approximated is Euclidean.

In section five we summaries and conclude.

2 Complexifier Coherent States

In this section we review the complexifier method to construct coherent states. We will be brief, all details
can be found in [22] and references therein. This section is divided into six parts:
In the first we define the general complexifier framework. In the second we provide natural gauge invari-
ant choices of complexifiers for background independent SU(2) gauge theories such as General Relativity
and fictive U(1)3 gauge theories. In the third we compute the associated coherent states. These are not
normalizable because they involve a sum over an uncountable set of graphs but one can extract from them
normalizable states in which the sum over all graphs is cut off to a finite number and which we display in the
fourth part. In the fifth part we compare the properties of the states [11] and [22]. Finally, in the sixth we
show that as far as the zeroth order in ~ is concerned, we may replace the complicated SU(2) calculations by
the much simpler U(1)3 calculations under certain restrictions on the cut – off graph. This approximation
is needed only for states of type [22]. For the states of type [11] it is sufficient to take as a cut – off graph

5 As an aside, whether this boundary Hilbert space of spin foams really can be interpreted as the four valent sector of LQG
is a subject of current debate even with the recent improvement [27] of the Barrett – Crane model [28] mostly studied so far.
There are two problems: First, the boundary connection predicted by spin foams does not coincide with the LQG connection
[29]. Secondly, the four valent sector of the LQG Hilbert space is not a superselection sector for the holonomy flux algebra of
LQG. In fact, the LQG representation is known not only to be a cyclic but even an irreducible representation [30]. Therefore
the four valent sector is not invariant under the LQG algebra.
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any graph which is dual to the polyhedronal complex that defines the complexifier.

2.1 General Complexifier Method

We consider a symplectic manifold M = T ∗(C) which is a cotangent bundle over a configuration manifold
C which may be infinite dimensional (we will suppress any indices in what follows).

Definition 2.1.

A complexifier C : M → R+ is a sufficiently smooth, positive function on M with dimension of an action
which has the following scaling behavior

lim
λ→∞

C(q, λp)

λ
= ∞ (2.1)

where (q, p) are the canonically conjugate, real configuration and momentum coordinates on M.

The reasons for these restrictions become evident in a moment. With the aid of C we define

z := exp(−i{C, .}) · q =

∞∑

n=0

(−i)n
n!

{C, q}(n) (2.2)

with inductively defined multiple Poisson brackets {C, f}(0) := f, {C, f}(n+1) := {C, {C, f}(n)}. The
meaning of “sufficiently smooth” is that all coefficients in the Taylor expansion (2.2) exist. Notice that (2.2)
defines a (complex valued) canonical transformation whence {z, z} = {z̄, z̄} = 0 (this is non trivial when
dim(C) ≥ 2). The scaling behavior implies that z, z̄ can be used as coordinates for M. In fact, z ∈ CC

defines a complex polarization of M.
We now assume that M can be quantized, that is, there is a representation (q, p) 7→ (q̂, p̂) of the

Poisson∗ algebra defined by {q, q} = {p, p} = 0, {p, q} = 1M; q̄ = q, p̄ = p on a Hilbert space of the form
H = L2(C, dµ) where C = C in the finite dimensional case and otherwise C ⊂ C in the infinite dimensional case
is a suitable distributional extension. That is, the operators satisfy (assuming careful domain definitions)
[q̂, q̂] = [p̂, p̂] = 0, [p̂, q̂] = i~ 1H; q̂† = q̂, p̂† = p̂. Here C comes with some topology and µ is a Borel
measure on it.

Assuming that also C has a quantization Ĉ as a positive, self adjoint operator (in field theories this is
non trivial due to operator ordering and operator product expansion questions) we construct the operator
representation of (2.2) by substituting Poisson brackets by commutators divided by i~

ẑ :=
∞∑

n=0

(−i)n
n! (i~)n

{Ĉ, q̂}(n) = e−Ĉ/~ q̂ eĈ/~ (2.3)

This formula explains the dimension restriction on C. The operator e±Ĉ/~ is well defined via the spectral

theorem. We will refer to e−Ĉ/~ as the heat kernel and to ẑ as the annihilation operator.
The δ distribution δq0 with support at q0 ∈ C on the subset of H consisting of the continuous functions

is defined by

δq0 [ψ] := ψ(q0) :=< δq0, ψ >:=

∫

C
dµ(q) δq0(q)ψ(q) (2.4)

where δq0(q) is the integral kernel of the unit operator. We define for z ∈ CC
the coherent state

ψz := [e−Ĉ/~δq0 ]q0→z (2.5)

It is defined as “heat kernel evolution” followed by analytic continuation. In order that this makes sense,

the function e−Ĉ/~δq0 must not only be in H but also analytic in q0. This explains the positivity and
scaling requirement on C which makes sure that the heat kernel is a damping operator such that at least
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for separable H the function (2.5) is not only normalizable but also analytic. Here we have assumed that

the map C → CC; q 7→ z in (2.2) has an extension to some CC
.

The whole point of this construction is that one can easily verify

ẑ ψz = z ψz (2.6)

Thus, ψz is an eigenfunction of the annihilation operators ẑ which explains the notion “coherent state”. As
is well known, property (2.6) implies that the uncertainty relation for the self adjoint operators

x̂ := [ẑ + ẑ†]/2, ŷ := −i[ẑ − ẑ†]/2 (2.7)

is saturated, that is

[< x̂2 >z −(< x̂ >z)
2] [< ŷ2 >z −(< ŷ >z)

2] =
1

4
| < [x̂, ŷ] >z | (2.8)

where < . >z:=< ψz, . ψz > /||ψz ||2 denotes the expectation value with respect to ψz (notice that ψz is in
general not automatically normalized). This is a second property commonly attributed to coherent states
[35].

Finally, under certain technical assumptions spelled out in [36] the completeness relation

1H =

∫

C
dµ(q0) δq0 δq0 [.] (2.9)

implies that there exists a measure ν on CC
such that

1H =

∫

CC
dν(z) ψz < ψz, . > (2.10)

This concludes the general discussion. The interested reader may verify [22, 24] that the coherent states for
Maxwell Theory on Minkowski space result from the complexifier

C =
1

2κ2

∫

R3

d3x δabE
a
√
−∆

−1
Eb (2.11)

where Ea is the Maxwell electric field, ∆ is the Laplacian on R3, κ is the electric charge and α = ~κ2 is the
Feinstruktur constant.

2.2 Complexifiers for Background Independent Gauge Theories

As explained in detail in [37, 38], gauge theories with compact gauge group G provide an almost perfect
arena for the general theory summarized in the previous subsection. Let us explain this in some detail:

1. Classical Phase Space
The role of C is played by some space of smooth connections A over some D−dimensional spatial
manifold σ. The role of M is then simply T ∗A. The configuration and momentum coordinates on
this phase space then are simply real valued connection one forms Aj

a(x) (potentials) and Lie algebra
valued vector densities Ea

j (x) (electric fields) respectively which enjoy the following Poisson brackets

{Aj
a(x), A

k
b (y)} = {Ea

j (x), Eb
k(y)} = 0, {Ea

j (x), Ak
b (y)} = κ δa

b δ
k
j δ(x, y) (2.12)

Here κ denotes the square of the coupling constant of the gauge theory, a, b, c, .. = 1, ..,D denote
spatial tensor indices and j, k, l, .. = 1, ..,dim(G) denote Lie algebra indices. We will assume that G is
connected, semisimple and take the convention that the internal metric is just δjk.
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2. Distributional Configuration Space
Now consider arbitrary, finite piecewise analytic (more precisely semianalytic [15]) graphs embedded
in σ which we think of as collections of edges e, that is, piecewise analytic one dimensional paths which
intersect at most in their endpoints, called the set V (γ) of verticies of γ. Denote by E(γ) the set of
edges of γ. Given γ consider functions cylindrical over γ of the form

f : A → C; A 7→ f(A) = fγ({A(e)}e∈E(γ)) (2.13)

where fγ : G|E(γ)| → C is a complex valued function on |E(γ| copies of G and A(e) denotes the holon-
omy of A along e. Functions of the form (2.13) form an Abelian ∗ algebra under pointwise operations
with the involution given by complex conjugation. We can turn it into an Abelian C∗−algebra, usually
called Cyl (cylinder functions) with respect to the sup norm on A that is

||f || := sup
A∈A

|f(A)| (2.14)

As is well known [39], Abelian C∗−algebras A are isometric isomorphic to another Abelian C∗−algebra
which consists of continuous functions on a compact Hausdorff space ∆(A), called the spectrum of A.
Denote the spectrum of Cyl by A. It has a nice geometrical interpretation as a space of generalized
connections in the sense that the holonomy of A ∈ A satisfies all the usual algebraic relations satisfied
by smooth holonomies, that is A(e◦e′) = A(e)A(e′) if the end point of e is the beginning point of e′ and
A(e−1) = (A(e))−1 , but that smoothness or even continuity is no longer required. The topology on A
is the Gel’fand topology which in this case boils down to saying that a net of generalized connections
converges when the corresponding net of holonomies for all possible paths converges. See [14, 40, 2]
for more details.

3. Hilbert Space
Being a compact Hausdorff space, a natural set of representations of the Poisson∗−algebra generated
by all the holonomies and all the electric fluxes through co-dimension 1 (piecewise analytic) surfaces
S

Ej(S) :=

∫

S
∗Ej (2.15)

where ∗Ej denotes the pseudo (D − 1)form dual to Ea
j , should be of the form H = L2(A, dµ) where

µ is a Borel probability measure. It turns out that all cyclic representations that carry a unitary
representation of the diffeomorphism group Diff(σ) are of this form [15] and the corresponding measure
is unique and was first discovered in [14]. See e.g. [2] for all details. For our purposes it is enough
to know that H admits a natural orthonormal basis, called spin network functions (SNWF). They are
labelled by a graph γ, a collection π = {πe}e∈E(γ) of irreducible, non trivial representations of G and
collections m = {me}e∈E(γ), n = {ne}e∈E(γ) of integers me, ne = 1, ..,dim(πe) labelling the edges of
γ and are explicitly defined by

Tγ,π,m,n(A) :=
∏

e∈E(γ)

√
dim(πe) [πe(A(e))]mene (2.16)

In order to further apply the general theory of the previous subsection we must provide a complexifier. The
complexifier for Maxwell theory displayed in (2.11) is motivated by the fact that the associated annihilation
operators are precisely those that enter the Maxwell Hamiltonian. In General Relativity there is no a
priori Hamiltonian but there is the Hamiltonian constraint. Hence one might be tempted to choose a
complexifier whose associated annihilation operator is related to the Hamiltonian constraint. Unfortunately,
the Hamiltonian constraint is, in contrast to Maxwell theory, neither polynomial nor does it have a quadratic
piece with respect to which a perturbation scheme can be defined. Hence, the notion of an annihilation

9



operator defined by the Hamiltonian constraint is ill defined6. On the other hand, since we here just want
to construct coherent states which approximate well our elementary holonomy and flux operators which are
defined on the kinematical Hilbert space (on which the Hamiltonian constraint is not satisfied) in order
to verify whether other kinematical operators (i.e. not invariant under the gauge motions generated by
the spatial diffeomorphism and Hamiltonian constraints) such as the volume operator have been correctly
quantized, the motivation to use the Hamiltonian constraint as a selection criterion for the complexifier is
anyway less motivated.

In lack of a better selection criterion, we take here a practical attitude and would like to consider a
complexifier which comes close to the Maxwell one (2.11) which obviously satisfies all the requirements
of definition 2.1. Since we have applications in General Relativity in mind, we must preserve background
independence and therefore the Minkowski background Laplacian entering (2.11) must be replaced by some-
thing background metric independent. One possibility is to use a background independent Laplacian which
depends on the dynamical 3-metric of qab which Ea

j /
√

|det(E)| is its triad. However, this would lead to
a very complicated object with which no practical calculations are possible. In fact, the practical use of
coherent states in Maxwell theory rests on the fact that (2.11) is quadratic in the momenta (electric fields)
which leads to states which are basically Gaussians in both the position and the momentum representation.
This motivates to keep our complexifier quadratic in the momenta as well. Furthermore, we must preserve
G invariance. For Abelian gauge theories the electric fields are already gauge invariant but not for non
Abelian gauge theories.

Thus a first attempt would be to define as complexifier

C ∝
∫

σ
d3x qab E

a
jE

b
kδ

jk/
√

det(q) (2.17)

where had to replace the background metric δab in (2.11) by the dynamical metric and in order to make
(2.17) spatially diffeomorphism invariant we have included a density factor 1/

√
det(q). However, it is easy

to see that (2.17) becomes

C ∝ V =

∫

σ
d3x

√
|det(E)| (2.18)

the volume functional. While it satisfies the requirements of a complexifier, and admits a quantization as a
positive self adjoint operator, its spectral decomposition is not analytically available so that C = V is not
practically useful.

Hence, what we need is a gauge invariant, background independent expression, quadratic in the electric
fields which preferably is non vanishing everywhere on σ and which can be expressed in terms of (limits of)
electric fluxes since only those are well defined in the quantum theory. In [22] it is shown that in non Abelian
gauge theories no quadratic complexifier based strictly on fluxes exists that meets all these requirements.
The way out is to give up the the requirement that the complexifier is composed out of the fluxes but to
allow more general objects than fluxes. There are basically two proposals in the literature. The first [11]
replaces fluxes by gauge covariant fluxes. The second [22] replaces the flux by areas. We will review these
two proposals separately.

In what follows we assume that as in General Relativity the canonical dimension of Ea
j is cm0 and

that of Aj
a is cm−1 so that (2.25) has dimension cmD−1. Since the kinetic term in the canonical action is∫

R
dt

∫
σ d

DEa
j Ȧ

j
a/κ it follows that ~κ has dimension cmD−1.

2.2.1 Gauge Covariant Flux Complexifiers

Given a surface S select a point p(S) ∈ S. Furthermore, for each point x ∈ S choose a path ρS(x) ⊂ S
within S with beginning point p(S) and ending point x. Denote the path system by PS . The gauge covariant

6The situation slightly improves when a physical Hamiltonian is available, see [6].
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flux of E through S subordinate to the path system PS and the edge eS is defined by

Ej(S)τj :=

∫

S
AdA(ρS(x))((∗E)(x)) (2.19)

Here iτj are the Pauli matrices, ∗E = 1
2ǫabcdx

a ∧ dxb Ec
jτj and Ad denotes the adjoint action of G on its Lie

algebra. Obviously, (2.19) transforms in the adjoint representation under gauge transformations at p(S).
Let S be a collection of surfaces with associated path systems PS for each S ∈ S and µ a measure on

S. Let K be any positive definite, measurable function on S. A gauge covariant flux complexifier (GCFC)
is defined by

C :=
1

2LD−1κ

∫

S
dµ(S) K(S) [−1

2
Tr(E(S)2)] (2.20)

which is manifestly gauge invariant (one could absorb K, L into µ). Here L is a parameter of dimension of
length and we assume both µ, K to be dimensionless.

The mostly studied case is when D = 3 and S = C∈(P) is a discrete set of oriented surfaces which
coincide with the faces (its sub 2-complex) of a polyhedronal cell partition P of σ. In this case µ is just the
counting measure and for convenience one chooses K = 1. We will denote the associated complexifier by
CP . In this case the complexified connection is given by

Zj
a(x) = Aj

a(x) −
i

L2

∑

S∈C2(P )

∫

S

1

2
ǫabcdy

b ∧ dyc [Tr(E(S) AdρS(x)(τj))] δ(x, y) (2.21)

Notice that the series involved in Zj
a terminates at the first term. This is because when computing the

second iterated Poisson bracket there is a double sum over surfaces involved but because the paths ρS(x)
are disjoint from S′ for S′ 6= S there is no contribution from S′ 6= S to {CP , A

j
a(x)}(2). For S′ = S there

is in principle a contribution but by the regularization [2] the classical flux does not Poisson act on paths
lying in its associated surface.

This connection is distributional but fortunately we are only interested in the integral of (2.21) over one
dimensional paths e given by

iL2

∫

e
dxa[Zj

a(x) −Aj
a(x)] =

∑

S∈C2(P )

∑

x∈S∩e

σx(S, e)[Tr(E(S) AdρS(x)(τj))] (2.22)

where

σz(S, e) =
1

2

∫

e
dxa ǫabc

∫

S
dyb ∧ dycδ(x, y)δx,z (2.23)

is the signed intersection number at z ∈ e∩S which here we have assumed to be an interior point (otherwise
there is an additional factor of 1/2, in [2]).

2.2.2 Area Compexifier

Let S be a collection of surfaces, µ a measure on S and K(S, S′) a positive definite integral kernel. An area
complexifier is given by the expression

C =
1

aD−1κ

∫

S
dµ(S)

∫

S
dµ(S) K(S, S′) Ar(S) Ar(S′) (2.24)

where a is a parameter of dimension of length. Here Ar(S) is the gauge invariant “modulus of the electric
flux”

Ar(S) :=

∫

S

√
Tr([∗E]2) (2.25)

which in General Relativity has the meaning of the area of S.
The most studied case arises from a diagonal and constant integral kernel and the following choices of

S and µ respectively.
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Definition 2.2.

i.
A stack s in σ is a D-dimensional submanifold with the topology of R × (0, 1]D−1.
ii.
A stack family S = {sα} is a partition of σ into stacks which are mutually disjoint.
iii.
D families of foliations FI , I = 1, ..,D of σ generated by vector fields ∂/∂tI , I = 1, ..,D are said to be
linearly independent if the vector fields ∂/∂tI are everywhere linearly independent.
iv.
D stack families SI are said to be linearly independent provided that there exist D linearly independent foli-
ations FI such that the leaves of the foliation FI is transverse to every stack in SI . That is, the intersection
sI
αt of any leaf LIt, t ∈ R of FI with any stack sI

α in SI , called a plaquette, has topology (0, 1]D−1.
v. The collection of the plaquettes sIαt is called a parquette at time t within LIt.

In general σ will have to be partitioned into pieces that admit D linearly independent foliations each.
We construct the complexifier for one such piece below, the complete complexifier is then the sum over the
pieces.

The complexifier defined by D linearly independent stack families is now is defined by

C :=
1

2κaD−1

D∑

I=1

∑

α

∫

R

dt [Ar(pI
αt)]

2 (2.26)

Here we take the foliation parameter t to be dimensionless, a is a parameter with dimension cm1 so that
C/~ is dimensionfree and pI

αt = sI
α ∩ LIt denotes the plaquette at time t within the stack sI

α in direction I.
For Abelian gauge theories also the following simpler expression is available

C :=
1

2κaD−1

D∑

I=1

∑

α

∫

R

dt [Ej(p
I
αt)]

2 (2.27)

which uses the gauge invariant flux rather than the areas.
Let us now compute the complexified connections. Notice that due to the fact that each stack is foliated

by squares with half open and half closed boundaries, for each x ∈ σ and each direction I there exists a
unique stack sI

α(x) corresponding to a label αI(x) such that x ∈ sI
α. Likewise, for each direction I there exists

a unique leaf LIt(x) corresponding to a time tI(x) such that x ∈ LIt. Consider the one parameter family of
embeddings XI

αt : [0, 1)D−1 → pI
αt, then there exists a unique uI(x) such that x = XI

αI (x)tI (x)(uI(x)). We
now set

JI(x) := |det(
∂XI

αt(u)

∂(t, u)
)|α=αI (x),t=tI (x),u=uI(x)

nI
a(x) :=

1

(D − 1)!
ǫab1..bD−1

ǫl1..lD−1

∂XIb1
αt (u)

∂ul1
..
∂X

IbD−1

αt (u)

∂ulD−1
(2.28)

For the non Abelian complexifier we find

Zj
a(x) = Aj

a(x) −
i

aD−1
Eb

j (x)
∑

I

nI
b(x)n

I
a(x)

JI(x)

Ar(pI
αI (x)tI (x))√

[Ec
k(x)n

I
c(x)]

2
(2.29)

while for the Abelian one we obtain

Zj
a(x) = Aj

a(x) −
i

aD−1

∑

I

nI
a(x)

JI(x)
Ej(p

I
αI (x)tI (x)) (2.30)

Notice that in both cases the imaginary part of Zj
a is only quasi local in Ea

j , that is, we can recover Ea
j from

Zj
a only up to the resolution provided by the parquettes.
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2.3 Coherent States for Background Independent Gauge Theories

We now come to compute the coherent states. The first step is to write the δ distribution as

δA0 =
∑

s

Ts(A0) < Ts, . > (2.31)

where the sum is over all spin network labels s = (γ, π,m, n). Hence the coherent state is given by

ψZ =
∑

s

Ts(Z) < e−Ĉ/~Ts, . > (2.32)

Here Ĉ is obtained by replacing in (2.19), (2.26) or (2.27) respectively the gauge covariant flux, area or flux
functionals by the gauge covariant flux, area or flux operator [11, 8, 41] respectively which are positive, self
adjoint operators with pure point spectrum only.

It remains to compute the action of the heat kernel and for this purpose we restrict to the case D = 3
of ultimate interest. Again we do this separately for the two types of complexifiers.

2.3.1 Gauge Covariant Flux Coherent States

There is in principle an operator ordering problem involved in the quantization of (2.19), however, the
regularization of [2] shows that there is no action of the operator valued distribution ∗E(x) on a holonomy
A(p) if ∗E(x) is smeared over an infinitesimal surface element of a surface in which the path p lies. Let us
introduce the matrices

Ojk(g) := −1

2
Tr(τkAdg(τj)) (2.33)

where we have assumed the normalization Tr(τjτk) = −2δjk). Since G is compact, we can always embed

into a subgroup of some U(N) so that τT
j = −τj, gT = g−1 whence Ojk(g) is real valued. Moreover, the

obvious identity Ojk(g) = Okj(g
−1) as well as the fact that Ad acts on Lie(G) whence Adg(τj) = Ojk(g)τk

reveals that
Ojk(g)Ojl(g) = δkl (2.34)

so that g 7→ Ojk(g) is a subgroup of O(dim(G)).
The known quantization of the non gauge covariant flux [2, 41] together with the above mentioned trivial

action on Ojk(A(ρS(x)) now reveal that

Êj(S)Tγ,j,m,n = iℓ2P
∑

e∈E(γ)

∑

x∈S∩e

σx(S, e) Ojk(A(ρS(x)))
1

4
Xk

e Tγ,j,m,n (2.35)

where Xk
e is the right invariant vector field of G acting on g = A(e), specifically Xk

e = Tr(τjg∂/∂g
T ). Here

we have assumed that the graph has been adapted to S by suitable subdivisions of edges, such that each
edge of γ is either outgoing from an isolated intersection point or completely lies within S or lies completely
outside S.

Formula (2.35) can now be plugged into (2.20). Since again there is no action of widehatE(S) on ρS(x)
we find

Êj(S)
2
Tγ,j,m,n = −ℓ4P

∑

e,e′∈E(γ)

∑

x∈S∩e

σx(S, e)
∑

y∈S∩e′

σy(S, e
′) Okl(A(ρS(x)−1 ◦ ρS(y)))

1

16
Xk

eX
l
e′ Tγ,j,m,n

(2.36)
The appearance of the matrix Okl(A(ρS(x)−1 ◦ρS(y))) makes the computation of the spectrum of (2.36)

rather difficult for a general graph. However, it becomes simple in case that the graph is such that the
surface S has only a single isolated intersection point x with the graph. In that case (2.36) becomes

Êj(S)
2
Tγ,j,m,n = −ℓ4P [

∑

e∈E(γ)

∑

x∈S∩e

σx(S, e)
1

4
Xj

e ]2 Tγ,j,m,n (2.37)
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One can now introduce similar as in [41] the vector fields

Y j±
S = −i

∑

σx(e,S)=±1

Xj
e/2, Y

j
S = Y j+

S + Y j−
S (2.38)

so that we obtain the linear combinations of Casimir operators

Êj(S)
2
Tγ,j,m,n =

ℓ4P
4

[2(Y j+
S )2 + 2(Y j−

S )2 − (Y j
S )2] Tγ,j,m,n (2.39)

A special case arises when x is an interior point of a single edge e = (e1)
−1 ◦ e2 intersected transversely so

that σx(S, e1) = −σx(S, e2) = ±1 and thus Tγ,j,m,n is gauge invariant at x. Then (2.39 further simplifies to

Êj(S)
2
Tγ,j,m,n = ℓ4P [−iXj

e/2]
2 Tγ,j,m,n (2.40)

For G = U(1)3 or G = SU(2) respectively the eigenvalues of (−iXj
e )2 are given by (nj

e)2 and je(je + 1)
respectively. This special case arises for the case of the polyhedronal cell complex complexifier when γ
is a graph dual to it, that is, there is precisely one edge e of γ which intersects a given face S and if so
transversely.

2.3.2 Area Coherent States

Notice that for each direction I, each graph γ and each stack α the Lebesgue measure of the set of times
t such that pI

αt contains a vertex of γ or that pI
αt contains entire segments of edges of γ vanishes. By the

properties of the area operator and flux operator, it follows that those points do not contribute to the heat
kernel evolution and therefore we may assume without loss of generality that each pI

αt intersects the edges
of γ at most transversely in an interior point. Now consider in the non Abelian case for natural numbers
Ne ∈ N0 the set

SIαγ
N := {t ∈ R; |pI

αt ∩ e| = Ne} (2.41)

where we have abbreviated N := {Ne}e∈E(γ). This is the set of parquettes within stack sI
α which intersect

edge e precisely Ne times transversely. Likewise, consider for the Abelian case for integers Ne ∈ Z

SIαγ
N := {t ∈ R;

∑

x∈pI
αt∩e

σ(pI
α,t, e)p = Ne} (2.42)

where for any surface S intersecting e transversely, the number σ(S, e)p for p ∈ S ∩ e takes the value +1 or
−1 respectively if the orientations of S and e at p agree or disagree respectively. This is the set of parquettes
within stack pI

α whose signed intersection number with edge e is precisely Ne.
In both cases let

lIαγ
N :=

∫

SIα
N

dt (2.43)

be the Lebesgue measure or length of those sets. These length functions are needed in order to define a
cylindrically consistent family of heat kernels as was first observed in [38]. Then the action of the complexifier
on SNWF’s is diagonal

Ĉ

~
Ts = λsTs (2.44)

The corresponding eigenvalues are given for G = SU(2) by

λs =
ℓ2P
2a2

∑

I,α

∑

N

lIαγ
N [

∑

e∈E(γ)

Ne

√
je(je + 1)]2 (2.45)
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while for G = U(1)3 they are given by

λs =
ℓ2P
2a2

∑

I,α

∑

N

lIαγ
N [

∑

e∈E(γ),j

Ne n
j
e]

2 (2.46)

Here we have used that the irreducible, non trivial representations of SU(2) are given by positive, half integral
spin quantum numbers je 6= 0 while for U(1)3 they are given by triples of integers nj

e 6= 0, j = 1, 2, 3.
Furthermore, with κ = 8πGNewton, ℓ2P = ~κ is the Planck area. The ratio t := ℓ2P/a

2 is known as the
classicality parameter. Without dynamical input, this is a free parameter for our coherent states that
decides up to which scale the fluctuations of operators are negligible.

2.4 Cut – Off Coherent States

Formulae (2.32), (2.36) (2.45) and (2.46) display the coherent states in closed form. Unfortunately, although
the eigenvalues of the heat kernel grow quadratically with the representation weight, these states are still
not normalizable because the Hilbert space is not separable, or in other words, the SNWF’s are labelled by
the continuous parameter γ. In view of the uniqueness result when insisting on background independence,
the non separability is not avoidable and one must accept it. The observation is that (2.32) defines a well
defined distribution on the dense subset of H consisting of the finite linear span of SNWF’s. To extract
normalizable information from ψZ we introduce the notion of a cut – off state labelled by a graph γ. These
are defined by

ψZ,γ :=
∑

s;γ(s)⊂γ

Ts(Z) < e−Ĉ/~Ts, . > (2.47)

That is, the sum over all spin networks s = (γ(s), π(s),m(s), n(s)) is truncated or cut off to those whose
graph entry γ(s) is a subgraph of the given γ. The Ansatz is then to use ψZ,γ for suitable γ as a semiclassical
state.

Notice that both (2.45) and (2.46) respectively can be rewritten in the form

λs =
t

2

∑

e,e′

lγe,e′
√
je(je + 1)

√
je′(je′ + 1) (2.48)

and

λs =
t

2

∑

e,e′

lγe,e′ n
j
e n

j
e′ (2.49)

where the edge metric

lγe,e′ =
∑

I,α

∑

N

lIαγ
N NeNe′ (2.50)

has entered the stage. Such non diagonal edge metrics have already appeared in other background dependent
contexts [24, 25]. The edge metric decays quickly off the diagonal because for most edge pairs e 6= e′ there is
no direction and no stack in that direction intersecting both e, e′ which means that lIαγ

N = 0 for Ne, Ne′ 6= 0
for such edge pairs. It is for this reason that we will be able to actually carry out our calculations.

Using the edge metric, formulas (2.29), (2.30) and (2.45), (2.46) admit an interesting reformulation:
The signed intersection number between a path e and a surfaces S is defined by (adopting convenient
parametrization)

σ(S, e) :=

∫

e
dxa

∫

S
dyb dyc 1

2
ǫabc δ(x, y) =

∫ 1

0
dt

∫

[0,1]2
d2u [ǫabcė

a(t)
∂Sb(u)

∂u1

∂Sc(u)

∂u2
] δ(e(t), S(u))

=
∑

x∈S∩e

σx(S, e) (2.51)
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while the intersection number is given by

|σ|(S, e) :==

∫ 1

0
dt

∫

[0,1]2
d2u |ǫabcė

a(t)
∂Sb(u)

∂u1

∂Sc(u)

∂u2
| δ(e(t), S(u)) (2.52)

Both expressions can be regularized in such a way that entire segments of e that lie inside S do not contribute
to the integral [41]. Notice that |σ|(e, S) 6= |σ(e, S)|. Then it is not difficult to see that for SU(2)

lγe,e′ =
∑

α,I

∫
dt |σ|(e, pαI

t ) |σ|(e′, pαI
t ) (2.53)

while for U(1)3

lγe,e′ =
∑

α,I

∫
dt σ(e, pαI

t ) σ(e′, pαI
t ) (2.54)

To verify (2.53), (2.54) it is easiest to use directly the action of non Abelian area and Abelian flux operators
respectively on the corresponding SNWF [41] (with only transverse intersections)

Ar(S)Tγ,j,m,n = ℓ2P [
∑

e∈E(γ)

|σ|(e, S)
√
je(je + 1)] Tγ,j,m,n

Ej(S)Tγ,n = ℓ2P [
∑

e∈E(γ)

σ(e, S) nj
e] Tγ,n (2.55)

and to plug this formula into the expression for C. An alternative proof is by realizing that in the non
Abelian or Abelian case respectively

χSαI
N

(t) =
∏

e∈E(γ)

δ|σ|(pαI
t ,e),Ne

, χSαI
N

(t) =
∏

e∈E(γ)

δσ(pαI
t ,e),Ne

(2.56)

where χS denotes the characteristic function of a set. When plugging (2.56) into (2.50) and solving the
Kronecker δ’s when carrying out the sum over the integers N , (2.53) and (2.54) respectively result.

From the easily verifiable properties of the (signed) intersection numbers

σ(e◦e′, S) = σ(e, S)+σ(e′, S), σ(e−1, S) = −σ(e, S); |σ|(e◦e′, S) = |σ|(e, S)+|σ|(e′ , S), |σ|(e−1, S) = |σ|(e, S)
(2.57)

it follows immediately that

lγ(e ◦ e′, e ◦ e′) = lγ(e, e) + lγ(e′, e′) + 2lγ(e, e′), lγ(e−1, e−1) = lγ(e, e) (2.58)

This is precisely the generalization to non diagonal edge metrics of the cylindrical consistency conditions of
the complexifier [22, 38]. Notice that for the general area complexifier (2.24) we arrive instead at the edge
metrics

lγe,e′ =

∫

S
dµ(S)

∫

S
dµ(S′) |σ|(S, e) K(S, S′) |σ|(S′, e′), lγe,e′ =

∫

S
dµ(S)

∫

S
dµ(S) σ(S, e) K(S, S′) σ(S′, e′)

(2.59)
Finally we have for any edge e

∫

e
dxa ia2[Zj

a −Aj
a](x) =

∑

I,α

∫
dt Ar(pIα

t )

∫ 1

0
ds

(nI
cE

c
j )(e(s))√

[(nI
bE

b
j )(e(s))]

2

∫
d2u [ėa(s)nαIt

a (u)δ(pαI
t (u), e(s))]

(2.60)
in the non Abelian case while for the Abelian case∫

e
dxa ia2[Zj

a −Aj
a](x) =

∑

I,α

∫
dt Ej(p

αI
t ) σ(pαI

t , e) (2.61)

Interestingly, if E does not vary too much on the scale of a plaquette, then (2.60) actually reduces to (2.61)
which is written directly in terms of the signed intersection number and plaquette fluxes. This will be useful
later on when we compute expectation values.
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2.5 Comparison of Gauge Covariant Flux and Area Coherent States

Consider the case that the plaquttes are much smaller than the edges with respect to the three metric to be
approximated by the coherent states and that the edges do not wiggle much on the scale of the plaquettes.
Then for each I the number of stacks that do not contain a vertex of γ but still intersect γ drastically
outnumbers the number of stacks that do contain a vertex. Moreover, among the edge free stacks, the
number of stacks that intersect only one edge completely outnumbers the ones that intersect more than one
edge. Finally, among those with single edge intersections, the number of stacks that intersect the respective
edge once completely outnumbers the ones that do more than once. For this reason, in these cases the
expressions (2.45) and (2.46) can be replaced with good approximation by simpler expressions of the form

λs =
ℓ2P
2a2

∑

e∈E(γ)

lγe je(je + 1) (2.62)

and

λs =
ℓ2P
2a2

∑

e∈E(γ)

lγe [nj
e]

2 (2.63)

respectively where the length function lγe = gγ
ee solves lγe◦e′ = le + le′ , le−1 = le in order that the complexifier

has cylindrically consistent projections. This is the form of the heat kernel eigenvalue considered for the
states in [38]. As shown in [22], these eigenvalues cannot come from a known classical complexifier so that the
complexification map A 7→ Z, without which the Z label of the coherent state has no relation to the phase
space point to be approximated, is unknown. When using the complexifier coming from a polyhedronal cell
complex, a concrete relation between Z and the phase space can be given for specific graphs, the above
eigenvalues arise as we saw in section 2.3.1 and as shown in [22].

Let us also check that the area complexification map Z in (2.29) and (2.30) comes close to the gauge
covariant flux one (2.22), at least on certain graphs. Let γ be a graph dual to the cell complex P . Thus,
for each edge e there is a unique face Se which intersects e in an interior point transversely such that
σSe∩e(Se, e) = +1 and no other face intersects e. Then the gauge covariant flux complexification map at the
level of the holonomies is given by [11]

A(e) 7→ ge(Z) := Zγ(e) = exp(−iτjEj(Se)/L
2) A(e) (2.64)

For SU(2), iτj are the Pauli matrices while for U(1)3 iτj = 1, j = 1, 2, 3. In contrast, the area complexifi-
cation map is given at the level of the holonomies by

A(e) 7→ Z(e) = P exp(

∫

e
Zjτj) (2.65)

where P denotes path ordering where Zj
a is given in (2.29) and (2.30) respectively. Now for sufficiently

“short” edges we have Z(e) ≈ exp(
∫
e[Z − A]jτj)A(e) to leading order in the edge parameter length. If we

assume that Ea
j is slowly varying at the scale of the plaquettes then we have Ar(pI

αI (x)tI (x)) ≈
√

[Ea
j (x)nI

a(x)]
2

so that (2.29) is approximated by

∫

e
(Zj −Aj) ≈ − i

a2

∑

I

∫ 1

0

ėa(t)nI
a(e(t))

JI(e(t))
nI

b(e(t))E
b
j (e(t)) (2.66)

where we have assumed that e is the embedded interval [0, 1]. Now consider the case that the graph is in
fact cubic and that the stack family and the graph are aligned in the following sense:
Suppose that we have an embedding X : R3 → σ; s 7→ X(s). For ǫIJK = 1 we define XI

t (u1, u2) :=
X(sI = t, sJ = u1, sK = u2). This defines linearly independent foliations F I with leaves LIt = XI

t (R2).
The corresponding stack families are labelled by α := (α1, α2) ∈ Z2 and defined by XI

αt : [0, 1)2 →
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σ; XI
αt(u) := XI

t ([α1 + u1]l, [α2 + u2]l) where l > 0 is a certain parameter. The edges of the cubic
graph are labelled by verticies v = (v1, v2, v3) ∈ Z3 and directions I and are defined for ǫIJK = 1 by
ev,I : [0, 1] → σ; evI(t) := X(sI = [vI + t]δ, sJ = vJδ, sK = vKδ) where δ > 0 is another parameter.

In this situation, (2.66) can be further simplified to

∫

evI

(Zj −Aj) ≈ − i

a2
δ

∫ 1

0
nI

b(evI(t))E
b
j (eIv(t)) ≈ − i

a2
δEj(p

I
v) (2.67)

where pI
v is any plaquette in the stack in I direction intersected by eIv.

Thus, for cubic graphs, which are the only ones considered so far in semiclassical calculations, we get a
close match between (2.64) and (2.67) whenever the cubic graph and the stack families are aligned. However,
there is still an important difference:
The parameter area l2 of the plaquette pI

v in (2.67) has no a priori relation to the parameter length δ of the
edge evI while the parameter area of the dual face SevI

in (2.64) is of the order δ2. These considerations
reveal that the individual plaquettes of the stacks cannot be interpreted as the faces of a dual graph although
roughly [δ/l]2 of them combine to a face. Hence the states considered in [22] are genuinely different from
those in [11].

This will turn out to be important:
We will see that in order to be able to perform practical calculations for SU(2) with off diagonal edge
metrics, we need l ≪ δ in order that the edge metric is close to diagonal for generic graphs. It turns out
that if we use the same parameter a in the label Z of the state and for the classicality parameter t = ℓ2P /a

2

then the expectation value of the volume turns out to be of the order of (l/δ)3 too small. Hence, there is a
tension between the possibility to perform practical calculations and the correctness of the classical limit.
The only analytical calculation possible with l = δ uses a graph which is aligned with the stacks and thus is
necessarily cubic. While the result of that calculation results in the correct classical limit, this calculation
is of limited interest because we saw already above that for this case the coherent states of [22] reduce to
those of [11] for which we knew already that the classical limit is correct.

However, the purpose of this paper is to test the semiclassical limit for graphs of non cubic topology.
This can be done with the states of [11] without limitation. With the states of [22] this is possible if we

redefine Zj
a → Aj

a + a2

b2 (Zj
a −Aj

a) where b≪ a. This rescaling is actually not in the spirit of the complexifier
programme, but it repairs the semiclassical limit of all operators built from the fluxes. It will then turn out
that for graphs that satisfy l/δ = b/a the correct classical limit results for n = 6 only. As already mentioned
in the introduction, one could rescale the label of the coherent state by a different amount in order to reach
the correct semiclassical limit of the volume operator for one and only one n 6= 6. However, that would
destroy the correct semiclassical limit of other operators such as areas. Hence the rescaling by (b/a)2 is
harmless in the sense that it reproduces the semiclassical limit of all operators while n−dependent rescaling
do not.

Also with respect to the states of [11] the value n = 6 is singled out. The fact that the cut off states of
[22] have acceptable semiclassical behavior only when the corresponding cut off graph and the label of the
coherent state satisfy certain restrictions imposed by the structure that defines the complexifier, in this case
the size of the parquettes, is similar to the restrictions imposed on the by the polyhedronal cell complex
complexifier [11], namely that the graph be dual to it.

2.6 Justification for Replacing SU(2) by U(1)3

The considerations above have revealed that practically useful cut – off states will be based on graphs which
are much coarser than the parquets so that the edge metric is diagonal in very good approximation. We will
restrict to such graphs in the calculations that follow and find independent confirmation for that restriction
as well in the form of the quality of the semiclassical approximation. Assuming exact diagonality and thus
suppressing the corrections coming from off – diagonality which we will show to be small under the made
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coarseness assumptions, the cut – off states in fact factorizes

ψZ,γ =
∏

e∈E(γ)

ψZ,γ,e (2.68)

where for SU(2)

ψZ,γ,e(A) =
∞∑

2j=0

(2j + 1) e−
t
2
lγe j(j+1) χj(geA(e)−1) (2.69)

while for U(1)3

ψZ,γ,e(A) =
∑

n∈Z3

e−
t
2
lγe

P

j(n
j)2 χn(geA(e)−1) (2.70)

Here χj and χn respectively denotes the character of the j−th and n−th irreducible representation of SU(2)
and U(1)3 respectively.

Under the made assumptions, the edge metrics lγe are identical for both groups because, while lIαγ
N is

defined for non negative integers N only in the case of SU(2) while for U(1)3 all integers are allowed, for
the graphs under consideration for each edge e only either Ne = +1 or Ne = −1 leads to non vanishing lIαγ

N

so that these numbers in fact coincide and since we take the diagonal elements of the edge metric (2.50)
both signs lead to the same lγe .

Finally, if (A0, E0) is the phase space point to be approximated and from which we calculate Z =
Z(A0, A0) via (2.29) and (2.30) then for SU(2) we have,

ge ≈ exp(−iτjP j
0 (e)) exp(τj

∫

e
A0), P j

0 (e) =
1

b2

∑

I

∫ 1

0
dt
ėa(t)nI

a(e(t))

JI(e(t))
[Eb

0j(e(t))n
I
b (e(t))] (2.71)

while for U(1)3 we have

ge = (gj
e)

3
j=1, gj

e = exp(−P j
0 (e) + i

∫

e
Aj

0) (2.72)

where as before we have made the approximation

Ar(pI
αI(x)tI (x))√

[Ec
k(x)n

I
c(x)]

2
≈ 1 (2.73)

which is valid if E0 is slowly varying at the scale of the plaquettes.

Thus, given Z = Z(A0, E0), we have the following abstract situation under the made assumptions:
1.
For each edge e there exist vectors P j

0 (e), Aj
0(e) such that for SU(2) we have ge ≈ exp(−iτjP j

0 τj) exp(τjA
j
0(e)) ∈

SL(2,C) = SU(2)C while for U(1)3 we have ge = (e−P j
0 (e)+iAj

0(e))3j=1 ∈ (C − {0})3 = (U(1)3)C. 2.
The coherent states adopt approximately product form ψZ,γ ≈ ∏

e∈E(γ) ψge where

ψg(h) =
∞∑

2j=0

(2j + 1) e−tlγe j(j+1)/2 χj(gh
−1) (2.74)

for h ∈ SU(2) while

ψg(h) =
∑

n∈Z3

e−tlγe
P3

j=1 n2
j χn(gh−1) (2.75)

for h ∈ U(1)3.
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Now, as anticipated in the introduction, using the tools of semiclassical perturbation theory [19] we are
able to calculate to expectation value of the volume operator V of LQG with respect to the correct SU(2)
coherent states in terms of the expectation value of of a certain operator Q, where V = 4

√
Q, which we

display explicitly in the next section and which is a sixth order polynomial in the right invariant vector
fields Xj

e on SU(2) where Xj
e acts on he in (2.74). The crucial observation, made in [11], is that if we

simply replace the SU(2) right invariant vector fields in Q by U(1)3 right invariant vector fields Xj
e acting

on he in (2.75) and if we replace the SU(2) coherent states (2.74) by the related U(1)3 coherent states in
(2.75), then the remarkable fact is that the expectation values of polynomials of right invariant vector fields
actually coincide to zeroth order in ~. By the same argument, this will be also true if we perform the right
invariant vector field replacement already at the level of V rather than Q. This observation was also key in
the semiclassical analysis of [20, 21].

This feature is maybe not as surprising as it looks at first sight because, after all, the coherent states
for both groups are to approximate the same phase space points. The underlying reason is that that the
classical phase space of the SU(2) theory (i.e. the range of fields and the symplectic structure) and of the
fictive U(1)3 theory actually coincide. It is only when we add the dynamics of the theory as for instance
the Gauss constraint that we see a difference. The Gauss law is taken into account in two ways, first by
using the appropriate group coherent states, here SU(2) or U(1)3 respectively, which is dictated by the fact
that the underlying holonomies take values in the appropriate group. Secondly, one can construct quantum
Gauss constraint invariant coherent states [11, 42] by averaging over the gauge group action at the verticies.
Denote this group averaging map by η. Then, as shown in [11, 42], we have that < η(ψZ,γ , Aη(ψZ,γ) > and
ψZ,γ , AψZ,γ > agree to zeroth order in ~ (notice that the Gauss invariant Hilbert space is an honest subspace
of the kinematical Hilbert space so that the same inner product can be used) for any Gauss invariant opera-
tor A such as the volume operator because the overlap function between coherent states peaked at different
phase space points is sharply peaked7. This justifies the use of the kinematical states employed in this paper.

To summaries:
Using kinematical U(1)3 coherent states is a convenient approximation for actual SU(2) coherent state ex-
pectation value calculations for Gauss invariant operators if one is only interested in the zeroth order in ~.
At non vanishing orders in ~ there will be differences but we are not interested in them for the purposes
of this paper. One may wonder whether the argument made above, namely using kinematical rather than
Gauss invariant coherent states also survives when considering the spatial diffeomorphism constraint. This
issue, currently under investigation, is more complicated in part because it is not completely obvious which
distributional extension of the classical diffeomorphism group one should use [43]. For the purposes of this
paper this is of no concern because we are looking at the local volume operator which is not spatially diffeo-
morphism invariant so that expectation value calculations with respect to spatially diffeomorphism invariant
coherent states are meaningless. It is the local volume which enters the Hamiltonian and Master constraint
and verifying the semiclassical limit of those only makes sense at the kinematical Hilbert space level (one

7In more detail we have

η(ψZ,γ) =

Z

G|V (γ)|

Y

v∈V (γ)

dµH(gv) αg(ψZ,γ) (2.76)

where αg(ψZ,γ)(A) = ψZ,γ(αg(A)) and [αg(A)](e) = g(b(e))A(e)g(f(e))−1 where b(e) and f(e) respectively denote beginning
and final point of e respectively. Now due to gauge covariance of the coherent states we have αg(ψZ,γ) = ψα

g−1 (Z),γ so that the

gauge invariant coherent state expectation value of a gauge invariant operator becomes (using the invariance properties of the
Haar measure)

< η(ψZ,γ), Aη(ψZ,γ) >

||η(ψZ,γ)||2
=

R

G|V (γ)|

Q

v∈V (γ) dµH(gv) < ψαg(Z),γ , AψZ,γ >
R

G|V (γ)|

Q

v∈V (γ) dµH(gv) < ψαg(Z),γ , ψZ,γ >
(2.77)

Now from [11] we know for gauge invariant polynomials A in right invariant vector fields that the peakedness property

< ψZ′,γ , AψZ,γ >=
< ψZ,γ , AψZ,γ >

||ψZ,γ ||2
< ψZ′,γ , ψZ,γ > [1 +O(~)] (2.78)

holds. Now the claim is immediate.

20



cannot check the correct classical limit of a constraint on its kernel). Once this limit is verified, one has
confidence that the physical Hilbert space defined by the Hamiltonian constraint is correct.

3 Regular Simplicial, Cubical and Octahedronal Cell Complexes

In order to perform the calculations in our companion paper [34] for the coherent states of [22], we need the
specific embedding of the n = 4, 6, 8 valent graph relative to the stack families. This can easiest be done
by starting from regular dual simplicial (tetrahedronal), cubical and octahedronal partitions of the three
manifold σ. For the coherent states of [11] this section is not needed except that it shows the existence of
(regular) polyhedral cell complexes dual to n = 4, 6, 8 valent graphs such that all cells of that complex are
platonic solid bodies, i.e. tetrahedral, cubes and octahedra respectively.

In fact, it is possible to define such partitions all from refinements of cubical decompositions such as
sketched in figure 1. We perform the analysis for each chart X : R3 → σ separately and use the Euclidean

Figure 1: Cubic cell decomposition.

metric on R3 in the following definitions.

Definition 3.1.

i.
A cubical partition of R3 is defined by the cubes cn, n ∈ Z3 where

cn = {s ∈ R
3; sI = nI + tI , I = 1, 2, 3} (3.1)

The boundary faces (squares) of cn are taken with outward orientation.
ii.
A simplicial partition of R3 subordinate to a cubical one is defined as follows:
First draw in c(0,0,0) diagonals on the boundary squares such that the diagonals on opposite squares are

orthogonal. Specifically, in the face defined by sI = 0; sJ , sK ∈ [0, 1]2; ǫIJK = 1 the diagonal is the line
t 7→ (sI = 0, sJ = t, sK = t), t ∈ [0, 1] while in the face defined by sI = 1; sJ , sK ∈ [0, 1]2; ǫIJK = 1 the
diagonal is the line t 7→ (sI = 1, sJ = t, sK = 1 − t), t ∈ [0, 1].
Now continue this pattern of orthogonal diagonals in opposite faces to the six cubes adjacent to c0 where
common faces have the same diagonal. This also defines the remaining four diagonals in those six cubes by
connecting the endpoints of the already present two diagonals.
Finally continue this process for all cubes.
The face diagonals define altogether five tetrahedra that partition each cube. We will take their boundary
triangles with outgoing orientation.
iii.
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An octahedronal partition of R3 subordinate to a cubical one is defined as follows:
For each cube draw the unique four space diagonals. Specifically in c(0,0,0) these are the lines t 7→ (t, t, t), (t, t, 1−
t), (t, 1 − t, t), (1 − t, t, t); t ∈ [0, 1]. These partition each cube into six pyramids with common tip in the
barycenter of the cube and with the six faces of the cube as their bases. Now glue two pyramids in adjacent
cubes along their common base. Obviously, two glued pyramids define an octahedron which we take with
outgoing orientation.

The basic building blocks of the tetrahedronal and octahedronal decompositions are displayed in figures
2, 3 and 4 respectively. When gluing the bases of the pyramids along the faces of the original cubes one

Figure 2: Type A triangulation of a cube.

Figure 3: Type B triangulation of a cube.

obtains an octahedronal decomposition as displayed in figure 5. It is maybe not completely obvious that the
drawing of the diagonals that are to define the tetrahedra is a consistent and unique prescription. To see this,
we use the checkerboard visualization displayed in figurefig7: First draw all plaquettes in the s3 = n ∈ Z

layers. Now take the n = 0 layer and draw the diagonal for the plaquette in that layer that belongs to
c(0,0,0) as prescribed in the definition. Define that plaquette as “black”. Now turn the n = 0 layer into a
checkerboard in the unique way consisting of black and white plaquettes. The other layers n 6= 0 are also
turned uniquely into checkerboards by asking that checkerboards in adjacent layers are complementary, i.e. if
the plaquette (n1, n2, n3) is white (black) then the plaquette (n1, n2, n3±1) is black (white). Draw diagonals
in plaquettes of opposite colour orthogonally to each other. This defines face diagonals in the s3 = nconst.
layers. These have the property that they form squares in each layer which lie at an angle of π/4 relative to
the plaquettes and which are such that only every second plaquette corner is a vertex of these squares. We
will refer to such corners that are verticies as “used”. It is easy to see that in adjacent layers, used plaquette
corners lie above unused ones. Now draw the remaining face diagonals in the s1, s2 = n =const. layers by
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Figure 4: Decomposition of a cube into six pyramids.

Figure 5: Octahedronal decomposition.

connecting the used corners in adjacent layers using the appropriate diagonals of the cubes. This results
in the triangulation depicted in figure 7. We now define the graphs dual to these particular polyhedronal
decompositions.

Definition 3.2.

The graph in R3 dual to the above simplicial, cubical and octahedronal cell complexes is obtained by connecting
the barycentres of adjacent tetrahedra, cubes and octahedra respectively by straight lines through their common
triangles, squares and triangles respectively. Here the barycenter of a region R ⊂ R is defined as usual by

B(R) =

∫
R d3s (s1, s2, s3)∫

R d3s
(3.2)

The advantage of the explicit definition of the cell complex is that we can explicitly label the edges and
verticies of the dual graph. This is of course only feasible for sufficiently regular graphs, otherwise we run
into difficult bookkeeping problems.

1. Cubical Graph
The barycentres of the cubes cn are evidently the points vn := (n1 + 1

2 , n
2 + 1

2 , n
3 + 1

2) which form the
verticies of the dual graph. The edges en,I , I = 1, 2, 3 which connect the verticies with labels n and
n+ bI respectively, where bI is the standard unit vector (bI)

J = δJ
I , have the explicit parametrization

en,I(t) = vn + tbI , t ∈ [0, 1]. The other three edges adjacent to vn are ingoing and are given by en−bI ,I .
These edges form the 1 skeleton of another cubical cell complex which is just shifted by the vector
(1
2 ,

1
2 ,

1
2) from the original one.
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Figure 6: Checkerboard visualization of the triangulation.

Figure 7: Triangulation.

2. Tetrahedronal graph
The tetrahedronal graph is the most complicated one because there are two different types of simplicial
decompositions of a cube into five tetrahedra. Type A. corresponds to the case that the verticies of
the internal tetrahedron within a standard unit cube are given by (0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)
while type B. has verticies at (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1). These types alternate in adjacent
cubes as we move in any of the three coordinate directions. Hence, by defining the cube c0 to be of
type A., the triangulation is completely completely specified. Indeed, the type of cn is A. if n1+n2+n3

is even and of type B. otherwise.

To determine the dual graph, we first discuss the barycentres of the tetrahedra for the two types
separately for a standard unit cube as well as the edges of the dual graph that lie within it. The
verticies of and the edges in cn follow then by translation by n = nIbI . Notice that a tetrahedron
T based at v and spanned by vectors eI , that is, T = {v + tIeI ; 0 ≤ tI ≤ 1; t1 + t2 + t3 ≤ 1}, has
barycenter at B(T ) = v + 1

4(e1 + e2 + 33).

A. Type A.
The barycenter of the interior tetrahedron coincides with the barycenter v0 := 1

2(1, 1, 1) of the
cube. The barycentres of the remaining four exterior tetrahedra based at verticies
(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1) respectively are at vA

1 := 1
4 (3, 1, 1), vA

2 = 1
4(1, 3, 1), vA

3 =
1
4(1, 1, 3), vA

4 = 1
4(3, 3, 3) respectively. Accordingly, the dual edges within the cube are eAα =

vA
α − v0, α = 1, 2, 3, 4.

B. Type B.
The barycenter of the interior tetrahedron coincides with the barycenter v0 := 1

2(1, 1, 1) of the

24



cube. The barycentres of the remaining four exterior tetrahedra based at verticies (0, 0, 0), (1, 1, 0), (1, 0, 1), (0
respectively are at vB

4 := 1
4(1, 1, 1), vB

3 = 1
4(3, 3, 1), vB

2 = 1
4(3, 1, 3), vB

1 = 1
4 (1, 3, 3) respectively.

Accordingly, the dual edges within the cube are eBα = vB
α − v0, α = 1, 2, 3, 4.

It remains to describe the dual edges that result from gluing the faces of the exterior tetrahedra of
adjacent cubes. But this is simple because each of the exterior tetrahedra within a cube has three
triangles as faces which lie in the three coordinate planes, hence the gluing is between those triangles
which result from drawing the respective face diagonal within a boundary square of a cube. Hence,
each cube has twelve edges perpendicular to the twelve boundary triangles of the exterior tetrahedra
which are adjacent to the four barycentres of those exterior tetrahedra. Altogether we can identify
six possible gluings, namely either going from type A. to type B. when moving along the positive I
direction and gluing along the sI =const. plane or going from type B. to type A. when moving along
the positive I direction and gluing along the sI =const. plane. As one may check, the type A. to type
B. gluing in I direction corresponds to two dual edges running from vA

I to a vB
4 and from vA

4 to vB
I

types of verticies respectively. Likewise, the type B. to type A. gluing in I direction corresponds to
two dual edges running from vA

J to vB
K and from vA

K to vB
J types of verticies respectively where ǫIJK.

In all cases, these I direction edges have coordinate length 1
2 as one may easily calculate.

Altogether, we can now easily describe the dual lattice as follows:
The verticies are labelled vn,α, α = 0, 1, 2, 3, 4 with vn,0 = n + v0 and vn,α = n + vA

α , α = 1, 2, 3, 4 if
n1 +n2 +n3 is even while vn,α = n+BA

α , α = 1, 2, 3, 4 if n1 +n2 +n3 is odd. The edges are labelled by
en,α, α = 1, 2, 3, 4 and en,I,j, I = 1, 2, 3, j = 1, 2 where en,α(t) = n+v0+t(v

A
α −v0 if n1+n2+n3 is even,

en,α(t) = n+ v0 + t(vB
α − v0) if n1 +n2 +n3 is odd, en,I,1(t) = n+ vA

I + t
2bI and en,I,2(t) = n+ vA

4 + t
2bI

if n1 + n2 + n3 is even and finally en,I,1(t) = n+ vA
J + t

2bI and en,I,2(t) = n+ vA
K + t

2bI if n1 + n2 + n3

is odd where ǫIJK = 1.

3. Octahedronal Graph
Each cube contains six pyramids or halves of the octahedra. Therefore the barycenter of an octahedron
coincides with the barycenter of the common boundary face of the two cubes that contain it. It follows
that the octahedra may be labelled by on,I corresponding to the verticies vn,I = n+ 1

2bJ+ 1
2bK ; ǫIJK = 1

which define its barycenter. Such an octahedron has the property that it has a common base of two
pyramid halves which lies in the sI =const. plane. For the vertex vn,I we define four edges en,I,J,σ, J 6=
I; σ = ± outgoing from it through the explicit parametrization en,I,j(t) := vn,I + t

2(bI + σbJ) which
connects the verticies vn,I and vn+ 1

2
(1+σ)bJ ,J . Notice that these edges lie in the (I, J) or (I,K) plane

but there are no edges in the (J,K) plane adjacent to vn,I . The other four edges adjacent to vn,I have
ingoing orientation.

As an aside, notice that the 1-skeleton of an octahedral cell complex as defined above is an eight valent
graph after removing the edges of the original cubes.

The basic building blocks of the dual graphs are displayed in figures 8, 9, 10 and 11 respectively. The
connection of the tetrahedronal lattice with the diamond lattice is as follows:
For each cube of type A. or B. respectively, keep the interior tetrahedron. Now move the barycentres of the
remaining exterior tetrahedra into that corner of the cube which is also a corner of the tetrahedron under
consideration. In this process, the edges dual to the faces of the interior tetrahedron become halves of the
spatial diagonals of the cube. Finally drop all the other edges which were running between the barycentres
of the exterior tetrahedra. The result is a diamond lattice. Its basic building blocks are depicted in figures
12 and 13 respectively. It is also four valent, however, it does not have a piecewise linear polyhedronal
complex dual to it (i.e. whose faces (which are subsets of linear planes) are in one to one correspondence
with the edges). It does have a cell complex dual to it if one gives up piecewise linearity by suitably rounding
off corners but that is inconvenient to describe analytically. On the other hand, the natural polyhedronal
complex consisting of the interior tetrahedra of the original cubes with the cubes deleted consists of those
tetrahedra as well octahedra which surround half of the corners of the original cubes. Only half of the
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Figure 8: Cube and dual six vallent graph.

Figure 9: Octahedron and dual eight valent graph.

triangle faces of those octahedra are penetrated by the edges of the diamond lattice. The building of this
semi dual polyhedronal cell complex consisting of tetrahedra and octahedra respectively is visualized in
figures 14, 15, 16, 17 and 18 respectively. In order to achieve the desired duality, one has to fill in the
original cubes again which then triangulate those octahedra into eight tetrahedra. This then results in the
additional verticies and edges that we described and depicted in figures 10 and 11.

4 Volume Operator Expectation Values for Dual Cell Complex Coherent

States

In this section we compute the expectation value of the volume operator with respect to the dual cell complex
coherent states of [11]. This section is subdivided into two parts. In the first we review the definition of
the Volume Operator. In the second, we perform the actual calculation. In order to carry it out explicitly,
we have to specify the graph and the dual cell complex. Here we focus our attention on arbitrary graphs
with the following properties: 1. All verticies have constant valence n = 4, 6, 8 and 2. the dual cell complex
consists only of tetrahedra, cubes and octahedra respectively. Such graphs and dual cell complexes exist as
we showed explicitly in section 3. This is all we need for the purposes of this section, more specifics about
the graph and the complex are not needed.
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Figure 10: Type A triangulation of a cube and dual four valent graph.

Figure 11: Type B triangulation of a cube and dual four valent graph.

4.1 Review of the Volume Operator

The classical expression for the volume of a region R of a semianalytical three dimensional manifold σ is:

VR :=

∫

R
d3x

√
det(q) =

∫

R
d3x

√
|detE| (4.1)

where qab is the three metric. The version of the volume operator [9] consistent with the triad quantization
[10] that enters the quantum dynamics [4] has cylindrically consistent projections V̂R,γ given by

V̂R =
∑

v∈V (γ)∩R

V̂γ,v (4.2)

where

V̂γ,v = ℓ3P

√√√√|1
8

∑

eI ,eJ ,eK ,I≤J≤K≤N |v∈eI∩eJ∩eK

ǫijkǫ(eI , eJ , eK)X
eI (v)
i X

eJ (v)
j X

eI(v)
k | (4.3)

Here N denotes the valence of the vertex, ℓ2P = ~κ is the Planck area, X
eI(v)
i = Tr([τihI ]

T∂/∂hI ) are
right invariant vector on SU(2) acting on the holonomy hI := A(eI) (iτj = σj are the Pauli matrices) and
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Figure 12: Type A diamond cell with occupied lower, left front cube.

Figure 13: Type B diamond cell with unoccupied lower, left front cube.

ǫ(eI , eJ , eK) is called the orientation function which is defined as follows:

ǫ(eI , eJ , eK) =






1, iff ėI , ėJ , ėKare linearly independent at v and positively oriented
−1, iff ėI , ėJ , ėKare linearly independent at v and negatively oriented
0, iff ėI , ėJ , ėKare linearly dependent at v

(4.4)

Here we take the convention that the edges at v have been taken with outgoing orientation, hence if in γ the
orientation of an edge e adjacent to v is actually ingoing, just apply the above expression to ψ′(.., h−1

e , ...) :=
ψ(.., he, ..).

From (4.2), we deduce that the volume operator is a sum of contributions, one for each vertex. Therefore,
in the expectation value calculations that follow it will be sufficient to calculate the expectation values for
each V̂γ,v separately and then to add the contributions. Notice that each of these contributions is of the
form Vγ,v = 4

√
Qγ,v where Qγ,v is minus the square of the expression appearing between the modulus labels

|..| in (3.2) and therefore is a sixth order polynomial in the SU(2) right invariant vector fields.
We will now proceed to calculate the general expression for the expectation value of the volume operator

for an n = 4, 6, 8 valent graph.

28



Figure 14: Dual diamond cell of type A.

Figure 15: Dual diamond cell of type B.

4.2 Expectation Values

We can actually perform a full SU(2) calculation as follows:
The coherent states are explicitly given by [11]

ψZ,γ =
∏

e∈E(γ)

ψZ,e, ψZ,e(A) =

∞∑

2j=0

e−tj(j+1)/2 χj(ge(Z)A(e)−1) (4.5)

where t = ℓ2P/L
2 and ge(Z) is given by (2.64). The volume operator expectation value is given by

< V (R) >Z,γ=
∑

v∈V (γ)∩R

< Vγ,v >Z,γ (4.6)

Notice that due to the product form (4.5), the expectation value < Vγ,v >Z,γ only involves the edges adjacent
to v. Now as we saw in the previous section we have Vγ,v = 4

√
Qγ,v. By the arguments presented in the

introduction, the zeroth order in ~ of < Vγ,v >Z,γ is given by 4
√
< Qγ,v >Z,γ. Since Qγ,v is a polynomial in

right invariant vector fields, the results of [11] reveal that that to zeroth order in ~ the expectation value of
any polynomial in the right invariant vector fields iℓ2PX

j
e is simply obtained by replacing it by Ej(Se) which

is given in (2.19).
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Figure 16: Dual diamond cell of type B with only the central four valent vertex left.

Figure 17: Dual diamond cell of type B with only the central four valent vertex left and keeping only the
faces adjacent to the vertex.

It follows that to zeroth order in ~ we have < Qγ,v >Z,γ= [Pγ,v(E)]2 where

Pγ,v(E) =
1

48

∑

e∩e′∩e′′

ǫe,e′,e′′) ǫ
jkl Ej(Se) Ek(Se′) El(Se′′) (4.7)

Notice that for sufficiently fine graphs, we can drop the holonomies along the paths ρe(x) involved in the
definition of Ej(Se) as we approach the continuum. It is then clear that the correct expectation value of the
volume operator is reached provided that (4.7) approximates the volume, as specified by Ea

j , of the cell of
the polyhedronal complex which is bounded by the faces Se involved in (4.7).

To do this, we use the fact that for sufficiently fine graphs a polyhedron P in σ dual to a vertex of the
graph lies in the domain of a chart Y so that P is the image under Y of a standard polyhedron P0 in R3.
Introducing

nI
a(s) =

1

2
ǫabc ǫ

IJK ∂Y b(s)

∂sJ

∂Y c(s)

∂sK
(4.8)

we immediately find with P = Y (P0)

Vol(P ) =

∫

P
d3x

√
|det(E)(x)| =

∫

P0

d3s

√
|det(Ẽ(s)| (4.9)

where
ẼI

j (s) = Ea
j (Y (s)) nI

a(s) (4.10)
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Figure 18: Dual diamond cell of type B with only the central four valent vertex left and keeping only the
faces adjacent to the vertex, highlighting its octahedronal cell structure.

Now for sufficiently fine graphs (4.10) is approximately constant over P0 so that

Vol(P ) ≈
√

|det(Ẽ(s)|
Y (s)=v

Vol0(P0) (4.11)

where

Vol0(P0) =

∫

P0

d3s (4.12)

is the volume of the standard polyhedron with respect to the Euclidean metric on R3.
The idea behind this rewriting is that the fluxes Ej(Se) can be approximated by specific linear combina-

tions of the [ẼI
j (s)]Y (s)=v so that a direct comparison between (4.7) and (4.12) is possible. This is because

a boundary face S is also the image under Y of a standard face S0 in R3 so that (dropping the holonomies
along the ρe(x) as explained)

Ej(S) =

∫

S

1

2
ǫabc dx

b ∧ dxc Ea
j (x) =

∫

S0

1

2
ǫIJK dsJ ∧ dsK ẼI

j (s) ≈ [ẼI
j (s)]Y (s)=v FI(S0) (4.13)

where

FI(S
0) =

∫

S0

1

2
ǫIJK dsJ ∧ dsK (4.14)

is the I component of the Euclidean flux through S0. Thus, plugging (4.14) into (4.7) we find

|Pγ,v(E)|1/2 ≈
√

|det(Ẽ(s))
Y (s)=v

Vol0(v) (4.15)

where

Vol0(v) =

√
| 1

48

∑

e∩e′∩e′′

ǫe,e′,e′′) ǫIJK FI(S0
e ) FJ (S0

e′) FK(S0
e′′)| (4.16)

It remains to compare (4.12) and (4.16). All of this still holds for general graphs. We now specify to
purely n = 4, 6, 8 valent graphs with the above specified properties in order to test the correctness of the
expectation value for specific, simple situations. Thus we know that for each vertex v the faces Se dual to
the edges e adjacent to v form the surface a tetrahedron, cube and octahedron respectively. Thus we just
have to compare (4.7) with the volume of such platonic bodies as measured by Ea

j . We will discuss the three
cases separately.
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4.2.1 Tetrahedron

A standard tetrahedron is the subset

T0 = {s ∈ R
3 : 0 ≤ sI ≤ 1; I = 1, 2, 3, s1 + s2 + s3 ≤ 1} (4.17)

It has four boundary triangles given by

t0I = {s ∈ R
3 : sI = 0, 0 ≤ sJ , sK ≤ 1, sJ + sK ≤ 1; ǫIJK = 1}

t04 = {s ∈ R
3 : 0 ≤ sI ≤ 1; I = 1, 2, 3, s1 + s2 + s3 = 1} (4.18)

We easily compute

Vol0(T0) =
1

6
(4.19)

while (remembering that the surfaces carry outward orientation if the edges are outgoing from v)

FI(t
0
J) =

1

2
δIJ , FI(t

0
4) = −1

2
(4.20)

Let us label the edges adjacent to v by e1, .., e4 where eα is dual to Y (t0j), j = 1, 2, 3, 4. Then

Vol0(v) = =

√
|1
8

∑

1≤j<k<l≤4

ǫej ,ek,el
) ǫIJK FI(t

0
j ) FJ(t0k) FK(t0l )|

=
1

8

√
|ǫ(e1, e2, e3) − ǫ(e1, e2, e4) − ǫ(e1, e3, e4) − ǫ(e2, e3, e3)| (4.21)

which still depends on the sign factors. Hence the expectation value takes values in the range 0, 1
8 ,

√
2

8 ,
√

3
8 ,

1
4

none of which coincides with 1
6 . For the explicit four valent graph that we constructed in section (3) each

triple among the four edges has linearly independent tangents at v and the expectation value is given by√
2

8 > 1
6 which is too large.

4.2.2 Cube

A standard cube is the subset

C0 = {s ∈ R
3 : 0 ≤ sI ≤ 1; I = 1, 2, 3} (4.22)

It has six boundary squares given by

s0I+ = {s ∈ R
3 : sI = 1, 0 ≤ sJ , sK ≤ 1; ǫIJK = 1}

s0I− = {s ∈ R
3 : sI = 0, 0 ≤ sJ , sK ≤ 1; ǫIJK = 1} (4.23)

We easily compute
Vol0(T0) = 1 (4.24)

while (remembering that the surfaces carry outward orientation if the edges are outgoing from v)

FI(s
0
Jσ) = σδIJ (4.25)

with σ = ±.
Let us label the edge dual to Y (s0Iσ) by eIσ. Then the expectation value becomes

Vol(v) =

√
| 1

48

∑

I,J,K;σ1,σ2,σ3

ǫ(eIσ1, eJσ2, eKσ3) σ1σ2σ3 ǫIJK | (4.26)

32



which again depends on the precise embedding of the graph. For an actual cubical graph constructed in
section 3, the edges eI+, eI− are analytic continuations of each other so that the orientation factor vanishes
if two or more edges carry the same direction label I. Otherwise there are more contributions. Which
orientation factors are allowed has been analyzed in detail in [18]. In the case of the actual cubical graph
we have ǫ(eIσ1, eJσ2, eKσ3) = σ1σ2σ3ǫIJK so that (4.26) becomes

Vol(v) =

√
|1
6

∑

I,J,K

ǫ2IJK | = 1 (4.27)

which coincides with (4.24).

4.2.3 Octahedron

A standard octahedron is the subset

O0 = {s ∈ R
3 : |s3| ≤ 1

2
, |s1|, |s2| ≤ 1

2
− |s3|} (4.28)

It has eight boundary triangles given by

t0Iσσ′ = {s ∈ R
2 : 0 ≤ σ′s3 ≤ 1

2
, sI = σ(

1

2
− |s3|), |sJ | ≤ 1

2
− |s3|} (4.29)

where I, J = 1, 2; I 6= J ; σ, σ3 = ±.
We easily compute

Vol0(O0) =
1

3
(4.30)

while (remembering that the surfaces carry outward orientation if the edges are outgoing from v)

FI(t
0
Jσσ′) =

1

4
[σδIJ + σ′δI3] (4.31)

Labelling the edge dual to Y (t0Iσσ3
) by eIσσ3 we find for the expectation value

Vol0(v) =

√√√√√| 1

48 · 64
∑

I1,I2,I3=1,2

σ1,σ2,σ3,σ′
1

,σ′
2

,σ′
3
=±

ǫ(eI1σ1σ′
1
, eI2σ2σ′

2
, eI3σ3σ′

3
) [σ1σ2σ′3ǫ

I1I2 + σ1σ′2σ
′
3ǫ

I3I1 + σ′1σ2σ3ǫI2I3]|

(4.32)
where ǫIJ is the alternating symbol for I, J = 1, 2 with ǫ12 = 1. Expression (4.32) is already very complicated
to analyse for the most general edge configuration and again we refer to [18] for a comprehensive discussion.
However, for the case of the graphs constructed in section 3 the situation becomes simple enough. Namely
in this case the eight edges eIσσ′ have the property that eI,sigma,σ′ and eI,−σ,−σ′ are analytic continuations
of each other. This implies that ėI,σ,σ′(0) = σ′ėI,σσ′,+(0) where eIσσ′(0) = v is the common starting point
of all edges. Since ǫ(e, e′, e′′) = sgn(det(ė(0), ė′(0), ė′′(0))) is completely skew in e, e′, e′′, in this case we can
simplify (4.32) to

Vol0(v) =

√√√√√| 1

48 · 64
∑

I1,I2,I3=1,2

σ1,σ2,σ3,σ′
1

,σ′
2

,σ′
3
=±

ǫ(eI1,σ1σ′
1,+, eI2,σ2σ′

2,+, eI3,σ3σ′
3,+)

× [σ1σ
′
1σ2σ

′
2ǫ

I1I2 + σ1σ
′
1σ3σ

′
3ǫ

I3I1 + σ2σ
′
2σ3σ

′
3ǫ

I2I3 ]| (4.33)

Since (4.33) only depends on σ̃I = σIσ
′
I , after proper change of summation variables, (4.33) turns into

Vol0(v) =

√
| 1

48 · 8
∑

I1,I2,I3=1,2σ1,σ2,σ3=±
ǫ(eI1,σ1,+, eI2,σ2,+, eI3,σ3,+) [σ1σ2ǫI1I2 + σ1σ3ǫI3I1 + σ2σ3ǫI2I3]|

(4.34)
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Using that ǫ(eI1,σ1,+, eI2,σ2,+, eI3,σ3,+) and σ1σ2ǫ
I1I2 are both antisymmetric under the simultaneous exchange

(σ1I1) ↔ (σ2I2) etc. we may further simplify (4.34) to

Vol0(v) =

√
| 1

48 · 4
∑

σ1,σ2,σ3=±
[
∑

I3

σ1σ2 ǫ(e1,σ1,+, e2,σ2,+, eI3,σ3,+) +
∑

I1

σ2σ3 ǫ(eI1,σ1,+, e1,σ2,+, e2,σ3,+)

+
∑

I2

σ3σ1 ǫ(e1,σ1,+, eI2,σ2,+, e2,σ3,+)]| (4.35)

Carrying out the respective sums over I1, I2, I3 and using that ǫ(e, e′, e′′) is completely skew we can bring all
orientation factors into one of the two standard forms ǫ(e1,σ1,+, e1,σ2,+, e2,σ3,+) and ǫ(e2,σ1,+, e2,σ2,+, e1,σ3,+)
respectively. After proper relabelling of the σI we find that

Vol0(v) =

√
| 1

16 · 4
∑

σ1,σ2,σ3=±
σ3 [σ2 ǫ(e1,σ1,+, e1,σ2,+, e2,σ3,+) + σ1 ǫ(e2,σ1,+, e2,σ2,+, e1,σ3,+)]| (4.36)

Since ǫ(eI,σ1,+, eI,σ2,+, eJ,σ3,+) is skew in σ1, σ2 the sum over σ2 collapses to the term σ2 = −σ1 and (4.36)
becomes

Vol0(v) =

√
| 1

16 · 4
∑

σ1,σ3=±
σ3 σ1 [−ǫ(e1,σ1,+, e1,−σ1,+, e2,σ3,+) + ǫ(e2,σ1,+, e2,−σ1,+, e1,σ3,+)]|

=

√
| 1

16 · 2
∑

σ3=±
σ3 [−ǫ(e1,+,+, e1,−,+, e2,σ3,+) + ǫ(e2,+,+, e2,+,+, e1,σ3,+)]| (4.37)

Finally, using ǫ(eI,+,+, eI,−,+, eJ,σ3,+) = σ3 ǫ(eI,+,+, eI,−,+, eJ,+,+) and
ǫ(e1,+,+, e1,−,+, e2,−,+) = ǫ(e2,+,+, e2,−,+, e2,+,+) = 1 we find

Vol0(v) =
1

2
√

2
(4.38)

which does not agree with (4.30).

4.3 Discussion

Interestingly, for both valence n = 4 or n = 8 the expectation value is larger than the expected value with
the same ratio 3/(2

√
2). In general, for generic edge configurations and for higher and higher valence the

expectation value will probably also be larger in ratio than the expected volume. This is because for a
vertex of valence n the number of ordered triples of edges contributing to the expectation value is given
by

(n
3

)
and for appropriate choice of the orientation factors, these terms all contribute with the same sign.

Such a choice is always possible up to topological obstructions discussed to some extent in [18]. For large n
the polyhedron dual to the vertex will approach more and more a sphere triangulated into n polygonal faces
of typical unit area 4π/n. Hence we expect the leading n behavior of the expectation value to be given by√

1
8 n

3/6 (4π/n)3 =
√

8π3/6 = 4π/3
√

3π/4 while the expected volume should approach 4π/3.

Surely, we have not shown that for graph topologies different from a cubical one the expectation value
of the volume operator with respect to the dual cell complex coherent states cannot be matched with
the classical volume value. This is because one can allow degenerate triples which decrease the volume
expectation value. However, the discussion reveals that the question for which graphs the expectation value
comes out correctly is far from trivial and even for natural choices the only admissible graph topology is the
cubical one.

Notice that the expectation value is insensitive to the embedding of the graph relative to the dual cell
complex as long as the graph is dual to it. For non dual embeddings or graph topologies which do not
match the cell complex topology at all, the expectation value will be completely off the correct value. This
demonstrates that the cut – off graph must lie within a certain class which is adapted to the cell complex.

34



5 Summary and Conclusions

Together with the analysis in [34] we have shown that the only known states of LQG which are semiclassical
for the volume operator must be based on cubic cut – off graphs. This looks surprising at first but can
maybe be understood intuitively as follows:

The volume operator is a derived operator and arises from the known representation of the flux operator
on the Hilbert space. The derivation involves a regularization step which involves cubes surrounding the
verticies of the graph in question on whose faces the fluxes are located. In order to take the limit in which
the cubes shrink to the verticies and in order to make the result independent of the relative orientation
between cubes and graphs, an averaging procedure must be applied. Hence one might be tempted to say
that the fact that cubical topology is singled out rests on the cubical regularization.

However, this is not the case. Namely, cylindrical consistency and background independence alone
already fix the cylindrical projections of the volume operator up to a global constant as proved explicitly
in [8, 9]. The constant depends on the averaging procedure chosen and on whether one uses tetrahedra
rather than cubes in the regularization. However, consistency between volume and flux quantization fixes
that factor [10] and rules out the operator [8]. That is to say, there is no freedom left in defining the volume
operator and therefore the details of the regularization do not matter, it is a regularization independent
result. Hence, the preference for cubic graphs in the semiclassical analysis must have a different origin.

To see what it is, notice that the volume operator at a vertex involves a sum over ordered triples of edges
adjacent to the vertex of which only the those with linearly independent tangents contribute. If the vertex
has valence n then typically there are

(n
3

)
contributions [18]. They all contribute with equal weight (up to

sign) which is the unique factor determined in [10]. That constant is such that each triple contributes as if
(the tangents of) a triple of edges spans a corresponding parallelepiped. However, it is clear that generally
far less than

(n
3

)
parallelepiped are sufficient to triangulate a (dual) neighborhood of the vertex and thus it

is not surprising that large valence cut – off graphs will not give rise to good semiclassical states. On the
other hand, unless the graph is cubic, even at low n = 4 the parallelepiped volume contribution per triple is
too high for the triangulation of a tetrahedron. We have seen both effects at work in the previous section.

This result has two implications: Either one is able to find new types of states which are not constructed
by the complexifier method or by different complexifiers than the ones employed so far such that the correct
semiclassical behavior is recovered also for graphs of different than cubic topology. Or, if that turns out to
be impossible, one should accept this result and conclude that, in order that the boundary Hilbert space
of spin foam models has a semiclassical sector, one should generalize them to more general than simplicial
triangulations of the four manifold as advocated in [32, 33].
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