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Abstract 
In foreign-accented speech, pronunciation typically deviates 
from the canonical form to some degree. For native listeners, it 
has been shown that word recognition is more difficult for 
strongly-accented words than for less strongly-accented words. 
Furthermore recognition of strongly-accented words becomes 
easier with additional exposure to the foreign accent. In this 
paper, listeners’ behaviour was simulated with Fine-tracker, a 
computational model of word recognition that uses real speech as 
input. The simulations showed that, in line with human listeners, 
1) Fine-Tracker’s recognition outcome is modulated by the 
degree of accentedness and 2) it improves slightly after brief 
exposure with the accent. On the level of individual words, 
however, Fine-tracker failed to correctly simulate listeners’ 
behaviour, possibly due to differences in overall familiarity with 
the chosen accent (German-accented Dutch) between human 
listeners and Fine-Tracker. 
Index Terms: foreign-accented speech, accent strength, word 
recognition, computational modelling, German-accented Dutch 

1. Introduction 
Understanding spoken language seems to be one of the easiest 
things we do. Listeners usually handle the enormous variability 
in the speech signal without ever so much as noticing it. Yet this 
ease can diminish when listening to foreign-accented speech. In 
this case, the complex processes of comprehension can be easily 
obstructed. In foreign-accented speech, listeners are confronted 
with a speech signal that typically deviates noticeably from the 
canonical form in the target language and often reflects 
language-specific structures from the speaker’s native language. 
Understanding thus requires the speech system to adapt to non-
native pronunciation variations that often disagree with the 
structure of the target language. 

Recent research with native listeners has shown that 
comprehension of foreign-accented speech varies for different 
accents and speakers, and can improve with additional listening 
experience (e.g., [1],[2]). Typically, these studies are interested 
in global foreign accents rather than specific accent markers. 
Specific segmental accent markers were investigated by 
Witteman and colleagues [3],[4] in a series of cross-modal 
priming studies with Dutch participants listening to German-
accented Dutch. The word stimuli in Witteman et al.’s studies 
contained different segmental substitutions that varied in the 
strength of perceived accentedness. Their results show that for 

listeners with limited prior experience with the accent, word 
recognition is more difficult for strongly-accented words than for 
medium- or weakly-accented words. Furthermore, with very 
little additional exposure to the German speaker, recognition of 
strongly-accented words improves significantly. In the present 
paper, we will simulate the human ability to correctly recognise 
words with varying degrees of accentedness with Fine-Tracker, a 
computational model of spoken-word recognition.  

The motivation for this study is two-fold. First, an important 
issue in explaining differences in recognising foreign-accented 
speech is teasing apart how much recognition ease is influenced 
by perceptual similarity between the L2 target language and the 
speaker’s native language, or by experience with accented 
speech in general, or experience with a particular type of accent. 
Since it is basically impossible to find listeners that have never 
been exposed to accented speech, a truly ‘monolingual’ 
computational model might be helpful in resolving the debate. 
Second, as far as we know, no computational model exists that is 
able to simulate how human listeners recognise foreign-accented 
speech. Computational models have mostly focussed on 
explaining the recognition of unaccented speech, and are 
therefore typically tested on how well they handle canonical 
speech. Furthermore, if they are tested on non-canonical forms, 
the mispronunciations are set by the “experimenter” in the 
abstract input (e.g., [5],[6]). In this study, we will investigate the 
ability of an existing computational model [7] to simulate human 
listeners’ recognition of German-accented Dutch using real 
speech as input. 

2. Priming in German-accented Dutch for 
Dutch listeners 

Witteman and colleagues [3],[4] investigated how both long- and 
short-term experience with German-accented Dutch influence 
word recognition by native Dutch listeners. Accented words in 
their study contained diphthong substitutions typical for German 
speakers of Dutch that either deviated acoustically from the 
canonical form to a large extent (huis [hœys], ‘house’, 
pronounced as [hɔɪs]) or to a medium extent (lijst [lɛɪst], ‘frame’, 
pronounced as [laɪst]). As a control, words without obvious 
segmental deviations were chosen (e.g., dekking [dɛkɪŋ], 
‘cover’). The mispronunciations were produced spontaneously. 
Varying degrees of accent strength (strong accent for [œy] 
words, medium accent for [ɛɪ] words, and weak accent for words 
with no substitutions) were confirmed in a rating study. Dutch 
participants with limited experience with the German accent 



listened to the German-accented prime words, and subsequently 
made lexical decisions to printed Dutch target words. Significant 
facilitatory priming effects (i.e., a difference in reaction times to 
target words preceded by identical primes versus unrelated 
primes) were interpreted as successful word recognition. 

Participants with limited experience with the German accent 
showed significant facilitatory priming for weakly-accented and 
for medium-accented words, but not for strongly-accented words 
(see Figure 1). Furthermore, the size of the priming effect was 
significantly smaller for the strongly-accented words than for the 
medium- and weakly-accented words, but medium- and weakly-
accented words primed equally well. When Dutch participants 
first listened to the German speaker reading a short Dutch story 
containing words with [œy] before the cross-modal priming 
experiment, all word types showed significant facilitatory 
priming (see Figure 2). 

Thus, brief additional exposure to the German-accented 
speaker was sufficient to immediately interpret strongly-accented 
words correctly in the priming study. With brief additional 
exposure, priming effects were furthermore comparable for the 
three accent types. Thus, all accent types primed equally well 
after exposure, although they varied in perceived accent strength. 
The fact that differences in perceived accentedness were not 
fully reflected in measurable differences in priming were 
attributed to 1) Dutch listeners’ limited experience with German-
accented Dutch (all Dutch listeners have some experience with 
the German accent) and 2) the close perceptual similarity of the 
German-accented pronunciation with the Dutch canonical 
pronunciation. This allowed them to recognise medium- and 
weakly-accented words equally well, while for strongly-accented 
words additional exposure was necessary to achieve immediate 
correct recognition. 

 

 
Figure 1. Priming effects for Dutch listeners with limited 

prior experience. 

 
Figure 2. Priming effects for Dutch listeners with 

additional brief exposure. 

2.1. Fine-Tracker 

Fine-Tracker [7] is a computational model of human spoken-
word recognition specifically developed to account for the 
accumulating evidence that phonetic detail is important in word 
recognition (e.g., [5]). It is one of only a few computational 
models that take the actual acoustic signal as input. The Fine-
Tracker software is implemented in JAVA and is distributed via 
http://www.finetracker.org. In line with for example [5], Fine-
Tracker assumes that the speech recognition process consists of a 
prelexical level and a lexical level. First, listeners map the 
incoming acoustic signal onto so-called prelexical 
representations. At the lexical level, all representations are stored 
in the form of sequences of prelexical units, and lexical 
representations that (partly) match the prelexical representations 
are activated in parallel.  

2.2. The prelexical level 

At the prelexical level, which is implemented as a set of artificial 
neural networks (ANNs), the acoustic signal is converted into 
‘articulatory feature’ (AF) vectors, created for every 5 ms. AFs 
describe acoustic correlates of articulatory properties of speech 
sounds and can be used to represent the acoustic signal in a 
compact manner (e.g., manner and place of articulation, voicing, 
and tongue position during the production of vowels). The use of 
AFs as prelexical representations allows Fine-Tracker to ‘track’ 
and model phonetic detail in the speech signal. For more details 
about the AFs used in Fine-tracker see [7]. Note that one of the 
AFs specifically models diphthongs. 

For each of the AFs, one ANN was trained for all its AF 
types using NICO [9]. The ANNs were trained on 3,410 
randomly selected utterances from the manually transcribed read 
speech part of the Spoken Dutch Corpus (CGN; [10]). Fine-
Tracker was only trained on speech from native Dutch 
professional speakers (without clear dialect markers) and can 
thus be regarded as a ‘monolingual’, i.e., a hypothetical Dutch 
listener who has never encountered German-accented Dutch.  

For each 5 ms input frame, each ANN creates a continuous 
value between 0 and 1, for each of its AF types. This value can 
be regarded as a measure of activation of this AF type. Per input 
frame, all AF values are combined into a feature vector, whose 
length is equal to the total number of AF types. These feature 
vectors serve as the input of the lexical level of Fine-Tracker.  

2.3. The lexical level 

In Fine-Tracker’s lexicon, words are also represented in terms of 
AF vectors. These are obtained by automatically substituting all 
phonemes in the lexical representations with their canonical (0 
and 1) AF values. Fine-Tracker’s word recognition module uses 
a probabilistic word search (based on Viterbi search, a standard 
technique in automatic speech recognition) to match the 
prelexical feature vectors onto the candidate words in the lexicon 
in order to find the most likely sequence of words. For each of 
the prelexical vectors the ‘degree of fit’ with the lexical vector is 
calculated, a worse fit results in a lower ‘activation’ of that word 
and vice versa. The output of Fine-Tracker is a ranked N-best list 
of the (in this study) 50 most likely lexical paths with likelihoods 
for each word on each path (the N can be set at any value). This 
N-best list can be created for every 5 ms time slice. 

A strength of Fine-Tracker is that it can be tested with real 
speech rather than an abstract form of input representation as is 
used by other models of word recognition (e.g., [5],[6]). This 
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allows us to use the actual German-accented Dutch stimuli from 
the cross-modal priming study in [3],[4] for our simulations. 

3. Set-up of the simulation 
Fine-Tracker was tested in two conditions that approximate the 
two listener groups of the cross-modal priming study in [3],[4]: 
as a Dutch listener with no experience with German-accented 
Dutch (referred to as the inexperienced condition) and as a Dutch 
listener who had just listened to some German-accented Dutch 
(the exposure condition). Note that while Fine-Tracker truly had 
no prior experience with German-accented Dutch, Dutch 
listeners in [3],[4] had limited prior experience with the German 
accent. The task set to Fine-Tracker was to correctly model the 
varying word recognition ease observed in [3],[4]. For Fine-
Tracker, we consider a target word appearing at N=1 (first best) 
as a correctly recognised word, while for the human data we 
regard a significant positive priming effect as a correctly 
recognised word.  

For any automatic speech recognition system to work, 
parameters need to be set for the task and speech at hand. For the 
inexperienced condition, 94 weakly-accented filler words from 
the German speaker of the priming study (disjoint from the test 
set), with no /œy/ and /ɛɪ/ were used as a development set to tune 
the parameters. To simulate brief exposure to German-accented 
Dutch, the parameter settings for the exposure condition were 
tuned on the development set with an additional six /œy/ and six 
/ɛɪ/ filler words for the inexperienced condition. Note that the use 
of accented items during parameter tuning as an implementation 
of brief exposure is a modelling assumption, not a theoretical 
assumption [11].  

After the optimal parameter settings were found, Fine-
Tracker was evaluated using the full set of experimental words 
from the priming study (24 weakly-accented words, 12 medium-
accented /ɛɪ/ words, and 12 strongly-accented /œy/ words). For a 
simulation to be considered successful, Fine-Tracker should 
show more correctly recognised target words with decreasing 
accentedness, i.e., the fewest correctly recognised words for the 
strongly-accented words, and more for the medium- and weakly-
accented words. Secondly, we would expect that with increasing 
accentedness, the depth in the N-best list at which the target 
word was found should decrease (note: the higher the N, the 
worse). These are the criteria with which Fine-Tracker will be 
evaluated as a macroscopic computational model of the 
recognition of foreign-accented speech. Moreover, we will 
further investigate Fine-Tracker as a microscopic computational 
model by correlating the average depth at which a target word 
was found with the size of the priming effect for individual 
words in the priming study. 

For a successful simulation of the behaviour of Dutch 
listeners with some exposure to German-accented Dutch, we 
expect Fine-Tracker’s performance to increase (i.e., to recognise 
more words correctly) in the exposure condition. Moreover, we 
expect that with increasing accentedness, the depth in the N-best 
list at which the target word is found should decrease. 

The Dutch lexicon used in the simulations consisted of 
27,740 entries. To guide Fine-Tracker’s word search, we applied 
priors (i.e., a higher probability) to the words in the test and 
development sets such that they had a higher likelihood than the 
other words in the lexicon. (Note, that the use of priors, usually 
in the form of word frequency, is standard in automatic speech 
recognition systems.) 

Table 1. The average depth at which the target word was found 
in the N-best list, the average depth excluding the recognised 
target words, and the percentage of target words that were 

recognised, per accent type and per condition. 
 weakly-

accented 
targets 

medium-
accented 
targets 

strongly-
accented 
targets 

inexperienced condition 
average depth 1.8 3.6 5.2 
average depth, excl. first best 3.7 6.2 7.3 
% target on N=1 71.4 50 33.3 
exposure condition 
average depth 1.6 3.4 5.8 
average depth, excl. first best 3.6 6.8 9.1 
% target on N=1 76.2 58.3 41.7 

 
Leading silences in the words of the test and development 

sets were cut before the stimuli were parameterized with 12 
MFCC coefficients and log energy and augmented with first and 
second derivatives resulting in a 39-dimensional feature vector. 
The features were computed using 25 ms windows shifted by 5 
ms per frame. The MFCC feature vectors were used as input to 
the ANN module at the prelexical level. The output of the 
prelexical level was then used as input to the search module at 
the lexical level of Fine-Tracker.  

4. Results 
In the priming study [3],[4], three weakly-accented words had 
been removed from the analyses due to high error rates; the same 
words were now removed for the analyses of the Fine-Tracker 
outcome. We first identified the number of target words present 
in the 50-best list output by Fine-Tracker. For both the 
inexperienced condition and the exposure condition, all 45 
remaining target words appeared in the 50-best list output by 
Fine-Tracker. For the inexperienced condition a total of 25 target 
words were ranked first best – the lowest ranking target word 
was at N=15, for the exposure condition it was 28 words, with 
the lowest ranking target word at N=23. The (weighted) average 
depth in the N-best list at which the target words were found was 
3.5 for the inexperienced and 3.6 for the exposure conditions. 

To further investigate whether Fine-Tracker correctly 
simulated the differences human listeners showed in recognising 
words with varying strengths of accent, weakly-, medium-, and 
strongly-accented words were analysed separately. Table 1 lists 
the average depth at which a target word was found in the N-best 
list, the average depth excluding the first best target words, and 
the percentage of target words that were recognised, separately 
for each accent type and for each condition. 

In line with the human data, the average depth at which a 
target word was found in the inexperienced condition was 
significantly higher in paired two-tailed t-tests for strongly-
accented words than for weakly-accented words (t(31) = 7.63, p 
< .05), with no significant difference between medium- and 
weakly-accented words (t(31) = 3.083, p > .05). The number of 
times that the target word appeared as first best was 15 out of 21 
(71.4%) for the weakly-accented words, 6 out of 12 (50%) for 
the medium-accented words, and only 4 out of 12 (33.3%) for 
the strongly-accented words.  

Also in line with the human data, in the exposure condition 
there was no difference in depth of N between strongly-accented 
words and medium-accented words (t < 1) and between medium- 



and weakly-accented words (t(31) = 2.73, p > .1), but contrary to 
the human data strongly-accented words were ranked 
significantly lower than weakly-accented words (t(31) = 6.24, p 
< .05). In the exposure condition, 16 (76.2%) of the weakly-
accented words were ranked first best, 7 (58.3%) of the medium-
accented words, and 5 (41.7%) of the strongly-accented words. 
Note that the number of target words ranked as first best was 
overall higher in the exposure condition than in the 
inexperienced condition, but this difference was not statistically 
significant. The fact that Fine-Tracker still judged strongly-
accented words as less likely target words in the exposure 
condition, while human listeners recognised these words in the 
exposure condition as easily as the other words, possibly speaks 
for the fact that the limited previous exposure human had with 
the German accent helped them to adapt to strongly-accented 
words more quickly. Thus, we predict that with more exposure 
Fine-Tracker would judge strongly-accented words as more 
likely target words. The fact that in the inexperienced condition 
there was no significant difference between medium- and 
weakly-accented word for the ‘monolingual’ Fine-tracker, speaks 
for an influence of perceptual similarity on recognition ease. 

For both the priming data and Fine-Tracker, there was 
variation in the results on an item-by-item basis, i.e., priming 
effects varied in size per word and for Fine-Tracker the depth at 
which target words were found varied. To investigate whether 
Fine-Tracker and the human listeners showed similar behaviour 
for individual words, the depth at which the target word was 
found in the N-best list for the inexperienced and the exposure 
conditions was correlated with the priming effects in the human 
data. A one-tailed (bivariate) Spearman’s rho test of the 
inexperienced condition found no significant correlation with the 
inexperienced human listener group (Spearman’s rho = .152, p = 
.159). And also, for the exposure condition, no significant 
correlation was found with the human listeners in the exposure 
group (Spearman’s rho = -.28, p = .427). Thus, Fine-Tracker 
could not successfully simulate listeners’ behaviour in the 
priming study on an item-by-item basis. 

5. Summary and conclusions 
Fine-Tracker was able to correctly predict the difficulty 
inexperienced listeners have with German-accented Dutch: in 
line with the human data, the average depth at which a target 
word was found was significantly higher for strongly-accented 
words than for weakly-accented words, with no significant 
difference between medium- and weakly-accented words. 
Returning to the perceptual similarity vs. experience debate, this 
latter result speaks for an influence of perceptual similarity on 
recognition ease. 

The overall results improve slightly (but not significantly so) 
when Fine-Tracker was exposed to a few accented items during 
parameter tuning. Again, with increased accent, the number of 
recognised words decreased. Moreover, there was no difference 
in N-depth between strongly-accented words and medium-
accented words or between medium- and weakly-accented 
words, but contrary to the human data strongly-accented words 
were ranked significantly lower than weakly-accented words.  

This discrepancy between the human listeners and Fine-
Tracker in the exposure condition can either be explained by an 
adaptation advantage human listeners had through prior limited 
exposure or it can be explained by the difference in the way 
human listeners and Fine-Tracker were exposed to German-

accented Dutch. In Fine-Tracker, exposure was implemented as a 
change in parameter settings, these (and other, not reported) 
results indicate that this may not the optimal implementation of 
‘exposure’. Follow-up research will focus on incorporating 
exposure to accented speech at the prelexical level, i.e., by 
training Fine-Tracker on German-accented Dutch, such that the 
AFs will be adapted to German-accented Dutch. Since listeners 
in the priming study had limited exposure to German-accented 
Dutch, unlike Fine-Tracker, it is possible that the inexperienced 
condition does reflect the results as one would expect for a Dutch 
speaker who has never been exposed to German-accented Dutch. 
This interpretation needs to be investigated further.  

The item-by-item analysis showed that Fine-Tracker was not 
able to correctly simulate listener results on an item-by-item 
basis. However, it should be noted that other aspects of words 
(such as lexical frequency) also influence recognition ease, and it 
is possible that differences in performance on an item-by-item 
basis mainly reflect differences in how Fine-tracker and human 
listeners react to these additional aspects. 

Concluding, Fine-Tracker was able to simulate human 
listeners’ recognition of German-accented Dutch, although more 
research is needed to determine the status of the model as a true 
monolingual of Dutch. Nevertheless, this study shows that 
computational modelling is a valuable asset in investigating the 
mechanisms underlying the recognition of foreign-accented 
speech. 
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