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Abstract

We construct a massive non-abelian N = 1 SYM theory on R3. This is
achieved by using a non-local gauge and Poincare invariant mass term
for gluons due to Nair. The underlying supersymmetry algebra is shown
to be a non-central extension of the Poincare algebra by the spacetime
rotation group so(3). The incorporation of Chern-Simons couplings in
the formalism is also presented. The dimensional reduction of the gauge
theory and the SUSY algebra is related to a massive N = 2 massive
matrix quantum mechanics based on euclidean Clifford2(R).
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1 Introduction

Yang-Mills theories in three spacetime dimensions (YM2+1) provide a fascinating test-
ing ground for ideas related to non-perturbative aspects of gauge theories. For instance,
pure Yang-Mills in D = 2 + 1 is one of the few non-supersymmetric gauge theories
that can be studied in a manifestly gauge invariant Hamiltonian formalism. Starting
from first principles, the formalism due to Kim, Karabali and Nair (KKN) has led to
an understanding of many non-perturbative features of the purely gluonic theory [4,3].
The successes of the KKN approach include an understanding of the mechanism for
the generation of a mass-gap in the spectrum of pure Yang-Mills theory as well as a
precise computation and prediction for its string tension; which compares remarkably
well with the latest lattice data. More recently, progress has been achieved towards
extending the formalism to incorporate matter fields and understand screening ef-
fects [6], adapting the Hamiltonian analysis to include non-trivial spacial geometries
such as S2 [7] along with promising schemes for precision computations of glueball
masses [8] and strong coupling corrections to the string tension [10]. Among other im-
pressive insights, and central to the concerns of the present paper, this list of successes
also explains how the gluons of the three dimensional gauge theory become massive
leading to a gapped spectrum.

In the purely gluonic theory the mass-gap is related to the volume measure on
the gauge invariant configuration space of the gauge theory. In a gauge invariant
formalism, the gauge potentials can be replaced by a scalar (Hermitian) matrix degree
of freedom H. This can be interpreted as the non-abelian version of the standard
dualization prescription for three dimensional electrodynamics, where the photon can
be replaced by a scalar. The volume element on the space of gauge configurations A
modulo gauge transformations G: dµ(A/G), can be shown to be related to the Haar
measure on the space of H (dµ(H)) [4] as

dµ(A/G) = 2cASwzw(H)dµ(H) (1.1)

Swzw(H) is the Wess-Zumino-Witten action while cA is the quadratic adjoint Casimir
for the gauge group. Swzw(H) effectively cuts off the volume of the physical configu-
ration space resulting in a massive spectrum for the gauge theory. The effect of the
measure and the resulting mass-gap have been explored in depth by KKN [4] in a
Hamiltonian framework.

Though a covariant approach towards a non-perturbative reformulation of three
dimensional pure Yang-Mills theory remains to be developed, it is nonetheless pos-
sible to write down a gauge and poincare invariant mass-term for YM2+1 (which we
subsequently denote by Sm) that is manifestly suitable for a path-integral analysis.
The mass-term in question, introduced by Alexanian and Nair [2,1] can be interpreted
as the magnetic mass for high temperature QCD. Indeed, finite temperature consid-
erations were what led to its introduction in [2]. For related previous analyses of the
electric and magnetic sectors of finite temperature QCD we shall refer to [11].

Though the precise relation between the covariant mass-term suggested in [1, 2]
and the much more elaborate Hamiltonian framework due to KKN is not completely
understood there are several reasons to believe that Sm is closely related to the volume
measure on the gauge theory configuration space. As a case in point, it was shown
in [1] that Sm is dynamically generated in the purely gluonic theory. This analysis

1



was performed by a self consistent rearrangement of the perturbation series and the
resulting (leading order) estimate for the mass-gap is strikingly close to the exact
answer, which is now known from the Hamiltonian KKN framework1. Furthermore,
an observation, which is more compelling from the analytical point of view, was made
in [3]. In that paper, it was shown that a particular covariantization of the mass-
term obtained in the Hamiltonian framework from the volume measure led directly to
Sm. Though covariantization does not uniquely lead to Sm; an alternate possibility
was also discussed in [1], it has several welcome algebraic attributes. For instance, it
was shown in [12] that Sm is the unique covariantization of the configuration space
volume measure that leads to standard gaussian mass-terms for the matrix quantum
mechanics obtained by the dimensional reduction of the gauge theory. Furthermore,
as we show in the present paper, it admits a very natural supersymmetrization. Thus,
although the precise origins of Sm and its potential relation to the measure on the
gauge theory configuration space remain partly obscure, it is clear that it deserves to
be investigated further. In the present paper, we shall simply consider it as a potential
gauge and Lorentz invariant mass-term that one can use to deform the gluonic theory
and make it manifestly massive. With this particular approach in mind, we shall
proceed to work out its generalization that has N = 1 supersymmetry.

Three dimensional supersymmetric gauge theories are also of considerable interest
from the point of view of gauge/gravity duality. For instance, N = 8 SYM, being
related to the worldvolume theory of D2 branes is of fundamental significance in ex-
tending and testing the gauge/gravity duality in the regime of non-conformal gauge
theories. Though this particular gauge theory on R3 is massless, its spectrum can be
rendered massive by recasting it on R × S22. A string dual for this massive sixteen
supercharge theory has recently been proposed in [13] and several analytical features
pertaining to its spectrum have also been extracted in the same paper. Apart from
super Yang-Mills theories, sixteen and twelve supercharge super Chern-Simons the-
ories have also been investigated in great deal in the recent past in the wake of the
exciting proposals for their gravity duals and M2 brane dynamics [14, 15]. The two
sets of developments are not completely independent from the point of view of the
duality between D2 and M2 brane theories [16] as the sixteen supercharge supercharge
super Chern-Simons theory is indeed expected to describe the IR dynamics of the
corresponding Yang-Mills theory. For recent evidence in this regard at the Lagrangian
level see [17]. Interestingly the super Chern-Simons theories mentioned above admit
explicit massive deformation on R3, which have also been worked out in [18].

Apart from the massive nature of the spectrum, a central feature common to the
supersymmetric gauge theories mentioned above is that the underlying supersymmetry
algebra takes on the following schematic form:

[Q,Q]+ ∼ P +mR (1.2)

where m is the characteristic mass scale and R is a (flavor) R-symmetry generator.
Such mass-deformed algebras also appear as the symmetry algebra of the scatter-
ing matrix of the spin-chain/planar dilatation operator of N = 4 SYM and the dual

1The leading estimate in [1] for the mass gap m ≈ 1.2mexact
2Recall that in three spacetime dimensions Yang-Mills theories are generically not conformal. Thus

there is no natural way to map the results for the theory on R × S2 to those for the theory defined
on R3.
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worldsheet theory [19] as well as in the closely related plane wave matrix model [20,21].
Their appearance as the spacetime symmetry algebra of three dimensional gauge the-
ories leads to remarkable consequences. For instance, it is possible to use the algebra
to completely constrain all four particle scattering amplitudes in the corresponding
super Chern-Simons theories, to all orders in perturbation theory up to a single unde-
termined function [22]. This result parallels the developments previously known result
in the case of the scattering matrix of the dilatation operator of N = 4 SYM and the
dual worldsheet computations [19]. The non-central extensions of the supersymmetry
algebras are a natural consequence of the massive nature of the underlying theories
in both the cases and the severe constraining power of the algebra so obtained is an
extremely welcome feature.

A key point of departure for the theories we consider in this paper from the exam-
ples cited above is that the theories in question do not have extended supersymmetry,
and hence they lack R symmetry. Nevertheless, the mass deformation of N = 1 SYM
theory that we perform leads to an algebraic structure of the form (1.2), where R
stands for the spacetime so(3) rotations. Our construction may also be contrasted
with the widely known method for rendering Yang-Mills theories massive in three
dimensions; namely the addition of Chern-Simons terms, see for example [23]. An
N = 1 deformation of a Super Yang-Mills theory by Chern-Simons terms and massive
Fermions does not lead to a deformation of the underlying supersymmetry algebra,
while for the present case it does. Thus, from the point of view of the underlying
algebra, the massive gauge theories constructed in this paper is closer in spirit to the
theories studied in [13,18], even though the Yang-Mills theories in question are defined
on R3 with minimal supersymmetry, as opposed to the case in [13] where the SYM
has extended SUSY and is defined on R × S2 or the examples studied in [18], where
the gauge theories do not have any Yang-Mills terms in their actions. It is also worth
noting that non-central extensions of the type (1.2) are very constrained, as a generic
lie algebra R will lead to a violation of the super Jacobi identity. However, as we
show later in the paper, the three dimensional spacetime rotations so(3) do lead to a
consistent extension of the super-Poincare algebra in three dimensions, which in turn,
makes the mass-deformations of the N = 1 theory of the kind that we explore in the
paper possible.

The results presented here are closely related to the observations noted in [12] where
mass-deformations of various supersymmetric three dimensional Yang-Mills theories
were related to supersymmetric matrix models by dimensional reduction. However,
the issue of whether or not the deformed Yang-Mills theories are supersymmetric
themselves was not answered in that paper. In this paper we address that question
in the context of the minimally supersymmetric SYM while deferring the issue of
extended supersymmetry to a future publication.

The paper is organized as follows. We begin with a brief review of the mass-term
introduced in [1, 2] and its various relevant algebraic properties. Following that we
proceed to present the supersymmetrization of the mass-deformed theory and extract
the underlying supersymmetry algebra. This construction is followed by a discussion of
how Chern-Simons terms may also be introduced within our framework and we work
out the interplay between the mass (m) used in deforming the algebra and Chern-
Simons level number. We end the paper with a discussion of how the dimensional
reduction of the mass-deformed theory constructed in the paper can be related to
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massive N = 2 matrix quantum mechanics, the unique example of which was worked
out in [24]. We also comment on the consistent contraction of the supersymmetry
algebra that results from the dimensional reduction.

2 Massive Bosonic Y M2+1: A Brief Review

The action for pure Yang-Mills with the mass term included can be written as:

SYM =

∫
d3x

1

4g2
F a
µνF

a
µν +

1

g2
Sm. (2.1)

Sm [1] is the mass term introduced in [1]. As explained below and elaborated upon
in the appendix, many of the features of this term are best elucidated by expressing
it in terms of seemingly two dimensional gauge potentials A±. It is important to
stress that the apparently two dimensional quantities A± etc are generated from Aµ
by contracting them with a set of auxiliary three dimensional null vectors n, n̄, and
this apparent two dimensionality is not to be confused with the actual dimensionality
of the spacetime. The null-vectors are in turn taken to depend on the coordinates of an
associated S2 which we refer to as Ω. The spherical coordinates have nothing to do with
the three dimensional spacetime, and for all practical purposes they can be regarded
as a bookkeeping device. Nevertheless, this pseudo two dimensional formalism is
extremely useful for many of the computations carried out later and it is utilized
heavily throughout the paper. The details about the conventions regarding the null
vectors and the definitions of A± can be found in the appendix.
Sm can be expressed in explicit detail as

Sm = m2

∫
dx0dΩK(A+, A−), (2.2)

where the kernel K is given by

K(A+, A−) = − 1

π

∫
1

(tr(A+(1)A−(1)) + iπI(A+(1)) + iπI(A−(1))) . (2.3)

While

I(A(1)) = i
∑
n

(−1)n

n

∫
2···n

tr(A(1) · · ·A(n))

z̄12z̄23 · · · z̄n1

d2x1

π
· · · d

2xn
π

. (2.4)

The arguments of A refer to the different ‘spacial’ points. The transverse coordinate
x0 is the same for all the A’s in the above expression for I. Alternatively, the mass
term can also be formally expressed as

K(A+, A−) = −tr

(
A+A−

π
+ ln(D+) + ln(D−)

)
(2.5)

where D± = ∂± +A±. The trace in the above expression stands for the trace over the
color indices as well as the integration over the transverse coordinates.

If A± had really been the components of a two dimensional gauge potential then
the formal expression above would have related K to a gauged WZW model; a fact
that is well known from studies of QCD in two dimensions [26]. What we have above
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is a three dimensional version of the WZW functional, where the D = 2 + 1 gauge
potentials are organized in terms of two dimensional quantities A± is a somewhat
twistorial fashion.

Although Sm is obviously non-local, as might be expected for a mass-term for
gluons, it has a perfectly well defined expansion in powers of the gauge potential
making it suitable for the standard perturbative (loop) expansion. For instance, the
first three terms in the expansion of the kernel K can be expressed as [1]∫

dx0dΩK(A+, A−) = K2 +K3 +K4 + · · · (2.6)

K2 =
1

2

∫
k

Aaµ(k)

[
δµν −

kµkν
k2

]
Aaν(−k)

K3 =

∫
ki,Ω

i

12π
tr (A(k1).n[A(k2).n, A(k3).n])

(
1

k1.n

(
k2.n̄

k2.n
− k3.n̄

k3.n

))
.

K4 = − 1

8π

∫
ki,Ω

tr(A.n(k1) · · ·A.n(k4))

k3.n+ k4.n

(
1

k2.n

(
k3.n̄

k3.n
− k4.n̄

k4.n

)
− 1

k1.n

(
k3.n̄

k3.n
− k4.n̄

k4.n

))
(2.7)

Overall conservation of momenta is implied in the above formulae for the vertices.
The contributions to these vertices to the gluon self-energy were computed in [1].
In what is to follow, it would be convenient to regard the action described above

as being obtained from a ‘Lagrangian’ on S2. The dynamical degrees of freedom of
the theory have no dependence on S2, which, as mentioned before, is only used as a
bookkeeping device. However, it would be useful to relegate the S2 integral to the
very end. The S2 valued functional which we shall investigate is:

S =

∫
d3x

3

2πg2
F a

+−F
a
−+ +

1

g2
Sm.. (2.8)

It is implied Sm is the mass term given above with the Ω integrals left unevaluated.
One can easily verify that ∫

Ω

S = SYM (2.9)

The equations of motion, without integrating over Ω integration, can be written as:

3

π
(D−F−+)a +m2Ja− = 0,

3

π
(D+F+−)a +m2Ja+ = 0 (2.10)

The currents

Ja± =
1

π
tr (−ita[A± − A±]) (2.11)

involve the auxiliary gauge fields A± which satisfy an associated Chern-Simons equa-
tion of motion: namely,

D+A− = ∂−A+, D−A+ = ∂+A− (2.12)
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The Chern-Simons equations obviously originate from the variation of the kernel K
used in defining Sm (2.2). As pointed out in [2], K, or more precisely I (2.4), thus has
a natural interpretation as the eikonal of an associated Chern-Simons theory.

The equations for A±, in turn, imply

D∓J
a
± =

1

2π
F a
∓± (2.13)

Thus, though the current J is highly non-local, it enjoys the special property of being
related to the field strength through the action of the covariant derivative. This
particular feature may be contrasted with the case one would have encountered if
a Chern-Simons term, instead of Sm was chosen as the mass term. In the Chern-
Simons case, the corresponding current J̃µ (in the R3 notation) i.e. the variation of
the Chern-Simons term would itself have been proportional to Fµν i.e J̃µ ∼ εµνρFνρ.
However, in the present case, it is the covariant derivative of the current, and not the
current itself that is related to the field strength. This fact is crucial to the ensuing
supersymmetrization that we present in the following section, which, unlike the case
of the supersymmetric Yang-Mills-Chern-Simons theory [23], requires the underlying
super Poincare algebra to be mass-deformed as well.

3 N = 1 SYM and its Mass-Deformation

The action for standard massless N = 1, D = 3 euclidian SYM is given by

S =
1

g2

∫
R3

(
1

4
F a
µνF

a
µν +

1

2
Ψ̄aσµDµΨ

a

)
=

1

g2

∫
R3,Ω

(
3

2π
F a

+−F
a
−+ +

3

8π
Ψ̄ahMNDMσNΨ

a

)
(3.1)

h is a ‘world-sheet’ metric

h =

(
0 +
+ 0

)
(3.2)

The massless N = 1 action is invariant under the transformations

δαA
a
µ = ᾱσµΨ

a, δαΨ
a = − i

2
εµνρF

a
µνσρα

δαA
a
± = ᾱσ±Ψ

a, δαΨ
a = (6[σ+, σ−]F+−)α (3.3)

The two ways of expressing the supersymmetry transformations are related, as the
second form implies the former upon an S2 integration of both sides of the equation.
In the second form, the auxiliary S2 coordinates are not integrated out and working
with it will simplify the task of constructing the mass deformation of the N = 1
transformations. Notice that in the two dimensional formalism the fermions do not
depend on the S2 coordinates, even though the gauge fields A± do.

The fermions obey a majorana condition Ψ̄ = Ψ tε where the charge conjugation
matrix; ε = −iσ2, satisfies σtµε = −εσµ.

For the mass deformed case, we make the following ansatz for the action S =
1
g2

∫
Ω

S, and the supersymmetry transformations.

S =

∫
R3

[
3

2π
F a

+−F
a
−+ + Sm +

3

8π
Ψ̄ahMNDMσNΨ

a +
ωm

8π
Ψ̄aΨa

]
(3.4)
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δαA
a
± = ᾱσ±Ψ

a

δαΨ
a = (δ0

α + δ1
α)Ψa = (6[σ+, σ−]F+− + γm(hABσAJB))α

= (3[σA, σB]FCDhADhBC + γm(hABσAJB))α (3.5)

ω and γ are numerical factors that are to be determined from the condition δαS = 0.
δ0, δ1 generate the terms of O(1),O(m) on the r.h.s respectively.

Since the action as well as the supersymmetry transformations reduce to the stan-
dard N = 1 case in the massless limit, it is follows that

δαS|m=0 = 0 (3.6)

To examine the O(m) terms in the supersymmetry variation of the action, we note
that:

δ1
α

∫
3

8π
Ψ̄ahIJDIσJΨ

a =
3mγ

8π

∫
hABhIJ [DIJB]

[
Ψ̄([σJ , σA]+ + [σJ , σA])α

]
(3.7)

Using hABDAJB = 0 and (2.13) we have

δ1
α

∫
3

8π
Ψ̄ahIJDIσJΨ

a = − 3

8π

2mγ

2π

∫
(Ψ̄a[σ+, σ−]α)F a

+− (3.8)

In the calculations leading up to this, we have suppressed the color superscipts, to
avoid confusion with the spinor indices.

We also note that

ωm

8π
δ0
α

∫
Ψ̄Ψ = 2

6ωm

8π
(Ψ̄a[σ+, σ−]α)F a

+− (3.9)

From (3.8) and (3.9) we hence get:

∂δαS
∂m
|m=0 = 0 ⇒ γ = 4πω (3.10)

To analyze the O(m2) terms, we note that:

δαSm = m2

∫
hABJA(ᾱσBΨ), δ1

α

[
ωm

8π

∫
Ψ̄Ψ

]
= −γωm

2

4π

∫
hABJA(ᾱσBΨ) (3.11)

Thus:
∂2δαS
∂m2

|m=0 = 0 ⇒ γω = 4π (3.12)

Thus a consistent solution for the mass-deformed ansatz is given by:

ω = 1, γ = 4π (3.13)

For these value of the parameters the action (3.4) is invariant under the supersymmetry
transformations (3.5).
Having obtained the supersymmetry transformations in the two dimensional notation,
it is also instructive to depict their form in the explicit R3 form. Integrating both sides
of the supersymmetry transformations (3.5) over S2 we can express them as follows:

δαA
a
µ = ᾱσµΨ

a

δαΨ
a = (δ0

α + δ1
α)Ψa = − i

2
εµνρF

a
µνσρα +mJaµσµα (3.14)
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where,

Jaµ =
1

2

∫
Ω

(Ja+n̄µ + Ja−nµ) (3.15)

We also note that, in the abelian case,

Jµ = (Aµ − ∂µ
1

∂2
(∂νAν))

δαΨ = − i
2
εµνρFµνσρα +m(Aµ − ∂µ

1

∂2
(∂νAν))σµα (3.16)

As a further consistency check, the abelian action expressed in manifestly R3 notation
as;

S =
1

g2

∫
R3

(
1

4
FµνFµν +

m2

2
Aµ(δµν − ∂µ

1

∂2
∂ν)Aν +

1

2
Ψ̄(σµ∂µ +m)Ψ

)
(3.17)

is readily checked to be invariant under the R3 form of the SUSY transformations
(3.14).

To verify the invariance of the non-Abelian action under (3.14), one needs the R3

version of the relation (2.13); namely:

D[µJ
a
ν] = F a

µν . (3.18)

This relation is crucial for the O(m) terms to vanish in the SUSY variation of the
action. It is trivially verified in the Abelian case using the explicit form of the current
Jµ given above. In the non-Abelian case, starting from the equations (2.13) and taking
their difference, we get (we suppress the color indices in what follows):

Dµ(J−nµ − J+n̄µ) =
i

2π
εαβγFαβxγ (3.19)

Multiplying this equation by xρ and integrating over Ω gives

2i

3
εαβρFαβ = Dµ

∫
Ω

(J−nµ − J+n̄µ)xρ

=
4i

3
εµνρ∂µ(Aν − ∂ν

1

∂2
(∂λAλ)) + · · · (3.20)

The second line gives the terms linear in the gauge potential A, which agrees with the
abelian limit. Since the integrand on the l.h.s involves the non-abelian completion of
J , we can argue based on general gauge covariance that

Dµ

∫
Ω

(J−nµ − J+n̄µ)xρ =
4i

3
εµνρDµJν ⇒ D[µJ

a
ν] = F a

µν (3.21)

To phrase the argument slightly differently: The gauge covariance of the left and right
hand sides of the first line in (3.20) allow us to make the ansatz:

Dµ

∫
Ω

(J−nµ − J+n̄µ)xρ = βεµνρDµJν (3.22)

where β is to be determined. The form of the r.h.s above is validated by taking the
Abelian limits of both sides of the equation above. Once the form is fixed, the un-
determined constant can also be determined by evaluating the l.h.s explicitly in the
Abelian limit.
Thus to summarize the main results derived above; we have found a mass deforma-
tion of N =1 SYM theory in three dimensions (3.4) which is invariant under the
supersymmetry transformations (3.5) (or equivalently (3.14)).
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3.1 Determination of the Algebra

In this section, we shall try and derive the superalgebra underlying the supersym-
metrization carried out above by computing the commutator of SUSY variations on
the gauge potential. For the purposes of extracting the algebra from the closure on
Aµ it suffices to consider the abelian limit, where matters simplify significantly.
We start the analysis with the abelian case in the R3 notation. It is easily seen that

δ[ρδω]Aµ = − i
2
εαβγFαβ(ω̄[σµ, σγ]ρ) +mJν((ω̄[σµ, σν ]ρ)

= 2 [−Fµλ(ω̄σλρ) + imεµνλ(ω̄σλρ)Jν ]

= ∂µ(−2 ~A.(ω̄~σρ) + 2(ω̄~σρ).~∂Aµ + 2imεµνλ(ω̄σλρ)Aν − 2imεµνλ(ω̄σλρ)

[
∂ν

1

∂2
~∂. ~A

]
(3.23)

The first term in the last line is a gauge transformation. The second and third terms
are translations and rotations of the gauge potential while the last term is a gauge
transformation followed by a rotation. It is worth noting that the gauge parameter in
the last term is a non-local quantity, 1

∂2
~∂. ~A, which is a manifestation of the non-local

nature of the mass-term. Thus, discarding the terms involving gauge transformations,
we have:

δ[ρδω]Aµ = 2(ω̄~σρ).~∂Aµ + 2imεµνλ(ω̄σλρ)Aν

= 2(ω̄σνρ)(iPνAµ − imεµνβAβ). (3.24)

We see that the supersymmetry algebra underlying the mass deformed N = 1 theory
corresponds to a non-central extension of the N = 1 algebra. The anti-commutator of
supercharges closes on translations and so(3) spacetime rotations.

[β̄Q, ᾱQ] = 2i(Pa −mRa), ~a = ᾱ~σβ (3.25)

It is understood that

[PaA]µ = ~a.~pAµ, [RaA]µ = εµνρaνAρ, [RaΨ ]b = (~a.~σ)bmΨm (3.26)

It is also important to verify that the Jacobi identity

[γ̄Q, [β̄Q, ᾱQ]] + [β̄Q, [ᾱQ, γ̄Q]] + [ᾱQ, [γ̄Q, β̄Q]] = 0 (3.27)

is satisfied. The non-trivial part of the identity involves the commutators of R with
Q, which translates into the requirement that:

(β̄~σα).(γ̄~σQ) + (ᾱ~σγ).(β̄~σQ) + (γ̄~σβ).(ᾱ~σQ) = 0 (3.28)

A straightforward computation can be used to verify that this is indeed satisfied for
arbitrary spinors α, β and γ. Thus the N = 1 algebra underlying the mass deformed
model is nothing but a non-central extension of osp(1|2). The extension in question
being brought about by the spacetime rotation group so(3).

As noted in [22], the appearance of the mass in the algebra itself implies that it
plays the role of a structure constant. Consequently, it is protected against ‘running’
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in the renormalization group sense. Thus m can be regarded as a parameter, even
though it is obviously a dimension-full quantity.

It is also instructive to analyze the commutator of SUSY variations in the two
dimensional notation, without integrating out the S2 dependence. For example, it is
easily shown in the non-abelian case that:

δ[β,α]A
a
+ = −12(ᾱσBβ)F a

+AhBA + 4πm(ᾱ[σ+, σA]β)JaBhAB. (3.29)

Projecting out the R3 components of the above equation would once again yield a
linear combination of rotation, translations, gauge transformation and gauge trans-
formations followed by rotations. However, the specific numerical factors multiplying
these transformations obtained by projecting the above equation would differ from the
action of the double commutator of (3.14) on Aµ. For instance, even in the massless
case, it is seen that

3

16π

∫
Ω

(δ[β,α])A
a
+n̄λ = − i

2

3

2
(ᾱ[σλ, σγ]β)εµνγF

a
µν (3.30)

which differs from the expected answer by a factor of 3/2.
The discrepancy has to do with the fact that the S2 integration is to be thought
of as averaging over all Lorentz transformations [2], and the average of the product
of two SUSY variations is obviously not the same as the product of the average. In
other words, the average of the commutator yields a different linear combination of the
supercharges than the one obtained by evaluating the commutator of (3.14). However,
the fact that the r.h.s of (3.29) would close on translations and rotations (modulo
gauge transformation) is guaranteed as we have already checked the action (in the R3

notation ) to be explicitly invariant under the transformations (3.14), which are implied
by (3.5). Furthermore, we have shown the massive SUSY variations to generate the
algebra (3.25), which can be extracted from the abelian limit of the theory.

4 Chern-Simons Terms

One can add Chern-Simon terms to the mass-deformed N = 1 SYM. In R3 notation,
the action

g2S =

∫
R3

1

4
F a
µνF

a
µν + Sq

m( kg
2

4π
+m)
− ikg2

4π
εµνρ

∫
R3

(F a
µνA

a
ρ −

1

3
fabcAaµA

a
νA

a
ρ) +

1

2

∫
R3

Ψ̄a
[
σ.D + (

kg2

4π
+m)

]
Ψa (4.1)

can be verified to be invariant under (3.14).

S√
m( k

4π
+m)

stands for the non-local gluonic mass term, with the coefficient m(kg
2

4π
+

m) instead ofm2. Namely, while the fermionic massmf is shifted by the level number of
the Chern-Simons term, the bosonic mass mb is a geometric mean of m: the parameter
that appearns in the SUSY algebra, and mf . As in the k = 0 case, m = m2

b/mf is the
quantity that is effectively protected against renormalization, as it plays the role of a
structure constant.
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It is important to note that the addition of Chern-Simons terms is particularly
important from the point of view of the m → 0 limit. Although sufficient for our
formal purposes of understanding N = 1 SUSY, the massless theory, without the
Chern-Simons terms suffers from the well known problem of a parity anomaly [23].
Lattice data pointing to a trivial partition function for this pathological model has
also been presented in [25]. However, the N = 1 Yang-Mills-Chern-Simons system is a
perfectly well defined theory. Thus, for the present purposes, it is imperative that the
mass-deformation that we consider be compatible with the addition of Chern-Simons
terms so that we have a consistent quantum field theory. Fortunately, as we show
above, this is eminently possible.

We also note in passing that the addition of the Chern-Simons terms could have
been carried out in the S2 notation as well. For that purpose, it is useful to note that

ik

4π
εµνρ(F

a
µνA

a
ρ −

1

3
fabcAaµA

a
νA

a
ρ) =

k

16π2

∫
Ω

(F a
+−A

a − 1

3
fabcAa+A

a
−A

a) (4.2)

which allows one to recast the Chern-Simons terms in an S2 notation. It is implied
that A = Aµxµ, which is the contraction of the Hodge dual of Aµ with n and n̄.

5 Dimensional Reduction and Matrix Models

In this final section, we relate the dimensional reduction of the massive N = 1 SYM
theory constructed in this paper to the only known example of N = 2 massive matrix
quantum mechanics, which was reported in [24]. The dimensional reduction of pure
Yang-Mills theory with the mass term added was worked out in a previous paper [12].
The important insight was to notice that the defining equations for the auxiliary fields
A± can be readily solved upon the truncation of the theory to D = 1. The solution
to (2.12) can be written for the dimensionally reduced theory as

A+ =
n0

n̄0

A−, A− =
n̄0

n0

A+ (5.1)

Using this expression we have

(Sm)0+1 = −m2

∫
d3xdΩtr

[
A+A−

π
− 1

2π

k.n̄

k.n
tr(A+A+)− 1

2π

k.n

k.n̄
tr(A−A−)

]
, (5.2)

where the ‘momentum’ k = (1, 0, 0). After evaluating the angular integrals one has

(Sm)0+1 = −m
2VM2

2

∫
dx0tr

[
Aj

(
δjl −

kjkl
k2

)
Al

]
= −m

2VM2

2

∫
dx0tr

[∑
l=1,2

AlAl

]
(5.3)

where VM2/2 is the volume of T 2 on which the spacial compactification is carried out.
Thus as far as the pure ‘glue’ part of the theory is concerned,∫

d3x
1

4g2
F a
µνF

a
µν +

1

g2
Sm

0+1→
∫
dx0

1

g2
M

tr

(
1

2
(DtΦiDtΦi +m2ΦiΦi)−

1

4
[Φi, Φj]

2

)
(5.4)

The matrix model coupling

g2
M =

g2

VM2

(5.5)
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while the hermitian matrix degrees of freedom

Φl = iAl, l=1,2. (5.6)

Thus the dimensional reduction of the mass-deformed gauge theory is nothing but the
standard mass deformation of a gauged matrix quantum mechanics of two Hermitian
matrices.

In an analogous fashion, the dimensional reduction of the mass-deformed N = 1
theory produces the following matrix model action S̃:

S̃ =

∫
dx0

1

g2
M

tr

(
1

2
(DtΦiDtΦi +m2ΦiΦi)−

1

4
[Φi, Φj]

2 +
1

2
Ψ̄(D0 +m)Ψ − i

2
Ψ̄σi[Φi, Ψ ]

)
(5.7)

It also follows that the current Jµ is proportional to (0, Φ1, Φ2) upon the dimensional
reduction. Importantly, the resultant matrix model is not invariant under the dimen-
sional reduction of the supersymmetry transformations (3.14). The supersymmetry
transformations on R3 fail to remain a symmetry of the dimensionally reduced model
as dimensional reduction on T 2 breaks the Poincare invariance of the gauge theory.
Thus relations such as D[µJν] = Fµν , which were crucial in establishing the supersym-
metry of the gauge theory on R3, fail to hold upon dimensional reduction. However,
the lack of Poincare invariance, can be compensated for by introducing an asymetry
between the bosonic and fermionic masses and making the supersymmetry transfor-
mation time dependent. The resulting supersymmetric N = 2 matrix model action is
given by:

S̃ =

∫
dx0

1

g2
M

tr

(
1

2
(DtΦiDtΦi +m2ΦiΦi)−

1

4
[Φi, Φj]

2 +
1

2
Ψ̄(D0 +

3

2
m)Ψ − i

2
Ψ̄σi[Φi, Ψ ]

)
(5.8)

This action is invariant under

δΦi = ᾱ(t)σiΨ,

δΨ = (−σtiDtΦi + i[Φi, Φ2]σ12 +mσiΦi)α(t),

α(t) = e
1
2
mσ0tα0, (5.9)

where α0 is a constant spinor.
The mass of the supersymmetric matrix model (5.8)differs from that of the dimen-

sional reduction of the N = 1 gauge theory (5.7). Thus the supersymmetric matrix
model can be thought of as the reduction of the N = 1 theory followed by a time
dependent field redefinition of the fermions. At the same time, the asymmetry intro-
duced between the three spacetime dimensions by compactifying two of them has to
be compensated for by making the supersymmetry transformation time-dependent.

Evaluating the double commutators on Φi, we have

δ[βδα]Φi = 2(ᾱσ0β)(∂tΦi − imεijΦj) (5.10)

In other words

[β̄Q, ᾱQ] = 2i(ᾱσ0β)(H −mR12), where, [R12Φ]i = εijΦj (5.11)
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Comparing with (3.25) shows that the susy algebra underlying the matrix quantum
mechanics is the contraction of (3.25) to the case where there is only one spacial
direction and so(3) spacetime rotations are contracted to a so(2) rotation between the
two matrices. The superalgebra is thus contracted from a non-central extension of
osp(1|2) to euclidean Clifford2(R).

6 Summary and Outlook

In the present paper we have constructed a mass-deformation of N = 1 SYM (with or
without Chern-Simons couplings) based on a con-central extension of the three dimen-
sional super-Poincare algebra by the spacetime rotation group so(3). Furthermore, a
consistent dimensional reduction of the gauge theory as well as the underlying super-
symmetry algebra has been shown to be related to the unique example of massive
N = 2 matrix quantum mechanics, which was obtained independently in [24] by a
mass-deformation of the dimensional reduction of standard N = 1 SYM in three di-
mensions. The construction presented in the paper opens up the possibility of several
intriguing lines of investigation, which we briefly discuss below.

The mechanism for mass-deformation presented here can obviously be used in con-
junction with or as an alternative to, the better known mechanism for making three di-
mensional gauge theories massive, i.e the addition of Chern-Simons terms. A plethora
of extremely important results related to spontaneous supersymmetry breaking and
associated physical effects have already been obtained for the N = 1 Yang-Mills-
Chern-Simons system in [23]. However, we expect the physical manifestations of Sm
to be fundamentally different from those of Chern-Simons couplings. For instance, in
the case of pure Yang-Mills theory in three dimensions, which is known to confine, the
addition of Chern-Simons couplings dramatically alters the IR behavior of the theory;
leading to screening rather than confinement [5]. On the other hand Sm considered
in the paper is a covariantization of the volume measure on the configuration space
of pure Yang-Mills [3]; which has been shown to provide a first principles explanation
for confinement and spontaneous mass generation for the purely gluonic theory [4].
Thus it is very conceivable that the massive N = 1 theory presented here would have
various new features which would doubtless be interesting to investigate along the lines
specified in [23].

It may be possible to use the constraining power of the mass-deformed supersym-
metry algebra to gain insight into various physical process of interest. For instance,
following the way mass deformed algebras of the su(2|2) were employed in [22] to
constrain all four particle scattering processes in a large class of mass-deformed su-
persymmetric Chern-Simons theories up to a single undetermined function, it is con-
ceivable that the underlying algebra can be utilized to constrain the form of physical
quantities such as, scattering amplitudes and glueball spectra, for the massive N = 1
SYM theory discussed here.

As mentioned before tell-tale signs of a potential connection between Sm and the
volume measure on the gauge invariant configuration space of pure Yang-Mills theory
are already known to exist [1,3]. It would of course be of great interest if the supersym-
metrization of Sm presented here can be utilized to shed some light on the nature of the
configuration space for supersymmetric Yang-Mills theories in three dimensions. On
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a related note, we point out that although a gauge invariant Hamiltonian framework
for coupling matter fields to Yang-Mills theories in three dimensions already exists [6],
the contribution of the matter fields to the configuration space volume remains to be
understood. Perhaps understanding how the supersymmetrization of Sm relates to the
relevant volume element can give a controlled way of broaching this interesting open
issue.

Other than the issues discussed above, most of which relate to N = 1 theories, it
would be extremely interesting to analyze whether three dimensional Yang-Mills theo-
ries with extended supersymmetries can be mass-deformed in a way that is analogous
to the one discussed in this paper.

Acknowledgements: We are grateful to Niklas Beisert, Ansar Fayyazuddin, Tristan
McLoughlin and Parmeswaran Nair for several illuminating discussions. We are also
indebted to Niklas Beisert for his comments on a previous version of the manuscript.
Some of the preliminary work leading to the results reported in this paper was carried
out at the Max Planck Institute for Gravitational Physics (Potsdam, Germany), where
the author held a previous position.

7 Appendix

We work in three dimensional Euclidean spacetime. The vectors and integrals associ-
ated with the auxiliary S2 are chosen to obey the following conventions:

The S2 valued complex null vectors are taken to be:

nµ = (− cos(θ) cos(φ)− i sin(φ),− cos(θ) sin(φ) + i cos(φ), sin(θ)) (7.1)

n2 = n̄2 = 0, n.n̄ = 2, εµνρnνn̄ρ = 2ixµ (7.2)

where
x1 = sin θ cosφ, x2 = sin θ sinφ, x3 = cos θ (7.3)

On the sphere Ω of volume 4π∫
Ω

nµn̄ν =
8π

3
δµν ,

∫
Ω

k.n̄

k.n
nµnν =

8π

3

[
3

2

kµkν
k2
− 1

2
δµν

]
,

∫
Ω

xµxν =
4π

3
δµν (7.4)

A+ =
1

2
A.n, A− =

1

2
A.n̄, D+ =

1

2
D.n, D− =

1

2
D.n̄, σ+ =

1

2
σ.n, σ− =

1

2
σ.n̄

(7.5)

The sigma matrices satisfy the following relations.

σ2
+ = σ2

− = 0, [σ+, σ−]+ = 1, [σ−, σ+] = xµσµ (7.6)

The skew-Hermitian gauge potentials Aµ = −itaAaµ are normalized so that tr(tatb) =
1
2
δab.
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