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Neurons communicate through exocytotic release of neurotransmit-
ters. In the resting state, neurotransmitters are stored in synaptic vesi-
cles or secretory granules. Upon depolarization, voltage-gated calcium 
channels open, resulting in an influx of Ca2+ that triggers fusion of the 
storage-vesicle membrane with the plasma membrane, thus releasing 
the neurotransmitter into the extracellular space1.

Many neurons contain, in addition to synaptic vesicles, another 
class of secretory vesicles, which have an electron-dense core and 
larger diameter and are referred to as large dense-core vesicles 
(LDCVs)2. LDCVs correspond to the secretory vesicles of neuro
endocrine cells such as the chromaffin cells of the adrenal medulla. 
LDCVs store proteins and peptides in addition to classical neuro
transmitters2,3. In neurons, LDCVs also undergo exocytosis in 
response to Ca2+, but their release is regulated differently from that 
of synaptic vesicles, requiring bursts of action potentials4. However, 
the release machinery, as far as it is known, utilizes the same proteins 
as synaptic vesicle exocytosis, including SNAREs and synaptotag-
mins. Owing to the ease of access to chromaffin cells with micro-
electrodes, exocytosis of LDCVs in these cells has served as a model 
for studying the mechanism of SNARE-mediated exocytosis with 
electrophysiological approaches5.

Vesicle docking, activation of the fusion machinery (priming), 
Ca2+-dependent triggering and subsequent membrane merger are  
carried out by evolutionarily conserved protein complexes functioning 
in all neurons and neuroendocrine cells. Of these, SNARE proteins are, 
at present, considered the catalysts of the fusion reaction6–9. SNAREs 
mediating synaptic exocytosis include syntaxin-1 and SNAP-25  
(at the plasma membrane) and synaptobrevin (at the vesicle mem-
brane)6,10,11. SNAREs are small, membrane-anchored proteins that 

contain one or two conserved stretches of 60–70 amino acids arranged 
in heptad repeats, termed SNARE motifs6. Release is triggered by an 
influx of Ca2+ from the extracellular space in response to depolari-
zation. Upon triggering, the SNARE motifs form a helical complex 
that bridges the membranes (the ‘trans’ complex). Complex assem-
bly proceeds toward the membrane anchors in the N-to-C-terminal  
direction, thus pulling the membranes together and initiating fusion 
as the SNARE complex relaxes into the ‘cis’ configuration12,13. 
Triggering is mediated by synaptotagmins, transmembrane proteins 
of synaptic vesicles and chromaffin granules (CGs) containing two 
Ca2+-binding C2 domains—C2A and C2B—that bind three or two 
Ca2+ ions, respectively14,15. Synaptotagmins interact with SNAREs 
and acidic lipids. Both interactions are widely considered essential 
for their function. However, how exactly synaptotagmins accelerate 
fusion is unclear. We have recently shown that interactions with vesic-
ular acidic lipids seem to inactivate synaptotagmins. Incorporation of 
synaptotagmin-1 into liposomes containing 20% phosphatidylserine 
(PS) results in binding of synaptotagmin-1 to its own membrane (cis 
binding), preventing trans binding to target membranes containing 
acidic phospholipids and/or SNARE proteins16,17. Native vesicles 
contain ~15% acidic phospholipids18, including PS and phosphati-
dylinositol (PI). It is not known how the inactivating cis association 
of synaptotagmins is prevented in vivo16,19,20.

Here, we have investigated the role of cis and trans binding of  
synaptotagmin-1 on Ca2+-dependent fusion in vitro. To prevent problems 
that could arise from the differences between artificial and biological 
membranes, we used purified bovine CGs as one of the fusion partners. 
Our data show that CGs fuse with liposomes carrying syntaxin-1A  
and SNAP-25A in a SNARE-dependent manner. Ca2+ increased 
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receptor) proteins syntaxin-1, synaptobrevin and SNAP-25, with synaptotagmin functioning as the major Ca2+ sensor for 
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cis-membrane interactions of synaptotagmin-1 could be a crucial element in the pathway of Ca2+-dependent exocytosis.
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the rate of fusion severalfold, but only when PI 4,5-bisphosphate 
(PI(4,5)P2) was present in the target membrane and, notably, when 
ATP was included in the buffer. No ATP hydrolysis was required, 
and the stimulatory effect of ATP was attributed to an electrostatic 
effect that prevents the inactivating cis binding of synaptotagmin C2 
domains to the vesicle membrane, thereby allowing endogenous syn-
aptotagmins to interact in trans with the lipids and/or SNAREs in the 
target membrane.

RESULTS
Characterization of purified chromaffin granules
To reconstitute CG fusion in vitro, we purified CGs from bovine adre-
nal medulla using a modified protocol in which centrifugation in 
a continuous sucrose-density gradient is the final purification step 
(Supplementary Fig. 1). We confirmed the purity of the CGs by west-
ern blots, which showed that the final fraction was depleted of mark-
ers of other organelles (Fig. 1a). VAMP-4, a SNARE found only on 
immature secretory granules21, was also removed during purification 
(Supplementary Fig. 1c), indicating that our protocol yields mature 
CGs at high purity.

Cryo-EM of purified CGs revealed a heterogeneous size distribu-
tion (Fig. 1b), with an average diameter of 167.7 ± 14.3 nm (s.e.m.). 
Size heterogeneity of CGs in chromaffin cells has been observed pre-
viously22, with diameters of 100–500 nm, but the average diameter  
(356 nm)23 is larger than that found in our study. This is probably 
because of the inclusion, in the previous studies, of immature CGs, 
which are known to be larger. CGs become smaller and more con-
densed through the removal of water and the ‘shedding’ of membrane 
during the maturation process24,25. Our data show that our protocol 
yields mainly mature CGs at high purity.

SNARE-dependent fusion of chromaffin granules
We investigated whether purified CGs are able to fuse with large uni-
lamellar liposomes (LUVs) containing SNAP-25A and syntaxin-1A. 
Proteoliposomes containing N-(7-nitro-2,1,3-benzoxadiazol-4-yl) 
(NBD)- and rhodamine-labeled phospholipids were reconstituted with 

a stabilized acceptor complex known as the ∆N complex: a preformed 
complex of syntaxin-1A (lacking the N-terminal Habc domain) and 
SNAP-25A (containing a C-terminal fragment of synaptobrevin resi-
dues 49–96 (Syb49–96)) (ref. 26). The lipid composition of liposomes 
was 45% phosphatidylcholine, 15% phosphatidylethanolamine, 10% 
PS, 25% cholesterol, 4% PI and 1% PI(4,5)P2 . Fusion was monitored 
by a lipid-mixing assay in which fluorescence resonance energy trans-
fer (FRET) between the two fluorophore-labeled lipids is reduced as 
a result of fusion with unlabeled lipids, leading to lipid dilution and 
dequenching of the donor fluorophore27.

We observed robust fusion when we combined CGs with proteo
liposomes containing the SNARE acceptor complex (Fig. 1c and 
Supplementary Fig. 2a). Membrane fusion was SNARE specific, as 
shown by competitive inhibition by a soluble fragment of synapto-
brevin (Syb1–96) or a soluble complex of H3 domain of syntaxin 1A 
(SyxH3) and SNAP-25A and by incubation with the light chain of 
tetanus neurotoxin (TeNT), a protease selectively cleaving synapto-
brevin (Fig. 1c and Supplementary Fig. 2a,b). Furthermore, endo
genous synaptobrevin in the CG membrane was capable of forming 
SNARE complexes, as shown by SDS-PAGE, in which synaptobrevin 
assembled in the ternary SNARE complex was found to be resistant 
to cleavage by TeNT light chain (Fig. 1d). Lysophosphatidylcholine, 
which destabilizes the negative curvature of stalk-type fusion inter-
mediates28 by inducing positive curvature, inhibited CG fusion in a 
dose-dependent manner (Fig. 1e and Supplementary Fig. 2c). We 
obtained similar results when we monitored content mixing (using a 
FRET-based assay) instead of lipid mixing (Supplementary Fig. 2d,e), 
indicating that SNARE-dependent fusion of CGs is complete and not 
arrested at hemifusion.

Ca2+ enhances fusion in the presence of ATP
Exocytosis of CGs is triggered, like that of synaptic vesicles, by an 
increase in intracellular Ca2+. We therefore investigated whether 
addition of Ca2+ influenced fusion between purified CGs and 
SNARE-containing proteoliposomes. We observed a slight but sub-
stantial inhibitory effect at Ca2+ concentrations >300 µM (Fig. 2a 
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Figure 1  SNARE-dependent fusion of CGs with LUVs. (a) Western blot analysis of marker proteins  
specific to CGs (synaptobrevin, synaptophysin, vesicular monoamine transporter-1 (VMAT-1) and  
dopamine-beta-hydroxylase (DBH)); mitochondria (succinate dehydrogenase complex subunit A  
(SDHA)); endoplasmic reticulum (calnexin); early endosomes (early endosome–associated protein 1  
(EEA-1)); lysosomes (lysosomal-associated membrane protein 1 (LAMP-1)); proteasomes  
(26S proteasome AAA-ATPase subunit RPT4 (Rpt-4)); peroxisomes (catalase) and plasma  
membrane (Na+/K+-ATPase). See Online Methods for details; see Supplementary Figure 1 for  
fractionation scheme and complete blots. P1, nuclei and cell debris; S1, supernatant; P2, crude  
CG fraction. (b) Size distribution of CGs as determined by cryo-EM (n = 74). Inset, image of typical CGs; scale bar, 200 nm. (c) Fusion of purified 
CGs with LUVs containing a stabilized SNARE acceptor complex as measured by fluorescence dequenching assay. Preincubation of LUVs with Syb1–96 
and of CGs with SyxH3–SNAP-25A (SyxH3/SN25) completely blocked lipid mixing. Lipid mixing was also inhibited when CGs were preincubated with 
TeNT light chain but not when they were incubated with an inactive TeNT light-chain mutant. (d) Immunoblot detection of endogenous synaptobrevin, 
dissociated or in ternary SNARE complexes, after incubation of CGs with excess SyxH3–SN25 (or without (two left lanes), with (+) or without (−) TeNT, 
heated or non-heated. (e) Fluorescence values normalized as percentage of maximum donor fluorescence after incubation with 0.1% Triton X-100 
detergent. Lysophosphatidylcholine (LPC) was added before the fusion reaction; no addition, basal fusion without LPC.
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and Supplementary Fig. 3a,d). While screening for metabolites that 
could affect fusion, we noted that, in the presence of ATP, Ca2+ did 
not inhibit fusion but rather enhanced it substantially (Fig. 2a and 
Supplementary Fig. 3d). Similarly, fusion of synaptic vesicles puri-
fied from rat brain was also increased by Ca2+ in the presence of ATP 
but inhibited slightly in the absence of ATP (Fig. 2b), in agreement 
with earlier experiments16,19,20,29. We saw no such enhancement 
when we used MgCl2 instead of CaCl2 (Supplementary Fig. 3b,c). 
Fusion was completely blocked when we added Syb1–96 as a com-
petitive inhibitor, confirming that Ca2+-enhanced fusion is medi-
ated by SNARE proteins. Enhancement occurred whether ATP and 
Ca2+ were added simultaneously or sequentially (Supplementary 
Fig. 4a). Furthermore, we observed the same rates of Ca2+-enhanced 
fusion under all conditions described when we replaced potassium 
glutamate in the buffer with potassium gluconate, KCl or NaCl 
(data not shown). We obtained similar results when we used lipo-
somes containing a 2:1 full-length syntaxin-1A–SNAP-25A binary 
acceptor complex, although the rates were lower, as expected26 
(Supplementary Fig. 4b).

To confirm that SNARE zippering occurs during fusion, we took 
advantage of the fact that Syb49–96, the C-terminal synaptobrevin 
fragment that stabilizes the ∆N acceptor complex, is displaced by 
binding of full-length synaptobrevin from vesicle membranes, 
allowing SNARE complex assembly to be monitored by fluorescence  
anisotropy26. When we incubated CGs with liposomes containing 
the ∆N complex with Alexa Fluor 488–labeled Syb49–96, we observed 
a decrease of fluorescence anisotropy, indicating SNARE-complex 
zippering. Incubation with ATP and Ca2+ increased peptide dis-
placement, whereas ATP or Ca2+ alone had no effect (Fig. 2c and 
Supplementary Fig. 3e), indicating that Ca2+-dependent enhance-
ment of vesicle fusion is associated with an increase in number of 
assembled SNARE complexes.

We next investigated whether ATP hydrolysis is required for the 
stimulatory effect of Ca2+-enhanced fusion, which would suggest the 
involvement of an ATPase in the CG membrane. However, this turned 
out not to be the case, as we also observed synaptic vesicle fusion 
when we replaced ATP with the non-hydrolyzable analog ATP-γ-S 
(Fig. 2d–f and Supplementary Fig. 5c). Furthermore, we observed 
no effect on fusion when we replaced ATP with GTP. The electro-
static effect of ATP seems to depend primarily on number of negative 
charges, as ADP and AMP also enhanced Ca2+-dependent fusion, 
albeit with reduced efficacy (Fig. 2e,f). Finally, we tested pyrophos-
phate, which was as efficient as ADP (Fig. 2f), suggesting that the 
pyrophosphate moiety of the nucleotides, rather than the bases, is 
crucial for Ca2+-dependent vesicle fusion.

Ca2+ enhancement depends on synaptotagmins and PI(4,5)P2
In chromaffin cells, members of the synaptotagmin family mediate 
fast exocytosis in response to Ca2+. Indeed, our results suggest that 
Ca2+-dependent enhancement of fusion is brought about by endo
genous synaptotagmins in the CG membrane, which bind to negatively 
charged phospholipids by electrostatic interactions30, particularly in 
the presence of phosphoinositides31. We used two approaches to test 
this. In the first, we added a monoclonal antibody specific to the cyto-
plasmic domain of synaptotagmin-1 (ref. 32) to the fusion reaction, 
which resulted in partial inhibition of Ca2+-dependent enhancement 
but had no effect on basal fusion rate (Fig. 3a). A monoclonal anti-
body specific for the cytoplasmic domain of synaptotagmin-1 reduced 
Ca2+-dependent enhancement of CG fusion, compared to an antibody 
specific for the intravesicular domain of synaptotagmin-1 (Fig. 3a). In 
the second approach, we added increasing concentrations of a soluble 
cytoplasmic fragment of synaptotagmin-1 (the C2AB domain) as a 
competitive inhibitor, which resulted in the progressive inhibition of 
Ca2+-dependent enhancement, again with no affect on basal fusion 
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Figure 2  Role of polyphosphates in Ca2+-dependent vesicle fusion as measured by a lipid-mixing assay. (a) Ca2+ (CaCl2) enhances CG fusion with  
LUVs containing the stabilized acceptor complex only in the presence of ATP. Preincubation with Syb1–96 abolished Ca2+-induced CG fusion.  
No addition, basal fusion without ATP or Ca2+. (b) Fusion of purified synaptic vesicles from rat brain was also enhanced by Ca2+. Labels as in a.  
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to displace all remaining Syb49–96. No addition, basal fusion without ATP or Ca2+. (d) ATP hydrolysis is not required for Ca2+-dependent enhancement 
of CG fusion. ATP was replaced with ATP-γ-S or GTP. (e) Ca2+-dependent enhancement of CG fusion was also observed in the presence of ADP and AMP, 
but with lower efficacy. (f) Electrostatic effect of polyphosphates on CG fusion in the presence and absence of Ca2+. Data were taken at 20-min time 
points and normalized as the percentage of fusion in the presence of ATP. Free Ca2+ (84 µM) was used in the presence of 5 mM ATP unless otherwise 
indicated. All quantitative data are mean ± s.d. from three or more independent experiments. 
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rates (Fig. 3b). Together, these findings suggest that the Ca2+ effect 
on fusion is mediated by endogenous synaptotagmin-1, although we  
cannot exclude the possibility that other Ca2+ sensors (such as  
synaptotagmin-7) that might contribute to the effect may be present. 
To further verify the involvement of synaptotagmin-1, we examined 
whether acceleration of fusion is dependent on the presence of PI(4,5)P2 
in the target membrane. In chromaffin cells, plasma-membrane  
levels of PI(4,5)P2 regulate priming33 by controlling the size of the releas-
able CG pool34. PI(4,5)P2 is also important for Ca2+-dependent vesicle 
fusion owing to its enhancement of Ca2+ affinity of synaptotagmin-1  
(ref. 35), and it accumulates heavily at sites of docked vesicles36. 
Notably, in the absence of PI(4,5)P2, the basal fusion rate was lower,  
and no Ca2+-dependent enhancement was observed (Fig. 3c). To gain 
more insight into the dependence of the Ca2+ effect on PI(4,5)P2, we 
did titrations at different PI(4,5)P2 concentrations in the target mem-
brane (Fig. 3d). As PI(4,5)P2 concentrations increased, lower Ca2+ 
concentrations were required to achieve the same response. These data 

suggest that higher local concentrations of PI(4,5)P2 enhance Ca2+ 
sensitivity by lowering half-maximum effective concentration (EC50), 
in agreement with studies carried out with purified synaptotagmin-1 
(ref. 35). Next, we exchanged PI(4,5)P2 for PI 3-phosphate (PI3P), 
a phosphoinositide species specifically associated with endosomal 
and autophagosomal membranes37,38. Ca2+-dependent enhancement 
still occurred but was less robust in the presence of PI3P than in the 
presence of PI(4,5)P2 (Fig. 3e and Supplementary Fig. 4c). We also 
observed enhancement in the absence of PI(4,5)P2 when we added the 
acidic phospholipid PS, which has a net charge of −1, at a concentra-
tion of 40% (Supplementary Fig. 4d). We obtained similar results for 
the dependence on PI(4,5)P2 when we used synaptic vesicles instead 
of CGs (Fig. 3f and Supplementary Fig. 5a).

ATP prevents cis binding of synaptotagmins by charge shielding
What is the mechanism by which polyphosphate anions enhance 
Ca2+- and synaptotagmin-mediated fusion of CGs and synaptic 
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over time (e) and net changes under increasing Ca2+ concentrations (f) of membrane binding using liposomes (Lip)  
containing 1% PI(4,5)P2. All quantitative data are mean ± s.d. from three or more independent experiments. All Ca2+-concentrations were corrected to 
account for ATP-dependent chelation.
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vesicles? Considering the data above, we 
hypothesized that polyphosphates such as 
ATP and related compounds might activate 
endogenous synaptotagmins in the mem-
branes of CGs and synaptic vesicles. Previous 
studies have suggested that the C2 domains of 
membrane-anchored synaptotagmins might 
interact with their anchor membranes (cis 
binding), which could interfere with or even prevent binding to the 
target membrane16,17,29. Trans binding of synaptotagmins, however, is 
believed to be required for synaptotagmins to drive Ca2+-dependent 
exocytosis. Because we were unable to directly measure association 
of endogenous synaptotagmins, we used fluorescence anisotropy 
to monitor binding of an exogenously added C2AB fragment of 
synaptotagmin-1, labeled with Alexa Fluor 488, to CG and synaptic 
vesicle membranes (Fig. 4). Addition of Ca2+ increased fluorescence 
anisotropy, indicating that the C2AB domains of synaptotagmin-1 bind 
to CG membranes in a Ca2+-dependent manner (Fig. 4a–c). Addition 
of ATP or GTP after Ca2+ decreased the anisotropy signal, suggesting 
dissociation of the C2AB fragment from the membrane. Addition of 
AMP had a smaller effect on anisotropy, thus mirroring the effects of 
AMP on fusion enhancement. We obtained very similar results when 
using purified synaptic vesicles instead of CGs (Fig. 4d). Increase of 
the free Ca2+ concentration to >1 mM did not affect the ability of ATP 
to prevent binding (Fig. 4c,d; see Online Methods for details).

Taken together, these results suggest that synaptotagmins bind to 
their own membranes (cis binding) in response to Ca2+, which abol-
ishes trans interactions, in agreement with our previous observations 
using artificial vesicles17. To analyze in more detail the effect of ATP on 
the Ca2+-dependent binding of synaptotagmins to acidic membranes, 
we carried out binding experiments using PI(4,5)P2-containing lipo-
somes with the same composition as those used in the fusion assays. 
Addition of Ca2+ resulted in increased binding of the C2AB domain, 
and this binding was not reversed by ATP (Fig. 4e,f). Cis binding of 
synaptotagmins is prevented by polyphosphate anions at physiological 
concentrations, whereas trans interactions with PI(4,5)P2-containing 
target membranes do not seem to be inhibited.

Ca2+-dependent binding of the C2 domains to membranes is 
strongly enhanced by PI(4,5)P2, but it also depends on the concen-
tration of acidic membrane lipids such as PS or PI. We therefore 

speculated that the inhibitory effect of ATP and its paralogs might 
be effective only at moderate concentrations of such acidic lipids. To 
test this, we measured Ca2+-dependent binding of synaptotagmin-1 
to liposomes at increasing concentrations of PS, in the presence and 
absence of ATP (Fig. 5). As described previously31, the calcium sen-
sitivity of Ca2+-dependent binding was increased with increasing PS 
concentrations. Notably, ATP reversed binding at PS concentrations of 
10% and 15% but not 20% (for reference, synaptic vesicle membranes 
are ~15% acidic phospholipids)18. Indeed, the Ca2+ dose-response 
curves for C2AB binding to CGs (Fig. 4c) and synaptic vesicles  
(Fig. 4d) resemble that of liposomes containing 15% PS (Fig. 5b), 
indicating that a concentration of 15% PS mimics the electrostatic 
environment of native vesicle membranes.

Finally, we tested whether we could reproduce cis inactivation, its 
prevention by ATP and trans acceleration of fusion using liposomes 
reconstituted with synaptobrevin and synaptotagmin-1 as donor vesi-
cles instead of purified CGs and synaptic vesicles. Specifically, we asked 
whether synaptotagmin-1 is capable of enhancing SNARE-mediated 
fusion in a Ca2+-dependent manner, and we found that it was (Fig. 5). 
Ca2+-dependent acceleration of fusion correlated with the preven-
tion of cis binding by ATP (Fig. 5b, right), but we did not observe 
the enhancement when the membranes of the vesicles incorporating 
synaptotagmin-1 and synaptobrevin contained more than 20% PS 
(Fig. 5a, right). These observations agree with a recent report showing 
that Ca2+-dependent enhancement of fusion depends on the amount of 
PS in synaptotagmin-1–containing liposomes39. Notably, Ca2+-depend-
ent fusion of liposomes was less efficient than fusion of native vesicles.

DISCUSSION
Exocytosis of neurosecretory vesicles is mediated by SNAREs and 
triggered by Ca2+-bound synaptotagmins. However, the mechanism 
by which synaptotagmins enhance fusion is still unclear. In vitro  
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concentration in the liposome membrane on 
Ca2+-dependent binding of synaptotagmin-1. 
(a–c) Ca2+-dependent binding of the C2AB 
domain was monitored by fluorescence 
anisotropy as in Figure 4, using LUVs 
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phosphatidylserine (PS). Left panels show 
exemplary fluorescence anisotropy traces; 
middle panels show net changes of anisotropy 
in dependence on free Ca2+ concentration; 
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on Ca2+ and ATP of membrane fusion. Donor 
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reconstitution of SNARE-dependent membrane fusion in the presence 
of synaptotagmins has yielded conflicting results, with the effects of 
Ca2+ ranging from slight inhibition to enhancement under widely var-
ying conditions16,29,39–41. We have previously shown that membrane-
anchored synaptotagmin-1 binds to its own membrane (cis binding) 
when acidic phospholipids are present, preventing trans interactions 
with the target membrane16,17. Here we have shown that cis binding 
of synaptotagmin-1 occurs in native CGs and synaptic vesicles, but 
that such cis binding is prevented by polyphosphate anions, including 
ATP, at physiological concentrations. ATP and analogous compounds 
probably operate by charge screening—that is, by competing directly 
with acidic membrane lipids to chelate Ca2+ and disrupt cis binding 
of synaptotagmins (Fig. 6). A native vesicle membrane that contains 
~15% acidic phospholipids has a Ca2+ affinity, with EC50 = 233 ± 
29 µM, for binding of the C2AB domain (Fig. 4c), and ATP on its 
own chelates Ca2+ with a similar affinity (EC50 = 230 µM, data not 
shown; see also http://maxchelator.stanford.edu and ref. 42), thereby 
inhibiting C2AB binding to the vesicle membrane. Notably, screen-
ing is effective only when the concentration of acidic phospholipids 
does not exceed 15% and when no PI(4,5)P2 is present in the mem-
brane. PI(4,5)P2-containing target membranes have a much higher 
Ca2+ affinity than vesicle membranes for C2AB binding (EC50 = 56 ± 
9 µM), and synaptotagmins can then act in ‘trans,’ resulting in a major 
Ca2+-dependent enhancement of SNARE-dependent fusion.

Our data shed light on the mechanisms by which synaptotagmin 
Ca2+ sensors might operate between the vesicle and the plasma 
membrane. It is well established that both C2 domains show highly 
cooperative Ca2+-dependent binding to membranes containing acidic 
phospholipids15,30, with higher concentrations of acidic phospho
lipids in the membrane resulting in higher affinities31. Furthermore, 
synaptotagmins contain a basic patch in the C2B domain that binds 
to PI(4,5)P2 in an at least partially Ca2+-independent manner43,44 
and enhances the Ca2+ sensitivity of exocytosis45. Our data suggest 
that there may be a delicate balance between cis and trans binding 
of synaptotagmins: whereas the target membrane containing high 
concentrations of PI(4,5)P2 allows for strong Ca2+-dependent (and 
partially Ca2+-independent) binding of synaptotagmins, the concen-
tration of acidic phospholipids in the vesicle membrane seems to be 
adjusted to regulate cis binding of synaptotagmins.

We do not yet know whether polyphosphate-dependent screening of 
inactivating cis binding has a role in the regulation of Ca2+-dependent  
exocytosis under physiological conditions. In permeabilized neuro
endocrine cells, triggering of exocytosis by Ca2+ depends on the 
presence of ATP46. Moreover, we have shown previously that in a 
cell-free preparation composed of inverted lawns of plasma mem-
brane containing docked secretory vesicles, addition of Ca2+ elicits  
exocytosis, but only when ATP is present47. ATP dependence might 
simply reflect the involvement of ATP-using enzymes such as  
N-ethylmaleimide–sensitive fusion protein or PI 4-kinase. However, 
it is conceivable that the strict dependence on the presence of ATP 
even during the Ca2+-triggering phase could also be attributable to 
the prevention of inactivating cis binding of synaptotagmins to the 
vesicle membrane.

How do these data contribute to the understanding of the still-
debated mechanism by which Ca2+-binding to synaptotagmins accel-
erates the rate of exocytosis by more than five orders of magnitude? 
Many models have been suggested for the action of synaptotagmins 
in the fusion pathway, such as the unblocking or activation of arrested 
trans SNARE complexes, generation of localized membrane curva-
ture in the plasma membrane or perturbation of the hydrophilic-
hydrophobic boundary of the membranes at the contact site. Although 
we cannot yet exclude any of these mechanisms, it has recently been 
suggested that synaptotagmins may act as distance regulators that pull 
the vesicle and the plasma membrane a bit closer upon Ca2+ trigger-
ing, thus triggering SNARE assembly and fusion48. It is possible that 
synaptotagmins first bind in trans to the target membrane and that 
this trans binding is then followed by cis binding—involving the C2 
domains—to the vesicle membrane, shortening the distance between 
the membranes. Such a two-step mechanism could allow for regula-
tion of cis binding, for example, by fine-tuning the concentration 
of acidic phospholipids and/or phosphorylated variants of PI in the 
vesicle membrane at the contact site.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Materials. Calcein, ATP, ADP, AMP, GTP, ATP-γ-S and pyrophosphate were 
purchased from Sigma (St. Louis, MO). l-α-Lysophosphatidylcholine (LPC) 
and other lipids were from Avanti (Alabaster, AL). Antibodies to synaptobre-
vin (clone number 69.1), synaptophysin (clone number 7.2), synaptotagmin-1 
(monoclonal antibodies 41.1 and 604.1) and VAMP-4 (catalog no. 136 002) were 
from Synaptic Systems (Göttingen, Germany). Antibodies to SDHA (catalog no. 
ab14715), EEA-1 (catalog no. ab2900), calnexin (catalog no. ab10286), LAMP-1 
(catalog no. ab24170), Rpt-4 (catalog no. ab22639), catalase (catalog no. ab1877) 
and Na+/K+-ATPase (catalog no. ab7671) were from Abcam (Cambridge, MA). 
All antibodies were diluted to 1:2,000 for use.

Purification of chromaffin granules and synaptic vesicles. CGs were purified as 
previously described49, with several modifications. Fresh bovine adrenal glands 
were obtained from a local slaughterhouse. After the cortex and fat were trimmed 
away, the medullae were minced with a scissor in 300-mM sucrose buffer (300 mM 
sucrose, 20 mM HEPES (pH 7.4) adjusted with KOH) and then homogenized 
using a cooled glass–Teflon homogenizer at 1,000 r.p.m. PMSF (200 µM) was 
added to prevent protein degradation. All subsequent steps were carried out at 
0–4 °C. The sample was centrifuged at 1,000g for 15 min at 4 °C, after which the 
pellet containing nuclei and cell debris (P1) was discarded. The supernatant (S1) 
was further centrifuged (12,000g, 15 min, 4 °C) and then subjected to an additional 
cycle of resuspension and centrifugation for washing. The resulting pellet (P2, 
crude CG fraction) was resuspended in 300-mM sucrose buffer and loaded on 
top of a continuous sucrose gradient (from 300 mM to 2.0 M) to remove other 
contaminants, including mitochondria. CGs were collected from the pellet after 
centrifugation at 27,000 r.p.m. for 60 min in a Beckman SW 41 Ti rotor and resus-
pended with the buffer (120 mM potassium glutamate, 20 mM potassium acetate, 
20 mM HEPES and KOH (pH 7.4)). The fraction directly on top of the pellet was 
removed, and the pellet alone was resuspended only to purify mature CGs.

Synaptic vesicles from rat brain were purified as previously described18.  
Briefly, rat brains were homogenized in homogenization buffer supplemented 
with protease inhibitors, using a glass–Teflon homogenizer, with 10 strokes at  
900 r.p.m. The homogenate was centrifuged for 10 min at 1,000g, and the resulting 
supernatant was further centrifuged for 15 min at 15,000g. The supernatant S2 
was stored on ice for later use. The synaptosome pellet was lysed by addition of 
ice-cold water, and three strokes at 2,000 r.p.m. were applied. Protease inhibitors 
and HEPES were added to the lysate immediately. The lysate was centrifuged 
for 15 min at 17,000g, and the supernatant LS1 was combined with the S2. The 
mixture of LS1 and S2 was centrifuged for 25 min at 48,000g. The resulting 
supernatant CS1 was overlaid onto a 0.7-M sucrose cushion and centrifuged 
for 1 h at 133,000g. The pellet was resuspended in column buffer (100 mM Tris-
HCl, 100 mM KCl (pH 7.4)) and loaded onto a Sephacryl S-1000 size-exclusion  
chromatography column (100 × 1 cm).

Protein purification. All SNARE constructs were based on rat sequences and 
were cloned in the pET28a vector. The TeNT light chain (both wild-type and the 
inactive E234A mutant50), and SNARE proteins including the soluble form of syn-
aptobrevin lacking the transmembrane domain (Syb1–96) and C2AB domain of  
synaptotagmin-1 (residues 97–421), were expressed in Escherichia coli and puri-
fied by Ni2+-NTA affinity chromatography followed by ion-exchange chromato
graphy with a Mono S column on an Äkta system (GE Healthcare, Piscataway, 
NJ). The stabilized Q-SNARE complex, referred to as the ∆N complex and 
containing syntaxin-1A (183–288), SNAP-25A (with all cysteines replaced by 
alanines) and the C-terminal synaptobrevin fragment (49–96), was purified as 
described previously16. The 2:1 binary Q-SNARE complex containing syntaxin-
1A (1–288) and SNAP-25A (no cysteine) was expressed using cotransformation51. 
The ∆N complex, the syntaxin-1A–SNAP-25A 2:1 binary complex, SNAP-25A 
(no cysteine) and syntaxin-1A (1–288, 183–288 and 183–262 (SyxH3)) were puri-
fied by Ni2+-NTA affinity chromatography followed by ion-exchange chroma-
tography on a Mono Q column (GE Healthcare, Piscataway, NJ) in the presence 
of 50 mM n-octyl-β-d-glucoside.

For anisotropy measurements, point-mutated C2AB (S342C)35 and Syb49–96 
(T79C) in the ∆N complex were labeled with Alexa Fluor 488 C5 maleimide.

Preparation of proteoliposomes. Unless indicated otherwise, the lipid 
composition of proteoliposomes (molar ratios) consists of 45% PC  

(l-α-phosphatidylcholine), 15% PE (l-α-phosphatidylethanolamine), 10% PS 
(l-α-phosphatidylserine), 25% cholesterol and 5% PI (l-α-phosphatidylinositol). 
PI(4,5)P2 or PI3P, at the indicated concentrations, replaced PI. For FRET-based 
dequenching assays, 1.5% 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-
(7-nitrobenz-2-oxa-1,3-diazol-4-yl) (NBD-DOPE) and 1.5% 1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine-N-lissamine rhodamine B sulfonyl ammonium 
salt (Rhodamine-DOPE) were used as a donor and an acceptor dye, respectively. 
Synaptobrevin- and synaptotagmin-1–containing liposomes consist of 50% PC, 
20% PE, 20% PS and 10% cholesterol. When 15% PS or 10% PS was used, PC 
contents were adjusted accordingly.

As described52, liposomes were extruded using polycarbonate membranes 
of pore size 100 nm (Avanti Polar lipids) to give uniformly distributed large uni
lamellar vesicles (LUVs) in the diameter range of 100 nm as confirmed by field-
flow fractionation coupled with multiangle laser light scattering (FFF-MALLS, 
Wyatt Technology Corporation, Santa Barbara, CA, USA).

Incorporation of the proteins into liposomes was achieved by n-octyl-β-d- 
glucoside (OG)-mediated reconstitution. Proteoliposomes containing the  
stabilized acceptor complex (∆N complex) or the syntaxin-1A–SNAP-25A binary 
complex in 2:1 stoichiometry (2:1 complex) were prepared by detergent-assisted 
insertion of proteins as described previously16,52. ∆N complex in 50 mM OG was 
mixed with LUVs (lipid-to-protein ratio of 500:1 (n/n)). In case of 2:1 complex 
incorporation with LUVs, lipid-to-protein ratio was 200:1. For content-mixing 
assays, 50 mM calcein (495/515 nm) was encapsulated in proteoliposomes as 
described previously53. Lipids were dissolved in diethyl ether (1.5 ml) and resus-
pended with 0.5 ml of 50 mM calcein (2Na+-calcein2−) in 20-mM HEPES-KOH 
(pH 7.4), 75 mM KCl and 1 mM DTT. Content mixing was specific to SNARE 
proteins incorporated in liposomes and leakage, determined by quenching cal-
cein leaked into the medium by addition of Co2+, was only 4−5% of total calcein  
(for details see ref. 48).

Fusion reaction. CG fusion reactions were done at 37 °C. For each reaction, 50 µg 
of CGs and 10 µl of proteoliposomes were mixed in 1 ml of buffer containing 
120 mM potassium glutamate, 20 mM potassium acetate, 20 mM HEPES-KOH 
(pH 7.4) and 5 mM MgCl2. Unless indicated otherwise, acceptor liposomes 
contained the stabilized Q-SNARE complex, termed ∆N complex26. The 2:1 
(syntaxin-1A–SNAP-25A) Q-SNARE complex was also tested for SNARE- and 
Ca2+-dependent fusion (Supplementary Fig. 4b). For Ca2+-dependent fusion, 
5 mM 2Na+-ATP was added. ATP should be made freshly for experiments because 
ATP is easily destroyed by freezing and thawing. Fluorescence dequenching signal 
was measured by FluoroLog and FluoroMax (HORIBA Jobin Yvon), with wave-
lengths of 460 nm (slit width of 1 nm) for excitation and 538 nm (slit width of 
3 nm) for emission. Fluorescence values were normalized as the percentage value 
of the maximum donor fluorescence induced by 0.1% Triton X-100 detergent 
treatment at the end of each experiment. ‘No addition’ represents basal fusion with-
out any treatment or Ca2+. Quantification of vesicle-fusion data of lipid-mixing  
and content-mixing assay is presented as a percentage by normalizing basal 
fusion after 20 min of reaction time. Ca2+-dependent fusion with the different 
concentrations of PI(4,5)P2 (Fig. 3d) was normalized according to Fusionnor = 
(T – T0) / (Tmax T0), where T is the percentage of total fluorescence induced by 
vesicle fusion, T0 indicates basal fusion without Ca2+ and Tmax indicates fusion at  
100 µM Ca2+ (maximum level).

Cryo-electron microscopy. Samples were bound in a Vitrobot Mark IV (FEI 
Company) to a glow-discharged carbon foil–covered grid. The suspension was 
blotted 2× for 1 s at blot force = 2 and vitrified at 24 °C and 97% humidity. 
The samples were evaluated with a CM 120 transmission electron microscope, 
and pictures were taken with a TemCam 224A slow scan CCD camera (TVIPS, 
Gauting, Germany).

Fluorescence-anisotropy measurements. Anisotropy measurements were car-
ried out in a FluoroLog 3 spectrometer in T-configuration equipped for polari-
zation (Model FL322, Jobin Yvon). All experiments were done at 37 °C in 1 ml 
of buffer containing 120 mM potassium glutamate, 20 mM potassium acetate, 
20 mM HEPES-KOH (pH 7.4) and 5 mM MgCl2. 2Na+-ATP and CaCl2 were 
treated as indicated. Alexa Fluor 488–labeled proteins were excited at 488 nm 
(slit width of 8 nm), and their emission was measured at 520 nm (slit width of 
10 nm). For monitoring of SNARE assembly, 200 µg CGs were incubated with 
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1% PI(4,5)P2-containing liposomes that incorporate the ∆N complex (Syb49–96 
labeled with Alexa Fluor 488 at T79C). For monitoring of the binding of the 
C2AB domain, 30 nM C2AB (S342C, Alexa Fluor 488–labeled) was incubated 
with 30 µg CGs or protein-free liposomes containing 20%, 15% or 10% PS. The 
G factor was calculated according to G = IHV / IHH, where I is the fluorescence 
intensity, the first subscript letter indicates the direction of the exciting light, 
and the second subscript letter the direction of emitted light. The intensity of 
the vertically (V) and horizontally (H) polarized emission light after excitation 
by vertically polarized light was measured. The anisotropy (r) was determined  
according to r = (IVV – G × IVH) / (IVV + 2G × IVH).

Ca2+ calibration. ATP contains negatively charged oxygen atoms that bind to 
Mg2+, Ca2+ or Sr2+, thereby chelating divalent cations42. Ca2+ concentrations 
were calibrated with Fluo-5N, a low-affinity Ca2+ indicator with a Kd = 90 µM, 
and experiment data were correlated with a simulation that calculates the free 
Ca2+ concentrations (http://maxchelator.stanford.edu).

Statistical analysis. All quantitative data are mean ± s.d. from three or more 
independent experiments. Dose-response curves were fit using four-parameter 
logistic equations (4PL) to calculate EC50 (SigmaPlot).
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