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An intriguing question in maximally supersymmetric theories
is which F-terms (or BPS invariants) are protected from UV diver-
gences and which are not. Superspace non-renormalisation the-
orems in conventional superspace [1] allow the possibility of
one-half BPS counterterms, i.e. integrals over eight odd coordinates
(6s) for maximally supersymmetric Yang-Mills theories (MSYM),
a prediction which was in agreement with the old Feynman dia-
gram computations of Ref. [2]. The more efficient unitarity meth-
ods [3] have allowed computations to be carried out at much
higher loop order, however, and in 1998 there were indications
that MSYM could be finite at L =4 loops in D =5 [4], despite the
existence of an eight-6 invariant. This expectation has now been
confirmed [5,6] and shows that conventional superspace methods
are not sufficiently powerful to account fully for the UV behaviour.

It seemed that this problem could be circumvented by means of
off-shell harmonic superspace methods. There is an off-shell ver-
sion of N =3, D =4 SYM [7] (which has the same physical spec-
trum as N =4) which one would naively expect to forbid one-half
BPS counterterms but admit one-quarter BPS ones [8], i.e. integrals
over twelve 6s. This would then explain the D =5, L =4 MSYM
result and is also compatible with the one-quarter BPS divergence
found at L =2 in D =7 [2]. There is also an off-shell version of
MSYM with a finite number of auxiliary fields which preserves
nine supersymmetries (one-half-susy-plus-one) which would seem
to lead to the same predictions [9,10]. This year, however, unitar-
ity computations have revealed that the double-trace one-quarter
BPS invariant, although divergent in D =7, L = 2, is actually finite
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in D=6, L =3 [6], a result which is at odds with the expectation
that only one-half BPS invariants are protected [10].

A possible explanation for the failure of extended superfield
methods to account for this result, along with a similar one for
D =5 maximal supergravity (MSG) at L =4 [11], is that both
of the off-shell formulations referred to above do not preserve
all of the other symmetries. Both break manifest Lorentz in-
variance and R-symmetry while the remaining supersymmetries
are non-linearly realised. It is possible that the superspace non-
renormalisation theorems could be improved by taking this feature
into account, but it is a difficult problem. On the other hand, the
algebraic approach advocated in [10] has the advantage that all of
the symmetries are kept under tight control even though it es-
chews the use of auxiliary fields. In this note we shall show that
a closer examination of the algebraic version of the supersymmetry
non-renormalisation theorem leads to the result that the double-
trace one-quarter BPS invariant is indeed protected in D = 6 even
though it is not in D = 7. The implication of this is that the re-
sult of Ref. [6] is explicable in terms of the obvious symmetries of
MSYM, although this has yet to be extended to the finiteness of
D =4, L =5 MSG. The field theory predictions for the onset of UV
divergences for MSYM are thus in agreement with existing calcu-
lations as well as with the recent predictions made from a string
theory viewpoint [12].

Regarding the use of string theory to make predictions about
the UV behaviour of MSYM or MSG field theories, we would like
to recall the known difficulties in using systems with infinite num-
bers of extra fields as field-theory “regulators”. This was clearly
pointed out in the Kaluza-Klein context in Ref. [13], where, us-
ing zeta-function regularisation, it was shown how, despite the
decoupling of individual KK massive modes in a compactification
limit, there can nonetheless be divergence cancellations that take
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place between the lower-dimensional theory to be “regulated” and
the contributions arising from the infinity of KK massive modes.
For example, odd-loop-order gravity or supergravity divergences in
odd numbers of spacetime dimensions vanish owing to the ab-
sence of available Lorentz and diffeomorphism invariant countert-
erms. But this does not imply that the massless KK sectors in even,
lower dimensionalities are free of divergences, merely that such di-
vergences cancel against the summed effects of the “regulators”. It
would be nice to understand how this problem is circumvented
by the use of string theory with its doubly infinite numbers of
“regulators” in the string and KK massive states. This issue would
appear to call into question the usefulness of string theory as a
quantum regulator for a lower-dimensional field theory that occurs
as its zero slope limit, unless there is some reason why classical
truncation consistency is preserved at the quantum level. It might
be, perhaps, that the case of maximally supersymmetric theories is
special in this context.

Before starting on the details it is worth recalling what the
leading bosonic contributions to the four-point BPS invariants are
for MSYM in spacetime. There are two one-half BPS invariants,
Tr(F4%) and (Tr(F%))%, and two one-quarter BPS ones, the single-
and double-traces of F* with two extra spacetime derivatives. Both
of the one-half BPS invariants are true BPS states in that they can-
not be written as integrals of gauge-invariant integrands over more
than eight 6s but the single-trace one-quarter BPS invariant is not.
In fact, it can be written as the full superspace integral of the
Konishi operator [14] and is therefore non-protected in agreement
with the computational results [6].

The algebraic approach to the renormalisation of maximally su-
persymmetric theories was discussed in some detail in [10]. Here
we give a brief synopsis of the method. The basic idea is to study
the symmetry properties of the effective action I" algebraically.
In the absence of any convenient set of auxiliary fields it is best
to discard them completely and to work in components. The su-
persymmetry transformations are then non-linear, the algebra only
closes modulo gauge transformations and the equations of motion,
and gauge-fixing is not manifestly supersymmetric. All of these
technical problems can be overcome by the Batalin-Vilkovisky (BV)
version of standard BRST techniques [15-17]. An important point
is that one needs to introduce a “supersymmetry ghost”, which is
a constant commuting spinor € in the case of rigid supersymme-
try.! One can then show that, in addition to the BRST operator s
(of ghost number one) associated to gauge invariance, there is an
additional operator Q (with which we associate one unit of a
new type of ghost number called shadow number) under which
any putative counterterm should be invariant too. Q acts as a su-
persymmetry transformation with parameter € on gauge-invariant
functions of the fields and their derivatives in the cohomology of s,
and satisfies?

Q*~ —£y, (1)
where v® := —%EFGE. If we express an invariant as an integral of
a spacetime D-form, £p say, then we have

QLp+doLp-1,1~0 (2)

where L£p_1,1 is a spacetime (D — 1)-form linear in € (and thus
with shadow number one) and dy is the spacetime exterior deriva-
tive. Applying Q to (2) and using (1) and the fact that it anticom-
mutes with dy we deduce that

QLp-11+doLp-22+iyLp~0 (3)

1 This becomes the Faddeev-Popov ghost of local supersymmetry in supergravity.
2 The =~ symbol refers to the fact that identity holds modulo the equations of
motion in the physical sector.

and so on (where i, is the contraction operator, i,dx* = v%). Thus
we obtain a cocycle of the extended differential di=do+Q +iy
whose components Lp_g 4 are (D — q)-forms with shadow num-
ber q. Now the question of whether a given invariant is required
as a counterterm, i.e. corresponds to a UV divergence, can be re-
formulated in terms of the anomalous dimension of the same
invariant considered as a composite operator insertion, by use of
the Callan-Symanzik equation [18,10]. Furthermore, we can in-
clude all of the terms in the cocycle as operator insertions for
any invariant including the original starting action. We can there-
fore conclude that an invariant will be a required counterterm if
it has the same cocycle structure as the initial action. This is the
generalisation of the algebraic supersymmetry non-renormalisation
theorem [18-20], to non-renormalisable theories [10].

By a slight extension of the theorem of [21], the cohomology
of the BRST operator s of ghost number zero and shadow num-
ber g corresponds to the gauge-invariant functions of the fields
of order ¢ in the constant spinor €, identified modulo the equa-
tions of motion. So a term Lp_q4 in a cocycle corresponds to
a (D — q)-form with q additional spinor indices which have to
be totally symmetrised as € is a commuting object. This implies
that the cocycle is equivalent to a closed D-form in superspace.
We can therefore study the possible solutions to the algebraic
non-renormalisation problem systematically using superspace co-
homology. Indeed, from a computational point of view, one has
the following identifications between objects in superspace and in
components

di~Q do9%Aq ~ ¢ (4)

where c is the shadow field [17] and the superspace objects are
defined below. This is advantageous because it allows us to study
the problem starting at the lowest dimension and work upwards
rather than the other way round. Since the top component has
many terms besides the leading bosonic one this can be a rather
complicated object to construct. Of course, any invariant can also
be presented as a superspace integral, and in general the super-
field integrand will have many more components than appear in
the cocycle, so it seems that the algebraic approach implies that
the essential part of a superfield integrand is actually the part that
appears in the closed super D-form. For example, as we shall see
later, the cocycle associated with a one-half BPS invariant is ac-
tually longer than the cocycle for the action, whereas the cocycle
associated with a full superspace integral is the same as that for
the action.

It has been known for some time that one can write a super-
symmetric invariant as a spacetime integral in terms of a closed
super-form, a procedure which has been dubbed “ectoplasm”
[22,23]. Suppose M is a supermanifold with D-dimensional body
Mg and Lp is a closed D-form on M. The formula for an invari-
ant [ is

IZ/LD,O(X,QZO), (5)

Mo

to~iy do¥ ~e“

where Lp o is the purely bosonic component of Lp with respect to
some coordinate basis and where (x, ) are (even, odd) coordinates
on M. It is easy to see that this does give a supersymmetry invari-
ant because, under an infinitesimal diffeomorphism of M, a closed
form changes by a total derivative, and a spacetime supersymmetry
transformation is given by the leading term of an odd superdiffeo-
morphism in its §-expansion. Since an exact D-form integrates to
zero, it follows that we need to analyse the Dth de Rham coho-
mology group of M in order to find the possible invariants. This
has nothing to do with topology, however, since the forms we are
interested in have components which are gauge-invariant functions
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of the physical fields and this leads to non-trivial cohomology even
for flat supermanifolds.

We now give a brief review of some essential aspects of su-
perspace cohomology. We shall only consider flat superspace here.
The standard superinvariant basis one-forms are

i
E = dy" — —do*(I'), 507
E* =do*, (6)

which are dual to the usual invariant derivatives (g, Dy). As we
are going to focus on MSYM the index « can be thought of as a
16-component D = 10 chiral spinor index, although in D < 10 it
will stand for a combined spinor and R-symmetry index. Similarly,
I'® denotes the ten-dimensional gamma-matrices which reduce to
a direct product of internal and spinor matrices.

The fact that the tangent spaces of a superspace (even in the
curved case) split invariantly into even and odd subspaces implies
that one can introduce a bi-grading on the spaces 2" of differ-
ential n-forms, 2" = @Mq:nﬂpﬁq. We can also split the exte-
rior derivative d into the following components with the indicated
bidegrees [24]

d=dop(1,0)+d1(0,1) + to(—1,2). (7)

In a general superspace there is also a component t; of bide-
gree (2,—1) but it vanishes in flat space (and does not play a
crucial cohomological role in any case). dg = E%3, and di = E¥ Dy
are respectively even and odd exterior derivatives, while ty is an
algebraic operation involving the dimension zero torsion, which is
proportional to I". For w € P9,

(toW)ay...appr..012 ~ (Fa])(13”32('0‘11~--ap,33~~-/3q+2)' (8)
Since d?> =0 we find, amongst other relations,

t5=0 )

tod1 +dito=0 (10)

d%-i—todo-}-dotozo. (11)

Eq. (9) implies that we can define tp-cohomology groups Hf’q
[24]. We can then define a new odd derivative ds acting on ele-
ments of these groups by

ds[w] := [dw], (12)

where w € [w] € Hf’q, with [w] denoting the cohomology class of
a tp-closed form w. Egs. (10) and (11) then imply that these defi-
nitions are independent of the choice of representative w and that
d? = 0. This means that we can define the so-called spinorial co-
homology groups HP'? [25,26]. The point of these definitions is
that they enable us to solve for the superspace cohomology of
d in terms of the spinorial cohomology groups. Specifically, sup-
pose the lowest-dimensional non-zero component (i.e. the one
with the largest number of odd indices) of some closed D-form Lp
is Lp_gq,q, for some g, then, since dLp =0, we have tglp_q4 =0,
and since we are interested in cohomology, the starting component
will correspond to an element of Hthq’q. The next component of
dLp =0 then tells us that ds[Lp_q4] = 0. Thereafter, if we can
solve this equation, we can solve for all of the higher components
of Lp in terms of LD_q,q.3 There may, of course, be other solutions
to the problem with lowest components of different bidegrees, but
this is precisely what is needed for there to be non-trivial exam-
ples of non-renormalisation theorems as this implies the existence

3 In principle there can be higher-order obstructions but these do not arise in the
examples discussed here.

of more than one type of cocycle. Another important consideration
is that any putative lowest component of a closed D-form must
lead to a non-zero Lp o.

We shall now discuss the cohomology of N =1, D =10 su-
perspace (see [27] for more details). Interestingly enough, it turns
out to be closely related to the pure spinor approach to su-
persymmetry [28,29]. Consider first H?’q. Let w € 2%9 and let
= u"‘q...u"‘lwalu_aq where u is a (commuting) pure spinor,
ulu = 0. Clearly, if @ — w + tox, where 1 € 21972, & is un-
changed, so that H?’q is isomorphic to the space of g-fold pure
spinors which appears in pure spinor cohomology [30]. The to-
cohomology groups for 1 < p <5 are again spaces of pure spinor
type objects but with additional antisymmetrised vector indices.
This arises because of the gamma-matrix identities which are re-
sponsible for the kappa-symmetry of the string and five-brane ac-
tions. In form notation these are

tol 2 =tol52=0 (13)

where I, > denotes a symmetric gamma-matrix with p even in-
dices viewed as a (p, 2)-form. For our problem only the second of
these relations is relevant. For example, suppose w € £239 can be
written

w3q=T52)% g2, (14)

where the notation indicates that two of the even indices on I >
are to be contracted with the two vector indices on 2, then it is
clearly the case that w is tp-closed. Furthermore, in cohomology,
the object A can be taken to be of pure spinor type on its odd
indices. Constructions such as this are not possible for p > 6 and
it turns out that all such tp-cohomology groups vanish.

Although it would seem that there are quite a lot of cohomol-
ogy groups available which one might consider as possible lowest
components for closed D-forms it turns out that there is only one
type of cocycle in N =1, D = 10, with lowest component Ls 5 [27].
This is due to the fact that this is the only case which can lead to
a non-zero Lig 0. So any closed D-form in D = 10 superspace has
a lowest component of the form

Lss =T52Mo3 (15)

where ds[Mp 3] = 0. The simplest example of this is for an uncon-
strained scalar superfield S, which corresponds to a full superspace
integral,

Maﬁy = TOlﬁV,(S]...BSDH(Sl'”BSS, (16)

where T is an invariant tensor constructed from gamma-matrices
[30] and D@15 js the dual of the antisymmetrised product of
eleven Dys. The tensor T is symmetric on o8y and totally anti-
symmetric on the §s. Now a closed D-form in D dimensions gives
rise to a closed (D — 1)-form in (D — 1) dimensions under dimen-
sional reduction, so this means that we can immediately construct
the cocycle associated with any non-BPS invariant in 4 < D < 10;
it will have lowest component Lp_5 5~ I'p_53Mo 3 where I'p_s
is the dimensional reduction of I5 ;.

The next example we shall consider is the (on-shell) action.
It is an example of a Chern-Simons (CS) invariant. In D dimen-
sions such an invariant can be constructed starting from a closed,
gauge-invariant (D 4 1)-form Wp4q =dZp, where Zp is a poten-
tial D-form [31], provided that it has the property of Weil trivial-
ity [32], i.e. it can also be written as dKp for some gauge-invariant
D-form Kp. If this is true, then Lp := Kp — Zp is closed and can
be used to construct an integral invariant via the ectoplasm for-
mula. For the D = 10 SYM action the appropriate W1; is H7 Tr(F?)
where, in flat superspace, the closed seven-form H7 ~ I 3. This
eleven-form is easily seen to have the correct property, with the
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lowest component of Kp being Kg»; Z can be chosen to be H7Q3
where Q3 is the SYM Chern-Simons three-form, dQ3 = Tr(F2). The
lowest non-zero component of Lqg is

Lss=—I52Q03. (17)

We can again reduce this formula to any dimension 4 < D < 10,
and conclude that the lowest term in the closed D-form asso-
ciated with the action, or action-form, for all of these cases is
Lp_s55=—Ip_52Q03. This is in agreement with the cocycle ob-
tained in components in [10], with the identifications (4). We are
therefore able to conclude that the cocycle type of the action is
the same as that of a non-BPS invariant in all dimensions D > 5,
and therefore that such full superspace integrals are not protected
by the algebraic non-renormalisation theorem.

We now move on to discuss the BPS invariants, starting with
one-half BPS. There are two of these corresponding to single- and
double-trace F# invariants. There is not a lot of difference between
them from the point of view of superspace cohomology, and we
shall focus on the double-trace as it will be useful in the sub-
sequent discussion of the double-trace one-quarter BPS case. In
D = 10 this invariant is again of CS type with Wq; = H3F*, but
the CS nature is lost for D < 8 due to the low rank of H3 ~ I >
and so we shall derive the associated closed D-form starting from
scratch in D =7 and below.*

In D < 8, the SYM field strength multiplet is a scalar superfield
W, r=1,...,n =10 — D, whose independent components are
the physical scalars and spinors and the spacetime field strength,
and from which one can construct two bilinear multiplets, the
Konishi multiplet K := Tr(W,;W,;), and the supercurrent, [, :=
Tr(W,Ws) — %(SrSK. The supercurrent is itself one-half BPS, but it
is ultra-short in the sense that its 6-expansion only goes up to 64
(as opposed to 68 for a standard one-half BPS superfield). It has
128 + 128 components while Konishi is an unconstrained scalar
superfield in the interacting theory. The supercurrent contains all
of the conserved currents of SYM: the R-currents, the supersym-
metry current, the energy-momentum tensor and an identically
conserved topological current for the gauge fields.

If we square J we obtain scalar superfields in various represen-
tations of the R-symmetry group. The totally symmetric, traceless
representation is the one-half BPS multiplet we are interested in.
Let us consider first D = 7. We can take the R-symmetry group
to be SU(2) and use i, j etc. to denote doublet SU(2) indices. The
supercurrent is Jjj, while the one-half BPS multiplet is Bj, . s :=
J(iy...ia Jis...ig)- It obeys the constraint

DyiBj,..js = €i(j1 Aajs...jg)» (18)

where the spinor index can take on 8 values. The lowest compo-
nent of the associated closed seven-form is an Lo 7 of the form

La1i1,...,a7i7 = TI(O{]OQ e nOlS()lsA()l7)i1...i7a (19)

where n4p is the (symmetric) charge-conjugation matrix. It is

straightforward to verify that this defines an element of H2’7 and
that it contains a singlet L7 o, the spacetime double-trace F4 in-
variant. Furthermore, it is not difficult to show that this seven-form
cannot be brought to the same form as that of the action by the
addition of some exact term. This shows that the one-half BPS in-
variant has a different cocycle structure to the action, although this
fact is not directly relevant in D = 7 as this counterterm cannot
arise there anyway for dimensional reasons.

4 F4 arises at one loop in D =8 where it is divergent; this is compatible with
both algebraic and superspace non-renormalisation theorems because they are not

valid at one loop.

Now let us consider the one-quarter BPS double-trace invari-
ant d?F*. It turns out that it can be written as a subsuperspace
integral of an associated pseudo-one-half BPS superfield which is
constructed from the one above by the insertion of two contracted
spacetime derivatives, one on each factor of J. This allows us to
write down a candidate closed seven-form immediately with low-
est component given as in (19) but where now A ~ 9y - 9] where
D] ~ x. In this case, however, one can show that

Lo,7 =d1Ko6 +toK1 5 (20)

for some Ko and K5 which are constructed explicitly in terms
of bilinears in the components of J. This is enough to show that
this closed seven-form is cohomologically equivalent to the action-
form as there are only two types of cocycle in D = 7. Hence the
one-quarter double-trace BPS invariant in D =7 is not protected.

The above closed seven-form can be reduced straightforwardly
to give a closed six-form in D =6 which must also have the same
cocycle structure as the action. One might therefore conclude that
this invariant cannot be protected in D = 6 either. However, the
R-symmetry group in D =7 is SU(2) while for N=2, D =6 it is
SU(2) x SU(2) and there is no guarantee that the reduced six-form
will have the full R-symmetry. For this reason we shall analyse
N =2, D =6 starting again from the supercurrent.

The N =2, D =6 supersymmetry algebra is

{Dai. Dpj} =ieij(¥?) .

[D DAI'} =ig!T (y9)*F 3,
{Dai, DP7'} =0, (21)
2

where o« = 1...4 is a chiral spinor index and i, i’ are doublet
indices for the two SU(2)s. In this notation the field strength is

5

W;"" and the supercurrent is ];j’/ = Tr(W' Wj7). The double-

trace true one-half BPS superfield is BZ.{:,W = jg;f j’,:g/). It obeys
the constraint

) j!k/l/m/ _
Da(iBlm =0 (22)

together with a similar one for the upper indices. The one-half BPS
Lagrangian six-form starts at Lo . It is

1’ / / l/ /aq!
Laipjpi” " = 86085 Bk (23)
where
ﬂi/j/l</ L l ﬂ l‘/j/k/l/
Buijic = Da Dy By (24)

There are two Spin(1,5) representations here, a singlet and
a 15, but it turns out that precisely this combination is required
in order to obtain an element of H?’G. Moreover, it is not difficult
to show that this form cannot be shortened so that the cocycle for
the true one-half BPS invariant is different to that of the action
(which starts at L1 5 in D =6).

As in the D =7 case the double-trace one-quarter BPS invariant
can be constructed in terms of a pseudo-one-half BPS superfield
obeying (22). Again it is formed by inserting a pair of contracted
spacetime derivatives, one on each factor of J. We now have the
task of testing for the cohomological triviality of the corresponding
closed six-form, i.e. we try to write Lo s =d1 Ko 5 + toKj 4. In con-
tradistinction to the D =7 case, however, we find that we cannot
do this.

The problem can be approached from different points of view.
The first is to try repeat what was done for D =7 by writing K
in terms of bilinears of the supercurrent, but it turns out that no
such Ko 5 and Kj 4 can be constructed in this way. Alternatively,
we can observe that there are two true one-quarter BPS bilinears
that can be constructed from J,
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Cijkl = _],(lj _]kl)i’j’
KT . ]l(;] ]k’)l]. (25)

These superfields obey constraints of the type (22), C with re-
spect to D and C’ with respect to D’. There is another shortened
bilinear that can be constructed from J; it is
Si =i T eewr. (26)

It obeys constraints that are third-order in D and D’ separately.
It is akin to the product of two supercurrents in N =4, D =4
which is protected as a superconformal field even though it is not
BPS-shortened [33,34].

The pseudo-one-half BPS B can be written as four derivatives
on any of these three superfields, up to a total spacetime derivative
which is irrelevant under integration. We have

VT nd - il KT
i~ Diju€
4'/ '/I/I/
~ D* I Cijia
Y 2B j k')
DapD Sy > (27)

where the D*s are fourth-order in D and totally symmetric on the
internal indices, while the second-order D%s are symmetric in the
internal indices and antisymmetric on the spinor indices. The one-
quarter BPS invariant can be written as a twelve-theta integral of
any of these so that one might expect to trivialise the cohomology
by using any one of them in K. But it turns out to be not possible
even if one includes all three at once.

We therefore conclude that the double-trace d2F* invariant is
protected in N =2, D =6 SYM even though a similar invariant is
not protected in D = 7. A key difference between the two cases
is the larger R-symmetry group in D = 6 which is more restric-
tive when it comes to constructing possible trivialising (D — 1)-
forms K.

This result is in agreement with the latest D =6, L =3 SYM
calculations [6]. There is now only one remaining BPS countert-
erm to be checked in MSYM, the double-trace one-quarter BPS
invariant which could appear in principle in D =5 at L =6 loops.
Although we have not checked this explicitly, it seems likely that
it will be protected because we can obtain a protected cocy-
cle by dimensional reduction of the N =2, D =6 cocycle we
have just discussed. This would not necessarily have the full Sp(2)
R-symmetry but it would have a larger R-symmetry than the triv-
ial cocycle that can be constructed by dimensional reduction from
D=17.

The evaluation of the various superspace cohomology groups
for maximal supergravity is a more difficult problem, principally
because of the larger R-symmetry groups, many of which have
the disadvantage of being symplectic. There is also a conceptual
issue to deal with because the precise relation between the coho-
mology problem in algebraic renormalisation in components and
the “ectoplasm” cohomology problem in superspace has not yet
been identified for supergravity. The equivalence between these
two certainly does not hold for the cocycle associated to the
classical action, since the latter vanishes on-shell. Nevertheless
we can speculate as to the outcome of such investigations us-
ing MSYM as a guide. Let us suppose that cohomological argu-
ments can be found which protect the D =5, L = 4 invariant
(which is one-eighth BPS); then, by dimensional reduction, we
would expect this counterterm to be protected also in D = 4
where it could occur at L = 6 loops. There is still the question
of the one-quarter BPS counterterm which could occur at L =5
in D =4, but it would seem unlikely that this would be di-
vergent while the L = 6 one is not. The net upshot of this is

that it would seem likely that all BPS counterterms in N = 8§,
D = 4 supergravity are protected after all, and that the first di-
vergence that could appear according to field theory arguments
would be at L =7 loops. Such a counterterm was explicitly con-
structed in the linearised theory many years ago [35], but this is
not invariant under the non-linear E; symmetry. However, there
is a seven-loop E7 invariant given by the volume of the on-shell
N = 8 superspace. Although it is known that the volume of su-
perspace can vanish in some lower N examples, there does not
seem to be any obvious reason why this should be the case in
N=28.

Acknowledgements

We are grateful to the authors of Refs. [6,11], as well as to
Pierre Vanhove, for stimulating discussions. We would also like to
thank Marc Henneaux for helpful comments on cohomology.

References

[1] PS. Howe, K.S. Stelle, The ultra-violet properties of supersymmetric field theo-
ries, Int. J. Mod. Phys. A 4 (1989) 1871.

[2] N. Marcus, A. Sagnotti, The ultraviolet behavior of N =4 Yang-Mills and the
power counting of extended superspace, Nucl. Phys. B 256 (1985) 77.

[3] Z. Bern, LJ. Dixon, D.C. Dunbar, D.A. Kosower, One-loop n-point gauge theory
amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217, arXiv:
hep-ph/9403226.

[4] Z. Bern, LJ. Dixon, D.C. Dunbar, M. Perelstein, J.S. Rozowsky, On the relation-
ship between Yang-Mills theory and gravity and its implication for ultraviolet
divergences, Nucl. Phys. B 530 (1998) 401, arXiv:hep-th/9802162.

[5] Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower, V.A. Smirnov, The four-loop planar
amplitude and cusp anomalous dimension in maximally supersymmetric Yang-
Mills theory, Phys. Rev. D 75 (2007) 085010, arXiv:hep-th/0610248.

[6] Z. Bern, ]J. Carrasco, LJ. Dixon, H. Johansson, R. Roiban, in preparation, LJ.
Dixon, talk at the International workshop on gauge and string amplitudes, IPPP
Durham, 30th March to 3rd April 2009, available on-line at http://conference.
ippp.dur.ac.uk.

[7] A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky, E. Sokatchev, N = 3 supersym-
metric gauge theory, Phys. Lett. B 151 (1985) 215.

[8] P.S. Howe, K.S. Stelle, Supersymmetry counterterms revisited, Phys. Lett. B 554
(2003) 190, arXiv:hep-th/0211279.

[9] L. Baulieu, N.J. Berkovits, G. Bossard, A. Martin, Ten-dimensional super-Yang-
Mills with nine off-shell supersymmetries, Phys. Lett. B 658 (2008) 249, arXiv:
0705.2002 [hep-th].

[10] G. Bossard, P.S. Howe, K.S. Stelle, The ultra-violet question in maximally super-
symmetric field theories, Gen. Relativ. Gravit. 41 (2009) 919, arXiv:0901.4661
[hep-th].

[11] Z. Bern, ].J. Carrasco, LJ. Dixon, H. Johansson, R. Roiban, The ultraviolet behavior
of N =8 supergravity at four loops, arXiv:0905.2326 [hep-th].

[12] N. Berkovits, M.B. Green, ].G. Russo, P. Vanhove, Non-renormalization condi-
tions for four-gluon scattering in supersymmetric string and field theory, arXiv:
0908.1923 [hep-th].

[13] M. Duff, D.J. Toms, Kaluza-Klein Kounterterms, Talk at 2nd Europhysics Study
Conf. on Unification of Fundamental Interactions, Erice, Sicily, published in
Erice EPS Unification 1981:29 (QCD161;E85;1981) (available on KEK).

[14] J.M. Drummond, PJ. Heslop, P.S. Howe, S.F. Kerstan, Integral invariants in N =4
SYM and the effective action for coincident D-branes, JHEP 0308 (2003) 016,
arXiv:hep-th/0305202.

[15] J.A. Dixon, Supersymmetry is full of holes, Class. Quantum Grav. 7 (1990) 1511.

[16] PS. Howe, U. Lindstrom, P. White, Anomalies and renormalisation in the
BRST/BV framework, Phys. Lett. B 246 (1990) 430.

[17] L. Baulieu, G. Bossard, S.P. Sorella, Shadow fields and local supersymmetric
gauges, Nucl. Phys. B 753 (2006) 273, arXiv:hep-th/0603248.

[18] A. Blasi, V.E.R. Lemes, N. Maggiore, S.P. Sorella, A. Tanzini, O.S. Ventura, L.C.Q.
Vilar, Perturbative beta function of N = 2 super-Yang-Mills theories, JHEP
0005 (2000) 039, hep-th/0004048.

[19] V.E.R. Lemes, M.S. Sarandy, S.P. Sorella, O.S. Ventura, L.C.Q. Vilar, An algebraic
criterion for the ultraviolet finiteness of quantum field theories, ]J. Phys. A 34
(2001) 9485, hep-th/0103110.

[20] L. Baulieu, G. Bossard, S.P. Sorella, Finiteness properties of the A" =4 super-
Yang-Mills theory in supersymmetric gauge, Nucl. Phys. B 753 (2006) 252, hep-
th/0605164.

[21] G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in the antifield
formalism. 1. General theorems, Commun. Math. Phys. 174 (1995) 57, hep-th/
94051009.


http://conference.ippp.dur.ac.uk
http://conference.ippp.dur.ac.uk

142 G. Bossard et al. / Physics Letters B 682 (2009) 137-142

[22] SJJ. Gates, Ectoplasm has no topology: The prelude, arXiv:hep-th/9709104.

[23] S.J.J. Gates, M.T. Grisaru, M.E. Knutt-Wehlau, W. Siegel, Component actions from
curved superspace: Normal coordinates and ectoplasm, Phys. Lett. B 421 (1998)
203, arXiv:hep-th/9711151.

[24] L. Bonora, P. Pasti, M. Tonin, Superspace formulation of 10-D Sugra + Sym the-
ory a la Green-Schwarz, Phys. Lett. B 188 (1987) 335.

[25] M. Cederwall, B.E.W. Nilsson, D. Tsimpis, Spinorial cohomology and maximally
supersymmetric theories, JHEP 0202 (2002) 009, arXiv:hep-th/0110069.

[26] PS. Howe, D. Tsimpis, On higher-order corrections in M theory, JHEP 0309
(2003) 038, arXiv:hep-th/0305129.

[27] N. Berkovits, P.S. Howe, The cohomology of superspace, pure spinors and in-
variant integrals, arXiv:0803.3024 [hep-th].

[28] PS. Howe, Pure spinors lines in superspace and ten-dimensional supersymmet-
ric theories, Phys. Lett. B 258 (1991) 141;
P.S. Howe, Phys. Lett. B 259 (1991) 511 (Addendum).

[29] PS. Howe, Pure spinors, function superspaces and supergravity theories in ten-
dimensions and eleven-dimensions, Phys. Lett. B 273 (1991) 90.

[30] N. Berkovits, ICTP lectures on covariant quantization of the superstring, arXiv:
hep-th/0209059.

[31] PS. Howe, O. Raetzel, E. Sezgin, On brane actions and superembeddings, JHEP
9808 (1998) 011, arXiv:hep-th/9804051.

[32] L. Bonora, P. Pasti, M. Tonin, Chiral anomalies in higher-dimensional supersym-
metric theories, Nucl. Phys. B 286 (1987) 150.

[33] B. Eden, A.C. Petkou, C. Schubert, E. Sokatchev, Partial non-renormalisation of
the stress-tensor four-point function in N =4 SYM and AdS/CFT, Nucl. Phys. B
607 (2001) 191, arXiv:hep-th/0009106.

[34] PJ. Heslop, PS. Howe, A note on composite operators in N =4 SYM, Phys.
Lett. B 516 (2001) 367, arXiv:hep-th/0106238.

[35] PS. Howe, U. Lindstrom, Higher order invariants in extended supergravity, Nucl.
Phys. B 181 (1981) 487.



	A note on the UV behaviour of maximally supersymmetric Yang-Mills theories
	Acknowledgements
	References


