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We apply our recently developed scaling technique for obtaining late-time asymp-
totics to the cubic nonlinear wave equation and explain the appearance and ap-
proach to the two-parameter attractor found recently by Bizon and Zenginoglu.
© 2010 American Institute of Physics. �doi:10.1063/1.3470957�

I. INTRODUCTION

In Ref. 1, Bizoń and Zenginoğlu conjectured and presented some analytical and numerical
evidence that the spherically symmetric cubic nonlinear wave equation in three dimensions,

�u = u3 �� � �t
2 − �� , �1�

has a universal two-parameter attractor for the late-time asymptotics,

ua,b�t,r� =
�2

t + a + b��t + a�2 − r2�
, �2�

for a big family of initial data, being itself an exact solution of �1�. The rate of approach to
attractor �2� with suitably chosen a ,b is t−4 for a fixed r. The aim of this article is to prove this
conjecture by deriving a precise late-time asymptotics and comparing it with the form of attractor
�2�. Recently, in Ref. 2, we have developed a method for obtaining late-time asymptotics from the
scaling properties of a given wave equation. It allows us to show that, at least for small initial data,
the generic late-time asymptotics of solutions to �1� takes the form

u�t,r� = �u0�t,r� +
A0

t2 − r2 +
A1t

�t2 − r2�2 +
A2�3t2 + r2�

�t2 − r2�3 + . . . , �3�

where Ai are given in terms of the initial data. This expansion coincides with attractor �2� when
A0=�2 /b and A1=�2 / �2ab+1� up to the term of order t2�t2−r2�−3. Hence, as long as A0 ,A1 are
nonzero, there exist unique parameters a ,b, such that the solution u asymptotically approaches the
two-parameter attractor �2�. The rate of approach is determined by the failure of �2� to reproduce
the third term in the generic asymptotics �3� which contains a third independent parameter A2.

Such precise asymptotic analysis has only become possible with the recent developments in
the perturbation theory. Crucial are the first rigorous works3,4 allowing for establishing a link
between the late-time asymptotics and the small initial data �see also references therein for earlier
nonrigorous but important works, e.g., by Bizoń et al.�. They build up on earlier decay estimates
for small data by John5 and Asakura.6 Later, in Ref. 2, an equivalent technique based on scaling
has been introduced which simplifies the asymptotic calculations of higher order terms. In it, the
initial value problem for a class of nonlinear wave equations is considered which we restrict here
for the sake of simplicity to
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�u = up, �4�

with integer p�3 and small initial data,

u�0,r� = �f�r�, �tu�0,r� = �g�r� , �5�

being smooth functions of compact support in three spatial dimensions restricted to spherical
symmetry. Then, for small �, we have u�C��R+

1+1�.
The main idea of deriving asymptotics from scaling is based on the observation of Lindblad7

that in the limit �→0 the solutions u� of �4� and �5� tend, under suitable scaling, to some
nontrivial u� which satisfies a linear wave equation with a distributional source. This equation can
be solved exactly. For small but finite values of �, the solutions u� are near to u� in a suitable sense
with a uniform error bound, such that u� determines the late-time asymptotics of u�.

A straightforward generalization of Theorem 1 of Ref. 2 leads to

u�t,r� = �u0�t,r� + �p�
k=0

n
Bp,k

r
	 1

�t − r�p+k−2 −
1

�t + r�p+k−2

+ O� �p

�t + r
�t − r
p+n−2� + O� �p+�0

�t + r
�t − r
p−2� �6�

for �→0, t−r�1 /�a, a given scaling parameter 0�a� p�p−1� / �p+1� and any non-negative
integer n. u0 solves corresponding linear problems �7� and �8� �see below� and Bp,k are determined
by the initial data and are defined below.

The error terms mean that the asymptotics holds with respect to weighted-L� norms �cf. Ref.
2�. Here, they are restricted to the region t−r�1 /�a and imply a uniform convergence there, as
�→0. The first error term describes correction entering at the same nonlinear order �the same
power of �� as the leading terms but having faster decay in time, while the second error term, with
�0ª �p−1��1−a�+a��p−1�2−2� / p, stays for corrections with the same decay in time as the
leading terms but entering with higher powers of �.

For p=3 and n=2, we essentially obtain asymptotic expansion �3�. The only point which
requires some additional but straightforward work is to show that all expressions appearing in the
second error term are actually of the same functional form as those already present in the leading
asymptotics multiplied by higher powers of �. Then they do not change the character of the
asymptotic expansion but only alter the constants, thus leading to �3� with Ak���=B3,k�

3+O��4�.
In Ref. 1, Sec. 5.1.2, also nongeneric solutions with faster late-time decay than this given by

�2� have been found numerically. This can be explained by the observation that the initial data can
be chosen such that at late-times A0=0 or A0=A1=0, etc., thus leading to faster decay in �3�.

II. THE SCALING TECHNIQUE

Here, we briefly introduce the method of scaling developed in Ref. 2 and extend it to calculate
higher order terms appearing in �6�. All technical details and proofs can be found or easily adapted
from Ref. 2. The scaling method has an advantage over the standard perturbation theory in
generating simpler-to-solve effective equations for the higher order asymptotic terms.

In the first step we solve a corresponding linear equation with removed scale factor �,

�u0 = 0, �7�

u0�0,r� = f�r�, �tu0�0,r� = g�r� . �8�

Its solution can be written in the form
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u0�t,r� =
h�t − r� − h�t + r�

r
, �9�

where

h�x� ª −
x

2
f�x� −

1

2
�

x

�

yg�y�dy �10�

has compact support �the functions f�r� ,g�r� have been symmetrically continued to negative r�.
Next, we subtract the linear solution from the nonlinear one by introducing

w�t,r� ª u�t,r� − �u0�t,r� , �11�

which satisfies

�w = �w + �u0�p. �12�

Now, we scale this function to

W��t,r� ª �−bw��−at,�−ar� , �13�

with b= p+a�p−1� and some a�0 to be chosen later. It satisfies

�W��t,r� = �−a���p−1�+a�p−2�W��t,r� + �−au0��−at,�−ar��p

= �−a��−au0��−at,�−ar��p

+ �
k=1

p �p

k
��−a��−au0��−at,�−ar��p−k���p−1�+a�p−2��kW�

k�t,r� . �14�

For this equation, we want to consider the limit �→0.
Let us recall the following fact of the distributional calculus: any smooth function H�x� of

compact support can be squeezed to the delta distribution under appropriate scaling as �→0. The
corrections can be written as a sum over derivatives of the delta,

�−1H��−1x� � C0	�x� + �C1	��x� + . . . , �15�

that, in the precise �distributional� sense, means

lim
�→0
	� 1

�n+1H� x

�
�g�x�dx − �

k=0

n−1
1

�n−kCkg
�k��0�
 = Cng�n��0� , �16�

where g�C0
� is a test function, n is any non-negative integer, and Ckª�xkH�x�dx.

Having this in mind we observe that the first term in �14�, by use of representation �9�, will
have a distributional limit �in the above sense�

�−a��−au0��−at,�−ar��q � Cq,0
	�t − r� − 	�t + r�

rq + �aCq,1
	��t − r� − 	��t + r�

rq + . . . , �17�

where

Cq,i ª� xihq�x�dx . �18�

The terms 	�k��t+r� will further play no role since their support is outside the region of our interest
t+r�0.

The sum in �14� will be treated as an error term. The expansion
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W� = W�0� + �aW�1� + ¯ + �naW�n� + ��n+1�aŴ + W̃� �19�

allows us to write the following limiting equations:

�W�k��t,r� = Cp,k
	�k��t − r�

rp �20�

for k=0, . . . ,n which can be solved exactly as

W�k��t,r� = Bp,k

�t − r�

r
	 1

�t − r�p+k−2 −
1

�t + r�p+k−2
 �21�

with Bp,kª2p+k−3Cp,k / �p+k−2�.
The first error term Ŵ comes from the truncation of expansion �17� of �−a��−au0��−at ,�−ar��p

into deltas and can be bound by

�t + r
�t − r
p+n−2�Ŵ�t,r�� � C , �22�

while the second error term W̃� satisfies

�W̃� = �
k=1

p �p

k
��−a��−au0��−at,�−ar��p−k���p−1�+a�p−2��kW�

k�t,r� . �23�

In Ref. 2 we have shown that it can be bound,

�t + r
�t − r
p−2�W̃��t,r�� = O���p−1��1−a�+a��p − 1�2−2�/p� , �24�

uniformly for all t−r�1. It vanishes in the limit �→0 for 0�a� p�p−1� / �p+1�.
It allows to write the asymptotics of u,

u�t,r� = �u0�t,r� + �p+a�p−1�W���at,�ar�

= �u0�t,r� + �p�
k=0

n

Bp,k

�t − r�

r
	 1

�t − r�p+k−2 −
1

�t + r�p+k−2

+ O� �p

�t + r
�t − r
p+n−2� + O� �p+�0

�t + r
�t − r
p−2� , �25�

which holds uniformly in t−r��−a for �→0, a given scaling parameter 0�a� p�p−1� / �p+1�,
any non-negative integer n, and �0ª �p−1��1−a�+a��p−1�2−2� / p.

This procedure can be made rigorous as has been demonstrated in Ref. 2.
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