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Abstract This study develops a neurocomputational architec-
ture for grammatical processing in language production and
language comprehension (grammatical encoding and decoding,
respectively). It seeks to answer two questions. First, how is
online syntactic structure formation of the complexity required
by natural-language grammars possible in a fixed, preexisting
neural network without the need for online creation of new
connections or associations? Second, is it realistic to assume that
the seemingly disparate instantiations of syntactic structure for-
mation in grammatical encoding and grammatical decoding can
run on the same neural infrastructure? This issue is prompted by
accumulating experimental evidence for the hypothesis that the
mechanisms for grammatical decoding overlap with those for
grammatical encoding to a considerable extent, thus inviting the
hypothesis of a single “grammatical coder.” The paper answers
both questions by providing the blueprint for a syntactic struc-
ture formation mechanism that is entirely based on prewired
circuitry (except for referential processing, which relies on the
rapid learning capacity of the hippocampal complex), and can
subserve decoding as well as encoding tasks. The model builds
on the “Unification Space”model of syntactic parsing developed
by Vosse and Kempen (Cognition 75:105–143, 2000; Cognitive
Neurodynamics 3:331–346, 2009a). The design includes a
neurocomputational mechanism for the treatment of an impor-
tant class of grammatical movement phenomena.
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GEEN BOEK ONTVOUWT HET BREIN

No book unfolds the brain
Lucebert (1952)

Introduction

Grammatical processing is part and parcel of two uniquely
human communicative skills: language production (where it
is called “grammatical encoding”), and language compre-
hension (where it is called grammatical decoding, or pars-
ing). The cognitive mechanisms in the service of these fac-
ulties construct grammatical utterances during language pro-
duction, and re-construct such utterances during language
comprehension. In this paper, I present the design of a
neurocomputational architecture for grammatical process-
ing, that takes into account key insights gained in linguistic,
psychological, and neurobiological research. It finds its ori-
gin in several papers by Vosse and Kempen (2000, 2008,
2009a)—see also Kempen and Vosse (1989, 1994)—, which
describe a neurobiologically motivated model of syntactic
decoding called “Unification Space.” This model has be-
come a cornerstone of Hagoort’s (2003, 2005, 2007) MUC
framework—Memory, Unification, Control—for the inter-
pretation of neurobiological language processing data
(see also Baggio and Hagoort 2011).

The new model developed below extends the Unification
Space (U-Space for short) in two directions. First, the design
opens a perspective on how the U-Space approach to gram-
matical decoding can be applied to grammatical encoding as
well. This capability is prompted by accumulating experimen-
tal evidence (summarized in Kempen et al. 2012) for the
hypothesis that the mechanisms for grammatical decoding
overlap considerably with those for grammatical encoding.
This suggests that the human brain may contain a single
“grammatical coder” subserving not only decoding but
also encoding tasks. Second, the design proposes a
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neurocomputational mechanism for the execution of an im-
portant case of grammatical movement—the phenomenon
that, under certain conditions, constituents seem to occupy a
position not in the clause they belong to but in a clause higher
up the hierarchy.

The computational architecture described below is a
blueprint for the neurocognitive processes that enable the
emergence, in real-time, of syntactic structures during
sentence comprehension and production episodes. By
“neurocognitive” (or “brain-style”), I mean that the coding
process takes place in a system consisting of a large number of
richly interconnected, relatively simple computational
units—assemblies of artificial neurons—, and that the shape
of the emerging structures is determined by the parallel flow
of activation and inhibition between those assemblies, without
centralized, supervisory control. Computational architectures
meeting these requirements have hardly been investigated in
(psycho)linguistics, where it is typically assumed—usually
implicitly—, that syntactic structures arise under control by
a central agent. This agent has access to a large database of
building blocks: lexical items and their selection restrictions,
morphemes and morpho-syntactic features, categorial and
functional symbols, etc., out of which it assembles syntactic
structures in accordance with combinatorial rules retrievable
from a second database.

The new design seeks to narrow the gap between psycho-
linguistic theories of grammatical processing on the one
hand, and neurobiological theories of the cerebral infrastruc-
ture of grammatical processing on the other. Nonetheless, a
wide gulf will remain. The neurons and the neural nets
featuring in the blueprint are rather abstract and artificial;
and the proposed mappings between modules within the
blueprint and (sub)cortical brain areas, or between processes
running in the model and neurophysiological or brain imag-
ing effects, are tentative. The goal of the study is to explore
the feasibility of a (psycho)linguistically plausible grammat-
ical coding mechanism that meets major neurobiological and
neurocomputational demands, as laid out in the next
subsections.

Preview The remainder of this Introduction reviews impor-
tant design criteria to be met by models of grammatical
processing that claim plausibility from neurobiological and
neurocomputational perspectives. The section titled “An el-
ementary neural network for grammatical coding” illustrates
the basic design of the coding network in terms of a toy
grammar. The section “A grammatical coding network for a
more serious grammar” is the pièce de résistance: It de-
scribes in detail the components needed to process
monoclausal sentences. Then, in the section “Pluriclausal
sentences and cross-clausal movement”, the model is some-
what extended in order to be applicable to sentences
consisting of more than one clause, and to enable a

treatment of “Wh-extraction”, as illustration of an impor-
tant class of grammatical movement phenomena. The sec-
tion “A neurocognitive architecture of grammatical coding”
explores how grammatical coding in the U-Space interacts
with other language production and comprehension pro-
cesses, and what the proposed model entails with respect
to its neurobiological infrastructure. The paper concludes
with a list of desiderata and open issues.

Neurobiological Design Criteria

The blueprint is founded on the following three experimental-
neurobiological considerations.

Grammatical Encoding and Grammatical Decoding
Are Subserved by Largely Overlapping Brain Regions

Syntactic encoding and syntactic decoding are often
portrayed as independent performance modalities that only
share lexicon and grammar. The cognitive processing re-
sources underlying these modalities are supposed to be dis-
tinct. Kempen (2000), however, proposes an alternative the-
oretical approach, based on the observation that the two
coding modalities operate in a remarkably similar fashion.
In language production as well as language comprehension,
the syntactic structure for an upcoming sentence is built
incrementally, driven by lexical items. The two modalities
react similarly to syntactic priming manipulations (see be-
low), and are similarly involved in so-called attraction errors
(e.g. missing Subject-Verb agreement in The helicopter for
the flights are safe; example from Vigliocco and Nicol
1998). Although these and other empirical observations sug-
gest that the same mechanism underlies syntactic structure
formation in the two modalities, they do not rule out the
possibility that the brain contains two exemplars of this
mechanism—one for each modality. However, Kempen
et al. (2012) report behavioral experimental results that sup-
port the one-exemplar hypothesis. The data were obtained
through a novel experimental paradigm called “grammatical
multitasking”. The participants had to read (i.e. decode) and
to paraphrase (encode) sentences presented in fragments,
responding to each input fragment as fast as possible with a
fragment of the paraphrase. For instance, the input sentence
The angry/headmaster/complained:/“I/have seen/a nasty
cartoon/of/myself/in/the hall” had to be paraphrased as The
angry/headmaster/complained/that/he/had seen/a nasty
cartoon/of/himself/in/the hall. (Dashes mark the boundaries
between fragments.) The switch from direct speech in the
input sentence to indirect speech in the output was cued by
the symbol “####” which, in certain trials, was inserted as a
separate input fragment before the quoted sentence, and had
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to be “paraphrased” as that. The main finding was that
syntactic predictions with respect to upcoming input that
emanate from decoded sentence fragments, were immediate-
ly (online) replaced by syntactic expectations emanating
from the structure of the corresponding paraphrase frag-
ments. In terms of the example: After having changed the
input pronoun I to output pronoun he, the participants were
not at all surprised encountering the reflexive pronoun him-
self in the input sentence they were reading. In trials where
the input sentence included the incorrect reflexive pronoun
himself, no reaction time delay was observed; actually, the
grammatically correct input reflexive (I have …. myself)
yielded longer reaction times than the incorrect reflexive (I
have…. himself). Apparently, the two modalities have direct
access to, and operate upon, the same (i.e. token-identical)
syntactic structure. This is possible only if the syntactic
encoding and decoding processes command the same, shared
syntactic workspace—which presupposes overlap of a cru-
cial processing resource. (For additional behavioral data of
similar import, see Tooley and Bock (2011).)

The hypothesis of a modality-neutral grammatical coding
mechanism has recently found strong neurobiological con-
firmation in syntactic priming experiments. The phenome-
non of syntactic priming refers to facilitation of syntactic
processing in consecutive sentences with similar syntactic
structure. For instance, if the first of two sentences (the
“prime”) has passive voice, then the second sentence (the
“target”) will be processed more readily if also in passive
voice. Importantly, there is not only within-modality priming
(production of the prime facilitating production of the target,
and comprehension of the prime facilitating comprehension
of the target) but also between-modality priming (in particu-
lar, from a comprehension to a production task). Brain im-
aging experiments by Menenti et al. (2011) and Segaert et al.
(2012) have shown that the magnitude of the priming effect
between modalities is comparable to that within modalities.
They measured the effect in terms of repetition suppression
of the BOLD response (fMRI) in cortical areas known to
subserve syntactic processing: the left inferior frontal gyrus
and he left medial temporal gyrus. This finding strongly
suggests that the decoding and encoding modalities share
their neurobiological infrastructure, at least to a large extent.

Novel Syntactic Structures Arise Through Parallel Search
in a Pre-existing Network of Binding Options

The formation of syntactic structures is typically portrayed as
a process of composition: establishing new connections
(“bindings”) between pre-existing linguistic building blocks
(typically, lexical items retrieved from the Mental Lexicon),
in agreement with rules of a grammar. This image presup-
poses that, during the comprehension or production of a
sentence, new connections emerge online, as a kind of one-

trial learning. However, this hypothesis makes highly unre-
alistic demands on the speed of learning (plasticity) in neo-
cortical brain areas—the regions where syntactic structure
formation is generally believed to take place (Friederici
2002, 2011, 2012; Hagoort 2005). As argued convincingly
by McClelland et al. (1995; see also O’Reilly et al. 2011),
learning in the neocortex is slow, requiring many reinstate-
ments of the to-be-learned associations (cf. Hebbian learn-
ing). However, this type of learning yields “long-term mem-
ories”, which is clearly unrealistic. Indeed, the “verbatim
effect” shows that the bindings emerging during grammatical
coding are very short-lived—“short-term” rather than long-
term memories. Everyday experience indicates that the syn-
tactic form of a novel sentence tends to be forgotten in a
matter of minutes, whereas its meaning can be retained for
hours without rehearsal. (Experimental studies of the verba-
tim effect date back at least to Sachs 1967.) If grammatical
bindings could emerge online, due to one-trial learning, they
would constitute durable memories—as long-lasting as
memories for other aspects of comprehended sentences, in
particular, sentence meaning.

In a recent fMRI study into the verbatim effect, Poppenk
et al. (2008) searched for the brain structures that enable the
detection of whether a sentence was old (unaltered since a
presentation a few minutes earlier) or novel (altered seman-
tically or syntactically). They identified the Hippocampus (a
subcortical area) and the Entorhinal Cortex (mediating be-
tween Hippocampus and neocortical regions) as primarily
responsible for novelty detection. Crucially, however, nov-
elty detection in these brain areas was restricted to semantic
aspects of the sentence. Detection of syntactic alterations
was confined to Broca’s area, a neocortical region. The
verbatim effect was replicated as well: After a 15-min pause,
the participants reacted at chance level (50%) when having to
discriminate between “old” and “new.” In contrast, discrim-
ination between sentences carrying new meanings (but
unchanged syntactic forms) was still rather good (80–90%).
The overall data pattern proceeding from this study confirms
that a one-time presentation of a sentence yields a short-lived
neocortical representation of its syntactic structure.

This might suggest the hypothesis that the formation and
storage of grammatical bindings in the course of sentence
processing is subserved by the neocortical infrastructure for
verbal short-term memory (STM). However, the capacity of
verbal STM (“memory span”: the number of numbers, words,
letters recalled in correct order after one presentation) typical-
ly does not exceed half a dozen of unrelated items (Cowan
2005; Baddeley 2012), not enough to accommodate the num-
ber of syntactically independent bindings needed in sentences
of average or above-average word length. These consider-
ations prompt the conclusion that, in the language areas of
the neocortex of normal adult language users, many grammat-
ical bindings—those that do not involve lexical items—have a
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permanent existence. The permanent bindings need not be
learned online anymore, but are ready to be activated
(recruited) during new grammatical coding episodes. After
having been used in a sentence (in ways to be described in
detail below), their activation levels drop gradually, giving rise
to short-term memory effects. The constellation of “prewired”
bindings that is operative in the course of processing a sen-
tence, functions like a scaffolding that enables the language
user to remembermuch longer sentences than allowed by their
verbal memory span.

This conception concurs with accumulating behavioral
and neuroimaging evidence in support of the idea that the
neuronal mechanism underlying STM is not a general-
purpose processing resource, ready to support other cogni-
tive functions (problem-solving, sentence processing, imag-
ery), but instead is a component of the mechanisms enabling
those other cognitive functions. Verbal STM, in particular,
could be an integral part of sentence processing mechanisms
(Gupta and MacWhinney 1997; Acheson and MacDonald
2009; for recent behavioral evidence, see Perham et al. 2009;
for neuroimaging evidence (fMRI and rTMS), I refer to
Acheson et al. 2011).

To anticipate the model developed in the pages below, I
posit that grammatically licensed bindings between
(nonlexical) syntactic entities are neocortically represented as
a network of binding options. The representations must have
been acquired in the course of language acquisition (and some
may be innately given). During grammatical coding episodes,
lexical items transmit activation to entry nodes of the network.
Some of these nodes “resonate” if their morpho-syntactic
features match those of the input lexical items. From the
resonating items, activation spreads to other nodes via prewired
connections that represent permissible bindings. Thus, patterns
of activation flow emerge that may be depicted as syntactic
trees (or, more generally, as a directed acyclic graphs). Clearly,
the success of this approach depends crucially on the set of pre-
existing connections—which represent the grammar of the
language—and on the quality of the decision/selection processes
at branching nodes.

Competition Between Incompatible Emerging Syntactic
Structures is Resolved by a Domain-General Conflict
Resolution Mechanism in Broca’s Area
(Brodmann’s Area 44/45)

Syntactic structure formation often leads to activation of
incompatible structures, e.g., when a syntactically ambigu-
ous sentence needs to be decoded, or when several para-
phrases (alternative constructions) become available during
grammatical encoding. In both modalities, this engenders a
conflict that has to be solved rapidly. For instance, should the
Prepositional Phrase (PP) with the binoculars in The student
saw the teacher with the binoculars be parsed as a modifier

of the teacher, or as a modifier of saw? And the speaker who
is about to describe a transfer-of-possession event, has to
decide between a Prepositional Dative (The teacher showed
the binoculars to the student) and a Double-Object Dative
(The teacher showed the student the binoculars).

An fMRI study by January et al. (2009) compared the
brain’s responses to syntactic ambiguity in a comprehension
task, and to a nonsyntactic task requiring the resolution of a
cognitive conflict—the Stroop task, which requires fast iden-
tification of the font color of a printed word that denotes a
different color (e.g., selecting the response “yellow” to the
word blue printed in a yellow font). The authors found that
the two tasks activated the same region (Brodmann’s area
44/45) within the left inferior frontal gyrus. They interpreted
this co-location effect as evidence for Broca’s area as hosting
a conflict resolution mechanism that is recruited during the
execution of syntactic (sentence comprehension) as well as
nonsyntactic tasks involving competition between cognitive
representations (e.g. Stroop). Novick et al. (2005, 2010)
argue the same point and extend its coverage to grammatical
encoding tasks as well. Direct neurocognitive evidence for
the hypothesis that, during sentence comprehension, Broca’s
area is involved in the resolution of conflicts between in-
compatible representations proceeds from an fMRI study by
(Thothathiri et al. 2012). They compared BOLD responses in
participants who read grammatically well-formed sentences
of four different types:

A. Active: The father was calming the cranky girl

B. No-conflict
Passive:

The celebrity was interviewed by a reporter

C. Neutral Passive: The patient was interviewed by the attractive man

D. Conflict Passive: The journalist was interviewed by the
undergraduate

The three types of passives vary with respect to the degree of
compatibility between the syntactically and the semantically
induced interpretation. Sentence D elicits a conflict because
journalists are more likely to be interviewers than interviewees.
On the other hand, celebrities are typical interviewees (type B);
and type C is neutral in this respect. BOLD responses in various
regions of interest within Broca’s area matched with level of
conflict (Conflict > Neutral > No Conflict). There was no
tendency for passive sentences to elicit stronger BOLD re-
sponses than actives. Thothathiri et al. account for this data
pattern as follows: In the Active and the No-Conflict passive
sentences the syntactically and semantically prompted interpre-
tations converge whereas these interpretations diverge in the
Conflict Passives.

These and related neuroimaging data support competition-
based computational-psycholinguistic models for important
aspects of grammatical decoding (Stevenson 1993; Kempen
and Vosse 1994; Vosse and Kempen 2000, 2009a, b; Alday
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et al. 2013), and grammatical encoding (Eberhard et al. 2005;
Nozari et al. 2011).

Related Neurocomputational Models

Neurobiologically inspired computational models of gram-
matical decoding (“connectionist parsers”) have been around
since almost 30 years. They come in various flavors, and a
detailed survey is beyond the scope of this article. So, only
the most prominent models can receive mention. A crucial
event, at the end of the 1980s, was the demonstration that
Recurrent Neural Nets (RNNs) are remarkably good at learn-
ing to detect regularities in sequential input strings (typically
with backpropagation as learning paradigm). Prime exam-
ples are Simple Recurrent Nets (SRN; Elman 1991a, b) and
Recursive Auto-associative Memory (RAAM; Pollack
1990). Trained on a corpus of sentences generated by a
relatively simple phrase-structure grammar, SRNs were
shown to develop “complex distributed representations which
encode the relevant grammatical relations and hierarchical
constituent structure (Elman 1991a:195). Recently, a new type
of RNNs has been designed based on reservoir computing
(Hinaut and Dominey 2013). Their model could not only learn
to parse sentences correctly but it also assigned thematic roles
to grammatical constituents; in so doing it could take a previ-
ous sentence into account (an elementary discourse processing
skill); and it simulated a P600 effect. During the training
epochs, the RNNs tend to develop distributed representations
of the lexical, syntactic and semantic items populating the
grammar to be acquired.

Another approach, also requiring training and typically
yielding distributed representations, is based on tensor prod-
uct representations of filler/role bindings (Smolensky 1990).
Recent implementations of this idea are Vector Symbolic
Architectures (Gayler 2003), and the connectionist minimal-
ist parser developed by Gerth and beim Graben (2009; see
also beim Graben et al. 2008). Kanerva (2009) presents a
review of these and other applications of hyperdimensional
(neuro)computing.

In spite of these successes, models with inbuilt localist
representations of grammar and vocabulary have not lost their
appeal. Some localist models served to explore the possibilities
afforded by synchronously firing neurons as representations of
filler/role bindings (Henderson 1994; Shastri and Ajjanagadde
1993; Hummel and Holyoak 2003). Other authors opt for a
localist-connectionist approach because they impute principled
limitations to distributed sentence representations (van der
Velde and de Kamps 2006). The latter publication also includes
debates on the pros and cons of distributed representations, and
on representations using synchronously firing neuron assem-
blies. The localist-connectionist models proposed by van der
Velde & de Kamps and by Hummel & Holyoak were recently

criticized by Stewart and Eliasmith (2012) for requiring an
unduly large number of neurons if scaled up to realistically-
sized vocabularies and grammars.

The conclusion must be that no single paradigm is emerging
as the most promising one. Also remarkable is the fact that little
attention is paid to simulation of neurobiological data (neuro-
imaging results, ERP effects, brain localization)—Dominey’s
work seems to be the sole exception—or to psycholinguistic
phenomena. And a general issue—not restricted to localist
models—concerns the extent to which the models can be scaled
up. So, what is the best way to go from here?

In his monograph The algebraic mind, Marcus (2001,
Ch. 4) critically examines connectionists approaches to
simulating an essential feature of high-level human cognition
(including language): the representation and manipulation of
recursively structured knowledge. After pointing out serious
shortcomings of several neural coding schemes, including
RNNs, he proposes an alternative neural encoding scheme for
hierarchical knowledge structures, and concludes as follows:

For a variety of reasons, admittedly none decisive, I
have argued in favor of a representational system that
consists of a set of empty templates (treelets) that
contain banks of distributed nodes (register sets) that
contain encodings for primitives. Such a system does
not require an undue number of nodes or connections
or a system that rapidly constructs new connections
between nodes, and yet it is able to encode the range of
structures expressible in complex recursive systems
such as human language.” (2001:117).

A decade later, Marcus (2009, 2013) still subscribes to
this general approach but expresses doubts about whether

“the mind has a neurally realized way of representing
‘arbitrary trees,’ such as the syntactic trees commonly
found in linguistics. […] [We may] be forced to rely on
a sort of cobbled-together substitute for trees, in which
linguistic structure can only be represented in approx-
imate fashion, by mean of sets of subtrees (‘treelets’)
that are bound together in transitory and incomplete
fashion. […] Our brains may thus be able to afford
some sort of approximate reconstruction but not with
the degree of reliability and precision that veridically
represented trees would demand. […] [A] host of facts,
ranging from the human difficulty with parsing center-
embedding sentences to our difficulties in remembering
verbatim syntactic structure, are consistent with this
notion.” (Marcus 2009:163).

The SINUS model by Vosse and Kempen (2009a) fits this
description pretty well (“sets of subtrees (‘treelets’) that are
bound together in transitory and incomplete fashion”), thus
enabling it to simulate a range of psycholinguistic facts that
suggest the human mind is only “able to afford some sort of
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approximate reconstruction” of veridical syntactic trees. This
approach will be continued in the present paper.

The next section lays out some core ideas of the new U-
Space model of grammatical encoding and decoding in terms
of a toy example.

An Elementary Neural Network for Grammatical
Coding

A Simple Network for a Toy Grammar

Consider the rewrite rules in (1), which together generate
strings like dogs bite, cats fight, cats dogs bite fight, andmice
cats dogs fight kick bite, including the famous dogs dogs
dogs bite bite bite. The plus sign indicates obligatory word
order, and optional constituents are parenthesized.

(1) S ➔NP+V

NP ➔ N (+ S)

N ➔ dogs, cats, mice

V ➔bite, fight, kick

In the network representation of this grammar in Fig. 1, the
rules appear as treelets whose branches connect nodes named
after the lexical (N, V) and phrasal (NP, S) rule symbols. The
figure shows two exemplars of every treelet, sufficient to
process the sentence Dogs cats bite fight; sentences with
additional levels of recursion need more exemplars. The rule
symbols are represented by artificial (abstract) neurons, the
branches by connections between such neurons. The neurons
are processing units capable of executing simple numerical
computations in response to local signals coming in via input
wires. The signals are activation values—positive (excitatory)
or negative (inhibitory). The computation within a neuron
yields an output signal called the neuron’s activation level. If
this level exceeds a threshold, the node “fires”; that is, it relays
its activation to all nodes at the other end of its output wires.
Weights associated with these connections can modulate the
amounts of activation or inhibition conveyed; however, unless
indicated otherwise, all weights are equal to 1.

An additional factor influencing a neuron’s activation
level is decay—a spontaneous, gradual reduction of the
activation level taking place independently of input or out-
put. Decay is modeled as a negatively accelerated function of
time (decay is strong initially but flattens out slowly). All
connections are bidirectional, implemented in the form of
two parallel unidirectional connections where activation
travels in opposite directions (and whose weights need not
be identical). The bidirectionality enables reverberating cir-
cuits that temporarily reduce the effect of decay: sustained
activation. (Unidirectional connections can be modeled as
bidirectional ones, with one of the weights set to zero.)

Inhibition links have the effect of reducing the amount of
activation transmitted over the inhibited connection. For in-
stance, consider the following network containing neurons A,
B, and C: A receives activation from B and C, both trying to
bind A; and there is an inhibitory link between connections B–
A and C–A. When activated, neurons B and C send roughly
equal amounts of activation to A. If neuron B is the first to start
emitting activation, the B–A connection also starts sending
inhibition to C–A.1 Subsequently, if neuron C is activated and
sends activation to A, the amount of activation flowing via C–A
will be systematically reduced with the amount of inhibition
coming in from the B–A connection, thus rendering C–A the
“weaker” connection. The model includes “winner-take-all”
circuits that amplify differences in the amount of activation
passing through competing connections, until a difference
threshold is reached and the weaker connection is knocked out.

Treelet exemplars of the same treelet type are activated
(“recruited”) one-by-one by a router circuit.2 In the example
of Fig. 1, an S-router recruits the left-hand S-treelet exemplar
first, then the right-hand one; likewise, an NP-router recruits
the two NP-treelet exemplars from left to right. Once
recruited, a treelet is able to bind another treelet (thus be-
coming the latter’s daughter), and to be bound by another
treelet (as the latter’s parent) or by a lexical item (which
becomes the “anchor” or “head” of the treelet). If a recruited
treelet does not receive any binding and thus remains isolat-
ed, its activation decays quickly because there is no rever-
berating circuit sustaining it.3

The process of decoding the example string starts when
the first input word, dogs, sends activation to the NP-treelets
(Fig. 2a). Only the left NP-treelet can respond (“resonate”)
because this is the one currently being recruited by the NP-
router. Because the left S-treelet also happens to be active
(due to the activation from the S-router and from the Apex
node; see lower panel of Fig. 1), the NP foot node of the left
S-treelet responds, meaning that NP dogs is now bound to
the left S-treelet. Both treelets start sending activation to
other—as yet dormant—nodes, as indicated by the NP-to-
NP and the (S)-to-S links in Fig. 2a. These links represent
predictions of possible continuations of the string.

Next, the NP- and S-routers recruit the two right-hand
treelets in the figure. The noun cats then binds the NP-treelet,

1 Actually, this description is a simplification because connections send
activation to other neurons, not to other connections.
2 For a recent computational routing model embodying a high level of
neurobiological plausibility, see Zylberberg et al. (2010). The task this
model was designed to execute is very different from the task intended
here. Nevertheless, I mention it here because it succeeds in modeling
the execution of novel sequential tasks on massively parallel neural
hardware.
3 For recent fMRI evidence in support of the hypothesis that activation
generated in response to incoming words is maintained for the duration
of a syntactically coherent, and hence parsable constituent, see Pallier
et al. (2011).
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which in turn binds the NP-foot of the right-hand S-treelet
(Fig. 2b). This NP-foot cannot be bound by NP dogs because
the corresponding NP-to-NP connection receives inhibition
from the already established NP-to-NP connection in the left
part of the figure. The fact that the second S-treelet has now
been bound means verification of the prediction that the first
noun could host an embedded clause (S-treelet). The (S)-to-S
link in Fig. 2c, which is not hindered by any competition,
realizes the embedding.

Finally, the network has to accommodate the two verbs.
The first one (bite) is confronted with binding options in both
S-treelets. Of these, it selects the most recently recruited one
(see Fig. 2d, which also depicts the final parse tree). The
reason for this choice is twofold. First, the activation running
in this treelet has undergone less decay than the other,
“older” one, granting its binders a higher likelihood to
emerge as winner in a competition (“recency effect”).
Second, the system checks the word order that a binding
implies, against the actual input word order. (The mechanism
taking care of this will be explained in section “U-Space
input and output”.) In the next subsection, I turn to the
determination of word order, including the binding choice
of the second verb (fight). 4
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4 Conceptual and referential factors can also help to prevent incorrect
bindings (see subsections on these topics below) by sending excitatory
or inhibitory signals to tentative binding partners depending on the
(im)plausibility of a reading entailed by the binding. However, such a
mechanism would not help to prevent the interchange of bite and fight
(nor, that matter, of dogs and cats); it may even increase the probability
of exchanges, as in man bites dog.

Fig. 1 Network version of the toy grammar in (1). Upper panel. The
treelets (straight continuous lines) correspond to the first two rules in
(1); two exemplars of each rule are shown. S=Sentence; NP=Noun
Phrase; N=Noun; V=Verb. Dotted lines: excitatory connections be-
tween lexical categories mentioned in (1) and corresponding foot nodes
of the treelets. Continuous curved lines ending in two black disks:
inhibitory connections between incompatible bindings. Middle panel.
Each dashed line connects the root node of one treelet with a foot node
of another treelet. Inhibitory connections run between incompatible
bindings. The links labeled a, b, and c serve to prevent loops: They
force the system to chose one of the two possible dominance relation
between treelets. For instance, if the top left S-treelet dominates the
bottom left NP-treelet, the latter cannot simultaneously dominate the
former. Two additional links of this type exist but have not been drawn
as they play no role in the example. The Apex is a special node that
immediately dominates the root nodes of all S-treelets. Lower panel.
The connections of the top and middle panels are combined here, except
for two dashed lines that, in the middle panel, start at the top left S-node.
As indicated in the text, this S-node is the first to be recruited by the S-
router, and will become the root of the entire emerging sentence (unless
changing inhibitory forces compel a reversal of the dominance relations
during the decoding episode). The excitatory connection between this
S-root and the Apex inhibits all other links leaving this S-node, as well
as all links from the Apex to other S-treelets

�
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Fig. 2 Decoding example string
Dogs cats bite fight.
a Activation flow in response
to first input word. The tree at
the right-hand side shows
the resulting parse tree in conven-
tional linguistic notation. The
dotted line in the parse trees
corresponds to the bolded
dotted line in the network
diagram. The Apex node is
not shown. b First part of the
activity elicited by the arrival
of the noun cats. The S-to-(S)
link in the right-hand part of
the network is knocked out by
a loop-preventing inhibitory
link (link b). c Final part of the
activity elicited by the arrival
of the noun cats. d Upper panel.
The verb bite binds the second
S-treelet. Lower panel. The
finally resulting parse
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The Treatment of Word Order

Many modern grammar formalisms decompose rules like
S➔NP + V into a hierarchical part that expresses the par-
ent–child relations between higher and lower constituents,
and a linear-order part expressing the precedence relations
between child constituents. In line with these proposals, I
assume that the root and foot nodes of a treelet are not
connected directly, but indirectly via a Recursive Transition
Network (RTN) associated with the root node. RTNs belong
to the class of Augmented Transition Networks developed by
Woods (1970) as natural-language parsers; see also Kaplan
(1972).5 The states of RTNs proposed in the present network
model correspond to positions (slots) in a one-dimensional
array called topology. Different treelet types have different
topology types.

As described in the previous subsection and illustrated in
Fig. 2, the activation pattern emerging bottom-up in response

to the sequence of input words represents binding
options—between lexical items and anchor nodes of treelets,
or between the root of one treelet and a non-anchor foot of
another treelet. The RTNs carry out a twofold function. The
first one is to exert top-down control on the order in which
to-be-bound nodes resonate to the prospective binder node(s).
As will be illustrated next, this ensures that the emerging
structure is a tree (in the standard linguistic sense of a rooted
acyclic graph with branches ordered from left to right). The
second function of the RTNs is enabling sequential readout
of the terminal nodes of a tree during grammatical encoding
(see subsection “U-Space Input and Output”).

Figure 3 depicts the RTNs at work during the process of
decoding the sample string of Fig. 2. As soon as the upper
left S-treelet is recruited, it starts up its RTN (transition #2),
which then attempts to fill the position Sp1. As the wiring is
such that depth-first transitions are tried first, the RTN sends
activation to the NP-foot via edge #4. This activation is one
input to an AND-gate (not shown in the figure) that fires if
two input wires are active simultaneously. This condition is
fulfilled if the foot node is resonating to bottom-up activation
coming in from the root of the lower left NP-treelet; that is, if

5 RTNs are automata capable of parsing context-free languages.
However, natural languages belong to the class of mildly context-
sensitive languages (Joshi 1985), due to grammatical movement (see
section “Pluriclausal sentences and cross-clausal movement”).
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a binding has been established (possibly after a competition
with other binding candidates). In the present case, the binder
is an NP treelet that has been recruited by the NP router and is
not inhibited by any competitor. The AND-gate now relays
activation to the root node of the binder, thereby passing control
to the latter’s RTN. Meanwhile, the resonance representing the
binding at the end of edge #4 goes on for awhile, trying to inhibit
and ward off binding options launched at later points in time
from elsewhere in the network, until succumbing to decay.
Transitions #5 through #8 can now be traversed for free. The
NP-anchor node accepts dogs as binder, and RTN control moves
on to state NPp1 via edge #9. From here, two transitions are
attempted in parallel, one of them checking the prediction of an
embedded clause (#11). Recruitment of the right-hand S- and
NP-treelets, and arrival of the noun cat enable edges #12 through
#19 to be traversed, and the latter noun to bind the N-foot. Next,
edge #21 is followed because the competing transition to NPp2,
which is tried first, fails to return an embedded clause and
decays, thereby disinhibiting the direct link from NPp1 to NPout.

How does the RTN find its way back to the Apex? The
answer presupposes that every treelet exemplar is embedded in
a fixed network with prewired links to all (and only) the treelet
exemplars that are eligible as binding partners. Therefore,

descending upon the root of every treelet, there is a limited
number of foot-to-root connections, each representing a poten-
tial binding of that treelet. This suggest an implementation
where every such descending link is paired with an ascending
link, and where the latter link is then selected as the return path
for the RTN on its way to the Apex. Presumed here is that the
resonance in a descending link lasts long enough to enable the
root node to select the correct ascending link. A neuronal
mechanism as sketched here can fulfill the function of the
pushdown memory storage (“stack”) in hierarchical procedure
calls in digital computers (see Pulvermüller 2010, for a related
approach).

Continuing now the treelet traversal, the verb bite attaches
to the right-hand S-treelet due to the fact that the V-node at
the end of transition #26 accepts the verb as binder. (The
activation that is running now between the resonating V-foot
(edge #26) and the lexical item bite, easily knocks out the
competing link between bite and the V-foot of the left S-
treelet because the resonance at this V-foot is decaying.)
RTN traversal continues via edges #27 through #37. The
final verb fight is accepted as binder of the V-node at the
end of edge #37. (Activation running in the corresponding
connection extinguishes the competing link between fight
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Fig. 3 RTNs in the treelets of Figs. 1 and 2. The snapshot shows the
situation after the first two words of the string Dogs cats bite fight have
been processed and the verb bite is entered. Circles denote RTN states,
which correspond to linear (“topological”) positions. Sp1 means “first
position in S-treelet”; NPp2means “second position in NP-treelet”, etc. In

the course of the parsing process, the RTNs get linked, giving rise to a
context-free transition network that is traversed in a depth-first, left-to-
right manner. In the example, the transition network is traversed in 41
steps (see the numbered edges), starting and finishing at the Apex. (Only
some of the edge labels are mentioned.)
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and the V-node at the end of edge #26.) Transitions #38
through #41 return control to the Apex. The resulting parse
tree is depicted in the lower right part of Fig. 2d.6

Completion of an RTN traversal does not necessarily
mean the end of the decoding episode. Among the continu-
ation possibilities are the following. First, the activation in
the current network extinguishes gradually due to decay, so
that the treelets can be recruited again for a novel sentence
(or further downstream in the same—presumably
long—sentence). Second, the system can be reset instanta-
neously in response to explicit end-of-sentence signals (in-
tonation contour, printed symbols). A third possibility is that
more input words are added to the current sentence. In that
case, the Apex will initiate an additional RTN traversal
trying to accommodate the new input words. This may
change the balance of power in the existing network due
to activation and inhibition originating from newly
recruited treelets and new bindings. This may give rise
to “garden-path phenomena” (if the new words entail that
the system has been “led up the garden path” and a
chosen RTN trajectory needs to be abandoned and re-
placed; see footnote 8 for an example). The fact that
these and other phenomena related to syntactic and lex-
ical ambiguity are run-of-the-mill entails that many sentence
decoding episodes require iterative RTN traversal.

Grammatical Encoding in the U-Space

Grammatical encoding is driven by conceptual input to
the U-Space, via the same bidirectional connections that
subserve the conceptual interpretation of parse trees dur-
ing grammatical decoding. In the toy example, no con-
ceptual input has been defined. However, let us assume
ad hoc that the following to-be-encoded toy conceptual
representation underlies the example sentence Dogs cats
bite fight: Some DOGS are “patients” of BITING, some
CATS are “actors” of this BITING, and the DOGS are
actors of FIGHTING. The capitalized concepts are
“lexicalized” as the nouns and the verbs of the toy
grammar; and the to-be-expressed conceptual relations
map onto U-Space treelets as combinatorial constraints:

Actors should bind the same S-treelet as the action they
execute; and patients undergoing an action should bind
the same NP-treelet as the clause expressing that action.
The treelets are supposed to contain circuitry enabling
them to access and verify these constraints. If a tentative
binding cannot be verified, the treelet inhibits the corre-
sponding connection, which in consequence will have
great difficulty defeating its competitors.

The to-be-encoded conceptual structure can be entered
into the system incrementally, in increments of any size,
and in any temporal order. (This level of freedom mirrors
a basic property of human sentence production.) Fig. 4
shows the course of events elicited by four somewhat
arbitrarily chosen increments: (1) DOGS, (2) DOGS actors
of FIGHTING, (3) CATS actors of BITING, and (4) DOGS
patient of (3).

The grammatical encoding process starts with recruit-
ment of both left-hand treelets, and the noun dogs trying
to unify with the NP-treelet by sending activation to the
N-foot. This succeeds after the RTN has passed through
transitions #1 through #8. As the verb fight cannot open
an embedded clause at position NPp2, this transition de-
cays and disinhibits #10, which allows the verb to bind
the V-foot at the end of edge #15. The S-treelet does not
inhibit this binding since it conforms to the combinatorial
constraint deriving from the second increment. From here,
edges #16 through #19 can be crossed for free, returning
control to the Apex with a well-formed string dogs fight.
The Apex initiates a second RTN traversal; the right-
hand treelets that the S- and the NP-router have recruited
in the meantime, provide binding sites for additional
words. This time, the left-hand RTNs consist of “beaten
tracks” #1 through #9. Meanwhile, responding to the
third increment, the noun cats and the verb bite have begun
to activate the N- and V-foot nodes in the right-hand treelets.
In conjunction with verification of the constraint deriving
from the fourth increment, this means that an embedded
clause materializes in position NPp2 of the left-hand NP-
treelet, and edge #10 will be bypassed. The remainder of the
encoding process follows the same trajectory as the decoding
process depicted in Fig. 3.

Missing yet from this illustration of grammatical encoding
is another duty of the RTNs: readout, i.e., the actual delivery
of an output string of lexical items. More on this follows in
Subsection “Input and output”.

A crucial insight to be gained from this section is that
grammatical encoding and grammatical decoding can indeed
be handled by one and the same syntactic processing system,
and that the operations in this system need not reverse
direction when switching between encoding and decoding
modality—although, at first impression, the two modalities
of grammatical coding operate in rather different manners
and in opposite directions. The main difference between the

6 When arriving at a foot node, the RTN only checks whether there is a
resonating (winning) binder, and if so, proceeds to the next transition.
However, the bottom-up competition from which the binder emerges, is
entirely at themercy of local forces (activation and inhibition strengths) and
local information (the feature matrices of prospective unification/binding
partners). This leaves open the possibility of exchanges: Two binders with
similar grammatical properties happen to get swapped, and the RTN has no
reason to mistrust either. Hence, the system needs a check that compares
RTN-implied word order against actual input word order, and prevents the
RTN from moving to the next position upon detection of a mismatch (see
Subsection “How does the U-Space communicate its output to other
processing modules?”).
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two coding modalities resides in the way they treat input:
During encoding, the conceptual structure is “clamped” (i.e.,
not allowed to change except for the addition of increments)
and enabled to drive the flow of excitation and inhibition in
U-Space; during decoding, it is the sequence of input words
that undergoes clamping.

A Grammatical Coding Network for a More Serious
Grammar

In this section, I apply the mechanism developed above
to a small fragment of Dutch, my native language. The
notational and graphical conventions serving to charac-
terize the syntactic structures originate for the most part
from the psycholinguistically motivated grammar for-
malism of Performance Grammar (PG; see Kempen
and Harbusch 2002, 2003; and Harbusch and Kempen
2002).

Syntagmas

The Unification Space does not only process treelets for
clauses (S-type) and Noun Phrases (NP-type) but also for
Prepositional Phrases (PP), Adjectival/adverbial Phrases

(AP), Determiner Phrases (DP), Conjunction Phrases (CP),
and Cardinal Number Phrases (CNP). From now on, I will use
the term syntagma to refer to syntactic treelets. Syntagmas
have a somewhat different structure than the treelets figuring
in the previous section. Each syntagma exemplar can be
bound by one lemma, called its anchor or Head.7 Lemmas
are word-sized lexical items that specify the morphological
and syntactic properties of words. These properties include
word class (part of speech, PoS); gender, number and case of
nouns and articles; transitivity of verbs; and several other
properties. Lemmas should be distinguished from lexemes,
which specify the phonological (sound) form of words, and
from concepts, which specify word meanings. The lemma that
binds a syntagma of a certain type should belong to a specific

7 Note that, while each treelet includes a lemma, each syntagma can be
bound by a lemma (in fact, by a lemma of the correct word category).
This means that, strictly speaking, the model developed here is not
based on a “lexicalized” grammar—for the simple reason that the tree-
like structures are nor retrieved from the Mental Lexicon (but activated
in U-Space in response to lemma features). This difference is in
agreement with recent fMRI data showing that, as far as the linear order
and the morpho-syntactic properties of input items are concerned, the
grammatical decoding process treats Jabberwocky-type sentences and
meaningful sentences similarly (Pallier et al. 2011). The nonsense
words in Jabberwocky sentences cannot be assumed to be represented
as lexical entries, let alone as treelets (o.c.:2526).
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PoS or to one of a few specific PoSs. For instance, NP-
syntagmascan be anchored/headed by nouns or pronouns,
clauses by main verbs, auxiliary verbs, or modal verbs. The
non-head foot nodes of syntagmas specify a combination of a
grammatical function (e.g., Subject, Direct Object, Indirect
object, Modifier, Complement) and a phrase/constituent (S,
NP, AP). Examples are NP functioning as Subject (SUBJ-NP),
AP in the function/role of Modifier (MOD-AP), and subordi-
nate clauses functioning as Complement (CMP-S) or as
Modifier (MOD-S; called adverbial clause in school
grammars).

Syntagmas are generic phrasal templates, in the sense that
each type can yield phrases of many different shapes.
Binding a syntagma to a lemma causes specialization of the
template. For instance, when an S-syntagma is bound by an
intransitive verb lemma, activation of Direct and Indirect
Object nodes remains blocked, so that no NP-syntagma can
unify with them; and if an NP-syntagma is bound by a
relative pronoun, it can no longer host a determiner, modifi-
er, quantifier, etc. Syntagmas include RTNs that specify the
possible linear positions of anchoring and non-anchoring
foot nodes. Another kind of neural nodes within syntagmas
controls agreement between foot nodes (e.g., number and
person agreement between the Subject-NP and the Head-
Verb of an S-syntagma; and gender and number agreement
between Article (determiner) and Head of an NP).

The U-Space contains several exemplars of every type of
syntagma. I will not provide detailed estimates of the number
of exemplars of every type needed for coding shorter and
longer sentences. However, five to ten exemplars of every type
is likely to suffice. In case of long sentences that approach the
upper limit of the human grammatical processing capacity, we
may assume that syntagmas recruited early on in the sentence,
gradually fall victim to decay—or are actively reset—, and can
be re-used further downstream.

Figure 5 illustrates the make-up of an S-syntagma that
could drive the encoding or decoding of a monoclausal
sentence. The upper half shows a row of topological nodes
and, at the top, a node representing syntactic properties of the
clause per se (main, subordinate, relative, complement, etc.).
The node sequence between Sin and Sout forms an RTN that,
traversed from left to right, yields a sequence of constituents
comprising a clause. The node labels (F1, M1, …, M6, …,
E2) derive from the English translation of the original
German names Vorfeld (Forefield), Mittelfeld (Midfield),
and Nachfeld (Endfield). The lower row of nodes are foot
nodes labeled with the type (NP, AP, S, etc.) and function
(Subject, Direct Object, Head, etc.) of potential binding
syntagmas or lemmas. The links connecting the two rows
of nodes indicate optional positions of binders in the topol-
ogy. These links and the topologies are simplifications of the
actual word order rules. For instance, in main clauses of
Dutch, the Head verb always goes to position M1 (“verb-

second”), and in subordinate clauses of any type it always
goes to M6 (“verb-final”).

Word order in syntagmas representing other types of
constituents is treated in similar manners. Figure 6 depicts
the syntagma for Dutch NPs.

The system’s behavior depends in considerable measure
on the temporal coordination between the bottom-up and the
top-down aspects of structure formation. Clearly, the bottom-
up establishment of binding relations must precede top-down
acceptance (through a check whether there is a clear winner)
and readout by the RTN. But, how closely should the RTN
“shadow” the binding process? Allowing large intervals
between the emergence of a binding and its acceptance by
the RTN may cause memory problems due to decaying
activation. On the other hand, if the RTN shadows emerging
bindings very closely, it runs the risk of accepting and
reading out momentary bindings that are soon undone under
the influence of subsequent lexical input.8 I will assume that
the RTN shadows input at a distance of just a few lemmas,
thus allowing a short look-ahead interval.

Given that some constituents have multiple placement
options, the RTN should include circuitry preventing a con-
stituent to be placed and read out more than once. The
solution I propose uses binary features, called “place tags”,
belonging to the feature collection associated with root nodes
of syntagmas. When a syntagma is recruited, the place tag
feature is activated, indicating that the syntagma is seeking
placement in a topology. Once the RTN has read out a
constituent, it deactivates the place tag. Deactivated place
tags block any further readout but, importantly, they do not
block relocation of a read out constituent to another topology.
Such a relocation will remain covert (tacit, invisible) because
no readout will take place at the new location. In the section

8 An example from SINUS (Vosse and Kempen 2009a, p. 342) illus-
trates how new lexical input may help the decoder to escape from a
blockade caused by a local lexical/syntactic ambiguity. Sentence (ia)
(adapted from Ferreira and Clifton 1986) is initially parsed as a main
clause with examined as past-tense finite Head verb and the lawyer as
Subject, as in (ib) where this analysis is the correct one. However, in the
Mental Lexicon, the verb form examined is associated not only with the
lemma of an active verb, but also with that of a passive past-participle,
which includes an optional “agentive” Modifier foot node bound by a
PP with by as Head. These lemmas inhibit one another, and this
inhibition transfers to the S-syntagmas recruited by them in the
Unification Space. The arrival of by boosts the activation the passive
lemma in the Mental Lexicon, and indirectly that of the agentive
Modifier foot node of the passive S-syntagma in the U-Space.
Simulation runs with SINUS show that the original parse gives in to
one where examined by the court plays the role of reduced relative
clause attached to lawyer, provided that the initial activation of the
passive participle is not too low. The reanalysis requires that the
original binding of lawyer to the Subject foot node of the S-syntagma
anchored to the active verb form is undone.

(ia) The lawyer examined by the court was found guilty

(ib) The lawyer examined the evidence
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Fig. 5 Syntagma for decoding and encoding a simple Dutch main or
subordinate clause. Some positions within the S-topology are not
shown (dotted arrows). Pairs of square brackets (⊏⊐) denote unification
circuits, to be introduced in the next subsection. Each single square
bracket stands for a feature matrix that needs to unify with another
matrix. The symbols⊓and⊔stand for feature matrices that need a hier-
archically lower or higher unification partner. The curved dotted line
serves to propagate morpho-syntactic features imposed by the bound
(next-higher) syntagma to the Head verb (e.g., telling the verb to be
finite, infinitival, or participial).Dashed lines indicate agreement within

the syntagma. The curved arrows at the bottom represent the effect of
the verb’s subcategorization frame. For instance, a (di)transitive verb
promotes the binding of Direct (and Indirect) Object(s) by sending
some extra activation to the corresponding foot node(s); intransitive
verbs send no extra activation. The early (“fronted”) positions of Direct
and Indirect Object NPs—i.e., attached to topology position F1—are
allowed, inter alia, if the NPs are bound by a relative or interrogative
pronoun. Alternative linearization options inhibit one another (not
shown). For instance, if the Subject NP has landed in slot F1, it inhibits
the placement option of the Subject in slot M2.1

Fig. 6 NP-syntagma for Dutch.
The unification nodes control
agreement between Head noun,
Determiner, prenominal
Modifiers, and binding/bound
syntagmas (these agreement
relations are controlled by partly
different feature matrices).
DP=Determiner Phrase (often
anchored by an article);
Q=Quantifier;
MOD1=Prenominal Modifier;
MOD2=Postnominal Modifier
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“Pluriclausal sentences and cross-clausal movement” we will
see an example.

Furthermore, facilities are needed that force the RTN to
wait in front of the position of an obligatory constituent, and
allow it to skip optional constituents that are delayed.

Finally, the system should be able to recognize input
constituents that have not been fully integrated into the
emerged structure. Any constituent entering U-Space needs
(1) a binding partner, and (2) a linear position. An activated
place tag on the syntagma representing the constituent can
signal fulfillment of the second need. The first need can be
satisfied by a binary feature, called “role tag”, which marks
whether or not the syntagma representing that constituent has
found a (provisional) unification partner in a grammatical
function/role “claimed” by the syntagma’s lexical Head. For
instance, finite verbs may be said to claim a Subject, and
transitive verbs a Direct Object; and all verbs can claim
constituents in the grammatical roles of Modifier,
Complementizer, and Subordinator. Role tags ensure that,
at the end of the coding process, all active syntagmas have
been claimed and are playing a permissible role in the
hierarchical/functional structure. Role tags, like place tags,
belong to the feature sets associated with root nodes of
syntagmas, and are activated along with recruitment of the
syntagma hosting them. Role tags differ from place tags only
in that they become deactivated by the syntagma’s lexical
Head rather than by the RTN. During the coding episode for
a sentence, the recruited syntagmas keep transmitting acti-
vation and inhibition to other syntagmas as long as they are
searching for optimal binding and placement alternatives.
This continues until all role and place tags have been
deactivated (or until they can no longer maintain a sufficient
level of activation, or are stopped by an external force).

Features and Feature Unification

Many items of grammatical knowledge can be analyzed as
matrices consisting of one or more features, with each feature
made up of an (atomic) attribute and a set of currently appli-
cable (atomic) values. Such matrices can be implemented in
the form of registers (cf. Marcus 2009:163, quoted in the
Introduction section). A register is a bundle of neural nodes,
each representing the attribute and one value of a feature. If
such a node is operational, the value is true; as long as the
node does not fire, the value is false. If an attribute has more
than one possible value, each of them is represented by a
separate node within the register.

Let us assume that lemmas are represented by registers
(feature matrices), and that activating a lemma means acti-
vating its register. Assume also that, in reaction to activation
of a register, all and only those register nodes fire that denote
attributes whose values are currently true of the lemma.
Copying a register from its brain location to another location

is possible if each feature node in the original register is linked
via a prewired connection to a node in the copy register.
Actually making a copymeans that, triggered via the prewired
connection, all and only those nodes in the copy register start
firing whose counterparts in the original register are currently
true. (The firing pattern of the nodes of the original register
does not change as a consequence of copying.)

Copying is needed, among other things, to transmit the
feature matrices of activated lemmas from the Mental
Lexicon (probably located in left temporal regions of the
cortex) to the Unification Space (probably subserved by left
inferior frontal cortex, in particular Broca’s area), and between
registers within the Unification Space. Importantly, a lemma is
not supposed to have an ID, i.e. a unique code that distin-
guishes the owner from all other lemmas and can be copied
into an empty register elsewhere. The identity of a lemma is its
location in the network, i.e., its pattern of connections; this
location does not change in the course of processing a sen-
tence. Among these connections are direct or indirect associ-
ations with other lexical items in the Mental Lexicon: con-
cepts (relating lemmas to meaning) and lexemes (relating
lemmas to phonological form). Consequently, copying a lem-
ma does not involve copying an identifier/ID, but it means
copying the register embodying its “lemma feature matrix.”
(Likewise, concepts and conceptual structures will be repre-
sented in registers that have no ID either.)

When an empty register is filled with a copy of a feature
matrix, the lemma that dispatched the matrix can only be traced
back if there is additional circuitry that links the copy back to
the original lemma and other information stored there (e.g.
associated concepts and lemmas). Therefore, the copy register
should transmit activation back to the original register via a
connection in the opposite direction, at least for as long as the
current sentence is being processed. Through such feedback
connections, the system can retrace the path from any copy
register (and even from a copy of a copy) to the original lemma.

Unification circuits (unifiers) function as a kind of filter
between two registers—the unification partners. They are
called into action when the registers of both partners are active
and need to check whether their feature values are compatible.
Unifiers decide not only whether or not the features of the
unification partners match; they also relay the feature values
resulting from successful unification back to the partners (and
leave these values intact in case of unification failure).

Feature unification is defined as follows. A feature consist
of an attribute (atomic) and a value. Avalue is a list of one or
more (atomic) options (a disjunctive set). For instance, the
English pronoun you has a morphological CASE value with
three options (CASE = {nominative, dative, accusative}),
whereas the CASE value of Subject NPs consists of one
option only (CASE = nominative). Two exemplars of a feature
with the same attribute can be UNIFIED (“are compatible”) if
the intersection of their value sets is not empty. This intersection
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is also the value of the attribute if unification succeeds (in the
example: unification of you with a Subject NP yields “CASE =
nominative” for both unification partners). If unification fails, the
feature’s value sets remain unaltered. A feature matrix is a set of
features with at most one exemplar of every attribute. Two or
more feature matrices unify if all features shared by the matrices
unify. This definition leaves open the possibility that thematrices
to be unified share no feature at all (i.e. the attributes occurring in
one matrix do not occur in the other matrix, and vice-versa), and
unify trivially. In practice, however, candidate unification
matrices nearly always share at least one attribute—often
“Phrase/clause type” or “PoS”. Successful unification only af-
fects the value sets of the unified features shared by the unified
matrices: these sets now contain the intersections. However,
matrices keep their original set of attributes.9

Microcircuitry for Feature Unification

Figure 7a sketches a neural network that accomplishes
nonrecursive virtual feature unification as defined here, during
both grammatical encoding and decoding. The circuit decides
not only whether or not the features of the unification partners
match; it also delivers the feature values resulting from successful
unification (and leaves them intact in case of unification failure).
These values are supposed to be adopted by—transmitted
to—the unification partners (this is not shown in the figure).

Subject-Verb agreement in Dutch requires matching values of
the Person andNumber features, like in English. The bottom row
of nodes represents values of the Subject unification partner— an
NP headed by a noun or a pronoun; the row of nodes immedi-
ately below “verb” indicates the values of the other partner. The
row of nodes in between are activated depending on whether the
individual feature values of the partners are identical (i.e. match)
or not. For example, the leftmost AND-gate node (within the
“singular” subcircuit) will fire when both the verb and the subject
(pro)noun include “singular” as a member in the value set of the
Number attribute, thus yielding a value match. The right-hand
neighbor of the AND-gate indicates value mismatch: It fires as
long as there is not enough positive evidence for matching values
in the unification partners, that is, until both partners have
succeeded in activating the “Singular” node. As soon as this
happens, theAND-gate gets active and sends sufficient inhibition
to its neighbor to knock it out. Another consequence of activating
the AND-gate is that one of the OR-gates at the top of the figure
gets triggered as well. If such a scenario unfolds not only in one
of the Number subcircuits but also in at least one of the three

“Person” subcircuits, the topmost AND-gate fires, meaning that
the partners unify successfully.10

Figure 7b–e detail the subject-verb unification process
that takes place during decoding and encoding of example
sentence (2). Both instantiations of the process start with the
activation pattern in Fig. 7a, and end with the one in Fig. 7d;
some intermediate steps, shown in Fig. 7b–c (decoding) and
e (encoding), differ slightly between coding modalities.

(2) Geld telt

‘Money counts’

The definition of feature unification allows for the possibility
that one partner possesses features (attributes and values) that
have no counterpart in the other partner. For instance, NPs have a
morphological Case feature (nominative, dative, etc.) but verbs
do not. The fact that unification circuits are components of
prewired (preconfigured) neural connections between registers
that represent the unification partners, enables fine-tuning the
selection of features participating in a unification. Connections
standing for attributes that do not participate in the unification at
a given position in the network, are simply not attached to
the unification circuit. For example, although the Case feature
appears in the unifier that binds the Subject NP of a verb (the foot
node that dictates nominative Case) to a specific NP (the root9 This unification operation differs from other unification operations

discussed in the literature in several respects. It is nonrecursive because
values of features are atomic and cannot be feature matrices themselves;
and it is virtual because the unified matrices remain distinct objects and
do not “merge” (De Smedt 1990). In the model, successful unification
usually entails opening of a gating circuit and the start of activation (cf.
resonance) flowing between the nodes that “own” the matrices.

10 I will not pursue details concerning the temporal and other dynamic
requirements to be met by the flow of activation and inhibition in
unification circuits.

Fig. 7 a Nodes and connections within a feature unification circuit for
Subject-Verb agreement. Circles inscribed with the ∧−symbol are AND-
gates; circles with the ∨−symbol are OR-gates. The five identically shaped
subcircuits determine presence or absence of matching values of the Person
and Number attributes. When the module is called into action, the nodes
drawn with bolded lines are immediately activated, indicating that no
unification has taken place. b Continuation of the scenario started in a.
The feature values of the words geld and telt have been added. Geld has
singular Number and 3rd Person (likemoney); telt is singular but its Person
can be 2nd or 3rd. c The AND-gates of singular Number and 3rd Person
have fired, suppressing their right-hand neighbors and activating both OR-
gates in the top: The unification succeeds. d In three of the five feature
values there is insufficient evidence for matching values; therefore, the
“mismatch” nodes in their subcircuits are not suppressed, and inhibit the
feature value nodes of both unification partners. This affects the “2nd
Person” node of telt, causing this verb to retain only its “3rd Person” value.
The remaining active/applicable values are transmitted to the registers
representing the unification partners (not shown). e Unification during
grammatical encoding. Continuation of the scenario started in a. The
meaning representation underlying the Subject has been lexicalized as the
lemma geld with singular Number. For the verb lemma, all Number and
Person values are still open. The scenario ends as in d: The AND-gates of
singular Number and 3rd Person will fire, suppressing their right-hand
neighbors and activating both OR-gates in the top: The unification suc-
ceeds. “Mismatch” nodes inhibit the feature value nodes of “plural Num-
ber”, “1st Person” and “2nd Person”. The verb form (lexeme) telt expresses
the resulting feature values

�
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node that thus inherits nominative Case of the Subject NP), it
does not appear in the unifier for subject-verb agreement.

The unification microcircuits are located between the to-be-
unifiedmatrices (or rather the registers representing thematrices).
For instance, Subject-verb agreement takes place in a unifier that
connects the matrices of a Subject NP and a finite verb (cf.
Fig. 5). The wiring of the unifier determines which features are
taken into account—in English and Dutch: Number and Person.
Any other features—e.g., nominative case of the Subject
NP—bypass the unifier circuit and are left out of consideration.

As a graphical notation for unification circuits I use pairs
of rectangular brackets facing one another (⊏⊐), where each
bracket denotes the matrix of a unification partner (as an-
nounced in the caption of Fig. 5).

Winner-Take-all Competition

The machinery introduced so far allows a more accurate de-
scription of the neural connections subserving winner-take-all
competition (see the SINUS model in Vosse and Kempen
2009a, for a computational implementation).

Figure 8 illustrates the crucial connections needed to handle
the competition between three NP-syntagmas that attempt to
bind three major NP-constituents of a finite clause (an S-
syntagma) during a decoding episode. Any NP can only fulfill
one grammatical function, and any function can only be ful-
filled by one NP. The system presupposes that the NP-
syntagmas are recruited by the NP router sequentially. Hence,
if the unifications succeed, NP1 will first bind the Subject, then
NP2 the Indirect Object, and finally NP3 the Direct Object—in
agreement with the schedule followed by the RTN. The web in
the middle of the figure shows that the NP-syntagmas and the
foot nodes of the S-syntagma are fully connected, yielding
ample opportunities for “wrong” bindings to emerge.
However, the inhibitory links render this very unlikely. For
instance, once the binding of NP1-to-Subject has been
established,11 the corresponding link starts emitting inhibition
to four other links. Two of these will also be activated while
the NP2-to-IOBJ binding emerges: one attempts to bind the
Subject to NP2, the other one the Indirect Object to NP1.
However, this competition does not jeopardize the emerging
IOBJ-to-NP2 binding because the two competitors are inhibited
by the strong Subject-to-NP1 binding. Obviously, this course of
events presupposes adequate parameter settings determining
the amounts of activation and inhibition transmitted via the

various links.12 Another factor conducive to the emergence of
the desired bindings is the presence of unifiers in the links
between root nodes and foot nodes. Furthermore, the figure
assumes that unification failure eliminates the resonance effect
(or reduces it drastically), so that the amount of inhibition trans-
mitted to competitors also drops considerably.

The wiring depicted in Fig. 8 raises a crucial question: Does
the portrayed activation and inhibition scheme scale up to larger
numbers of NP- and S-syntagmas? A more realistic coding
network needs more than three NP-syntagmas and more than
one S-syntagma, and the danger of a combinatorial explosion
of the number of inhibitory links between all potential bindings
seems immanent. For instance, if the network would include
ten NP-syntagmas and three S-syntagmas, the number of acti-
vation links (potential bindings) of these NPs with three foot
nodes in each S-syntagma would amount to 10*3*3=90; the
nine binding options of each NP root node would require
9*8/2=36 inhibitory links; and the ten binding options of each
foot node of the S-syntagmas would even require 10*9/2=45
inhibitory links. However, although the model indeed assumes
full excitatory connectivity between the root nodes of all syn-
tagmas with all qualified foot nodes of any other syntagma, in
practice there is no need for an exhaustive set of inhibitory
connections between any pair of excitatory links that in theory
might enter into competition. The reason has to do with the fact
that recruitment of syntagma exemplars (under router control)
and the RTNs both operate sequentially.

To see this, consider Fig. 8 again, and assume that the three
NP-syntagma exemplars are the first three of a supply list of ten
exemplars that the NP-router recruits in a fixed order. This
entails a statistical tendency for NP exemplars nearby in the
supply list to bind foot nodes nearby in RTN trajectories. In the
example, if the first NPs would have bound foot nodes of an
earlier S-syntagma, the depicted S-syntagma would probably
have been bound by—and aligned with—three consecutive
members further down the supply list of NP-syntagmas.
Hence, inhibitory links are only needed from each bindable
foot node to a few (maybe three or four) consecutive members

11 Just as in the SINUS model, I assume that the first position of the S-
RTN can be occupied by at most one constituent, but various types of
constituents are eligible, including constituents fulfilling roles other
than that of Subject—as depicted in Fig. 5. Psycholinguistic experi-
ments suggest, however, that the coding system has a preference for
early placement of the Subject. In the proposed model (and in SINUS)
this effect is reached by initializing the Subject foot node of recruited S-
syntagmas at a higher activation level than that of other foot nodes.

12 The parameter values for SINUS were estimated during a training
period in which the model received a sample of target language sentences
that are known to elicit human parsing phenomena (e.g., a typical “gar-
den-path” sentence, and a nearly identical counterpart that does not lead
the reader up the garden-path; a set of sentences with center-embedded
versus right-branching relative clauses; sentences with or without a word-
class ambiguous lexical item at a certain syntactic position, etc.; for
details, see Vosse and Kempen 2009a). A simulated-annealing procedure
was used to find, in the total parameter space, a subspace where the model
exhibited the psycholinguistically expected performance (e.g. cognitive
processing loadmeasured in terms of processing cycles in themodel, or in
terms of the proportion of unsuccessful parsing trials). After the training
episode was completed and the parameters fixed, the model was tested on
syntactic structures it had not seen before. It remains to be seen whether
this parameter estimation procedure can be adapted to the encoding
modality, and/or whether one set of parameter values can satisfactorily
simulate decoding as well as encoding performance.
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of a supply list of same-type syntagma exemplars (e.g., between
NP1–NP2–NP3, between NP2–NP3–NP4, and between NP3–
NP4–NP5 but not between more distant members NP1–NP5–
NP9). Similarly, each NP-syntagma exemplar has the potential
to bind not only the three foot nodes of the S-syntagma depicted
in the figure, but also the corresponding foot nodes of (at least)
two other S-syntagmas from the stock. This requires nine
activation links for each NP exemplar, but not 9*8/2=36 inhi-
bition links: Nine inhibitory connections probably suffice. For
example, NP1 would need the three inhibition links shown in
the bottom-left corner of the web in Fig. 8, and two similar
inhibitory triplets between activation links running fromNP1 to
foot nodes of the two other S-syntagmas. In conclusion, the
threat of a combinatorial explosion of the number of inhibitory
links when the network is scaled up, is considerably reduced
due to the expected temporal proximity of bindable foot nodes
on the one hand, and the temporal proximity of binding root
nodes on the other.13

In the scenario depicted in Fig. 8, the three unifications/
bindings were fortunate in that their first choice of a binding
partner turned out to be the ultimately correct one. In less
fortunate circumstances, however, subsequent events may call
for a revision. Nonstandard linear orders of grammatical func-
tions are a case in point. In relative clauses, for instance, it is the

constituent consisting of—or containing—the relative pronoun,
that opens the clause. However, this constituent may not play the
role of grammatical Subject (as in The woman [that the boy
insulted] was not angry). The RTN within the relative clause
will initially accept the relative pronoun as Subject—but not for
long: The next position of the RTN cannot host anNP such as the
boy, thus preventing the RTN to proceed. However, the NP-
syntagma bound by the boy keeps sending activation to all its
potential unification partners, including the Subject foot node.
Meanwhile, the NP-syntagma bound by the relative pronoun
tests its odds with other foot nodes of the current syntagma.
One of them fulfills the role of Direct Object, which is “fronted”
if bound by a relative pronoun (in English as well as in Dutch; cf.
Fig. 5). The link representing this binding inhibits the competing
binding between NP that and the Subject foot node, thus
supporting NP the boy to gain Subjecthood. The end of this
scenario is an optimal solution, allowing the RTN to transit to
subsequent positions, with that as Direct Object (ultimately
licensed and supported by the transitive verb insulted) and the
boy as Subject. (I refer to Vosse and Kempen 2008, 2009a for
computer implementations of Dutch and German parsing-with-
revision scenarios similar to the English one sketched here.)
Notice that no exchange of binding partners would have taken
place if word order had been slightly different. In The woman
[that insulted the boy]…, the relative pronoun can keep its status
of Subject uncontestedly all the way through the clause. Indeed,
psycholinguistic experiments observe that, in many circum-
stances, “Subject relative clauses” are somewhat easier to process
than “Object relative clauses” (e.g., Staub 2010; Lewis and
Vasishth 2005).

13 Needless to say, these calculations are extremely tentative, not only
because, as already indicated, the basic numbers of syntagmas needed
are rough estimates, but also because additional factors may be at work,
in particular lexical and syntactic ambiguity (increasing the demand)
and conceptual factors (decreasing it).

Fig. 8 Winner-take-all competition between three NPs attempting to
bind the Subject, the Direct Object, and the Indirect Object of a clause
(e.g., Peter gave his girlfriend the latest smartphone). The rectangle at
the top depicts some major constituents of the clause in their standard
linear order; the three rectangles at the bottom show important

constituents of NPs. The circles are unification circuits (e.g., checking
nominative, dative, or accusative case of prospective unification partners;
and, in case of success, communicating the resulting case value to the
partners). Straight lines: bidirectional excitatory connections representing
possible bindings; curved lines: bidirectional inhibitory connections
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What happens when a winner-take-all competition remains
unresolved, that is, when none of the contestants manages to
defeat its adversaries? Consider the situation of an RTN that,
during the traversal of a topology, enters a slot that is to be
filled by an obligatory constituent. An example could be the
slot where the Subject foot node of a finite clause has to land.
If more than one NP is trying to bind that foot node but no
winner has shown up yet, the RTN seems to have no option
but to await the emergence of a winner. However, let us
hypothesize that the RTN, in order to lift such a blockade,
has a means to coerce a lingering competition to resolve. One
such means involves adding random amounts of activation to
the mutually inhibitory links through which the competitors
contend with one another (“disinhibition”). These amounts
should be small initially but grow steadily. This increasing
noise guarantees that, after some interval, the difference be-
tween the activation levels of the competitors is big enough to
yield a winner. Clearly, a winner thus selected may turn out to
lead the system into just another blockade (a “garden path”).
But the advantage is that the RTN can continue its traversal
and take new input into processing—input with potential re-
percussions on the competitions underlying recent bindings
(as illustrated in footnote 8).

Pluriclausal Sentences and Cross-Clausal Movement

The treatment of sentences containing more than one clause
requires some extensions of the model, in particular with a
view to the treatment of cross-clausal “movement” of syn-
tactic constituents: the phenomenon that constituents some-
times seem to escape from the clause they belong to and to
occupy a position in a clause higher up in the hierarchy of
clauses. In example (3a), the interrogative constituent which
disease occupies a position in the main clause headed by did,
not in the subordinate clause headed by contract, where it
plays the role of Direct Object. Cross-clausal movement is
restricted to declarative Complement clauses; in English,
they optionally start with the subordinating conjunction that.
No constituent can escape from interrogative Complement
clauses (as evidenced by the ill-formedness of (3b)), or from
adverbial clauses (cf. (3c); adverbial clauses begin with a
subordinating conjunction other than that—here with be-
cause—, and function as Modifier within another clause).

(3) a. Which disease did you say (that) John contracted?

b. *Which disease did you ask who contracted?

c. *Which disease did John go to the hospital because he
contracted?

Sentence (3a) contains three verbs, each binding an S-
syntagma, with did at the top and contracted at the bottom of

the hierarchy. The verbs did and say each take a Complement in
the form of another clause. The connections are realized by
direct unification links between a Complement (CMP) foot and
the root of an S-syntagma. I now describe—first in a decoding,
then in an encoding episode—how, in sentence (3a), the inter-
rogative NP gets its high/fronted position (see Fig. 9).

Underlying the figure is a basic principle that we have already
met several times: full connectivity. All permissible root-to-foot
bindings between the syntagma exemplars in the system are
present as prewired connections. For the example, this implies
that the NP which disease sends activation to all NP foot nodes
of all S-syntagmas in the system, but that initially only one of
them resonates—the top S-syntagma which, as binder of the
Apex, become the main clause. In this syntagma, the NP is able
to bind a foot node that allows its binding partner to land in F1
(as interrogative NPs nearly always land in F1 slots). The most
likely winning foot node is the Subject. Afterdid has become the
lexical anchor, NP you also starts competing for the Subject role.
As it soon becomes clear that did subcategorizes for a
Complement clause rather than for a Direct Object, NP you
wins the competition for Subjecthood, thus leaving the Wh-
NP in limbo, unclaimed. However, new input keeps coming in
and the RTN cannot lag far behind. This triggers a coerced
binding (as described at the end of the previous subsection) of
the Wh-NP into the role of Direct Object (which presumably is
more frequent than Indirect Object). The RTN now proceeds its
course through the topmost topology and applies readout to
Which disease did you. (Readout during decoding serves to
check parsed word order against actual input word order; more
on this in the next section).

Crucial ingredients in the treatment of grammatical move-
ment are the place and role tags introduced above (see end of
section “Syntagmas”). Under certain circumstances, a syntag-
ma may receive its role and its place tag from two different
syntagmas. This is what happens in example (3a). The finite
transitive verb contracted “claims” the Wh-NP as its Direct
Object, although this constituent has already received a place
tag from the RTN in the upper syntagma. As neither did nor say
claim a Direct Object, the lower verb contracted can defeat the
upper S-syntagma, causing the Wh-NP to be attached
low—“low” in terms of root-to-foot binding as well as topology
placement. (The relocation is covert because the Wh-NP has
been read out before.) Note that the new landing site of NP
which disease does not yield a conflict with any other constit-
uent that might need to land there: Except for aWh-constituent,
no other constituents of declarative Complement clauses select
F1 as destination. In consequence, NP which disease ends up
binding a foot node of the lower S-syntagma while overtly it
seems to occupy a topology slot in the upper S-syntagma.

The proposed mechanism for “Wh-extraction” also ac-
counts for the ungrammaticality of variants (3b) and (3c). In
(3b), the middle S-syntagma is anchored by the verb ask,
which takes an interrogative Complement. However, the F1
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slot of interrogative Complements is always occupied because
F1 is the typical landing site of Wh-constituents (who, what,
whether, why, etc.). Therefore, NP who will compete for a
binding in the lower S-syntagma and, if successful, occupy the
F1 slot there, with both its role and its place tag deactivated.
Competitor NP which disease has to stay behind at the F1 of

the upper S-syntagma, with a deactivated place tag but an
unclaimed and thus still active role tag. Example (3c) gives
rise to a similar scenario. F1 slots of adverbial clauses are the
obligatory landing site of the subordinating conjunction
exercising the role of Subordinator (here: because). Hence,
NP which disease cannot be covertly relocated.

Fig. 9 Hierarchy of S-syntagmas for example (3a). The triangular
shape at the top, with an S-root node and nodes Sin and Sout as vertices,
represents an S-syntagma. The topology is indicated by a dotted arrow;
only the first slot, F1, is shown. Two similar triangles are depicted in the
middle and at the bottom. Below each topology is a selection of foot
nodes that can be bound by a lexical item or another syntagma. The
Head verb of the top S-syntagma (did) claims a Subject and a Comple-
ment, as indicated by the curved arrows. All S-syntagmas are assumed
to have the same standard shape, including the same set of foot nodes.

Each of these foot nodes is connected, via prewired links, to all (exem-
plars of) syntagma types that can bind them. Three of these mutually
inhibitory links run between the bottom-left NP-syntagma (which dis-
ease) to three Direct Object NP foot nodes (curved continuous line
ascending from this Wh-NP; the unification circuits have been left out).
Similar links—left out as well—run from this (and other) NP-
syntagmas to Subject and Indirect Object foot nodes of all S-
syntagmas: full connectivity. However, only foot nodes of recruited S-
syntagma will effectively become bound
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As is well-known, the level of acceptability/grammaticality
of sentences embodyingWh-extraction depends strongly on the
choice of Complement taking verb (compareWhich disease did
you say that John contracted? with Which disease did you
mumble that John contracted?). Furthermore, Wh-extraction
is not licensed by Complement taking nouns. The sentence
Which disease did you claim that John contracted?, with claim
as verb, is much more acceptable than Which disease did you
make the claim that John contracted?, with claim as noun. The
model can explain these effects by postulating that the F1 slot in
the S-syntagma recruited to build the finite Complement clause
is not always fully activated. More specifically, assume that the
syntagma bound by the Complement taking verb or noun is
able to influence the level of activation of the F1 slot in the S-
syntagma that represents the Complement clause. The influence
can be exercised via the unification link between the syntagmas
involved. Strong activation of the neuronal assembly
representing the F1 slot facilitates the emergence of a “low”
binding of the Wh-constituent (in terms of Fig. 9: the binding
within the lower S-syntagma). If, upon recruitment, this neural
assembly receives little activation, or is strongly inhibited, the
low binding is difficult or impossible. This has the same effect
as competition for the F1 slot with another Wh-constituent, as
in (3b) and (3c).

Behavioral evidence supports this account. A verb that
yields high-grammatical Wh-extraction sentences, activates
the entire topology of the Complement clause, including the
F1 slot. In German, finite Complement clauses are sometimes
realized in the form of main clauses, i.e. with the finite verb in
“Verb-second” position. This is illustrated by example (4a),
from Featherston (2004:187); in (4b), the Complement clause
embodies the “Verb-final” word order which is standard in
subordinate clauses. Complement clauses such as in (4a) need
a full topology to provide a landing site for the Subject NP (er
‘he’). In a grammaticality judgment experiment, Featherston
(o.c.) compared the grammatical quality of sentences embody-
ing Wh-extraction with sentences containing a main-clause
Complement (i.e., (4a)), using the same set of Complement
taking verbs in both structures. He observed a high correlation
between the two sets of judgments: If a verb yields high-
quality Wh-extraction structures, it also yields high-quality
main clause Complement structures, and analogously for the
low-quality structures. These data provide support for the
crucial assumption about the high activation level (free avail-
ability) of the F1 slot of declarative Complements of
verbs that facilitate Wh-extraction.

(4) a. Max hofft, er hat die Geschworenen überzeugt

Max hopes he has the jury convinced

‘Max hopes he has convinced the jury.’

b. Max hofft, dass er die Geschworenen überzeugt hat

Max hopes that he the jury convinced has

‘Max hopes that he has convinced the jury.’

Gibson andWarren (2004) published a reading time study
that enabled them to compare the processing load required
by sentences with vs. without Wh-extraction. The sentences
were comparable in respect of syntactic complexity and
semantic content. The authors interpreted the pattern of
reading times for the two sentence types as evidence for
“intermediate syntactic structure”. The data suggested that,
located immediately before the syntactic position of the
Complementizer that, there was some sort of steppingstone
that facilitated the syntactic and semantic integration of the
extracted Wh-constituent with the verb claiming it as Direct
Object (in (3a): the integration of which disease and
contracted). They identified this position as —in the termi-
nology of mainstream generative grammar—the specifier of
the CP of the embedded clause. This is the position that, in
the present model, corresponds to the F1 slot of the
Complement clause. Apparently, the availability of this po-
sition enables the “low” binding of the Wh-constituent and,
via this binding, its semantic/conceptual integration with the
Complement’s Head verb.

Next, I take up the grammatical encoding of sentences with
Wh-extraction such as (3a), focusing again on the placement
and the binding of the Wh-constituent. I do this while making
minimal assumptions about the conceptual structure specify-
ing the speaker’s intention. Also, I will not describe in detail
how the U-Space assembles the syntagma hierarchy, except
for announcing that a crucial role is played here by referential
indices associated with the input lemmas (see the next section
for the neural correlates of these indices). For instance, NP you
will preferentially bind the Subject foot node of did or say
because this NP has an index that matches the index of the
Subjects of did and say. However, because did instructs its
Complement (via the unification link) to be infinitival, NP you
cannot bind the Subject foot node of say, due to inhibition of
this node. This leaves the Subject foot node of the upper
syntagma as the only suitable binding partner for NP you.
As part of the root-to-foot binding process, the referential
indices are compared. If they match, the binding circuit re-
ceives extra activation (positive auto-associative feedback),
enabling it to inhibit and defeat other binding options explored
simultaneously via a prewired link. E.g., although the NP-
syntagma bound by you has a prewired connection with the
Subject foot node of the S-syntagma bound by contracted, this
binding will be rejected immediately due to the mismatching
indices, and succumb to inhibition from the binding that does
have matching indices.

How does the interrogative constituent which disease re-
ceive its prominent place at sentence onset, at the top of the S-
syntagma hierarchy, in spite of referential indices telling this
Wh-NP that it belongs to the lower S-syntagma, and should
play the role of Direct Object there? The answer presupposes
that the input to the U-Space always specifies the value of the
“mood” feature of the various clauses. Possible values are
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declarative, interrogative (Y/N- or Wh-question), or impera-
tive. They are represented by dedicated neural assemblies
within S-syntagmas—here “Wh” and “declarative” for the
main and the embedded clause, respectively. This activation
spreads to other assemblies influencing the shape of the
clauses. In particular, the mood value Wh-question leads the
RTN to demand a Wh-constituent as filler of the F1 slot, and
to move to subsequent slots only after one has appeared. If
several constituents present themselves as candidate fillers,
the RTN is triggered to coerce a binding by adding random
amounts of activation to the candidates, until one has managed
to suppress the others. For sentence (3a), this implies that
readout of the sentence will commence only after Wh-NP
which disease has occupied the F1 slot of the main clause.
The remainder of the encoding process yielding (3a) resem-
bles the decoding process for this sentence, and includes the
covert relocation of the Wh-NP binding from the upper to the
lower S-syntagma. Differences between the encoding and the
decoding scenario are probably restricted to the order in which
the bindings take place. In decoding mode, this order depends
on the input order of lexical items; in encoding mode, the
order is determined rather by conceptual and lexical factors.

A Neurocognitive Architecture for Grammatical Coding

The Unification Space is not the only neurocognitive module
involved in grammatical coding. The present section ex-
plores how grammatical coding in the U-Space interacts with
other language production and comprehension processes,
and what the proposed model entails with respect to the
neurobiological infrastructure.

Referential Processing and the Hippocampus

Referents are entities (objects, animals, humans, or other “pro-
tagonists”), states (properties), state changes, or actions per-
ceived and recognized in the real or imagined world.
Combinations of protagonists with the states, state changes or
actions in which they are involved, are the nonlinguistic “flesh
and blood” of communicative intentions. The set of referents
that has been addressed since the onset of the current dialogue
is called the “referential domain” of that dialogue. The maxi-
mum number of referents that inhabits the referential domain at
any given point in time, is restricted—not larger than, say, a
hundred. Referents are internally (cognitively) represented in
the form of mental models (Johnson-Laird 1983, 2006), or
schemas (Arbib 1989), of the described situations and events
(see Glenberg et al. (1987) for a compelling behavioral dem-
onstration, and Barrès and Lee (2013) for a computational
implementation based on schema theory). Mental models are
iconic internal representations of aspects of the external reality,
that is, of the referents mentioned in a sentence. Here, the term

“iconic” indicates that each part of themodel, and each relation
between parts, corresponds to a part and a relation, respective-
ly, in the represented reality. Mental models are abstract in that
they represent reality in a viewpoint-independent manner
(allocentric); in this respect, they differ from images and pic-
tures, which are viewpoint-dependent (egocentric). Mental
imagery is egocentric and iconic (see Johnson-Laird 2006,
for definitions and many examples).

The composite mental model created for an entire input
sentence or clause is composed of mental models triggered by
the individual words. During comprehension episodes, mental
models associated in long-term memory with the individual
words are retrieved and combined into a composite mental
model for the described scene. (Not all aspects of the meaning
of a sentence can be captured by a mental model—negation is
an example. Such aspects can be represented by annotations
attached to the composite mental model.) Johnson-Laird (2006)
emphasizes the importance of spatial representations, in partic-
ular when the to-be-processed text embodies reasoning tasks.

An important role in the service of visuo-spatial process-
ing is played by the hippocampal complex (HC) which pro-
vides for rapid online storage of visuo-spatial experiences.
This functionality rests on the high level of synaptic plastic-
ity in this region—much higher in the HC than in the neo-
cortex (cf. the “complementary learning systems” frame-
work proposed by McClelland et al. (1995); for new com-
putational implementations of this framework, see Kumaran
and McClelland (2012), and Howard et al. 2011). A recent
neurocomputational model of hippocampal functioning pro-
poses detailed neuronal mechanisms not only for online
memory storage of perceived visuo-spatial scenes but also
for imagining novel scenes (Byrne et al. (2007; see also Bird
and Burgess 2008). The latter task involves the online crea-
tion of novel associations between stored representations of
objects on the one hand, and spatial locations on the other.

This suggests that the hippocampal complex can also sub-
serve the online creation of composite mental models
representing (major aspects of) the meaning of novel sentences.
Stated differently, the combinatorial aspects of referential pro-
cessing during sentence comprehension can do without
prewired connections between all possible combinations of
mental models associated with nouns, verbs, and members of
other word classes. Apparently, while the words of a sentence
come in, the hippocampal complex can access, in real-time,
exemplars of the mental models associated with to these words
in long-term memory (residing in temporal and other cortical
regions), and establish new associations—“conjunctive
bindings”—between them (with the precise form of these as-
sociations depending on the syntactic structure of the input
sentence). The resulting conjunctive bindings allow the con-
struction of integrated visuo-spatial mental models, which em-
body the referential structure of the input sentence. Therefore,
the ban on the online formation of novel neuronal connections
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(discussed in the Introduction) does not apply to the referential
structure of sentences.

Referential indices are temporary identifiers (IDs) of men-
tal models (i.e., of the internal representations of referents). A
given referential domain may include more than one token of
the same mental model. One way of telling them apart is to
associate them with different spatial positions. This is how the
Hippocampal Complex (HC) solves the problem, utilizing its
rapid learning capacity. In real-time, it creates temporary
associations between perceived objects and spatial locations
(see, e.g., the review by Bird and Burgess 2008, of spatial
processing in the HC). Theories of episodic memory often
postulate a generalized version of this mechanism, according
to which the HC can rapidly establish associations between
objects and any type of context properties (see Diana et al.
2007, and the references cited there). These theoretical frame-
works justify the idea that the HC forms online associations
between mental models (i.e., internal representations of refer-
ents) on the one hand, and contextual coordinates on the other,
thus providing the mental models with referential IDs. I will
assume henceforth that each mental model activated during an
encoding or decoding episode is associated with a unique set
of contextual coordinates, and that these coordinates are tem-
porarily attached to the lemma(s) that, in the target language,
designate(s) that mental model. In line with (psycho)linguistic
conventions, I call them referential indices.

Upon first mention during a dialogue, the individual
referents—or rather the mental models representing them—are
thus bound to a unique index. The bindings are retained during
the current encoding and/or decoding episode, so that they are
accessible from other processing modules, e.g. to check
coreferentiality of two NPs.14 Referential indices also provide
the key to a solution of the symbol-grounding problem: They
enable the language user to link linguistic symbols—lexical
concepts and the corresponding annotated lemmas (see be-
low)—to their referents in the external or imagined world
(Harnad 1990; Barsalou 1999). When the episode ends, the
bindings are cleared to make room for a new referential domain.
In this paper, symbols from the set {i1, i2, i3.,…} will serve as
notational substitutes for the contextual coordinates provided
by the Hippocampal Complex.

Annotated lemmas are registers that specify not only the
lemma’s morpho-syntactic features (long-term-stored in the
Mental Lexicon), but also lemma properties related to—and
valid only during—the current dialogue (encoding/decoding

episode). These include the lemma’s own referential index,
and indices of governed lemmas. A simple example (cf. sen-
tence (3a)): Suppose the lemmas underlying the verbs say and
contracted are assigned the referential indices i1 and i2, respec-
tively; and the NPswhich disease, you, and John are indexed by
i3, i4, and i5. Then, if we want the U-Space to bind contracted
as Head of the Complement clause governed by say, we only
need to associate the referential index i2 with the Complement
foot node of say. After that, any attempt to bind the Complement
of say fails if the would-be binder (e.g., by did) does not carry
the matching index i2. In the same manner we can force the U-
Space to only accept i3 as Direct Object of contracted, etc.
Therefore, despite full connectivity (e.g., all NP-syntagma ex-
emplars are connected with the Subject and the Direct Object
foot nodes of all S-syntagma exemplars), the system can still
create the intended bindings by selectively activating bindings
between partners with matching referential indices.

Functional and Conceptual Dependency Graphs

The grammatical decoding process within the Unification
Space delivers structures that I will refer to as “functional
dependency graphs”: They specify, as part of the resulting
lemma annotations, the functional-grammatical relations be-
tween the lemmas involved. The next step in the compre-
hension process consists of the conversion of functional
dependency graphs to “conceptual dependency graphs”.
This requires mapping lemmas and the functional dependen-
cies they govern, onto the concepts and conceptual depen-
dencies stored in entries of the Mental Lexicon. For instance,
the Subject dependency governed by the verb give expresses
the actor participating in a GIVE act; but in case of the verb
receive, the Subject indicates the recipient. Following stan-
dard (psycho)linguistic practice, I assume that the translation
from syntactic to conceptual (also called thematic) structures
is an important step in the semantic/pragmatic interpretation
of input sentences. Importantly, the functional-to-conceptual
conversion includes copying of referential indices associated
with the lemmas onto the corresponding concepts.

Conceptual dependency graphs also play a crucial role
during grammatical encoding. They represent an early step in
the process leading from the speaker’s communicative inten-
tion to a spoken utterance. As part of this process, conceptual
dependency graphs are mapped onto functional dependency
graphs, which then enter the Unification Space as a sequence
of referentially and morpho-syntactically annotated lemmas.

U-Space Input and Output: The Lemma-Syntagma Interface
(LSI) and I/O Buffers

U-Space activity is driven by registers representing annotat-
ed lemmas. They are entered there via an interface compo-
nent, called Lemma-Syntagma Interface (LSI), that connects

14 Language pathology also points to the role played by the HC in the
referential aspects of grammatical coding. Patients with hippocampal
amnesia appear to use indefinite Noun Phrases, e.g. a windmill, to refer to
just-mentioned objects that would normally be described in terms of a
definite NP (the windmill; example from Duff et al. 2011; see also Duff
and Brown-Schmidt 2012). MacKay et al. (2013a, b) describe in detail the
language deficits of neurological patient H.M. who was amnesic after
bilateral surgical removal of large parts of the hippocampal complex.
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the Mental Lexicon to the Unification Space in both direc-
tions. The LSI is a two-dimensional (word position * syn-
tagma type) array whose cells are registers into which lemma
feature matrices can be copied. An LSI with fifteen positions
and seven syntagma types can handle sentences of up to
fifteen words long (even longer ones if early, decaying
syntagmas can be reused); and each of the seven cells at a
given position provides a binding opportunity with one
syntagma type (S, NP, DP, AP, PP, CP, or CNP). All cells
in the array include a unification circuit that checks compat-
ibility of two matrices: the feature matrix associated with an
annotated lemma adduced from the Mental Lexicon, and the
feature matrix belonging to the head/anchor foot node of a
syntagma (this node specifies the eligible part(s) of speech,
among other things). In case of successful unification, the
lemma triggers the matching syntagma. The allocation of
input lemmas to LSI positions is controlled by a router that
is located at the exit port of the Mental Lexicon and,
confronted with a new lemma, assigns it to the next “empty”
LSI position. Input words that are ambiguous with respect to
word class go to the same array position (but will often bind
different syntagma types).15 When the system embarks on a
new sentence, the router copies the feature matrix of the first
arriving lemma to the seven cells at the leftmost array posi-
tion. This triggers seven parallel unification attempts, of
which only one will succeed (or a few, in case of word class
ambiguity). The second input lemma encountered by the
router goes to the second set of seven unifiers, etc.

How do lemmas get hold of their referential indices?

During decoding episodes, the incoming lemmas recognized in
the spoken or written input stream transmit activation to con-
cepts, and from concepts to the mental models they designate
(both presumably residing in neocortical brain regions).Within
the Hippocampal Complex, the active mental models—or,
rather, active copies of mental models—will then be tagged
with referential indices (contextual coordinates), which, I as-
sume, are immediately copied into the registers of the input
lemmas currently occupying the LSI, and stay there for the
duration of the decoding episode. Encoding episodes often
start with a mental scene imagined by the speaker, who then
looks up a set of concepts covering themental models and their
interrelationships. The referential indices assigned to the

mental models get copied into the conceptual dependency
graph covering the scene, and thence into the annotations of
the lemmas that enter the LSI. There, the indices and their
values have a crucial influence on the emerging root-to-foot
bindings: Because the unifiers in LSI cells take index features
into consideration explicitly, the index values of root and foot
should be identical, as discussed above.16

How Does the U-Space Communicate its Output
to Other Processing Modules?

The results of U-Space processing get recorded in the feature
matrices of the lemmas occupying LSI cells. However, U-
Space activity leaves the lemma-to-position assignments in
the LSI intact. This applies to both coding modalities. For
decoding tasks, this is not unexpected since the input lemma
sequence mirrors the input word string; and once the U-Space
has delivered its functional dependency graph, the linear order
of the input words plays no role anymore in the conversions of
functional to conceptual graphs, and from the latter to mental
scenes. For encoding tasks, however, the fixed LSI positions
create a problem because they mirror the temporal orders in
which imagery and conceptual processes construct and deliver
themental models and concepts—orders that are not informed by
grammatical processes, hence risking to deviate from the linear
orders allowed by the topologies in the recruited syntagmas.

This problem is solved by the RTN’s readout function.
When the RTN is traversing a syntagma hierarchy and de-
scends into the lexical Head foot node of some syntagma, it
accesses the binding lemma that resides in the corresponding
LSI cell. Activating this cell causes a copy of the feature
matrix of the lemma to be transmitted to a special Morpho-
syntactic Buffer. This buffer belongs to the neuronal mecha-
nism subserving the Phonological Encoding stage of sentence
production. In the psycholinguistic literature on language
production, it is generally assumed that the stage of
Grammatically Encoding is followed by a stage of
Phonological Encoding (e.g., Garrett 1975; Kempen and
Hoenkamp 1982, 1987; Levelt 1989). Here, lemmas are
converted to lexemes with inflectional properties that match
the morpho-syntactic features computed and attached by the
Unification Space. Phonological encoding also includes pro-
sodic processing (yielding intonation contours), and may give
rise to contractions (e.g., it is ➔it’s; going to ➔ gonna). The
resulting prosodically marked string of phonemes is finally
passed on to phonetic modules for overt articulation. Acheson
et al. (2011) present fMRI and rTMS evidence for the left
posterior superior temporal gyrus (lpSTG) as subserving the

15 Lemmas associated with the same lexically ambiguous input word
(e.g., with the noun/verb can) compete with one another via prewired,
mutually inhibitory links located in the Mental Lexicon (ML). The
competitor that is more successful as a unification partner in U-Space,
will feed more activation back to its ML entry (e.g., the verb can) than
the less fortunate counterpart will be able to send to its entry (the noun
can). As a consequence, the latter will extinguish, and the syntagma it
originally managed to bind (if any), will soon decay and become
available as a binding partner for another lemma.

16 To prevent a misunderstanding, unifiers that check agreement re-
lations between sister constituents (e.g. Subject-verb agreement) do not
take index values into account. See also the final paragraphs of
Section “Microcircuitry for feature unification.”
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phonological encoding stage of language production. This
area belongs to the temporo-parietal regions that are “a strong
candidate for the neural substrate of storage, both in sentence
processing and item-based tasks” (Meyer et al. 2012; see also
Buchsbaum and D'Esposito 2008, for discussion).

A router supervising access to the Morpho-syntactic Buffer
appends a copy of every new lemma (more precisely, a copy of
its featurematrix) to the list ofmatrices currently residing in the
buffer. This procedure builds incrementally a grammatically
well-formed list of annotated lemmas that contains all infor-
mation needed to convert the list of lemmas to a list of word
forms (lexemes). Actually, it is not necessary to send to the
buffer complete copies of the annotated lemmas in LSI cells:
The morpho-syntactic features that select the appropriate word
forms suffice (e.g., number, person, and tense of to-be-realized
finite verbs)—thence the name “Morpho-syntactic” buffer.

As part of the language comprehension process, words rec-
ognized in the spoken or written input must be converted to
lemmas with morpho-syntactic features. It seems reasonable to
assume that this lexeme-to-lemma conversion task is carried out
by the same module that performs lemma-to-lexeme conversion
during phonological encoding. If this assumption is correct, the
Morpho-syntactic buffer has double functionality: In compre-
hension tasks, it temporarily stores the lemma input to the LSI;
in production tasks, it receives the output from the LSI. This
suggests a mechanism to check whether, during grammatical
decoding, the linear order entailed by the current parse dovetails
with the actual input word order and, if not, to block the parse.
Remember from the discussion of the toy example Dogs cats
bite fight (e.g., Fig. 2d) the danger for the two verbs to link up
to the two NPs in the wrong order. The correctness of such
bindings can be verified, in principle, if the readout function is
running not only during encoding but also during
decoding—thus, in a sense, shadowing the actual input. Each
time a new lemma is appended to the Morpho-syntactic buffer,
the phonological processor can check whether it matches with
the next input lemma in the list compiled at input.

A similar shadowing mechanism could be operative in
grammatical encoding, but here the shadowed lemmas belong
to the functional dependency graph delivered by the U-Space.
This speculative idea presupposes the existence of what might
be called a Functional dependency Buffer that short-term-
stores lemmas containing all information needed to convert
functional to conceptual dependency graphs, and back. Such a
buffer would enable quick comparisons between the meaning
intended by the speaker, and the meaning returned by the
shadowing function. In case of a mismatch, a U-Space error
must have occurred—an overt or a covert speech error. This
second type of shadowing could take place, at least insofar as
the online construction of mental images is involved, within
the Hippocampal Complex. Kumaran and Maguire (2007)
argue that the hippocampus includes a comparator mechanism
enabling rapid detection and signaling of novelty in perceived

scenes (see also Duncan et al. 2012; Poppenk et al. 2008).
Both types of shadowing could provide powerful safeguards
against U-Space errors in grammatical coding. However,
whether they are actually applied, and under what kind of
conditions, is a topic awaiting further investigation.

Where is the Neural Substrate of the Unification Space?

The present section has made clear that grammatical coding
tasks encompass more than just the tasks fulfilled by the
Unification Space. While the U-Space is primarily responsible
for the unification and the linearization of annotated lemmas,
additional processing is required for—among other things—(1)
lemma selection, (2) assembly of functional dependency
graphs, (3) assembly of conceptual dependency graphs, and
(4) referential processing. It is too early to make specific pro-
posals about how these subtasks are compartmentalized into
modules and distributed over brain regions. However, it is
hardly controversial that the neural infrastructure in their ser-
vice is located in or close to the left superior/medial temporal
lobe (Petersson and Hagoort 2012), including the Hippocampal
Complex. It is important to realize that these subtasks are by no
means trivial or marginal. For instance, in encodingmode, they
include the selection of all lemmas for the sentence under
construction, which in turn includes the selection of pronouns
and other closed-class vocabulary (“syntactic words”).
Furthermore, the assembly of the functional dependency graph
(in the form of a set of annotated lemmas) fully determines the
hierarchy of syntagmas to be recruited in U-Space (through the
referential indices). In decodingmode, the subtasks are execut-
ed in reverse direction: converting functional to conceptual
dependency graphs, lemmas to concepts (which often necessi-
tates dealing with lexical ambiguity, and includes pronoun
resolution), and concepts to mental models; finally, the models
are combined into integrated iconic mental scenes in accor-
dance with conceptual relations and referential indices.

The division of labor between subtasks performed by the
Unification Space on the one hand and those that are local-
ized to the left superior/medial temporal lobe on the other,
raises the question of which brain area(s) subserve(s) the
Unification Space. The traditional answer, which is based
on a plethora of empirical evidence, points to Broca’s area
(the left inferior frontal gyrus (lIFG) and surrounding areas;
details need not concern us here). However, much of that
evidence is equivocal and open to alternative theoretical
interpretations. One such alternative holds that Broca’s area
is a domain-general processor that subserves neural compu-
tations of a special type—variously characterized as (1)
conflict resolution, (2) sequential processing, or (3) syntactic
working memory—and that, in this capacity, it is a crucial
ingredient of grammatical coding. Irrespective of whether
Broca’s area is essential for other cognitive functions, I
observe that U-Space function as elaborated in this paper is
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based on (1) conflict resolution (competition via lateral inhi-
bition) and (2) engenders sequential structures; furthermore,
the syntagmas and their sustained activity during coding
episodes fulfills the role of (3) working memory. Hence, I
see no empirical objections against assigning some gram-
matical coding subtasks to Broca’s area and the lIFG, in
particular those subtasks dealing with morpho-syntactic uni-
fication and syntactic linearization. However, note that other
subtasks of grammatical coding—particularly its lexical,
conceptual, and referential aspects—are most probably to
be localized to superior/medial temporal areas.17

Interregional Connections

Recently, Bornkessel-Schlesewsky and Schlesewsky (2013:67;
see also Alday et al. 2013) proposed to localize all linguistic
structure-building operations to temporal (and parietal) regions:
“Frontal cortex does not subserve linguistic processing func-
tions” but “[…] subserves control functions only” (italics
theirs).18 This proposal is an integral part of, and largely
motivated by, their more encompassing theoretical framework
on the function of the ventral and the dorsal processing streams

that connect the frontal and the temporal regions involved in
sentence comprehension. The dorsal stream runs between the
lIFG and posterior regions of the left temporal lobe (including
the superior temporal gyrus and the superior temporal sulcus,
pSTG/pSTS). The ventral stream connects the lIFG with
the medial temporal lobe (MTL). Although Bornkessel-
Schlesewsky et al.’s position on the role of the frontal cortex
clearly deviates from mine, another aspect of their theoretical
framework does fit the present model. Bornkessel-Schlesewsky
et al. present strong empirical and theoretical arguments for a
distinction between “time-dependent” and “time-independent”
aspects of sentence processing, and assign the former to the
dorsal stream, the latter to the ventral stream. The specific
subtasks they characterize as time-dependent and -
independent follow from their eADM model of sentence com-
prehension (Bornkessel-Schlesewsky and Schlesewsky 2009).

The present model suggests another characterization of
time-dependent vs. time-independent sentence processing:
Time-dependent processing deals with linearly ordered struc-
tures, time-independent processing with unordered dependen-
cy structures. Strings of annotated lemmas entering U-Space
during sentence comprehension are time-dependent, as are
annotated lemma strings that U-Space delivers as output dur-
ing sentence production. During (auditory) comprehension
episodes, the lemma strings originate in the left posterior
STS/STG (cf. Okada and Hickock 2006), presumably selected
during conversion of phonological wordforms to lemmas with
morpho-syntactic annotations (number, person, tense, case,
etc.) Strings of lemmas thus annotated activate positions in
the lemma-syntactic interface (LSI) of the U-Space and start up
the grammatical decoding process. During sentence produc-
tion, U-Space assigns linear order to input lemmas belonging
to a referentially annotated functional dependency graph, and
the RTN then transmits them one-by-one to the left
pSTG/pSTS for Phonological Encoding (cf. Acheson, et al.
2011), that is, via the dorsal stream. Time-independent pro-
cessing as part of sentence comprehension concerns the output
of the U-Space, i.e. the functional-dependency structure which
is converted to a conceptual-dependency structure in MTL and
referentially processed in HC: the ventral stream. During sen-
tence production episodes, the ventral stream assembles the
referential, conceptual, and functional structures for the up-
coming sentence, and transmits it to the U-Space in the lIFG.

This architecture affords two important advantages if we
assume that all interregional connections between the four
neural centers (left IFG, left MTL, left pSTG/pSTS, and HC)
are bidirectional. First, it enables quick feedback loops in the
service of self-monitoring. For instance, during grammatical
decoding, the system can use the dorsal stream to check
whether the word order entailed by the parse (and read out
by the RTN) is faithful to the input word order—recall the
idea of a morpho-syntactic buffer proposed earlier on in the
present section. Such a buffer is presumably located in the

17 For two fMRI studies whose data are in unison with the assumption
of bilocation of grammatical decoding subtasks, see Snijders et al.
(2009) and Pallier et al. (2011), with Dutch and French, respectively,
as target languages.
18 Bornkessel-Schlesewsky and Schlesewsky (2013:70) cite the two
data sets mentioned in the preceding footnote, interpreting them in
favor of their alternative framework. There, they also cite a sentence
production experiment by Ye et al. (2011) as evidence that “posterior
temporal regions may be involved in the linearisation of elements, i.e. in
determining the linear order of syntactic constituents”. In this experi-
ment, German-speaking participants expressed a sequence of two
events (each suggested by a drawing) in the form of sentences that
always started with an adverbial clause introduced by the subordinating
conjunction before or after (e.g. the German translation equivalents of
Before I open the mail, I sit down or After I sit down, I open the mail).
The subordinating conjunction to be used in a given trial was indicated
by a color cue presented immediately after the drawings.

It is well-known from behavioral studies that before sentences of
this type are harder to produce than after sentences, presumably be-
cause, with before, the events cannot be mentioned in their chronolog-
ical order. This extra difficulty was mirrored by higher levels of activa-
tion in superior temporal regions. According to the researchers and to
Bornkessel-Schlesewsky et al., this finding suggests that temporal re-
gions are involved in linear order computations for upcoming
sentences. Although this interpretation is valid in itself, it is not the
only one possible. The extra activation recruited by before sentences
could very well be a consequence of the need to inhibit the tendency to
select the more natural concept/lemma underlying after—arguably
more “natural” concept/lemma here, since in trials with after the adver-
bial clause was produced first and expressed the first event. If so, some
other neural structure must have been in charge of linearization. Indeed,
in addition to the posterior temporal region, certain frontal regions were
also more active during before trials, e.g. the left middle frontal gyrus.
Hence, this area may have been the one responsible for the linearization
aspects of the task, by controlling the order of subordinate and main
clause as imposed by the experimenter.
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left pSTG/pSTS. In case of a mismatch, the buffer can
immediately transmit inhibition back to the offending unifi-
cation partners in lIFG. The ventral stream can improve the
quality (plausibility, veridicality) of a parse in a similar
manner by inhibiting low-quality unifications, thereby pos-
sibly giving defeated unifications a new chance. (This pre-
supposes, of course, that the grammatical coding mecha-
nisms in the medial temporal lobe have direct access to
knowledge in long-term memory.) The decoding system thus
becomes “constraint-based” in the psycholinguistic sense of
allowing conceptual and pragmatic factors to affect syntactic
decisions at the earliest possible moment, without a delay
due to a preceding, purely syntactic processing stage. Self-
monitoring during grammatical encoding is enabled, for
instance, by temporarily “clamping” the set of annotated
lemmas residing in the LSI at the end of an encoding episode,
and feeding these lemmas back into the MTL mechanism
responsible for assemblage of functional and conceptual
dependency structures. This may reveal differences between
the speaker’s original communicative intention and the in-
tention that was actually conveyed. The second advantage of
the split between ventral and dorsal streams is that it facili-
tates parallel processing by the neural components involved
in computing the linear aspects of sentence structure on the
one hand, and the dependential aspects on the other—a
prerequisite for constraint-based grammatical coding.

Concluding Remarks

The present study sought to answer two questions. First, how is
syntactic structure formation of the complexity required by
natural-language grammars possible in a fixed, preexisting neu-
ral network without the need for online creation of new connec-
tions or associations (without “rapid learning”)? Second, is it
realistic to assume that the seemingly disparate instantiations of
syntactic structure formation in grammatical encoding vs. gram-
matical decoding can run on the same neural infrastructure? The
Unification-Space design put forward in this paper suggests a
positive answer to both questions: It provides the blueprint for a
syntactic structure formation mechanism that is entirely based
on prewired circuitry (except for aspects of referential process-
ing), and can subserve decoding as well as encoding tasks
(insofar as these tasks rely on the U-Space). However, many
questions remain unanswered. The following—somewhat
arbitrary—list of open issues concludes the paper.

1. As the first word of the title suggests, the system de-
scribed in the preceding pages is incomplete in many
respects. In particular, a detailed description is missing
of the dynamics of the competition-based optimization
process that underlies the (re-)construction of syntactic
trees. An implementation of such an optimization process

has appeared in the SINUS papers by Vosse and Kempen
(2008, 2009a), but the syntactic structures targeted by the
new model are much more complex. Also lacking is the
design of a component that converts conceptual depen-
dency graphs into functional dependency graphs, and
vice-versa. This is an important part of grammatical cod-
ing the model leaves open. Given this state of affairs, it is
too early to expect detailed predictions about psycholin-
guistic or neurobiological properties of grammatical
coding—predictions that are novel (i.e., not built into
the model a priori) and contrastive (enabling to pit the
model against alternative theoretical frameworks). This,
of course, is not a license to unbridled theoretical specu-
lation but an urgent exhortation to implement the model
and run crucial computer simulations.

2. Nonetheless, although the proposed neuroarchitecture
needs detailed elaboration and computational implemen-
tation, already in its current form it can shed light on the
theoretical interpretation of some extant empirical data.
A long-standing controversy is over serial syntax-first
theories of grammatical decoding (e.g. Friederici 2002,
2011) versus interactive constraint-based theories (e.g.
Hagoort 2005). In essence, the present model belongs to
the latter category, but its behavior may give the impres-
sion of a decoding process organized in stages. Strong
phrase-structure violations in the incoming sentence,
e.g. substitution of a strongly expected noun by a verb,
will be detected quickly when the unexpected input
word does not allow the RTN to jump to a legal topo-
logical position where the new input word can attach.
Although conceptual and referential processing is initi-
ated in parallel with syntactic decoding in U-Space, it
will often take more time, thereby suggesting a second,
semantic/interpretive stage. The dynamic optimization
process will always attempt to arrive at a structure that
meets all prevailing syntactic, conceptual and referential
constraints. The time it takes for the competition to settle
down will increase when input properties are not entirely
compatible and prevent a fully satisfactory solution. This
gives the impression of a third processing stage devoted
to reanalysis and repair. Thus, a strictly interactive
constraint-satisfaction model can create the impression
of operating in a serial syntax-first manner; however, the
stages are an emergent, not a design property.

A related debate concerns the characterization of
syntax-related ERP effects such as ELAN (Early Left
Anterior Negativity) and P600. The ELAN response
may be causally related to an RTN blockade—an input
word preventing the RTN to proceed to the next position
due to a wrong PoS (word category) value. The P600may
be viewed as the system’s reaction to an input word that,
although allowing the RTN to proceed, yields a
suboptimal binding that the RTN accepts nevertheless,
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but only after coercion. The reason for the suboptimal
quality of the binding may be morpho-syntactic or con-
ceptual (e.g., implausibility). This tentative proposal, I
surmise, fits under the umbrella of a recent hypothesis
proposed by Brouwer et al. (2012:138): “The P600 com-
ponent is a family of late positivities that reflect the word-
by-word construction, reorganization, or updating of a
mental representation of what is being communicated.”
In the model, these activities take the form of a unification
process that is somewhat delayed due to mismatching
features but succeeds nevertheless.

3. Even if an implementation of the model can be built that
encodes and decodes sentences of the required complex-
ity level (generated by mildly context-sensitive gram-
mars), there is no guarantee that a scaled-up version
embodying a substantial grammar fragment of a language
and incorporating a realistic-sized vocabulary will work.
(See Stewart and Eliasmith (2012) on scalability problems
posed by some extant neurocomputational models of
language processing.) The number of prewired connec-
tions needed to transport lexical information within the
Mental Lexicon (ML) and between the ML and the
Unification Space may be forbidding. The ML of adult
language users contains at least 50,000 items (a conser-
vative estimate that does not include proper names,
multiword expressions, and several other types of items).
This suggests a full-blown system contains no less than
50,000 prewired bidirectional temporal-frontal connec-
tions capable of transporting registers that each represent
pretty complex feature matrices.

However, two considerations may temper pessimism.
First, the ML includes many groups of lemmas whose
members have the same or similar feature matrices.
Suppose that lexical entries are organized as inheritance
(or specialization) hierarchies. For example, ditransitive
verbs share all their features with monotransitive verbs,
except for the optional Indirect Object. Monotransitives
may be viewed as a subclass (specialization) of the in-
transitives, distinguished only by the addition of a Direct
Object. Inheritance hierarchies enable elimination of great
quantities of redundant information. They can be realized
in neural nets by introducing nodes that do not represent a
specific lemma but a feature matrix, and connect lower,
more specific nodes with higher, more general nodes via
copy links. Individual lemma constitute the lowest level
of such a hierarchy; when activated, they copy their
“private” feature matrix to the next higher node, where
it is unified with the matrix of the latter, etc., until a
complete feature matrix arrives at the exit port of the
ML, ready to be dispatched to frontal regions. A hierar-
chically organized ML with inheritance also reduces, to a
considerable extent, the problem of processing novel
words (e.g., see Feldman 2013). When a new word is

encountered, it only needs to learn its place in the lexical
hierarchy, close to already known, grammatically similar
words. This learning task arguably is much easier than
learning all grammatical properties of the new word from
scratch.

Second, although the ML probably allows activation of
multiple lexical entries in parallel, its entrance and exit ports
may be controlled by a router that enforces sequential
admission and discharge. Many aspects of language com-
prehension and production proceed incrementally, sequen-
tially. Therefore, the enormous size of theML, in itself, does
not necessitate high-capacity temporal-frontal pathways.

4. The assumption that the system works with a fixed num-
ber of exemplars of each syntagma type will to prompt the
criticism that it imposes a hard upper limit on sentence
length and does not yield graceful degradation. However,
graceful degradation results primarily from the system’s
dynamical properties, e.g. from activation decay
preventing late constituents of a long sentence to get
access to, and take account of, properties of early constit-
uents. Such effects may make themselves felt already
before hard capacity limits are reached. Moreover, one
can add special measures that attenuate the upper limit on
sentence length—although at the risk of introducing
errors—such as “recycling” syntagmas that were recruited
early on during a given sentence coding episode but
whose activation level has since dropped close to or
below threshold.

5. An important research topic concerns the child’s
acquisition of a system such as the one proposed
here. Hopefully, the present portrayal of how the
brain divides the grammatical coding faculty into
less complex components, stimulates a divide-and-
conquer strategy, reminiscent of Elman’s (1993) ad-
age “the importance of starting small”: Focus on
techniques that can learn, sequentially or in parallel,
the tasks performed by separate model components
(e.g., individual syntagmas and RTNs, individual
unification circuits) rather than on techniques that
target encoding/decoding tasks in their full complex-
ity (e.g., RNNs that, from the outset of training, are
confronted with the entire set of input–output re-
lations defined by a nontrivial recursive grammar).
The model perhaps facilitates the divide-and-conquer
research strategy by carving nature at its joints.

Information Sharing Statement

Given that the paper describes the design of a neuro-
computational model, we cannot share program code of a
computer implementation, or supporting experimental data col-
lected at our institute. Readers interested in implemented
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versions of predecessors of the current model can download
three demonstration movies (in MOV format) corresponding
to the syntactic parsing models described in Kempen and
Vosse (1989), Vosse and Kempen (2000) and Vosse and
Kempen (2009a). The movies can be downloaded from
from http://www.gerardkempen.nl/UnificationSpace_parser_
demos.html/. The most recent movie concerns the SINUS
model described in Vosse and Kempen (2008, 2009a).

A demonstration version of the SINUSmodel, implemented
in C++ by Theo Vosse, runs as a PowerPC application on
Mac computers under OS X (v6.0, Snow Leopard, or lower).
The system, which parses simple English and German
sentences, is available from the author (gerard.kempen@mpi.nl)
upon request.
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