
Multipolar equations of motion for extended test bodies in general relativity

Jan Steinhoff*

Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität, Max-Wien-Platz 1, 07743 Jena, Germany

Dirk Puetzfeld†

Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Am Muehlenberg 1, 14476 Golm, Germany
(Received 21 September 2009; published 11 February 2010)

We derive the equations of motion of an extended test body in the context of Einstein’s theory of

gravitation. The equations of motion are obtained via a multipolar approximation method and are given up

to the quadrupolar order. Special emphasis is put on the explicit construction of the so-called canonical

form of the energy-momentum density. The set of gravitational multipolar moments and the correspond-

ing equations of motion allow for a systematic comparison to competing multipolar approximation

schemes.
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I. INTRODUCTION

The description of the motion of extended bodies in
Einstein’s theory of gravitation is a complicated and
many-faceted problem. Nearly all applications of general
relativity crucially depend on our ability to describe how
matter moves under the influence of the gravitational field.

When it comes to the description of extended bodies,
one usually has to resort to the use of approximation
schemes due to the complexity of the theory. In this work
we utilize a multipolar approximation method, originally
devised by Tulczyjew [1], to characterize the motion of
extended test bodies. We explicitly work out the equations
of motion at the monopolar, dipolar, as well as quadrupolar
order with the help of this method. In doing so, we put
particular emphasis on the definition of multipole mo-
ments, as well as on the definition of combined quantities,
e.g., the mass or the spin of objects, at different orders. The
process of canonicalization is carried out in detail, and the
resulting equations of motion are worked out in a fashion
which allows for an easy comparison of quantities at differ-
ent orders.

Without going into historical detail, we would like to
point out, that multipolar methods were among the first
methods to be studied in the context of the problem of
motion in general relativity. In particular, Tulczyjew’s
method can be traced back to the seminal work of
Mathisson [2]. We only note in passing, that several of
the pioneering concepts of Mathisson’s approach to the
problem also resurface in other (later) works. For a more
detailed account on the history of different multipolar
approximation schemes we refer the reader to [3].

Although we solely focus on the description of the
motion of test bodies, the results obtained here are also

relevant for other approximation methods. Most important
are the post-Minkowskian [4–6] and the post-Newtonian
approximations—see, e.g., the reviews [7–9] and referen-
ces therein. The former method is useful to describe the
scattering of an unbound and the latter method is com-
monly used to describe the inspiral of a bound system of
two compact objects. For both approximation schemes the
test mass results in the present paper can be extended to
self-gravitating objects, if one relies on certain regulariza-
tion techniques. Furthermore, our results can be used as
input for higher order black hole perturbation schemes
[10–12] or other radiation reaction calculations [13,14].
All of the above mentioned methods are used to model
gravitational waves emitted from different astrophysical
sources and are therefore of direct relevance for the field of
gravitational wave astronomy [15].
The structure of the paper is as follows. In Sec. II, we

briefly recapitulate the basic ingredients of Tulczyjew’s
multipolar scheme. This is followed by the decompositions
of a general set of moments in Sec. III, which are crucial
for the derivations in the succeeding sections. In Secs. IV,
V, and VI we explicitly derive the monopolar, dipolar, as
well as quadrupolar equations of motion. In VIB, a de-
tailed comparison to the multipolar approximation scheme
by Dixon is performed. We draw our final conclusion in
Sec. VII. Appendices A, B, and C contain a brief overview
of different quantities and our conventions as well as some
useful transformation rules.

II. BASIC DEFINITIONS AND THEOREMS

Conceptually the multipolar method of Tulczyjew [1] is
based on the assumption, that the motion of an extended
test body along a representative worldline can be charac-
terized by a set of multipolar moments, which are built
from the energy-momentum tensor Tab of the body.
As in the case of other multipolar approximation

schemes in the context of general relativity, the starting
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point is the covariant conservation of the energy-
momentum tensor, i.e.,

rbT
ab ¼ 0: (1)

The general strategy consists of working out the constraints
of this equation on a general set of multipolar moments,
which are covariantly defined via an expansion of the
energy-momentum density of the following form:

~Tab ¼
Z þ1

�1
ftab�ð4Þ þ rc½tcab�ð4Þ�

þ rdrc½tdcab�ð4Þ� þ . . .gds: (2)

Here the tabcd... are general multipole moments, �ð4Þ ¼
�ð4Þðxa � YaÞ is the delta function, YaðsÞ characterizes a

representative worldline of the body, and s denotes the
proper time along this line. In other words, the continuous
energy-momentum density ~Tab of the extended body under
consideration is replaced by an infinite set of moments,
defined along a worldline—which is completely arbitrary
at the current stage. It is natural to expect, that the general
energy-momentum conservation law (1), imposes con-
straints on the moments defined via (2), which in turn
characterize certain properties of the body and its motion
through spacetime.

Of course, there is no simplification of the general
problem of motion at the present stage. Insertion of the
full representation (2) into (1) just yields a very compli-
cated differential equation for the moments tabcd..., which is
actually of infinite order. The approximation comes from
the fact, that one truncates the series in (2), and only
considers a finite number of moments. The general expec-
tation is, that certain features of the body and its motion are
adequately characterized by a small number of moments.
This is of course analogous to multipolar expansion tech-
niques as used in the context of classical mechanics or
electrodynamics. In the following, the order of approxima-
tion is characterized by the notion of single-pole, dipole, or
quadrupole, depending on which of the moments in the
expansion (2) are retained.

On a technical level, the method of Tulczyjew [1] is
based on a generalization of the Du Bois-Reymond theo-
rem—called theorem B in the following, cf. Sec. 3 in [1].
Before stating theorem B we need to define what
Tulczyjew calls the canonical form. An arbitrary singular

tensor density ~Ac1...cn is said to be in canonical form if it can
be written as

~A b1...bn ¼ Xm
k¼0

Z 1

�1
rc1...ck½�c1...ckb1...bn�ð4Þðxa � YaÞ�;

where the coefficients �c1...ckb1...bn satisfy

�c1...ckb1...bn ¼ �ðc1...ckÞb1...bn ; (3)

uc1�
c1...ckb1...bn ¼ 0: (4)

Here, we used the abbreviation ua :¼ dYa=ds for the
tangent vector along the worldline. As was shown in
[16], it is always possible to achieve the canonical form.

Theorem B states that, if for a tensor density ~Ab1...bn and
an arbitrary tensor field Tb1...bn we haveZ

D

~Ab1...bnTb1...bn ¼ 0 (5)

in an arbitrary four-dimensional region D, then all the
coefficients �c1...ckb1...bn of the canonical form of the den-

sity ~Ab1...bn vanish.
For further reading on the method of Tulczyjew, we refer

readers to lecture V in [16].

III. DECOMPOSITIONS WITH RESPECT TO THE
VELOCITY

Let us consider a set of general moments tabc... with the
following symmetry properties:

tc1...cnab ¼ tc1...cnðabÞ; tc1...cnab ¼ tðc1...cnÞab: (6)

Note that the symmetry in the second line is motivated by
the integral representation of moments in the multipolar
approximation scheme of Papapetrou [17], see also [18]. In
the context of Tulczyjew’s formalism, there is a priori no
reason to impose the symmetry in the first n indices. One
could carry out the calculation without imposing it.
However, this would only lead to an unnecessary compli-
cation of the derivation, for the contributions from the
antisymmetric parts of tc1...cnab could be absorbed in the
course of the canonicalization procedure. We provide an
explicit example of the absorption process in Sec. VI.
With the help of the projector �a

b
:¼ �a

b � uaub, we may

decompose the moments from (6) with respect to the four
velocity, remember uaua ¼ 1, in the following way:

tab ¼ o
0 ab þ 2o

0 ðaubÞ þ t
0

uaub; o
0 a :¼ tcd�a

cud;

o
0 ab :¼ tcd�a

c�
b
d; t

0

:¼ tcducud:
(7)

For the dipole moment, or three index quantity, we get

tabc ¼ o
1 abc þ 2o

1 aðbucÞ þ o
1 aubuc þ uat

1
bc;

o
1 a :¼ tdef�a

dueuf; o
1 ab :¼ tdef�a

d�
b
euf;

o
1 abc :¼ tdef�a

d�
b
e�

c
f; t

1
bc :¼ tdbcud:

(8)

For the quadrupole, or four index quantity, we get

tabcd ¼ o
2 abcdþ 2o

2 abðcudÞ þo
2 abucud�uaubt

2
cdþ 2uðat

2
bÞcd;

o
2 ab :¼ tefgh�a

e�
b
fuguh; o

2 abc :¼ tefgh�a
e�

b
f�

c
guh;

o
2 abcd :¼ tefgh�a

e�
b
f�

c
g�

d
h; t

2
cd :¼ tefcdueuf;

t
2
acd :¼ teacdue: (9)
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The decompositions in (7)–(9) are going to play a central
role in the upcoming derivations.

IV. SINGLE-POLE

If we consider a single-pole object we start from

0 ¼ ra
~Tab ¼

Z
ra½tab�ð4Þ�: (10)

In order to bring this equation into the canonical form, we
decompose the integrand with respect to the first index, i.e.,
the one which is contracted with the derivative. Here and in
the following, we abbreviate the orthogonal projection of
an index with respect to the velocity by a hat over the

corresponding index, e.g., tab̂c :¼ �b
dt

adc. The decomposed

version of (10) then reads

0 ¼
Z

ra½ðtâb þ uauct
cbÞ�ð4Þ�: (11)

This integral can be split up by means ofZ
ra½uaTc1c2...�ð4Þ� ¼

Z �Tc1c2...

ds
�ð4Þ; (12)

as follows:

0 ¼
Z �

ds
½uctcb��ð4Þ þ

Z
ra½tâb�ð4Þ�: (13)

This form of the integral allows for the application of
theorem B, i.e., the equations of motion are now given by

�

ds
½uctcb� ¼ 0; tâb ¼ 0: (14)

If we insert the orthogonal decomposition of tab as given in
(7)—note that in the single-pole case we could have started
right away with this decomposition, without making the
intermediate step in (11)—the equations of motion in (14)
take the form

�

ds
½o0 a þ uat

0� ¼ 0; o
0 ab þ o

0 aub ¼ 0: (15)

From the second equation, due to the orthogonality, we can
infer that

o
0 ab ¼ 0 and o

0 a ¼ 0; (16)

which leads to—after reinsertion into the first equation in
(15)

t
0 ¼ const and

�

ds
ua ¼ 0: (17)

In other words, we have shown that the equations of motion
of a single-pole particle take the form of the geodesic
equation. Equation (17) suggests to identify the quantity

t
0

with the mass m
0

of the test body. This result is of course
not new, with the method outlined above, it was already
derived by Tulczyjew in [1]. Finally, we note that the
corresponding singular energy-momentum tensor is then
given by

~Tab ¼
Z

m
0

uaub�ð4Þ: (18)

V. POLE-DIPOLE

At the pole-dipole order we start from

0 ¼ ra
~Tab ¼

Z
ra½tab�ð4Þ� þ

Z
rarc½tcab�ð4Þ�: (19)

In order to be able to apply theorem B, we need to bring
(19) into canonical form. First, we focus on the second
term with the two covariant derivatives. Following the
procedure outlined in the preceding section on the single-
pole particle, we start with a decomposition of the indices
which are contracted with the derivatives, i.e.,

Z
rarc½tcab�ð4Þ� ¼

Z
rarc½ðtĉâb þ tĉdbuaudÞ�ð4Þ� þ

Z
rarc½ðtdâbucud þ ucuauduet

debÞ�ð4Þ�

¼
Z �2

ds2
ðtdebudueÞ�ð4Þ þ

Z
ra

�
�

ds
ðtdâbudÞ�ð4Þ þ �ua

ds
uduet

deb�ð4Þ
�
þ

Z
rarcðtĉâb�ð4ÞÞ

þ
Z

rarcðtĉdbuaud�ð4ÞÞ: (20)

The last term in this equation can be rewritten with the help
of

r½arb�Tabc ¼ 1

2
Rabd

cTabd; (21)

and subsequent application of (12) as follows:

Z
rarc½tĉdbuaud��ð4Þ ¼

Z
rc

�
�

ds
ðtĉdbudÞ�ð4Þ

�

þ
Z

Race
buaudt

ĉde�ð4Þ: (22)

In order to arrive at the canonical form, one still needs to
symmetrize the indices appearing in the second last term of
(20). This again produces a curvature term at the lower
order. Combining the rewritten form of (20) with the
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results at the single-pole order from the previous section,
Eq. (19) takes the form

Z �
�2

ds2
ðtcdbucudÞ þ �

ds
ðtcbucÞ

þ 1

2
Race

bð2tĉdeuaud þ tĉâeÞ
�
�ð4Þ

þ
Z

ra

��
�

ds
ðtdâbud þ tâdbudÞ þ �ua

ds
uduet

deb þ tâb
�

� �ð4Þ
�
þ

Z
rarc½tðĉâÞb�ð4Þ� ¼ 0: (23)

This is almost the canonical form, we still need to ensure
the orthogonality of the first two terms in the second last
line in (23). Once again, we apply (12) and obtainZ

ra

�
�

ds
ðtdâbud þ tâdbudÞ�ð4Þ

�

¼ 2
Z

ra

��
�a
c

�

ds
ðtðcdÞbudÞ � �ua

ds
ucudt

ðcdÞb
�
�ð4Þ

�

� 2
Z �

ds

�
�uc
ds

udt
ðcdÞb

�
�ð4Þ: (24)

Reinsertion into (23) finally yields the canonical form of
(19):

Z �
�2

ds2
ðtcdbucudÞ þ �

ds

�
tcbuc � 2

�uc
ds

udt
ðcdÞb

�

þ 1

2
Race

bð2tĉdeuaud þ tĉâeÞ
�
�ð4Þ

þ
Z

ra

��
2�a

c

�

ds
ðtðcdÞbudÞ � �ua

ds
ucudt

dcb þ tâb
�
�ð4Þ

�

þ
Z

rarc½tðĉâÞb�ð4Þ� ¼ 0: (25)

With the help of theorem B—starting at the highest
order—we can infer from (25) that

0 ¼ tðĉâÞb ¼ o
1 ðcaÞb þ o

1 ðcaÞub: (26)

Here, we made use of the decomposition (8) in the last step.
Transvection of (26) with the projector �d

b and the velocity

ub yields two conditions, i.e.,

o
1 ðcaÞ ¼ 0; and o

1 ðcaÞb ¼ 0: (27)

From the last equation, together with the identity

o
1 cab ¼ o

1 ðcaÞb þ o
1 ðbcÞa � o

1 ðabÞc; (28)

we can infer that

o
1 cab ¼ 0: (29)

At the second highest order theorem B yields

2�a
c

�

ds
ðtðcdÞbudÞ � �ua

ds
ucudt

dcb þ tâb ¼ 0: (30)

Insertion of the decompositions from (7) and (8) leads to

�a
c

�

ds
ðo1 cb þ o

1 cub þ t
1
cbÞ þ o

0
ab þ o

0 aub ¼ 0: (31)

Multiplication by ub and reinsertion of the result yields two
equations. These allow us to express parts of the orthogo-
nal decomposition of the single-pole moment in terms of
the decompositions of the dipole moment as follows:

o
0
a ¼ �ud�

a
c

�

ds
ðo1 cd þ o

1 cud þ t
1
cdÞ; (32)

o
0
ab ¼ ��b

d�
a
c

�

ds
ðo1 cd þ o

1 cud þ t
1
cdÞ: (33)

Taking the antisymmetric part of (33) yields

�b
d�

a
c

�

ds
ðo1 ½cd� þ o

1 ½cud�Þ ¼ 0: (34)

We introduce the spin in the following way:

S
1
ab :¼ �2ðo1 ½ab� þ o

1 ½aub�Þ: (35)

Note that the prefactor is conventional, in particular, the
minus sign comes into play because we started with a
positive sign in front of the dipole term in (19). Now (34)
turns into the well-known equation of motion for the spin
[2,17], i.e.,

�a
c�

b
d

�S
1
cd

ds
¼ �S

1
ab

ds
� uauc

�S
1
cb

ds
� ubuc

�S
1
ac

ds
¼ 0: (36)

Furthermore, if we make use of the first equation in (27)
and the definition of the spin (35), we can express parts of
the orthogonal decomposition of the dipole moment in
terms of the spin and the velocity as follows:

o
1
a ¼ �S

1
abub; (37)

o
1
ab ¼ � 1

2
S
1
ab � ucS

1
c½aub�: (38)

From the lowest order in (25) we get, again via theorem
B and by insertion of the decompositions from (7) and (8),
the following equation1:

�

ds

�
ud

�

ds
t
1
db þ o

0
b þ t

0

ub � _uco
1
cb � _uco

1 cub
�

þ 1

2
Race

b½2uaðo1 ce þ o
1 cueÞ þ o

1
cae þ o

1 caue� ¼ 0: (39)

Taking into account the symmetries of the quantities in this
equation and our findings in (27), (29), (32), (33), (37), and
(38), we can rewrite (39) as follows:

�

ds
p
1
b þ 1

2
ueS

1
acRace

b ¼ 0: (40)

1Here we introduced the shortcut ‘‘_’’:¼ �
ds .
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This is the equation of motion for some kind of generalized
momentum, which we define by

p
1
b :¼

�
t
0 � uc _udS

1
cd þ ucud

�

ds
t
1
cd

�
ub þ ud

�

ds
S
1
bd

¼ m
1

ub þ ud
�

ds
S
1
bd: (41)

The second line serves as a definition of the mass m
1

which
now—in contrast to the result at the single-pole order—
contains also contributions from the spin as well as from
the transversal component of the decomposition in (8).

Our equations of motion for the pole-dipole test body in
this section are the most general ones. No a priori restric-
tions were imposed on the decompositions in (7) and (8).
Furthermore, it should be stressed that no assumptions
were made regarding a possible spin supplementary
condition.

Equations (36) and (40) are nowadays usually called the
Mathisson-Papapetrou equations. In particular, the charac-
teristic spin-curvature coupling at the dipole-order is al-
ready present in Mathisson’s pioneering work [2]. Note
that Mathisson’s equivalent to Eq. (40) has a slightly differ-

ent form. This is due to the fact that he sets the o
1
a

component in the orthogonal decomposition of the dipole
moment to zero—in other words he makes use of a supple-
mentary condition—at an early stage in his calculation. On
the other hand, Papapetrou does not impose any supple-
mentary condition in his derivation in [17]. The equations
of motion given by him are formally equivalent to (36) and
(40), but his moments are defined in a different way, cf. [3]
for more details.

Finally, let us derive the energy-momentum tensor at the
pole-dipole order. In terms of the spin, we have

o
1
cd þ o

1 cud þ t
1
cd ¼ � 1

2
S
1
cd þ ueS

1
eðcudÞ þ t

1
cd;

hence (32) and (33) become

o
0
a ¼ ud�

a
c

�
�

ds
S
1
cd � �

ds
t
1
cd

�
þ 1

2
_ud�

a
cS

1
cd; (42)

o
0
ab ¼ ��b

d�
a
c

�

ds
t
1
cd þ �c

ða _ubÞS
1
ceue: (43)

If we use this result—as well as all the constraints on the
components of the decompositions in (7) and (8) obtained
in this section—in (19), with the help of (12) the singular
energy-momentum tensor for pole-dipole particles be-
comes

~Tab ¼
Z

uðap
1
bÞ�ð4Þ �

Z
rcðS

1
cðaubÞ�ð4ÞÞ: (44)

Note that (44) is not in canonical form.

Supplementary conditions and conserved quantities

The system of equations in (36) and (40) is under
determined. This is evident from the appearance of the
projectors in Eq. (36). Thus, supplementary conditions, or
constitutive relations, involving the spin are needed to
close the system. Before we discuss the impact of different
conditions, we rewrite the equations of motion as follows:

m
1

_ua ¼ � 1

2
ueS

1
dcRdce

a � �a
b

�

ds

�
uc

�

ds
S
1
bc

�
; (45)

�

ds
m
1 ¼ � _uc

�

ds
ðubS

1
bcÞ; (46)

�

ds
S
1
ab ¼ 2p

1 ½aub�: (47)

The first two equations are obtained from the orthogonal
decomposition of (40).
There are basically two covariant supplementary con-

ditions at the pole-dipole order which have been studied in
the literature, i.e.,

S
1 abub ¼ 0 ð�Þ; S

1
abp

1

b ¼ 0 ð��Þ: (48)

To our knowledge, the first condition can be traced back to
an early work of Frenkel [19], and the idea for the second
condition appeared first in a work by Synge [20] in a
special-relativistic context, see also [1,2,21–24]. For both
conditions there exist constant quantities, namely

�

ds
m
1 ¼� 0; (49)

�

ds
m
1
:¼ �

ds

ffiffiffiffiffiffiffiffiffiffiffi
p
1

ap
1 a

q
¼�� 0; (50)

2
�

ds
ðS1 Þ2 :¼ �

ds
S
1

abS
1
ab ¼�_�� 0: (51)

Note that without the imposition of any supplementary
condition the derivative of the alternative mass parameter

m
1

fulfills

m
1

m
1 �

ds
m
1 ¼ �p

1

a

ds
p
1

b

�

ds
S
1
ab: (52)

Furthermore, in case the background spacetime allows
for a Killing vector field ’a, the quantity

�

ds
E
1

:¼ �

ds

�
p
1 a’a þ 1

2
S
1
abra’b

�
¼ 0; (53)

is conserved. For other (nonlinear) conserved quantities at
the pole-dipole order see [25,26] and references therein.
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VI. POLE-DIPOLE-QUADRUPOLE

At the pole-dipole-quadrupole order the variational
equation takes the form

0 ¼ ra
~Tab

¼
Z

ra½tab�ð4Þ� þ
Z

rarc½tcab�ð4Þ�

þ
Z

rardrc½tdcab�ð4Þ�: (54)

In order to bring this equation to canonical form, we focus
on the third term in (54) and proceed along the same lines
as in the single-pole as well as in the pole-dipole case. With

the help of the projector, the quadrupole moment can be
decomposed as follows:

tdcab ¼ td̂ĉâb þ uatd̂ĉebue þ ucudtgfâbufug

þ uaucudtgfebueufug þ uaðudtfĉeb

þ uctd̂febÞueuf þ ðudteĉâb þ uctd̂eâbÞue: (55)

Because of their length, we provide the canonical form for
the separate terms in (55). As in the previous cases, the
canonical form is achieved by repeated application of (12),
and the generalized version of (21) for multiple deriva-
tives.2

Z
rardrc½td̂ĉâb�ð4Þ� ¼

Z
rardrcftðd̂ĉâÞb�ð4Þg þ

Z
rc

�
Rade

btĉd̂âe�ð4Þ þ 1

3
Rade

ĉtêd̂âb�ð4Þ
�

þ
Z �

1

3

�

ds
½Rade

cuct
êd̂âb��ð4Þ þ 2

3
Rdae

b
;ct

ĉd̂âe�ð4Þ
�
; (56)

Z
rardrc½uatd̂ĉebue�ð4Þ� ¼

Z
rðdrcÞ

�
�c
e�

d
f

�

ds
½tf̂êabua��ð4Þ

�
þ

Z
rd

�
2Racf

buatd̂ĉefue�ð4Þ þ Racf
d̂uatf̂ĉebue�ð4Þ

� 2�d
e

�

ds
½ _uctêĉabua��ð4Þ

�
þ

Z �
�

ds
½Racf

duaudt
f̂ĉebue��ð4Þ � Racf

b
;du

atĉd̂efue�ð4Þ

þ 2
�

ds
½ _ud _uctd̂ĉabua��ð4Þ � Rdce

bud _uft
f̂ĉaeua�ð4Þ

�
; (57)

Z
rardrc½ucudtgfâbufug�ð4Þ� ¼

Z
rðardÞf _udtgfâbufug�ð4Þg þ

Z
ra

�
�a
e

�2

ds2
½tgfêbufug��ð4Þ

�

þ
Z �

�

ds

�
ua

�2

ds2
ðtgfâbufugÞ

�
�ð4Þ þ 1

2
Rade

b _udtgfâeufug�ð4Þ
�
; (58)

Z
rardrc½uaucudtgfebueufug�ð4Þ� ¼

Z
ra

�
3 _ua

�

ds
½tgfebueufug��ð4Þ þ 2�a

h €u
htgfebueufug�ð4Þ

�

þ
Z �

�3

ds3
½tgfebueufug��ð4Þ � 2

�

ds
½ _ua _uatgfebueufug��ð4Þ

þ Radc
b _uduatgfecueufug�ð4Þ

�
; (59)

Z
rardrc½uaðudtfĉeb þ uctd̂febÞueuf�ð4Þ�

¼
Z

rðcraÞf2 _uatfĉebueuf�ð4Þg þ
Z

rc

�
2�c

g

�2

ds2
½tfĝebueuf��ð4Þ � Rgda

ĉuaudtfĝebueuf�ð4Þ
�

þ
Z �

2
�

ds
ðRacg

buaÞtfĉegueuf�ð4Þ þ 2
�

ds

�
uc

�2

ds2
ðtfĉebueufÞ

�
�ð4Þ

þ 3Racg
bua

�

ds
½tfĉegueuf��ð4Þ þ Rcdg

b
;au

audtfĉegueuf�ð4Þ
�
; (60)

2Note that one has to be careful when it comes to the usage of the ‘‘_’’ notation in combination with the hat ‘‘^’’ notation for projected
indices.
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Z
rardrc½ðudteĉâb þ uctd̂eâbÞue�ð4Þ�

¼
Z

rðdrcÞ

�
2�c

e�
d
f

�

ds
½taêf̂bua��ð4Þ

�
þ

Z
rd

�
Rfce

d̂uftaĉêbua�ð4Þ þ Rfce
buftaĉd̂eua�ð4Þ � 4�d

e

�

ds
½ _uctaðĉêÞbua��ð4Þ

�

þ
Z �

�

ds
½Rdce

auau
dtgĉêbug��ð4Þ þ 4

�

ds
½ _uc _udtaðĉd̂Þbua��ð4Þ þ Rdce

b�c
f�

d
g

�

ds
½taf̂ĝeua��ð4Þ � 2Rdce

bud _uft
aĉf̂eua�ð4Þ

�
:

(61)

Together our results in (25) and (56)–(61) yield the canoni-
cal form of (54)—which we do not display here explicitly
due to its length. As in the previous sections, the next step
in the derivation of the equations of motion consists in the
insertion of the orthogonal decomposition from (7)–(9). To
save us some work at the quadrupole order, we are not
going to use the general decompositions in (7)–(9) directly
in the following, but rather transform them to a more
compact form first. The new decompositions shall be given
by

tab ¼ n
0 ab þ 2n

0 ðaubÞ þ n
0

uaub; (62)

tcab ¼ n
1 cab þ 2n

1 cðaubÞ þ n
1 cuaub; (63)

tdcab ¼ n
2 dcab þ 2n

2 dcðaubÞ þ n
2 dcuaub: (64)

As becomes apparent from (63) and (64), the t
1

and t
2

terms
in (8) and (9) have been absorbed in the new decomposi-
tion. The explicit transformation laws between the old and
the new decomposition read

n
0 ¼ t

0 þ ueuf

�
�t

1
ef

ds
� �2t

2
ef

ds2
þ 2

�

ds

�
ug

�t
2
gef

ds

�

þ 2ugt
2
cdðeRgcd

fÞ
�
; (65)

n
0 a ¼ o

0 a þ �a
euf

�
�t

1
ef

ds
� �2t

2
ef

ds2
þ 2

�

ds

�
ug

�t
2
gef

ds

�

þ 2ugt
2
cdðeRgcd

fÞ
�
; (66)

n
0 ab ¼ o

0 ab þ �a
e�

b
f

�
�t

1
ef

ds
� �2t

2
ef

ds2
þ 2

�

ds

�
ug

�t
2
gef

ds

�

þ 2ugt
2
cdðeRgcd

fÞ
�
; (67)

n
1 c ¼ o

1 c þ �c
eufug

�
� _uet

2
fg þ 2

�t
2
efg

ds

�
; (68)

n
1 ca ¼ o

1 ca þ �c
e�

a
fug

�
� _uet

2
fg þ 2

�t
2
efg

ds

�
; (69)

n
1 cab ¼ o

1 cab þ �c
e�

a
f�

b
g

�
� _uet

2
fg þ 2

�t
2
efg

ds

�
; (70)

n
2 ab ¼ o

2 ab; (71)

n
2 cab ¼ o

2 cab; (72)

n
2 dcab ¼ o

2 dcab: (73)

Hence, the energy-momentum tensor is given by

~Tab ¼
Z

tab�ð4Þ þ
Z

rc½tcab�ð4Þ� þ
Z

rdrc½tdcab�ð4Þ�:
(74)

From the form of the decompositions of the moments in
(62)–(64) and in (55) it becomes apparent, that only a small
fraction of n

2 abc... terms contributes to the canonical form of
rb

~Tab, when we make use of the redefined tabc... moments.
In particular, only the integrals in (56) and (57) yield
nonvanishing contributions.
The canonical form of the derivative of (74) becomes

Z
rardrcftðd̂ĉâÞb�ð4Þg þ

Z
rdrc

��
�ðc
e �

dÞ
f

�

ds
½tf̂êabua� þ tðĉd̂Þb

�
�ð4Þ

�

þ
Z

rd

��
�d
e

�

ds
ðteabua � 2 _uct

êĉabuaÞ þ Racf
bðtd̂ĉâf þ 2uatd̂ĉefueÞ þ Racf

d̂

�
1

3
tf̂ĉâb þ uatf̂ĉebue

�
þ td̂b

�
�ð4Þ

�

þ
Z ��

�

ds

�
Racf

duaudt
f̂ĉebue þ 1

3
Rade

cuct
êd̂âb þ 2 _ud _uct

d̂ĉabua þ tcbuc � _ucudt
cdb

�
þ 2

3
Rdae

b
;ct

ĉd̂âe

� Racf
b
;du

atĉd̂efue � Rdce
bud _uft

f̂ĉaeua þ 1

2
Race

bð2tĉdeuaud þ tĉâeÞ
�
�ð4Þ

�
¼ 0: (75)
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Application of theorem B and insertion of the decomposi-
tion from (64), yields at the highest order:

n
2 ðdcaÞb þ n

2 ðdcaÞub ¼ 0: (76)

Orthogonal decomposition with respect to the open index b
leads to two symmetry relations, i.e.,

n
2 ðdcaÞb ¼ 0 and n

2 ðdcaÞ ¼ 0: (77)

The first relation in (77) allows us to infer that

n
2 dcab ¼ n

2 abdc; (78)

hence n
2 abdc has symmetries similar to the ones of the

curvature tensor.3

At the second highest order, again by application of
theorem B to (75), and insertion of the decompositions
from (63) and (64), we obtain

�c
e�

d
f

�

ds
ðn2 feb þ n

2 feubÞ þ n
1 ðcdÞb þ n

1 ðcdÞub ¼ 0: (79)

The orthogonal split of (79) yields two ‘‘constraint equa-
tions’’—here and in the following we are going to use this
name for equations, which allow us to express certain parts
of moments in terms of parts of higher order moments, e.g.,

n
1 abc ¼ n

1 abcðn2 abc; n2 abÞ—namely:

n
1 ðcdÞb ¼ ��c

e�
d
f�

b
g

�

ds
ðn2 feg þ n

2 feugÞ; (80)

n
1 ðcdÞ ¼ ��c

e�
d
fub

�

ds
ðn2 feb þ n

2 feubÞ: (81)

Equation (80) can be used to rewrite n
1 abc as follows:

n
1 dcb ¼ n

1 ðdcÞb þ n
1 ðbdÞc � n

1 ðcbÞd

¼ �c
e�

d
f�

b
g

�

ds
ð2n2 egf � n

2 feug � n
2 gfue þ n

2 egufÞ

¼ 2
�

ds
n
2 cbd þ 2ðn2 abduc þ n

2 cadub þ n
2 cbaudÞ _ua

� n
2 dc _ub � n

2 bd _uc þ n
2 cb _ud: (82)

Note that in the second step we made use of the second
relation in (77), which yields an algebraic symmetry for

n
2 abc, i.e.,

n
2 abc þ n

2 bca þ n
2 cab ¼ 0: (83)

An analogous relation holds for n
2 abcd.

Equation (81) can be simplified as follows:

n
1 ðdcÞ ¼ ðn2 dca � 2n

2 aðducÞÞ _ua � �

ds
n
2 dc: (84)

Let us now turn to the next order, i.e., the second line in
(75). Applying the same procedure as before we obtain:

n
0 db þ n

0 dub þ �d
e

�

ds
½n1 eb þ n

1 eub � 2ðn2 ecb þ n
2 ecubÞ _uc�

þ Racf
g�d

g

�
1

3
ðn2 fcab þ n

2 fcaubÞ þ ðn2 fcb þ n
2 fcubÞua

�
þ Racf

b½n2 dcaf þ n
2 dcauf þ 2ðn2 dcf þ n

2 dcufÞua� ¼ 0:

(85)

The orthogonal split of (85) yields two equations

n
0 db ¼ ��d

e�
b
f

�

ds
½n1 ef þ n

1 euf � 2ðn2 ecf þ n
2 ecufÞ _uc�

� Racf
g½�b

gn
2 dcaf þ �b

gn
2 dcauf þ 2�b

gn
2 dcfua

þ 2�b
gn

2 dcufua þ 1

3
n
2 fcab�d

g þ n
2 fcb�d

gu
a�; (86)

n
0 d ¼ ��d

eub
�

ds
½n1 eb þ n

1 eub � 2ðn2 ecb þ n
2 ecubÞ _uc�

� Racf
g½ugn2 dcaf þ 2n

2 dcfuaug þ 1

3
�d
gn

2 fca

þ �d
gn

2 fcua�: (87)

The antisymmetric part of (86) can be viewed as the direct
generalization of (34), and suggests that the spin at the
quadrupole order should be defined as

S
2
ab :¼ �2½n1 ½ab� þ n

1 ½aub� � 2ðn2 c½ab� þ n
2 c½aub�Þ _uc�; (88)

yielding

0 ¼ � 1

2
�d
e�

b
f

�

ds
S
2
ef þ Racf

g

�
�½b
g
n
2
d�caf þ �½b

g
n
2
d�cauf

þ 2�½b
g n

2 d�cfua þ 2�½b
g n

2 d�cufua þ 1

3
n
2 fca½b�d�

g

þ n
2 fc½b�d�

g u
a

�
(89)

¼ � 1

2
�d
e�

b
f

�

ds
S
2
ef � �½d

e �
b�
g Racf

g

�
4

3
n
2 eacf þ 4n

2 eafuc

þ 2n
2 eaufuc

�
: (90)

In contrast to our findings at the dipole order (36), this
propagation equation for the spin contains—as expected—
also contributions from the quadrupole moment, which
couple to the curvature of spacetime.

3Using (77), and remembering n
2 dcab ¼ n

2 ðdcÞðadÞ, one can check
that n

2 adcb þ n
2 cadb þ n

2 bdca þ n
2 cbda ¼ �2n

2 dcab holds. On the

other hand, one also has n
2 dabc þ n

2 bdac þ n
2 cabd þ n

2 bcad ¼
�2n

2 abdc. The left-hand sides of these equations are identical,

thus (78) holds.
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From (84) and (88) we obtain

n
1 a ¼ 2n

2 ab _ub � S
2
abub; (91)

n
1 ab ¼ u½bS

2
a�cuc � �

ds
n
2 ab � 1

2
S
2
ab � 2ðn2 cba þ n

2 cðaubÞÞ _uc;
(92)

which can be viewed as the generalizations of (37) and (38)
to the quadrupole order.
What remains to be analyzed is the lowest order in (75).

Application of theorem B at this order yields

�

ds

�
Race

d½uaudðn2 ecb þ n
2 ecubÞ þ 1

3
udðn2 ecab þ n

2 ecaubÞ� þ 2 _ud _ucðn2 dcb þ n
2 dcubÞ � _ucðn1 cb þ n

1 cubÞ þ n
0 b þ n

0

ub
�

þ Race
b
;d

�
2

3
ðn2 dace þ n

2 dacueÞ � uaðn2 cde þ n
2 cdueÞ

�

þ Race
b

�
uaðn1 ce þ n

1 cueÞ þ 1

2
ðn1 cae þ n

1 caueÞ � _ufu
aðn2 fce þ n

2 fcueÞ
�
¼ 0: (93)

This equation is the analogue to (39) found at the pole-
dipole order. With the help of (82), (87), (91), and (92), it
can be rewritten in terms of Sab and the n

2
a... from the

decomposition of the quadrupole moment in (64). In order
to keep the equations at a manageable size, we introduce
the auxiliary quantity

Aab :¼ n
1 ab þ n

1 aub � 2ðn2 cab þ n
2 caubÞ _uc (94)

¼ � 1

2
S
2
ab þ ucS

2
cðaubÞ � �

ds
n
2 ab þ 2ðn2 abc � n

2 cðaubÞÞ _uc;
(95)

with the properties

uaA
ab ¼ 0; (96)

_u aA
ab ¼ �ua _Aab; (97)

ubA
ab ¼ n

1 a � 2n
2 ca _uc ¼ ubS

2
ba; (98)

A½ab� ¼ � 1

2
S
2
ab; (99)

uaub
�

ds
Aab ¼ S

2
ab _uaub: (100)

This allows us to rewrite (86) and (87) as follows:

n
0
db ¼ � _AðdbÞ þ uðb _AdÞeue þ ue _AeðbudÞ � _Aefueufu

bud

þ �ðd
e �

bÞ
g Racf

g

�
2

3
n
2
fcae þ 2n

2 eacuf þ 2n
2 eaufuc

�
(101)

¼ � �

ds
AðdbÞ þ udubueuf

�Aef

ds
þ �ðd

e �
bÞ
g Racf

g

�
�
2

3
n
2 fcae þ 2n

2 eacuf þ 2n
2 eaufuc

�

þ 2uðd�bÞ
e uf

�
�Aef

ds
� �A½ef�

ds

�
; (102)

n
0 d ¼ ��d

eub
�

ds
Aeb � Racf

g

�
n
2 dcafug þ 2n

2 dcfuaug

þ 1

3
n
2 fca�d

g þ n
2 fc�d

gu
a

�
: (103)

Hence Eq. (93) turns into

0 ¼ �

ds

�
n
0

ub þ n
0
b � Acb _uc þ Racd

eue

�
1

3
n
2
dcab þ 1

3
n
2 dcaub þ n

2 dcbua þ n
2 dcubua

��

� Race
b
;d

�
2

3
n
2 dcae þ 2

3
n
2 dcaue þ n

2 dceua þ n
2 dcueua

�
þ 1

2
Race

bð2n1 ceua þ 2n
1 cueua þ n

1 cae þ n
1 caueÞ

� Race
bua _ufðn2 fce þ n

2 fcueÞ (104)
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¼ �

ds

�
n
0

ub � �b
eud _Aed � Acb _uc þ Race

dud

�
1

3
n
2 ecab þ 1

3
n
2 ecaub þ n

2 ecbua þ n
2 ecubua

�

� Race
d

�
n
2 bcaeud þ 2n

2 bceuaud þ 1

3
n
2 eca�b

d þ n
2 ec�b

du
a

��
þ 1

2
Race

b

�
2uau½eS

2
c�fuf � uaS

2
ce þ ueuaS

2
cfuf

� 4ua _udðn2 dec þ n
2 dðcueÞÞ � 2ua

�

ds
n
2 ce � 1

2
ueS

2
ca þ 2ueuaðudS

2
dc þ 2 _udn

2 dcÞ þ 2
�

ds
n
2 aec

þ 2ðn2 decua þ n
2 adcue þ n

2 aeducÞ _ud � n
2 ca _ue � n

2 ec _ua þ n
2 ae _uc þ 2ue _udn

2 dca � 2ðn2 fce þ n
2 fcueÞua _uf

�

� Race
b
;d

�
2

3
n
2 dcae þ 2

3
n
2 dcaue þ n

2 dceua þ n
2 dcueua

�
(105)

¼ �

ds

�
n
0

ub þ 2A½bd� _ud � �ðAbdudÞ
ds

þ ueudu
b �A

ed

ds
þ Race

d

�
4

3
n
2 abceud þ

1

3
n
2 ecaubud þ 4n

2 baeucud þ n
2 ecuaubud

� 1

3
n
2 eca�b

d � n
2 ecua�b

d

��
þ Race

b

�
1

2
ueS

2
ac � �ðn2 ecaÞ

ds
� �ðn2 ecuaÞ

ds

�

� Race
b
;d

�
2

3
n
2 dcae þ 2

3
n
2 dcaue þ n

2 dceua þ n
2 dcueua

�
(106)

¼ �

ds

�
ðn0 þ S

2
ac _uauc � 2

3
Race

dn
2 ecaudÞub þ Race

d

�
4

3
n
2 abceud þ 4n

2 baeucud þ 4

3
n
2 aec�b

d þ 2n
2 aeuc�b

d

�
þ ua

�

ds
S
2
ba

�

þ 1

2
Race

bueS
2
ac � Race

b
;d

�
2

3
n
2 dcae þ 4

3
n
2 dceua þ 4

3
n
2 aeduc þ n

2 dcueua þ n
2 aeucud

�
: (107)

This concludes the derivation of the equations of motion at
the quadrupole order. Equation (107) replaces (39) as the
new center-of-mass equation of motion.

Analogously to the pole-dipole order, we introduce

combined quantities for the mass m
2

and the generalized

momentum p
2 a at the quadrupole order, as follows:

m
2
:¼ n

0 þ S
2
ac _uauc � 2

3
Race

dn
2 ecaud; (108)

p
2 b :¼ m

2

ub þ ua
�

ds
S
2
ba þ Race

d

�
4

3
n
2 abceud þ 4n

2 baeucud

þ 4

3
n
2 aec�b

d þ 2n
2 aeuc�b

d

�
: (109)

With these definitions the propagation equations for the
spin (90) and the center-of-mass (107) take the form

�a
c�

b
d

�

ds
S
2
cd ¼ �½a

g �
b�
e Rdcf

g

�
8

3
n
2 edcf þ 8n

2 edfuc

þ 4n
2 edufuc

�
; (110)

�

ds
p
2 b ¼ � 1

2
Race

bueS
2
ac þrdRace

b

�
2

3
n
2 dcae þ 4

3
n
2 dceua

þ 4

3
n
2 aeduc þ n

2 dcueua þ n
2 aeucud

�
: (111)

Our equations of motion for the pole-dipole-quadrupole
test body in this section are the most general ones. It should
be stressed that no assumptions were made regarding a
possible spin supplementary condition.
Before we introduce a new combined quantity for the

quadrupole moment, we make contact with the multipole
formalism of Dixon in Sec. VI B. This will allow us to
bring the equations of motion (110) and (111) into a very
compact form.
From the system of Eqs. (110) and (111), it becomes

clear that the evolution of quadrupole components is not
constrained—in the sense that there is no dedicated propa-

gation equation for the n
2 ab.... Equation (1) seems to gen-

erate only equations of the constraint-type at higher orders.
Furthermore, one is already forced to introduce a supple-
mentary condition at the pole-dipole approximation in
order to obtain a closed system of equations. Hence, it is
rather natural to expect, that additional supplementary
conditions, now also involving the higher order moments

n
2 ab..., are needed at the quadrupolar order. The choice of
such conditions depends on the type of body under con-
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sideration. We are not going to touch upon the question of
possible choices for such a condition in this work.

A. ‘‘Non’’-conserved quantities

In this section, we calculate the derivatives of the masses

m
2

and m
2

, the spin length S
2

, and a combined quantity E
2

at

the quadrupole order. As definitions for the quantities S
2

and

E
2

, we use expressions which are completely analogous to
the ones introduced at the pole-dipole order, see (51) and
(53).

�

ds
m
2 ¼ _ub

�

ds
ðuaS

2
abÞ þ ubRace

b
;d

�
2

3
n
2 dcae þ 2n

2 aeduc

þ n
2 aeucud

�
þ Race

d

�
4

3
n
2 abceud _ub þ 4n

2 bae _ubudu
c

þ 4

3
n
2 aec _ud þ 2n

2 ae _udu
c

�
; (112)

�

ds
m
2
:¼ �

ds

ffiffiffiffiffiffiffiffiffiffiffi
p
2

ap
2 a

q

¼ ðm2 m2 Þ�1

�
�

ds
ðS2 abp2 bÞ �dsp

2

a

� 2

3
m
2 2uarbRcde

a

�
n
2 bcde þ 3n

2 debuc

þ 3

2
n
2 deubuc

�
� 8

3
p
2

½b
�

ds
p
2

a�Rcde
a

�
n
2 bcde

þ n
2 edcub þ 3n

2 bceud þ 3

2
n
2 bcudue þ 3

2
n
2 deubuc

��
;

(113)

2
�

ds
ðS2 Þ2 :¼ �

ds
ðS2 abS

2
abÞ

¼ 4S
2

abp
2 aub þ 16

3
S
2

abRcde
a

�
n
2 bcde þ n

2 edcub

þ 3n
2 bceud þ 3

2
n
2 bcudue þ 3

2
n
2 deubuc

�
;

(114)

�

ds
E
2

:¼ �

ds

�
p
2 a’a þ 1

2
S
2
abra’b

�

¼ � 2

3
ð’arbRcde

a þ 2Rcde
arb’aÞ

�
n
2 bcde þ n

2 edcub

þ 3n
2 bceud þ 3

2
n
2 bcudue þ 3

2
n
2 deubuc

�
: (115)

As becomes clear from (112)–(115), these quantities are no
longer conserved at the quadrupolar order. Note that this
observation is independent of the choice of supplementary
condition for the spin. A direct generalization of (48)—in
terms of the quantities at the quadrupole order—only
nullifies the first terms in (112)–(114). The conservation

of the quantities in (112)–(115) depends on the details of
the extended test body under consideration. Since we did
not introduce any specific supplementary condition for the
quadrupole components, the lack of conserved quantities at
the current order of approximation is not unexpected.

B. Comparison to Dixon’s scheme

Our starting point are the equations of motion given by
Dixon in (13.7) and (13.8) of [27], see also (168) and (169),
as well as (171) and (172) in [28]. According to Dixon, the
spin and the center-of-mass equations of motion—up to the
quadrupole order—can be written in the form

�

ds
Sab ¼ 2p½aub� þ 4

3
Rcde

½aIb�cde; (116)

�

ds
pa ¼ 1

2
Rabcdu

bScd � 1

6
raRbcdeI

bedc; (117)

where Iabcd has the following symmetries:

Iabcd ¼ IðabÞðcdÞ ¼ Icdab; (118)

IðabcÞd ¼ 0 , Iabcd þ Ibcad þ Icabd ¼ 0: (119)

Note that Iabcd has no orthogonality properties with respect
to ua, except the ones that can be deduced from its sym-
metries. In Dixon’s work the equations of motion in (116)
and (117) are also often written in terms of a different set of
moments, termed J by him. To allow for a direct compari-
son, we provide the explicit transformation rules between
the I- and J-moments in Appendix A.
Orthogonal decomposition of (116) leads to

�a
c�

b
d

�

ds
Scd ¼ 4

3
�½a
f
�b�
g Rcde

fIgcde; (120)

�a
bp

b ¼ _Sabub � 4

3
ubRcde

½aIb�cde: (121)

With the definition m :¼ uap
a Eq. (121) turns into

pa ¼ mua þ _Sabub � 4

3
ubRcde

½aIb�cde: (122)

Further, Eq. (117) can be written as

�

ds
pa ¼ � 1

2
Rcdb

aubScd � 1

3
rbRcde

aIbcde: (123)

Insertion of (122) into (123) and orthogonal decomposition
of (123) leads to separate equations of motion for ua andm.
This is completely analogous to the pole-dipole case, c.f.
Eqs. (45) and (46).
The form of Dixon’s equations of motion in (120) and

(123) is the most suitable one for a comparison with our
results from the previous section. We introduce the or-
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thogonal decomposition of Iabcd, with its symmetries from
(118) and (119) already implemented,

Idcab ¼ Qdcab þ 2QdcðaubÞ þ 2QabðducÞ þQdcuaub

þQabuduc � 2uðdQcÞðaubÞ; (124)

where4

Qabcd ¼ QðabÞðcdÞ ¼ Qcdab; (125)

QðabcÞd ¼ 0 , Qabcd þQbcad þQcabd ¼ 0; (126)

Qabc ¼ QðabÞc; (127)

QðabcÞ ¼ 0 , Qabc þQbca þQcab ¼ 0; (128)

Qab ¼ QðabÞ; (129)

and all Qab... are orthogonal to the four velocity ua. Notice
that the symmetries of the Q-moments are identical to the

symmetries of the n
2

-moments, which suggests that they are
proportional to each other.

With the help of (124) and the momentum in terms of the
Q-moments, i.e.,

pb ¼ mub þ _Sbaua þ Race
d

�
2

3
Qabceud þ 2Qbaeucud

þ 2

3
Qaec�b

d þQaeuc�b
d

�
; (130)

the equations of motion (120) and (123) turn into

�a
c�

b
d

�Scd

ds
¼ �½a

g �
b�
e Rdcf

g

�
4

3
Qedcf þ 4Qedfuc

þ 2Qedufuc
�
; (131)

�

ds
pb ¼ � 1

2
Race

bueSac þrdRace
b

�
1

3
Qdcae þ 2

3
Qdceua

þ 2

3
Qaeduc þ 1

2
Qdcuaue þ 1

2
Qaeucud

�
: (132)

Comparison of (131) to our equation of motion for the spin

(110) shows that theQ- and the n
2

-moments only differ by a
factor of 2, i.e.,

Idcab ¼ 2ðn2 dcab þ 2n
2 dcðaubÞ þ 2n

2 abðducÞ þ n
2 dcuaub

þ n
2 abuduc � 2uðdn

2 cÞðaubÞÞ; (133)

as well as Sab ¼ S
2
ab. Furthermore, comparison of our

equation of motion for the center-of-mass, i.e., Eq. (111),

with (132) yields m ¼ m
2

, and pa ¼ p
2 a.

C. Energy-momentum tensor

Our findings in the previous section allow for a compact
representation of the energy-momentum tensor. In terms of
Dixon’s moments, the decomposition in (62)–(64) takes
the form

tdcab ¼ 1

2
Idcab � 2n

2 abðducÞ � n
2 abuduc þ 2uðdn

2 cÞðaubÞ;

(134)

tcab ¼ �ScðaubÞ þ �

ds
ð2n2 abc þ n

2 abuc � 2n
2 cðaubÞÞ

þ AðabÞuc; (135)

tab ¼ uðapbÞ þ Rcde
ða
�
2

3
n
2 bÞcde þ 2

3
ubÞn

2 edc

þ 2n
2 bÞcdue þ 2n

2 bÞcueud
�
� �AðabÞ

ds
: (136)

Simplification by means of, e.g.,

Z
rdrc½tdcab�ð4Þ� ¼

Z
rdrc

�
1

2
Idcab�ð4Þ

�
�

Z
rc

�
�

ds
ð2n2 abc þ n

2 abuc � 2n
2 cðaubÞÞ�ð4Þ

�

�
Z
½ucRcde

ðað2n2 bÞed � ubÞn
2
ed � n

2
bÞdueÞ��ð4Þ; (137)

leads to

4Note that a similar decomposition has also been introduced in [29]. Therein quantities analogous to the Qabcd, Qabc, and Qab are
called stress-, flow-, and mass-quadrupole. In contrast to our decomposition with respect to ua, Ehlers and Rudolph use the vector pa to
perform the orthogonal decomposition. Furthermore, in [29] the decomposition was applied to the J-moments instead of the
I-moments, see also (A5).
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~Tab ¼
Z �

uðapbÞ þ 1

3
Rcde

ðaIbÞcde
�
�ð4Þ �

Z
rcðScðaubÞ�ð4ÞÞ þ 1

2

Z
rdrcðIdcab�ð4ÞÞ: (138)

Notice that this expression is not in canonical form, how-
ever, it seems to be the simplest representation of the
energy-momentum tensor density expressed in terms of
the Dixon moments. All constraint-type relations have
been implemented into the energy-momentum tensor.
Thus, all consequences of (1) can equivalently be written
in a compact way as the equations of motion (116) and
(117), the symmetries of the quadrupole (118) and (119),
and the energy-momentum tensor in the form (138).

VII. CONCLUSIONS

In this work, we explicitly derived the equations of
motion for extended test bodies in general relativity with
the help of Tulczyjew’s multipolar approximation method
up to the quadrupolar order. To our knowledge, this is the
first time the method by Tulczyjew has been used beyond
the pole-dipole order. In our derivation, we put special
emphasis on a transparent notation, which allows for a
direct identification of the contributions of the multipole
moments at different orders, and explicitly carried out the
canonicalization process. We would like to stress again,
that we did not make any assumption for a supplementary
condition in our derivation of the equations of motion.

Our results are of direct relevance for other perturbation
methods in the context of the general relativistic problem
of motion. In particular, the equations of motion in (110)

and (111), or—alternatively—the ones given in (116) and
(117), as well as the energy-momentum tensor in (138), are
needed in approximation schemes which aim for a descrip-
tion of self-gravitating compact objects and the gravita-
tional radiation emitted by these systems.

A. Structure of the equations of motion

Table I gives a compact overview of the different equa-
tions, which were obtained from the conservation law (1)
and the decomposition (2) via repeated application of
theorem B. We introduced the classification of two differ-
ent types of equations, termed ‘‘constraint’’ and ‘‘evolu-
tion’’. As becomes clear from Table I, the same type of
pattern of equations repeats at each multipolar order. In
particular, one does not expect more than two equations of
the evolution-type in the context of Tulczyjew’s approxi-
mation scheme. This can be viewed as support of Dixon’s
result [27,28,30,31], who provides a solution of what he
calls the variational equations of mechanics5—i.e., the
combination of Eq. (1) and (2)—to any order.
Our results in (110) and (111) also allow for a direct

comparison to the quadrupolar equations of motion derived
in [18]. The results therein were obtained via a different
multipolar approximation scheme which goes back to
Papapetrou [17]. Although the same information is en-
coded in the system of equations—Tulczyjew’s as well as
Papapetrou’s method share the same starting point, i.e., the
‘‘conservation’’ of energy in the form of (1), furthermore in
both methods the full moments are taken into account—the
final representation of the equations of motion is different.
This difference can mainly be ascribed to the use of the
orthogonal decomposition of the moments, which is an
integral part in Tuczyjew’s procedure, and is introduced
at a very early stage to support the derivation of the
canonical form. In particular, the recursive transfer of
higher order moments to lower differential orders in the
canonical form, see the final result (75) at the quadrupolar
order in this respect, yields structurally different equations.
While it is mainly a question of practicability which sys-
tem of equations of motion should be given preference, the
main benefit of the method by Tulczyjew is its intrinsic
covariance as well as its systematic—albeit somewhat
laborious—way to generate a hierarchical set of equations.

B. Open problems

Albeit the results obtained in this work are complete, in
the sense that they cover the quadrupolar order in the
context of Tulczyjew’s approximation scheme in the

TABLE I. Structure of the equations of motion.

Order Quantity Type Equation

Single-pole

1 o
0 ab C (16)

1 o
0 a C (16)

0 t
0ðo0 aÞ E (15)

Dipole

2 o
1 ðabÞc C (27)

2 o
1 ðabÞ C (27)

1 o
0 abðo1 ab; o1 a; t1abÞ Eþ C (33)

1 o
0 aðo1 ab; o1 a; t1abÞ C (32)

0 t
0ðo1 ab; o1 a; t1ab; o0 aÞ E (39)

Quadrupole

3 n
2 ðabcÞd C (76)

3 n
2 ðabcÞ C (76)

2 n
1 ðabÞcðn2 abc; n2 abÞ C (80)

2 n
1 ðabÞðn2 abc; n2 abÞ C (81)

1 n
0 abðn2 abcd; n2 abc; n2 ab; n1 ab; n1 aÞ Eþ C (86)

1 n
0 aðn2 abcd; n2 abc; n2 ab; n1 ab; n1 aÞ C (87)

0 n
0 ðn2 abcd; n2 abc; n2 ab; n1 abc; n1 ab; n1 aÞ E (93)

Type: “C” ¼ constraint, “E” ¼ evolution
5This notion goes back to Mathisson [2], see [3] for more

historical details.
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most general way, there remain several interesting open
questions to be addressed. Some of these open problems
are not specific to Tulczyjew’s scheme, and are also inher-
ent to other multipolar approximation schemes.

C. Supplementary conditions

As we have seen in Secs. Vand VI, additional conditions
are needed, starting at the pole-dipole order, to close the
systems of the equations of motion. The necessity for a
spin supplementary condition can be seen as connected to
the fixation of a specific representative worldline inside the
object. This is well known in the special-relativistic con-
text, where a spin supplementary condition selects a rep-
resentative worldline and vice-versa, see, e.g., [32]. In
general relativity, however, things are more subtle,
c.f. [29,33–38] in this respect. In particular, it is difficult
to prove that a spin supplementary condition fixes a repre-
sentative worldline in a unique way. This is, of course,

directly related to the fact, that the quantities p
2 a and S

2
ab

are combinations of geometrical quantities as well as of
multipolar moments from different orders. Further studies
are needed in the context of Tulczyjew’s scheme when it
comes to the choice of suitable supplementary conditions
at higher orders.

However, from a more pragmatic point of view every
supplementary condition, which leads to a closed system of
equations, can be used. The important question for appli-
cations is, whether the equations describe the motion in an
accurate way.

The results derived in this paper could be interesting
when studying whether two sets of moments contained in
the energy-momentum tensor on the same, or infinitesi-
mally close worldlines, are equivalent. In the latter case,
one first has to shift the distributional energy-momentum
tensor from one of the worldlines to the other. If two sets of
moments are equivalent, then the coefficients in the ca-
nonical form of the corresponding energy-momentum ten-
sors must be the same (by virtue of theorem B). Wewill not
work this out in detail here. However, an immediate con-
sequence is that an infinitesimal change of the worldline
directly translates into an infinitesimal change of the mo-

ment n
1 a. This has been used in [1,2,16] to argue that, by a

suitable choice of the representative wordline, one can

restrict to n
1 að�Þ ¼ 0 for all �. In consideration of (91), a

change of n
1 a corresponds to a change of S

2
abub and will

thus have an impact on the supplementary condition ful-
filled by the spin. In this way, an infinitesimal change of the
representative worldline can be related to an infinitesimal
change of the spin supplementary condition.

D. Combined and conserved quantities

While it is possible to generate a hierarchical set of
equations of motion, c.f. Table I, with the help of

Tulczyjew’s method, it is nontrivial to devise ‘‘combined’’
quantities at higher multipolar orders. A good example is
the quantity Iabcd as introduced in Eq. (133). There is no
straightforward algorithm in Tulczyjew’s scheme which
tells us how to construct it. While one may consider the
introduction of quantities like Iabcd as a mere question of
taste—after all the main benefit is a more compact form of
the equations of motion—it appears to be desirable to have
such quantities at one’s disposal. In particular when it
comes to the search for conserved objects.
As we have shown in Sec. VIA, several of the combined

quantities are no longer conserved at the quadrupolar order.
This is, of course, directly linked to the fact that we did not
assume any supplementary condition in the course of our
derivation. Even the direct generalization and use of the
supplementary conditions from the pole-dipole order does
not yield a set of conserved quantities at the quadrupolar
order. Our results in (112)–(115) make clear, that addi-
tional conditions for the quadrupole moments and/or sym-
metries of the underlying spacetime are needed to obtain a
set of conserved quantities.

E. Further approximations

Because of the complexity of the expressions at the
quadrupole order, further approximations are needed for
applications. Most interesting is the restriction to some
kind of mass quadrupole, i.e., neglecting the flow- and
stress-quadrupole.6 Corrections from the mass quadrupole
are needed, e.g, for the contributions quadratic in spin to
the post-Newtonian dynamics, see [39–42]. The approach
to higher order post-Newtonian spin dynamics in [43–46]
can incorporate quadrupole corrections in a straightfor-
ward way. Further, it is possible to derive a canonical
formalism from the energy-momentum tensor given in
the present paper by the procedure outlined in [47,48] in
certain cases, c.f. [40]. Canonical methods also proved to
be very useful in the post-Minkowskian approximation of
single-pole objects, see, e.g., [49]. Our results may also be
used as input for perturbation methods [10–14] which aim
for a description of systems with high mass ratios. Such
methods have already been applied to single-pole as well
as to pole-dipole objects.

F. Regularization

A straightforward application of the results in the
present paper to self-gravitating compact objects is quite
subtle from a mathematical point of view. For short, a strict
mathematical definition of the product of distributions does
not exist, but would be required due to the nonlinearity of
Einstein’s field equations. Therefore a distributional
energy-momentum tensor as a source of the gravitational

6Notice that there can be slightly different ways to define such
mass-, flow-, and stress-quadrupoles. They only have to ap-
proach the correct Newtonian limit.
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field makes mathematically no sense in general relativity.
However, this problem can be overcome, as in quantum
field theory, by a regularization and renormalization pro-
gram. In particular, dimensional regularization [50,51] is
most useful for theories involving gauge freedoms, like
general relativity. Dimensional regularization has been
employed successfully in post-Newtonian calculations
[52–54] to a high order of nonlinearity. Notice that all
results in the present paper hold for an arbitrary dimension
of spacetime.
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APPENDIX A: FROM I-MOMENTS TO
J-MOMENTS

There is a one-to-one transformation from the
I-moments to the J-moments, which are used interchange-
ably in Dixon’s work [27,28]. At the quadrupole order it is
explicitly given by

Jabcd ¼ I½a½cb�d� :¼ 1

2
ðIa½cjbjd� � Ib½cjajd�Þ; (A1)

Iabcd ¼ � 4

3
JdðabÞc ¼ � 4

3
JaðdcÞb; (A2)

where J has the following properties:

Jabcd ¼ J½ab�½cd� ¼ Jcdab; (A3)

J½abc�d ¼ 0 , Jabcd þ Jbcad þ Jcabd ¼ 0: (A4)

Thus, Jabcd has the same (algebraic) symmetries as the
Riemann tensor. Equation (124) now becomes

Jabcd ¼ Q½a½cb�d� � 2u½aQb�½cd� � 2u½cQd�½ab�

� 3u½aQb�½cud�: (A5)

In terms of J, the equations of motion turn into

�

ds
Sab ¼ 2p½aub� � 4

3
R½a

cdeJ
b�cde; (A6)

�

ds
pa ¼ 1

2
Rabcdu

bScd þ 1

6
raRbcdeJ

bcde; (A7)

and the energy-momentum tensor becomes

~Tab ¼
Z �

uðapbÞ � 1

3
Rcde

ðaJbÞedc
�
�ð4Þ

�
Z

rcðScðaubÞ�ð4ÞÞ � 2

3

Z
rdrcðJdðabÞc�ð4ÞÞ:

(A8)

APPENDIX B: COMBINED QUANTITIES IN
TERMS OF o

2

MOMENTS

In this appendix, we provide a summary of combined

quantities at the quadrupole order in terms of the o
2

mo-
ments, as used in the original decomposition of tabcd in (9).

Idcab ¼ 2ðo2 dcab þ 2o
2 dcðaubÞ þ 2o

2 abðducÞ þ o
2 dcuaub

þ o
2 abuduc � 2uðdo

2 cÞðaubÞÞ; (B1)

S
2
ab ¼ �2

�
o
1 ½ab� þ o

1 ½aub� � 2ðo2 c½aub� þ o
2 c½ab�Þ _uc

þ uct
2
c½a _ub� þ 2uc

�t
2½ab�c

ds
þ 2ucud

�t
2
cd½a

ds
ub�

�
; (B2)

p
2 b ¼ m

2

ub þ ua
�

ds
S
2
ba þ Race

d

�
4

3
o
2 abceud þ 4o

2 baeucud

þ 4

3
o
2 aec�b

d þ 2o
2 aeuc�b

d

�
; (B3)

m
2 ¼ t

0 þ S
2
ab _uaub � 2

3
Rabc

do
2 cbaud þ ueuf

�
�

ds
t
1
ef

� �2

ds2
t
2
ef þ 2

�

ds

�
ug

�

ds
t
2
gef

�
þ 2ugt

2
cdðeRgcd

fÞ
�
:

(B4)

APPENDIX C: CONVENTIONS & SYMBOLS

In Table II we provide a list of symbols used throughout
the text. Our convention for the signature of spacetime is
�2. The curvature tensor is defined by (21), or equivalently
by

Racd
b :¼ �dc

b
;a � �da

b
;c þ �dc

e�ea
b � �da

e�ec
b: (C1)

The delta function �ð4Þ ¼ �ð4Þðxa � YaðsÞÞ is normalized asR
�ð4Þ ¼ 1.
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