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Abstract

The state of sea ice, which plays an important role in shaping Earth’s climate,

exhibits vast changes on multiple time scales. For the climate of the present day

and the near future, this thesis investigates initialization and predictability of Arctic

sea ice in a global climate model (GCM).

To predict the mean state, knowledge of nonlinear thresholds is required, where

the mean state changes rapidly and irreversibly. I investigate the existence of such a

threshold for the transition between perennial and seasonal sea-ice cover in the Arctic

during the 21st century, which could in principle be caused by the destabilizing ice–

albedo feedback. I find that Arctic sea ice at all times recovers even from extreme

prescribed losses within typically two years, because the large-scale Arctic energy

budget adapts to compensate the prescribed anomaly. This indicates that there is

no such threshold.

To predict natural variability, knowledge of the initial conditions is required. I

investigate the initialization of Arctic sea ice in a GCM by assimilating sea-ice con-

centration observations. I develop a Newtonian relaxation scheme that successfully

constrains concentration and thickness of Arctic sea ice in the GCM to observations.

The choice of the assimilation technique is supported by analysis of a conceptual

model of local ice growth as well as analysis of assimilation error statistics.

I assess the relative importance of sea-ice initial conditions by performing en-

semble predictions under the perfect-model assumption. Predictive skill achievable

for Arctic sea ice is comparable between sea-ice-assimilated initial conditions and

perturbed-perfect initial conditions for lead times of up to one year. I find that

the large interannual negative anomalies that are expected to occur throughout the

21st century are partly predictable for up to three years ahead. However, sea-ice

predictability decreases as Arctic sea-ice cover becomes thinner.
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1 Introduction

1.1 Motivation and research questions

In regions of the Earth that are sufficiently cold, sea ice forms from ocean water and

floats at its surface. The ice forms an insulating layer that strongly moderates the

exchange of heat, momentum and freshwater between the ocean and the atmosphere.

It greatly decreases absorption of solar radiation at the surface, since its albedo is

much higher than that of the sea water it forms from. The surface-albedo effect of

sea ice contributes to the increase of Earth’s climate sensitivity [Rind et al., 1995]

and to the amplification of climate change in polar regions [Serreze and Francis,

2006]. Sea ice affects the atmospheric circulation and surface conditions in mid-

latitudes [Murray and Simmonds, 1995; Honda et al., 2009]. Regionally, changes

in the sea-ice cover have a large impact on highly adapted ecosystems and human

societies [Johannessen and Miles , 2011].

Throughout Earth’s history, the mean state of sea ice has undergone vast changes.

There were climates with virtually no sea-ice cover at all [Sluijs et al., 2006], and

there might have been climates that had the entire ocean surface covered with sea

ice [Hoffman et al., 1998]. Owing to the positive ice–albedo feedback, transitions

between these different states potentially exhibit critical thresholds, at which the

mean state loses stability and a rapid shift to a new mean state occurs (see McNeall

et al. [2011] for a recent review).

Sea ice exhibits considerable natural variability, i.e. fluctuations around its mean

state on time scales from single years to many decades. The variability of sea ice

is connected with other modes of natural variability in the climate system such

as the variability of the meridional overturning circulation, which transports heat

into high latitudes [Jungclaus et al., 2005], or the El Niño-Southern Oscillation and
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1 Introduction

the Arctic Oscillation, which change atmospheric circulation patterns impacting the

high latitudes [Gloersen, 1995; Rigor et al., 2002].

Today, around 5% of the global ocean surface is ice-covered. In the Arctic, the

last decades have seen a strong decrease in sea-ice extent [Parkinson and Cavalieri ,

2008] and volume [Kwok and Rothrock , 2009]. This decrease is thought to be mainly

due to a change in the mean state in response to increased greenhouse-gas forcing,

but natural variability might have contributed to the decrease as well [Serreze et al.,

2007a; Kattsov et al., 2010].

Successful predictions of Arctic sea ice are only possible if the attribution of

observed changes either to changes in the mean state or to unforced variability is re-

solved. For changes in the mean state, the boundary conditions matter. For changes

caused by natural variability, the initial conditions matter. These two problems cor-

respond to the two kinds of predictability introduced by Lorenz [1975]. Predictabil-

ity on interannual to decadal time scales is always a mixture of the two [Collins and

Allen, 2002].

There is an ongoing scientific debate about the existence of a nonlinear threshold

for the changing mean state of Arctic sea ice, which would make predictions of

the second kind much more uncertain (e.g. Merryfield et al. [2008]; Eisenman and

Wettlaufer [2009]). This debate was spurred by the recent extreme minimum of

Arctic summer sea ice in 2007, which seemed to break the trend of sea-ice decline

observed in the decades before. Was it the onset of a rapid shift in the Arctic sea-ice

mean state caused by the passing of a critical threshold or rather an anomalous

random excursion from the slowly changing mean state? This leads to the first set

of research questions addressed in this thesis:

Does the ice–albedo feedback lead to threshold behavior during

the transition of the Arctic Ocean to a seasonally ice-free state?

If not, what are the mechanisms that allow the sea ice to recover

from anomalous losses?

To study predictability of the first kind, the initial climate state must be suffi-

ciently well constrained from observations, and suitable data assimilation techniques

need to be developed to initialize climate models with the observed climate state

[Schwierz et al., 2006; Hurrell et al., 2009]. However, the investigation of sea-ice data
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1.1 Motivation and research questions

assimilation has mostly been restricted to sea-ice–ocean models lacking an interac-

tive atmosphere (e.g. Lindsay and Zhang [2006]; Stark et al. [2008]). Furthermore,

sea-ice data assimilation is hindered by the sparseness of thickness observations

available. The second set of research questions raised in this thesis addresses these

open issues:

Is it possible to improve the simulation of sea-ice concentration

and thickness in a global climate model by assimilating only ob-

servations of sea-ice concentration? How do sea-ice concentra-

tion and sea-ice thickness interact under different atmospheric

and oceanic conditions, and how is this reflected in the choice

of appropriate assimilation methods?

The relative importance of the sea-ice initial state with respect to the initial state

of other components of the climate system has to be tested by performing actual

predictions on seasonal to decadal time scales. Since the sea-ice cover will very

likely continue to shrink in the future [Arzel et al., 2005], and since predictabil-

ity depends on the initial climate state [Hermanson and Sutton, 2009], predictions

should be performed at different times during the 21st century. A valuable ap-

proach for establishing upper bounds of predictability is the so-called perfect-model

assumption. Predictions of Arctic sea ice under the perfect-model assumption have

been performed by Holland et al. [2010] for perfect initial conditions and present-

day conditions. The third set of research questions raised in this thesis takes that

discussion one step further:

How predictable are large negative interannual anomalies of

Arctic sea ice? How much of this predictability can be realized

by using initial conditions obtained by the sea-ice assimilation

methods developed in this thesis? How does the change in the

mean state during the 21st century affect predictability of the

first kind?
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1 Introduction

1.2 Thesis outline

The main part of this thesis consists of three chapters, which are written in the style

of journal publications. Thus, they each contain their own abstract, introduction

and conclusions, and can be read independent of one another. The first of these

chapters has been published already, the second is submitted for publication, and

the third is in preparation for submission.

In Chapter 2, I examine the recovery of Arctic sea ice from prescribed ice-free

summer conditions in simulations of 21st century climate in the global climate model

ECHAM5/MPI-OM. An analysis of the large-scale Arctic energy budget after the

perturbation reveals the mechanisms that allow for the recovery. This work has

been published in Geophysical Research Letters1 and is reproduced here with minor

editorial modifications.

In Chapter 3, I investigate the initialization of northern-hemisphere sea ice in

ECHAM5/MPI-OM by assimilating sea-ice concentration data. I develop a simple

assimilation method based on Newtonian relaxation that also improves the repre-

sentation of sea-ice thickness. I apply conceptual models and analyse the model

background error covariance statistics to better understand the assimilation errors

that occur. This work has been submitted for publication in Journal of Geophysical

Research2.

In Chapter 4, I study the limits of dynamical predictability of Arctic sea ice

with the earth system model MPI-ESM-LR and the usefulness of initial conditions

obtained by the sea-ice data assimilation methods developed in Chapter 3. I perform

ensemble prediction experiments under the perfect-model assumption for cases of

extreme negative interannual sea-ice anomalies as they occur in the MPI-M CMIP5

RCP45 climate projections, comparing predictability for present-day conditions to

1Tietsche, S., D. Notz, J. H. Jungclaus, and J. Marotzke (2011), Recovery mechanisms of Arctic
summer sea ice, Geophys. Res. Lett., 38, L02707, doi:10.1029/2010GL045698

2Tietsche, S., D. Notz, J. H. Jungclaus, and J. Marotzke (2011), Sea-ice data assimilation in a
global coupled climate model – physical and statistical aspects, Journal of Geophysical Research,
submitted
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1.2 Thesis outline

predictability in the middle of the 21st century when the ice pack is much thinner.

This work is in preparation for submission to Journal of Climate3.

In Chapter 5, I give a concise summary of the main results of this thesis.

3Tietsche, S., D. Notz, J. H. Jungclaus, and J. Marotzke (2012), Predictability of large negative
Arctic sea-ice anomalies, Journal of Climate, in preparation
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2 Recovery mechanisms of Arctic

summer sea ice

We examine the recovery of Arctic sea ice from prescribed ice-free
summer conditions in simulations of 21st century climate in an
atmosphere–ocean general circulation model. We find that ice ex-
tent recovers typically within two years. The excess oceanic heat
that had built up during the ice-free summer is rapidly returned to
the atmosphere during the following autumn and winter, and then
leaves the Arctic partly through increased longwave emission at
the top of the atmosphere and partly through reduced atmospheric
heat advection from lower latitudes. Oceanic heat transport does
not contribute significantly to the loss of the excess heat. Our re-
sults suggest that anomalous loss of Arctic sea ice during a single
summer is reversible, as the ice–albedo feedback is alleviated by
large-scale recovery mechanisms. Hence, hysteretic threshold be-
havior (or a “tipping point”) is unlikely to occur during the decline
of Arctic summer sea-ice cover in the 21st century.



2 Arctic summer sea-ice recovery

2.1 Introduction

Arctic summer sea-ice extent has decreased substantially in recent years, and it will

very likely continue to decrease owing to anthropogenic climate change. Because of

the ice–albedo feedback, which reinforces the retreat, the transition from a perennial

to a seasonal sea-ice cover might be associated with nonlinear threshold behavior.

Nevertheless, other mechanisms stabilize Arctic sea ice [Notz , 2009; Eisenman and

Wettlaufer , 2009], and the present study investigates how these mechanisms lead to

the recovery from prescribed ice losses in an atmosphere–ocean general circulation

model (AOGCM) for the climate of the near future.

The possibility of multiple equilibria and threshold behavior for polar ice caps,

which implies the possibility of abrupt and irreversible changes in polar climate, has

long been studied using energy balance models that incorporate the most relevant

physical processes [North, 1984; Merryfield et al., 2008; Eisenman and Wettlaufer ,

2009]. The results of those studies, however, depend strongly on the choice and

parametrization of large-scale processes. Therefore, studies with AOGCMs are de-

sirable to decide if threshold behavior during the retreat of Arctic sea ice is a robust

phenomenon. The IPCC-AR4 model runs provide a wealth of AOGCM projections

of Arctic climate for the 21st century, and they do not exhibit clear evidence of a

critical threshold for summer sea ice [Winton, 2006].

Nevertheless, abrupt partial loss of Arctic summer sea ice is a common feature of

those runs [Holland et al., 2006]. Surprisingly, these abrupt partial losses are often

followed by an equally rapid temporary recovery. This suggests that Arctic sea

ice has a preferred equilibrium state that varies smoothly with the climatic forcing,

and that there are recovery mechanisms that counteract the destabilizing ice–albedo

effect after abrupt losses.

A valuable tool for understanding those mechanisms are experiments which per-

turb Arctic sea-ice conditions systematically. To our knowledge, this sea-ice per-

turbation approach in an AOGCM has so far only been applied by Schröder and

Connolley [2007], who showed that sea ice recovers from a complete removal within

a few years. However, they restricted their experiments to a preindustrial climate

and did not address the mechanisms of the sea-ice recovery.

Here, we report the recovery of the Arctic from a prescribed loss of summer sea ice
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2.2 Model and experiments

in the AOGCM ECHAM5/MPI-OM at different times during the 21st century, and

investigate the mechanisms of recovery by analyzing the Arctic energy budget. In

these perturbation experiments, the initial conditions are such that the ice–albedo

feedback, as well as the other feedbacks related to sea-ice anomalies, are most pro-

nounced. Thus, these experiments answer the question of whether perturbations of

sea-ice cover alone are able to trigger an irreversible climate change in the Arctic.

2.2 Model and experiments

The global AOGCM we use consists of the atmosphere component ECHAM5 [Roeck-

ner et al., 2003] with a T31 horizontal resolution and 19 vertical levels, and the

ocean component MPI-OM [Marsland et al., 2003] with a curvilinear grid that has a

horizontal resolution of 50–200 km in the Arctic and 40 vertical levels. A dynamic–

thermodynamic sea-ice model based on Hibler III [1979] is included. The model

setup we use is a coarse-resolution version of the IPCC-AR4 model described by

Jungclaus et al. [2006]. This higher-resolution model setup has been tested exten-

sively and performs well in simulating Arctic climate [Chapman and Walsh, 2007].

We use ECHAM5/MPI-OM to perform a climate projection for the 21st century

according to the IPCC-A1B emission scenario [Nakićenović et al., 2000]. In this

reference run, annual mean surface air temperature in the Arctic rises from −14◦C

in the 1900s to −4◦C in the 2090s. Arctic sea-ice extent declines, and the Arctic

Ocean is typically ice-free by the end of summer from 2070 onward (see Figure 2.1;

we note that the sea-ice decline here is somewhat faster than in the higher-resolution

version of the model). Between 2000 and 2040, when the rate of decline is maximal,

Arctic summer sea-ice extent exhibits strong year-to-year fluctuations. As noted by

Holland et al. [2008] and Notz [2009], this increase in variability is mostly due to

changes in the ice thickness distribution and does not necessarily indicate proximity

to some critical threshold.

To examine the recovery mechanisms of Arctic summer sea ice, we simulate the

consequences of an ice-free Arctic Ocean during summer. We set up experiments

to start on 1st July from initial conditions that are taken from the reference run,

but are perturbed by converting the entire Northern Hemisphere sea ice to water

15



2 Arctic summer sea-ice recovery

Figure 2.1: Arctic sea-ice concentrations for March and September in the A1B ref-
erence run, averaged over the specified decades.

16



2.2 Model and experiments

with the same properties as the sea surface water below the ice. Such conversion of

relatively fresh sea ice to salty sea water has the advantage of leaving the properties

of sea surface water unchanged. The start date is chosen such that the effect of the

perturbation is maximal: starting from ice-free conditions earlier in the year leads

to immediate re-freezing, and hence both earlier and later start dates imply shorter

exposure of open water to sunlight, and a less pronounced ice–albedo effect.

One might expect the Arctic Ocean to stay ice-free after the initial perturbation for

several months, and possibly to stay seasonally ice-free in the following years because

(i) in July air temperatures are usually above zero, and the ocean accumulates

sensible heat throughout summer, (ii) the absence of sea ice implies a large excess

of latent heat in the ocean surface layer, (iii) with sea ice absent, the ocean albedo

is significantly lowered leading to increased shortwave absorption, and (iv) when

cooling starts in autumn, the sea surface water will be more salty, causing convection

to reach deeper and delay sea-ice formation.

Every 20 years between 1980 and 2060, three such experiments are started in

consecutive years (e.g. 2019, 2020, 2021), so that we can analyze five different time

slices with a three-member ensemble each. After the initial perturbation, we let the

model run freely without any further manipulation.

In the following, we discuss the development of anomalies that arise due to the

modified initial conditions, concentrating on field means over the Arctic Ocean and

the atmospheric column above it. We define the Arctic Ocean domain to be bounded

by the Bering Strait, the Fram Strait, and by the shortest connection from Spits-

bergen to the northern end of Novaya Zemlya continued to the Siberian coast. The

resulting area of the Arctic Ocean is 8.4 · 1012 m2.

To characterize the time-dependent state of Arctic summer sea ice in the reference

run, we quantify it by (i) the centered ten-year running mean of September sea-ice

extent X(T ) and (ii) the centered ten-year running standard deviation of September

sea-ice extent σX(T ). We then consider sea-ice extent inside the range of X(T ) ±

σX(T ) to be typical for the reference run.

17



2 Arctic summer sea-ice recovery

Figure 2.2: September Arctic sea extent. The thick black line is a 10-year moving
average of the reference run, the dashed lines enclose the standard deviation of the
reference run for the same 10-year window. The mean (diamonds) and the standard
deviation (blue shading) of the perturbed model ensemble are shown at the year
around which the ensemble is centered.

2.3 Results

2.3.1 Sea-ice extent and temperature anomalies

All our experiments start from sea-ice free conditions on 1st July. As expected, the

Arctic Ocean remains ice-free for several months, and significant sea-ice cover does

not develop before November. However, sea ice then grows very rapidly, since the

growth rate for thin ice is much higher than for thick ice, which acts as a negative

feedback on thickness during the growth season [Bitz and Roe, 2004; Notz , 2009].

The ensemble mean September ice extent reaches values typical for the reference

run in the fifth year after the perturbation for the 1980 time slice, in the fourth year

for 2000, and already in the second year for 2020 and 2040 (Fig. 2.2). September

sea-ice volume takes longer to recover in the late 20th century when the sea ice is

still thick, but it has the same time scale of recovery as sea-ice extent from 2000 on

(see Figure 2.3). We conclude that there is no threshold in the changing reference

state from which on the recovery of sea ice would be inhibited.

18



2.3 Results

Figure 2.3: September Arctic sea-ice volume. The thick black line is a 10-year moving
average of the reference run, the dashed lines enclose the standard deviation of the
reference run for the same 10-year window. The mean (diamonds) and the standard
deviation (blue shading) of the perturbed model ensemble are shown at the year
around which the ensemble is centered.

Sea ice responds similarly to the initial perturbation in all time slices, and we con-

sistently find the same mechanisms to be responsible for the recovery. Therefore, we

keep the presentation concise and show only the analysis of the time-slice ensemble

starting in 2019/20/21.

We first consider anomalies in surface air temperature (SAT) and sea surface

temperature (SST), because they are directly linked to the anomalies in sea-ice cover

(Fig. 2.4). At the sea surface, shortwave heating leads to a strong warming in the first

summer of the experiment, and in the course of summer this temperature anomaly

is mixed to an average depth of 50 m (see Figure 2.5). However, the temperature

anomaly does not penetrate deeper, and no excess heat is stored below the surface

mixed layer. The water temperature in the uppermost ocean layer (12 m deep)

shows a pronounced warming anomaly of 2.7 K, whereas the average temperature

of the upper 50 m in the ocean rises by 1.3 K. We note that the magnitude of the

ocean temperature anomaly is mainly due to the absence of melting ice that provides

a latent heat sink. Without this effect, the surface heat flux anomaly would only

19



2 Arctic summer sea-ice recovery

Figure 2.4: The 2020-ensemble mean of the difference in sea surface temperature
(∆SST) and surface air temperatures (∆SAT) between the experiment and the
reference run averaged over the Arctic Ocean domain. The dashed lines indicate the
natural variability of the reference run, given by the standard deviation of September
temperature in the 2020–2030 decade.

warm the upper 50 m by 0.3 K.

The SST anomaly only lasts until November; by then sufficient heat has been

extracted from the surface water to cool it to the freezing temperature. Sea ice then

forms from open water very rapidly, and partly recovers. In the next summer the

sea-ice cover is still below normal, and larger shortwave absorption leads to a second

positive SST anomaly. However, after the second year the SST anomalies are not

larger than the natural variability of the reference run.

For SAT a large positive anomaly occurs between October and February after

the initial perturbation, with a peak of almost 11 K in November (Fig. 2.4). After

February, there are no further SAT anomalies stronger than natural variability. The

warming is mainly restricted to the lower troposphere (see Figure 2.6), which is a

result that has also been found in GCM studies that prescribed permanent ice-free

conditions in the Arctic Ocean [Royer et al., 1990; Winton, 2008] and in observations

of recent Arctic climate change [Screen and Simmonds, 2010]. The peak of the SAT

anomaly occurs about four months later than the SST anomaly; the reason for this

becomes clear when considering the energy budget.

20



2.3 Results

Figure 2.5: Depth profile of the ocean temperature anomaly during the first year
after the perturbation for the 2020-ensemble.

Figure 2.6: Height profile of the atmosphere temperature anomaly during the first
year after the perturbation for the 2020-ensemble. In the stippled area, the tem-
perature anomaly is smaller than one standard deviation of the reference run at the
respective height and the respective month during the 2020-2030 decade.
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2 Arctic summer sea-ice recovery

2.3.2 Energy budget of the Arctic Ocean domain

In the following, we examine accumulated heat fluxes and heat content changes for

the Arctic Ocean domain. For ease of comparison, we introduce the Arctic energy

unit 1AEU ≡ 2.21 · 1019J, which is the energy accumulated when a heat flux of

1 Wm−2 acts over the area of the Arctic Ocean domain (8.4 ·1012 m2) for one average

month (30.5 days). All numbers for energy budget anomalies are rounded to ten

AEU, to account for uncertainty arising from energy budget residuals and ensemble

spread. The Arctic energy budget anomalies in the experiments are summarized

in Fig. 2.7b, a schematic inspired by Nakamura and Oort [1988] and Serreze et al.

[2007b].

We start our discussion of the energy budget anomalies with the oceanic heat

transport. As shown by Serreze et al. [2007b], heat transport into the Arctic Ocean

by advection of warm water and export of sea ice is only between 4 and 7 Wm−2

(March and August mean, respectively). Our model shows comparable results for

oceanic heat transport into the Arctic. When we compare the reference run to the

perturbed run, no significant changes of oceanic heat transport are visible. This

is plausible, since immediately after the perturbation, sea surface water has the

same properties as in the reference run. During summer warming a temperature

anomaly develops, and during winter freeze-up a salinity anomaly develops, but the

resulting density anomaly is small compared to the seasonal cycle. Hence, we find

that anomalies in oceanic heat transport into the Arctic are unimportant for the

observed recovery of the Arctic energy budget.

Consequently, the oceanic heat content anomaly is determined by the remaining

two factors: (i) the latent heat anomaly induced by the initial conditions of the

experiment and (ii) the surface heat flux anomaly. The latent heat anomaly for

the 2020 experiment has a magnitude of 130AEU. The ability of the Arctic Ocean

to store this excess heat over the course of winter is the key determinant for the

evolution and stability of Arctic sea-ice cover [Serreze and Francis, 2006]. When

starting from ice-free conditions on 1st July, the ice–albedo effect at first reinforces

the ocean heat content anomaly: net shortwave heat flux is strongly increased by

about 25 Wm−2, whereas the upward heat fluxes are only increased by 5 Wm−2

(Fig. 2.7a). However, from September on the effect of shortwave flux is negligible,
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2.3 Results

Figure 2.7: Mean energy budget anomalies for the Arctic Ocean domain. Shown are
the values of the 2020 time-slice experiments for the first nine months after start-
ing from ice-free conditions on 1st July. (a) Downward surface heat flux anomaly.
(b) Atmospheric and oceanic energy budget anomalies for the Arctic. All numbers
are in energy units of 1AEU ≡ 2.21 · 1019J, which corresponds to the energy ac-
cumulated by a flux of 1 Wm−2 into the area of the Arctic Ocean domain during
one month. Numbers are rounded to ten. Arrow widths are proportional to size of
anomalies. Top: summer phase (July to August). Bottom: winter phase (September
to March). Definition of symbols: ∆Ftop is accumulated top-of-atmosphere net heat
flux anomaly; ∆Fsfc is accumulated net surface heat flux anomaly; ∆FA/0 is accumu-
lated atmospheric/oceanic lateral heat transport anomaly; ∆QA/O is the anomaly
of atmospheric/oceanic heat content change; L is the latent heat anomaly of the
ice-free initial conditions.
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and the upward heat fluxes at the surface are increased with a peak anomaly of

almost 40 Wm−2 in November. Thus, sea-ice free summer conditions cause the

ocean to gain excess heat through the surface during summer, but they also cause

enhanced heat loss through the surface in the following autumn and winter, when

the insulating sea-ice cover is anomalously thin.

The atmospheric energy budget anomaly is tightly coupled to the surface heat

flux. During the summer phase from July to August, when the downward surface

heat flux is amplified, the atmosphere only plays a passive role: the excess shortwave

absorption of 30AEU at the surface is balanced by an increase of net shortwave flux

at the top of the atmosphere. Atmospheric heat content and lateral heat transport

are not significantly affected (Fig. 2.7b). However, during the longer winter phase

from September to March, when the upward surface heat flux is amplified, the

warming of the atmosphere leads to a decreased atmospheric heat transport into

the Arctic Ocean domain by 70AEU. At the same time, more longwave radiation

is emitted at the top of the atmosphere, which accumulates to 40AEU.

2.4 Conclusions

In our perturbation experiments, we observe how different feedbacks in the Arctic

compete to enhance or dampen a strong negative anomaly in sea ice, equivalent to

a strong positive anomaly in oceanic heat content. In summer, the oceanic heat

anomaly is enhanced by the ice–albedo feedback, but in winter the excess oceanic

heat is lost to the atmosphere due to a lack of insulating sea-ice cover. This leads

to an anomalously warm atmosphere, which in turn causes increased heat loss by

longwave radiation at the top of the atmosphere and decreased heat gain by atmo-

spheric advection from lower latitudes. A lasting impact of the ice–albedo feedback

is not possible because the large-scale heat fluxes quickly adapt to release the excess

oceanic heat from the Arctic.

Hence, we find that even dramatic perturbations of summer sea-ice cover in the

Arctic are reversible on very short time scales of typically two years. This suggests

that a so-called tipping point, which would describe the sudden irreversible loss of

Arctic summer sea ice during warming conditions, is unlikely to exist.
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2.4 Conclusions

These results also have implications for the value of sea-ice initial conditions for

climate predictions on decadal time scales: if even the strong anomalies in sea-ice

cover that we examine here are reversible within a few years, then small errors in

sea-ice initial conditions should not affect the predictions significantly. Intrinsic

memory of the thin Arctic sea-ice cover of the 21st century seems to span only a

few years.
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3 Sea-ice data assimilation in a

global climate model – physical

and statistical aspects

We investigate the initialization of northern-hemisphere sea ice in the global climate
model ECHAM5/MPI-OM by assimilating sea-ice concentration data. The anal-
ysis updates for concentration are given by Newtonian relaxation, and we discuss
different ways of specifying the analysis updates for mean thickness. Because the
conservation of mean ice thickness or actual ice thickness in the analysis updates
leads to poor assimilation performance, we introduce a proportional dependence be-
tween concentration and mean thickness analysis updates. Assimilation with these
proportional mean-thickness analysis updates significantly reduces assimilation er-
ror both in identical-twin experiments and when assimilating sea-ice observations,
reducing the concentration error by a factor of four to six, and the thickness error
by a factor of two. To understand the physical aspects of assimilation errors, we
construct a simple prognostic model of the sea-ice thermodynamics, and analyze its
response to the assimilation. We find that the strong dependence of thermodynamic
ice growth on ice concentration necessitates an adjustment of mean ice thickness
in the analysis update. To understand the statistical aspects of assimilation errors,
we study the model background error covariance between ice concentration and ice
thickness. We find that the spatial structure of covariances is best represented by
the proportional mean-thickness analysis updates. Both physical and statistical ev-
idence supports the experimental finding that proportional mean-thickness updates
are superior to the other two methods considered and enable us to assimilate sea ice
in a global climate model using simple Newtonian relaxation.



3 Sea-ice data assimilation

3.1 Introduction

For skillful seasonal to decadal predictions, good initial conditions of atmosphere–

ocean global climate models (AOGCMs) are of paramount importance. So far,

global prediction studies have been restricted to the initialization of the oceanic and

atmospheric state (e.g., Smith et al. [2007]; Pohlmann et al. [2009]). However, slow

surface processes might constitute a substantial source of untapped predictability

[Hurrell et al., 2009; Shepherd et al., 2011]. One of the most important of these

surface processes is arguably the existence of sea ice at high latitudes. Holland et al.

[2010] and Blanchard-Wrigglesworth et al. [2011a] have shown that Arctic sea ice

has inherent predictability of up to two years. Moreover, anomalies in Arctic sea ice

can have an influence far beyond the Arctic by changing the large-scale atmospheric

circulation [Honda et al., 2009; Budikova, 2009] and the oceanic thermohaline cir-

culation [Koenigk et al., 2006; Levermann et al., 2007]. Hence, the initialization of

sea ice in an AOGCM with suitable data assimilation techniques is an important

step towards more skillful seasonal to decadal predictions. Here, we investigate data

assimilation techniques for the initialization of northern-hemisphere sea ice in the

AOGCM ECHAM5/MPI-OM.

The most important parameters of sea ice are the sea-ice concentration, which is

the fraction of surface area covered by sea ice, and the sea-ice mean thickness, which

is the volume of sea ice present per surface area. While the observational record of ice

concentration in the Arctic is dense in space and time and relatively reliable since the

late 1970s, observations for ice thickness are sparse. Hence, sea-ice data assimilation

suffers from a large uncertainty about the true thickness. Initial conditions derived

from the assimilation inherit this uncertainty, which in turn severely limits the

reliability of sea-ice predictions.

Previous studies have demonstrated that the assimilation of observed sea-ice con-

centration in ice–ocean models improves the simulated concentration [Lisæter et al.,

2003; Lindsay and Zhang , 2006; Stark et al., 2008]. However, the improvement in

ice thickness is not straightforward, and Dulière and Fichefet [2007] emphasized

that the assimilation can easily deteriorate the model performance if inappropriate

assimilation techniques are chosen.

These findings from ice concentration assimilation in ice–ocean models forced by
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atmospheric surface conditions cannot be directly transferred to ice-concentration

assimilation in AOGCM, because in AOGCM the atmospheric surface conditions are

not necessarily consistent with the assimilated sea-ice state. Rather, they develop

interactively from large-scale dynamics and from local interaction with the sea-ice

state. This makes the impact of ice-concentration assimilation on ice thickness less

obvious and calls for dedicated studies on sea-ice data assimilation in AOGCM. How-

ever, to our knowledge, the only such published study is by Saha et al. [2010], who

did not describe the impact of the ice concentration assimilation on ice thickness.

Here, we assimilate observations of northern hemisphere sea-ice concentration and

compare different methods of prescribing changes in mean ice thickness associated

with changes in ice concentration during the assimilation step. We systematically

assess the assimilation performance both for concentration and thickness, and use

conceptual arguments to explain the differences in assimilation performance.

The rest of the paper is organized as follows: Section 3.2 describes the global

climate model used for this study, in particular the sea-ice component. Section

3.3 introduces the sea-ice data assimilation methods which we use to investigate

feasibility of sea-ice data assimilation. The assimilation performance is evaluated

first in a perfect-model framework (Sec. 3.4) and then with actual observations of

sea-ice concentration (Sec. 3.5). Section 3.6 uses both simple models and AOGCM

case studies to develop a conceptual understanding of assimilation errors, while

Section 3.7 analyzes the model error statistics. Section 3.8 presents conclusions.

3.2 The coupled global climate model

3.2.1 The atmosphere and ocean models

Our AOGCM consists of the atmosphere component ECHAM5 [Roeckner et al.,

2003] with a T31 horizontal resolution and 19 vertical levels, and the ocean compo-

nent MPI-OM [Marsland et al., 2003] with a curvilinear grid that has a horizontal

resolution of 50–200 km in the Arctic and 40 vertical levels. The time step of the

atmosphere model is 40 minutes, the time step of the ocean and sea-ice models is

144 minutes. The ocean and atmosphere exchange surface fields once a day before

the first time step. The model setup is a coarse-resolution version of the IPCC-AR4
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model described by Jungclaus et al. [2006].

3.2.2 The sea-ice model

The sea-ice model in ECHAM5/MPI-OM is based on Hibler III [1979] and Semtner

[1976]. It consists of three prognostic equations for the mean ice thickness hm(x, y, t),

the ice concentration C(x, y, t), and the ice velocity v(x, y, t):

∂thm = ∇ · (hmv) + Sh (3.1)

∂tC = ∇ · (Cv) + SC (3.2)

∂tv = −f(k × v) − g∇ζ +
τa

ρihm
+

τo

ρihm
+ ∇ · σ (3.3)

The divergence terms on the right-hand side of (3.1) and (3.2) describe the redistri-

bution of ice volume and concentration by advection with ice velocity v. Sh and SC

are the thermodynamic sources of mean thickness and concentration, respectively,

which describe local melting and freezing. The change of ice velocity v = (vx, vy) is

determined by the momentum balance (3.3), where f is the Coriolis parameter, k

the vertical unit vector, g the Earth’s gravitational acceleration, ζ the sea surface

height above sea level, ρi the ice density, τa/o the stress of wind from above and

ocean current from below, and σ the sea-ice internal stress tensor. The terms on

the right-hand side of (3.3) from left to right correspond to forces that originate in

the Coriolis effect, the tilt of the sea surface, the drag from atmosphere and ocean,

and internal sea-ice stresses.

These equations are based on the model assumption that within a grid cell, a

fraction C of the area is covered by ice with the constant thickness ht, given by

ht = hm/C, (3.4)

and the remaining fraction 1−C of the area is open water. It is further assumed that

the sea water in a grid cell that contains sea ice is always at a representative sea-

water freezing temperature of −1.9 ◦C. Thus, any heat flux imbalance over either

the ice-covered or the open-water part of the grid cell is immediately converted into

ice growth or melt, and so the thermodynamic source of mean ice thickness in eq.
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(3.1) is given by

Sh = Cgi + (1 − C)gw. (3.5)

The two different growth rates, gi for the ice-covered part of the grid cell and gw for

the open water part, are calculated from the surface energy balance of the coupled

model, assuming a linear temperature profile within the ice [Semtner , 1976].

The thermodynamic source term for ice concentration SC is parametrized in terms

of the ice growth rates according to Hibler III [1979]:

SC = Θ(gw)
gw

h0
(1 − C) + Θ(−Sh)

C

2hm
Sh, (3.6)

with Θ the Heaviside step function (i.e. Θ(x) = 1 if x ≥ 0, Θ(x) = 0 if x < 0).

The first term on the righthand-side of (3.6) is active when new ice forms from open

water; the parameter h0 = 0.5 m is chosen such that open water freezes over within

a few days if there is strong ice growth, which is consistent with observations. The

second term approximates the decrease in ice concentration when thick ice melts,

assuming that the thickness of the ice floe is distributed linearly between 0 and 2ht.

3.3 Sea-ice data assimilation approach

In this study, we exclusively utilize daily data of Arctic sea-ice concentration. In Sec.

3.4, these data are derived from model output, whereas in Sec. 3.5 they are derived

from satellite observations. For the concentration analysis updates, we choose here

the simplest possible approach: the Newtonian relaxation of the model state towards

observations. This approach is feasible here since sea-ice concentration observations

are both dense and relatively reliable. The analysis updates of other sea-ice related

variables like mean ice thickness, sea surface temperature, and sea surface salinity

are derived from the concentration analysis updates.

We perform long assimilation runs for the period 1979–2007, spanning almost the

entire satellite observational record of northern hemisphere sea-ice concentration.

We primarily consider the global performance of sea-ice data assimilation, averaged

over different regions and different years, rather than focus on specific case studies.

On the one hand, this complicates the attribution of failure or success of a method
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to physical causes, since we deal with the average over a plethora of different local

conditions. On the other hand, we can verify that there are no spurious drifts in

the AOGCM induced by the sea-ice data assimilation and that the performance is

robust over a range of climatic conditions.

In the following, we use the notation of Bouttier and Courtier [1999] and denote

the model background state of a variable x by xb, the analysis by xa, and the analysis

update by ∆x = xa − xb.

3.3.1 Analysis updates of ice concentration

We obtain the analyzed sea-ice concentration Ca once a day by correcting the model

background concentration Cb with an analysis update ∆C that corresponds to New-

tonian relaxation towards observed values Co:

Ca = Cb + ∆C with ∆C = KN(Co − Cb). (3.7)

The scalar constant KN determines the strength of the analysis update. We choose

KN = 0.1. This approach is akin to data assimilation by nudging, where the same

analysis update would be applied at each time step of the model. In the absence of

model tendencies, the analysis update (3.7) leads to the exponential relaxation of an

initial departure of the model background state from the observation on a relaxation

time scale of TR = 10 days.

3.3.2 Analysis updates of mean ice thickness

We consider analysis updates of mean ice thickness hm as a function of analysis

updates of ice concentration:

ha
m = hb

m + ∆hm with ∆hm = f(∆C) (3.8)

Our motivation to follow this approach is twofold: (i) reliable and dense satellite

observation of mean ice thickness are not available to date, and (ii) anomalies in ice

concentration and mean ice thickness have a very high correlation of 0.7 averaged

over the Arctic, as diagnosed from a long AOGCM run (not shown). By choosing f
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so that it approximates those correlations, we can try to estimate the mean thickness

from observation of sea-ice concentration alone.

As we will see in Sections 3.4 and 3.5, the assimilation error differs substantially

between different choices for the functional dependence f , and in Sections 3.6 and

3.7 we will discuss possible sources of assimilation errors in detail. We introduce

and discuss the following three choices:

Analysis updates with conserved mean thickness (CMT) With this method,

the analysis update of mean ice thickness hm is always zero, no matter the value of

the concentration analysis update:

∆hm = 0. (3.9)

The analyzed actual ice thickness ha
t is then given by ha

t = hb
t Cb/Ca. From idealized

experiments with prescribed perturbations in thermodynamic atmospheric forcing,

Dulière and Fichefet [2007] concluded that this is the best approach when model

error is mainly due to ice advection.

Analysis updates with conserved actual thickness (CAT) We assume that the

model has the correct actual ice thickness ht, and demand that ∆ht ≡ ha
t − hb

t
!
= 0.

Applying eqs. (3.4) and (3.8), we see that this is guaranteed if we choose

∆hm = hb
t∆C. (3.10)

hb
t = hb

t(x, y, t) is the spatially and temporally varying actual thickness in the model

background. Thus, for the same concentration analysis update, mean-thickness

analysis updates will be small for low background actual thickness, and large for high

background actual thickness. Dulière and Fichefet [2007] found that this method

performs best when model error is mainly due to ice thermodynamics.

Proportional mean thickness analysis updates (PMT) Dulière and Fichefet

[2007] report best assimilation results for a combination of CMT and CAT, depend-

ing on whether errors are related to errors in the thermodynamic or the dynamic

forcing of the sea ice. However, in an AOGCM the attribution of errors in the sea-ice
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state to either dynamical or thermodynamical processes is not practicable. Hence,

we propose a simple new scheme that – as we will show – performs well independent

of the source of the errors. This is a scheme where the mean-thickness analysis

updates have a fixed proportionality to the concentration analysis updates:

∆hm = h∗∆C. (3.11)

The proportionality constant h∗ is a free parameter. In our experiments, we use a

value of h∗ = 2 m. That means that for an assimilation update of 1% we change the

mean ice thickness by 2 cm. However, we found that the assimilation performance

is not very sensitive to changing h∗ in the range 0.5 m ≤ h∗ ≤ 4 m. Our choice of

h∗ is supported by the frequency of occurrence of mean thickness and concentration

in the AOGCM (Section 3.6.4) and the model background error covariance between

concentration and thickness diagnosed from the AOGCM (Section 3.7).

3.3.3 Analysis updates of sea-surface temperature and salinity

Growth and melt of sea ice are strongly coupled to the properties of the sea water

directly below and adjacent to the ice. Thus, sea-ice data assimilation schemes for

a model with a prognostic ocean need to find a satisfying solution to adjust sea

surface salinity (SSS) and sea surface temperature (SST) when changing the sea-ice

state through the analysis updates.

In ECHAM5/MPI-OM, the assimilation of SST in the presence of sea ice is im-

plicitly provided by the assumption of thermodynamic equilibrium between sea ice

and the water in the ocean surface layer. If sea ice is present in the observations,

but not in the model, positive analysis updates of ice concentration merely lead to

a decrease in SST until the freezing point is reached. In this case, analysis updates

for sea ice are effectively zero, while we have negative analysis updates of SST. As

soon as ice starts to form, SST stays constant at the freezing temperature, and the

analysis updates change only the sea-ice concentration and thickness.

The SSS plays an important role for the establishment or inhibition of oceanic

convection in the presence of sea ice. If there is convection, the entrainment of warm

water from below during the deepening of the surface mixed layer can inhibit ice
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growth considerably (see, for instance, Lemke [1987]). Since growth and melt of sea

ice provide substantial freshwater fluxes into the ocean surface water, the treatment

of SSS in the analysis update will strongly interact with the sea-ice analysis. The

character of this interaction, however, is very variable and depends on the specific

local conditions. Since the covariance between ice concentration and SSS shows such

a high degree of complexity [Lisæter et al., 2003], it is not feasible to prescribe a

global time-independent functional relation between the analysis updates that ex-

ploits the existing covariance structures. We therefore restrict ourselves to the most

simple approach: whenever mean ice thickness is changed in the analysis update,

we adjust the salinity of the surface ocean layer such that the analysis update does

not introduce artificial sources or sinks of salt.

3.4 Assimilating sea-ice data in a perfect model

3.4.1 Rationale and method

When assimilating observed sea-ice concentration in an AOGCM, we face two basic

problems: (i) the ice thickness and the state of the ocean below sea ice are poorly

observed, hence we cannot determine if the assimilation improves those variables,

and (ii) we cannot decide if problems in the assimilation are due to drawbacks in

the assimilation scheme, or due to model biases.

Those issues can be addressed in a so-called perfect-model study. In the data

assimilation context, this means that we treat model output from a reference run as

observations, and assimilate it back into a different run of the same model. When

both model runs start from different but climatologically equivalent initial conditions

and are exposed to the same external forcing, the model is perfect with respect to

the reference-run observations. This allows us to disentangle the effects of model

bias and data assimilation method and to answer the question, “If the model were

perfect, would we be able to initialize it successfully with a given data assimilation

approach?”.

The reference run R is started from a long control run with preindustrial condi-

tions, and then exposed to the observed greenhouse-gas forcing from 1900 onwards.

In the reference run, the overall decrease of northern-hemisphere sea-ice extent is
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comparable to observations, although the retreat of summer-time sea ice is some-

what underestimated. A detailed description of the deficiencies of the IPCC-AR4

version of this model in simulating northern-hemisphere sea ice is given by Koldunov

et al. [2010].

From the reference run, we branch off a perturbed run P in 1979. The applied

perturbation is very small but is quickly amplified by chaotic processes, and we

obtain an equivalent but different realization of natural climate variability in the

perturbed run. Important large-scale modes of climate variability, like ENSO, the

slow components of the Atlantic meridional overturning circulation, and interannual

variations in sea-ice cover are out of phase between the two runs.

The assimilation run A starts from the same initial conditions as the perturbed

run P , but assimilates the ice concentration from the reference run R. The time

period considered is 1979 to 2007, so that we can later compare the assimilation of

ice concentration from model output to the assimilation of ice concentration from

satellite observations.

To quantify the usefulness of the data assimilation, we measure the mismatch

of a climate variable X between any two timeseries with the root–mean–square

differences between the two timeseries:

δXT1T2
=

√
〈(XT1

(t) − XT2
(t))2〉. (3.12)

The expectation value 〈·〉 is meant to be taken over time for aggregated quantities

like northern-hemisphere sea-ice extent, and over time and space for field variables

like sea-ice concentration.

Using (3.12), we can compare the natural variability δXRP with the assimilation

error δXRA. Only if δXRA < δXRP does the assimilation actually improve the

initialization of X in the model. For a perfect initialization of X, we would have

δXRA = 0.

3.4.2 Results

The most relevant quantities when investigating sea-ice data assimilation are the

mean ice thickness hm and the ice concentration C. In the following, we will therefore
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restrict ourselves to quantifying the improvement of these quantities.

Fig. 3.1 shows how successfully the different assimilation schemes allow the as-

similation run A to match the yearly-mean sea-ice extent and sea-ice volume of the

reference run R. The reference run has generally decreasing sea-ice extent and sea-

ice volume in response to the warming background climate. Additionally, there are

year-to-year variations as well as decadal-scale variations in the sea-ice state. For

instance, between 1988 and 1991 sea-ice extent increases, stays relatively high until

1998, and then drops sharply to the lowest value of the time series in 2000. We con-

sider a sea-ice data assimilation successful only if (i) A has the same climatology as

R, i.e. the multi-year running means are the same, (ii) A shows similar decadal-scale

anomalies as R, and (iii) A has year-to-year anomalies comparable to R.

The CMT assimilation scheme fails in all three criteria: it does not reproduce the

decreasing trend in sea-ice volume, the period between 1984 and 1992 that should

see a negative anomaly in sea-ice volume actually has a positive anomaly, and the

small year-to-year fluctuations are not captured at all. The CAT run has a negative

bias, but reasonably captures year-to-year and decadal variations. Finally, the PMT

run meets all three criteria set above, and by far provides the best assimilation

performance.

Table 3.1 shows the time-averaged error in sea-ice extent δSIE and sea-ice volume

δSIV as defined in eq. (3.12). Although all assimilation methods decrease the error

in sea-ice extent with respect to the reference run, we see that only PMT reduces the

error in sea-ice volume below the level set by natural variability (no assimilation).

To analyze the seasonal cycle of the assimilation errors, we calculate the dis-

crepancy in concentration δC and mean thickness δhm for the Arctic Ocean with

eq. (3.12), taking the time mean separately for each month of the year (Fig. 3.2).

Since the Arctic Ocean is essentially ice-covered during winter, even the no-assim-

ilation run exhibits only small natural variations in sea-ice concentration, with

δCRP ≈ 5−8 %. The summer melt, however, is much more variable, and concentra-

tion variability in the no -ssimilation run reaches 24% in September and October.

Clearly, all assimilation methods are able to significantly reduce the concentration

discrepancy δC, although there are marked differences between the methods. The

CMT gives the worst performance, and the PMT gives the best performance, reduc-

ing concentration error to about 5% year-round.
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Figure 3.1: Yearly-mean sea-ice extent (left) and sea ice volume (right) in the north-
ern hemisphere for the perfect-model study. Shown are the reference run (black),
the perturbed run with no assimilation (gray), and the assimilation runs (colors)
that assimilate sea-ice concentration from the reference run. The corresponding
time-averaged global extent and volume errors δSIE and δSIV are given in Table
3.1.

Perfect model Observations
δSIV(1012m3) δSIE (1012m2) δSIE(1012m2)

no assimilation 2.1 0.6 0.4
CMT assimilation 2.4 0.5 0.5
CAT assimilation 2.1 0.4 0.4
PMT assimilation 1.0 0.1 0.1

Table 3.1: Comparison of the time-averaged difference in ice extent and ice volume
between a reference run and (i) a run without data assimilation, (ii) an assimilation
with conservation of mean thickness (CMT), (iii) an assimilation with conservation
of actual thickness (CAT), and (iv) an assimilation with proportional mean-thickness
updates (PMT).
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Figure 3.2: The average point-wise root-mean-square error in sea-ice concentration
δC (left) and sea-ice mean thickness δhm (right) in the Arctic Ocean for each month
of the year for the perfect-model study. All errors are obtained from the differences
to the reference run.
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The error in mean thickness δhm is shown in the right panel of Fig. 3.2. The

natural variability δhm(R, P ) is about 40 cm in winter and about 50 cm in summer.

It is evident that the CMT does not decrease, but even increases the error of mean

ice thickness, i.e. δhm(R, P ) < δhm(R, A). This is quite a dramatic failure of the

data assimilation method. In Sections 3.6 and 3.7 we will see that there are good

conceptual arguments why the CMT is not a suitable assimilation method in an

AOGCM. The two other methods (CAT and PMT) successfully reduce the thickness

error. Again, PMT has the lowest thickness error; it is about 25−30 cm year-round.

Note that the assimilation is most successful in summer, as it halves the error in the

mean ice thickness compared to the natural variability.

3.5 Assimilating sea-ice observations

We now investigate how successfully we can assimilate satellite observations of sea-

ice concentration into the coupled climate model. The observations are derived

from Nimbus-7 SMMR and DMSP SSM/I passive microwave data, processed by the

NSIDC with the NASA team algorithm [Cavalieri et al., 1996, updated 2008]. Tem-

poral resolution of the data is every two days, which we interpolate to daily values.

The horizontal resolution is 25km, which we interpolate to the model resolution of

about 50–200km. For an estimate of uncertainty in the sea-ice concentration obser-

vations, the reader may refer to Tonboe and Nielsen [2010], who arrive at an error

estimate of around 10% on average. The assimilation methods we employ in this

section are exactly the same as in the perfect-model study.

3.5.1 Ice concentration

From Fig. 3.3 we see that the annual-mean state of ice extent in ECHAM5/MPI-OM

without data assimilation is reasonably close to the observed state. Of course, there

are marked differences between the free model and the observations that are caused

by natural variability – for instance, at the observed extreme extent minimum in

2007 the model actually has a temporary extent maximum.

Fig. 3.3 shows the northern-hemisphere yearly-mean ice extent from observations,

from the AOGCM with no data assimilation, and from the AOGCM when concen-
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tration observations are assimilated. Comparing Fig. 3.3 with Fig. 3.1, we see that

the conclusions regarding the performance of the different methods are the same as

in the perfect-model study: CMT fails as a sea-ice data assimilation approach in

all quality criteria, CAT reproduces natural variability somewhat, but has a biased

mean state, and PMT has both an acceptable mean state and reproduces natural

variability satisfyingly. Considering the time-averaged measure for the assimilation

error in sea-ice extent, δSIE, we see that only PMT is able to reduce δSIE below

the no-assimilation case (see Table 3.1).

The seasonal cycle of sea-ice concentration error in the Arctic (Fig. 3.4) also

resembles the result from the perfect-model study (Fig. 3.2). Note, however, that

during summer the free model state now exhibits larger errors of up to 30%. Also,

the errors for CMT and CAT are twice as large as in the perfect-model study, while

the PMT shows only a slight increase in δSIE compared to the perfect model study.

In summary, we find that assimilating observations in ECHAM5/MPI-OM gives

results for ice-extent and ice- concentration error that are very similar to the results

of assimilating output of the same model. This indicates that the overall assimilation

performance is dominated by deficiencies in the assimilation techniques, rather than

model biases.

3.5.2 Ice thickness

There are currently only few large-scale ice thickness measurements available, and

their reliability is not well known. For the purpose of comparing our simulated

ice thickness with observations, we choose the ice thicknesses from ICESat laser

altimeter measurements between 2005 and 2008 processed by Yi and Zwally [2010].

These data have complete coverage of mean sea-ice thickness data north of 65◦N.

Unfortunately, they are only available for a few discontinuous months, when the laser

altimeter on the satellite was in operation. Due to the details of the measurement

techniques, the thickness field from ICESat data can only be given as monthly

means.

We compare the ice thickness averaged over the Arctic Ocean from ICESat mea-

surements with the ice thickness from the PMT assimilation run. Uncertainty for

the Arctic-Ocean average thickness from observations is estimated by Kwok and
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Figure 3.3: Yearly-mean ice extent in the northern hemisphere from observations
(black), a model run with no assimilation (gray), and from the different assimilation
methods (colors). The corresponding time-averaged global extent errors δSIE are
given in Table 3.1.

Figure 3.4: The average point-wise error in sea-ice concentration for the Arctic Ocean
for each month of the year. All errors are obtained from the differences to the
observed concentration fields.
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Figure 3.5: Comparison of modelled Arctic average ice thickness with ICESat ob-
servations. ICESat observations are only available as an average value for the time
periods given by the red horizontal bars, and the model averages for the same time
periods given by the orange and black horizontal bars.

Rothrock [2009] to be about 30 cm. Fig. 3.5 shows the average Arctic Ocean ice

thickness from 2005 to 2007 in the model without assimilation and in the PMT

assimilation run, in comparison with the ICESat observation. While the PMT as-

similation improves the agreement between model and observations during early

freeze-up in November 2005 and 2006, it causes the model to overestimate ice thick-

ness later in the growth season (March 2006 and 2007). We feel that at present we

cannot decide whether this is due to deficiencies in the model or deficiencies in the

observations. However, the negative ice-volume anomaly in November 2007, which

is very prominent in the observations, is captured well by the assimilation run.

We would like to point out that a thorough evaluation of modelled thickness with

respect to observations is impossible at present, due to sparseness and uncertainty

of sea-ice thickness observations. Therefore, we interpret the comparison of model

thickness with ICESat thickness merely as a first indication that there is some skill

in initializing sea-ice thickness anomalies in our experimental setup, and refer the

reader to the perfect-model study for a robust quantification.

43



3 Sea-ice data assimilation

3.6 Physical aspects of understanding assimilation

errors: how the ice model thermodynamics

respond to analysis updates

We have seen in the previous sections that assimilating sea-ice data in an AOGCM

does not necessarily lead to an improvement of the simulated sea-ice state. In

particular, the assimilation of ice concentration can deteriorate the representation

of ice thickness. In this section, we present lines of reasoning from a physical point

of view that help to understand these assimilation errors.

After each analysis update, the model-calculated tendencies of prognostic vari-

ables are different than the tendencies before the analysis update. This can create

undesired side-effects on unobserved variables and create feedback loops that impede

skillful assimilation. We focus on sea-ice concentration as the observed variable, and

mean sea-ice thickness as the most important variable that is not observed. We will

see that the poor performance of CMT can be explained by analyzing how the

model’s ice thermodynamics respond to analysis updates. Some remarks on how the

model’s ice advection responds to analysis updates are given in Appendix 3.B.

3.6.1 A simple prognostic ice growth model

We discuss the equations for the sea-ice thermodynamics as they are implemented

in ECHAM5/MPI-OM. After several simplification we arrive at a closed set of

prognostic equations for the ice concentration C and mean ice thickness hm. These

equations constitute a simple ice-energy-balance model (IEBM), which we use to

analyze the ice growth rate for different atmospheric forcing regimes and to study

how the analysis updates affect the thermodynamics of the ice.

The first simplification we make is to neglect sea-ice advection. Since melting

and freezing of ice are local processes, we can solve the prognostic equations for

mean thickness (3.1) and concentration (3.2) for each point in space separately. The

thermodynamic source terms for sea-ice mean thickness Sh (eq. (3.5)) and sea-ice

concentration SC (eq. (3.6)) are determined by a balance of atmospheric and oceanic

heat fluxes at the sea-ice interfaces. An oceanic heat flux is established when sea
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water warmer than the freezing temperature is brought into contact with the ice,

while an atmospheric heat flux occurs at the interface between atmosphere and

sea-ice or open water.

Since the dominant contribution to the sea-ice energy balance in the Arctic is typ-

ically the surface radiation [Maykut and Untersteiner , 1971; Serreze et al., 2007b],

we neglect oceanic and atmospheric turbulent surface heat fluxes as a first approxi-

mation and write

gw,i = −
1

ρL

(
(1 − αw,i)SW↓ + LW↓ − σT 4

w,i

)
, (3.13)

where the subscript w denotes the open-water part of the surface, and i denotes the

ice-covered part. The heat fluxes are converted to growth rates by multiplying with

the negative ratio of sea-ice density ρ and the latent heat of fusion for water L. SW↓

and LW↓ are the downwelling shortwave and longwave radiation at the surface, and

αw,i is the albedo of open water or sea ice. In ECHAM5/MPI-OM, the surface tem-

perature of open water in a partly ice-covered grid cell is always at a representative

sea-water freezing temperature Tw = −1.9 ◦C, and the ice surface temperature Ti

is calculated from the balance of heat fluxes at the ice surface. We prescribe the

atmospheric downwelling radiation as an external forcing and determine Sh and SC

as a function of ice state and forcing. Thereby, we can convert (3.1) and (3.2) into

a closed set of two coupled ordinary differential equations, which are forced by the

time-dependent downwelling radiation at the surface. Please refer to Appendix 3.A

for details of the derivation.

3.6.2 Dependence of ice growth on atmospheric forcing

With (3.13) we have an explicit expression for the ice growth rate, and we can

study how it depends on the atmospheric forcing. If we are able to identify forcing

regimes that differ among each other in the way the sea-ice thermodynamics reacts

to changes in concentration, we will have important information for assessing the

effects of the data assimilation on the prognostic equations.

Fig. 3.6 shows the net growth rates derived from the IEBM for a typical sea-ice

state of 1 m mean thickness and 70% concentration. We can identify three different
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regimes, which are separated by the zero-growth contour over open water gw = 0

and the zero-growth contour over ice gi = 0. Importantly, the zero-growth contours

are independent of the state of the ice and constitute the boundaries between three

different forcing regimes.

In the winter regime, freezing occurs both over ice and over open water (gw >

0, gi > 0). The net ice growth rate g decreases for increasing concentration, because

shortwave absorption is negligible and the longwave heat loss over open water domi-

nates. For the autumn/spring regime, growth rates are generally small. Open-water

growth rate is negative, whereas growth rate over ice is positive (gw < 0, gi > 0).

In the summer regime, melting occurs both over open water and over ice (gw <

0, gi < 0). The net growth rate increases with increasing concentration, because the

shortwave-albedo effect dominates over the longwave heat loss.

3.6.3 Dependence of ice growth on ice concentration

To quantify the dependence of growth rate on ice concentration, we select two rep-

resentative forcing conditions: one for winter with SW↓ = 0 Wm−2 and LW↓ =

220 Wm−2 (marked with a blue dot in Fig. 3.6), and one for summer with SW↓ =

160 Wm−2 and LW↓ = 300 Wm−2 (marked with a red dot in Fig. 3.6). We calculate

growth rates from the radiative budget of the IEBM described above, but there are

two other contributions to the growth rate that we have neglected so far: the sensible

and latent atmospheric heat flux, and the oceanic heat flux. Capturing these effects

goes beyond the scope of the IEBM, but we can diagnose them from daily-mean

fields of a long AOGCM run.

Fig. 3.7 shows a synthesis of ice growth rates derived from the IEBM, and the

occurrence of ice growth rates as diagnosed from the AOGCM. During summer (Fig.

3.7a–c), the single curve obtained from the IEBM approximates the occurrence of

growth rates diagnosed from the AOGCM quite well, implying that oceanic con-

tributions to ice melt as well as turbulent atmospheric heat fluxes are negligible.

This is readily explained since the near-surface atmosphere is close to the melting

point, so that turbulent heat fluxes at the surface are small. At the same time,

the ocean surface is warmed and becomes fresher, so that it gains buoyancy, and

therefore convection is inhibited. Both in the IEBM and in the AOGCM, we observe

46



3.6 Physical aspects of assimilation errors

0 50 100 150 200 250 300 350
150

200

250

300

350

SW¯ HWm- 2
L

L
W
¯
H
W

m
-

2
L

W

S

Jan Mar

Apr

May

Jun

Jul
Aug

Sep

Oct

2

1

0

- 0.5

- 2

- 3

- 4

- 5

g
i = 0

T
i = 0°C

g
w
+

g
i =

0
g

w
=

0

Figure 3.6: Contour plot of ice growth rates in cm/day for mean ice thickness
hm = 1 m and ice concentration C = 0.7. On the x-axis is the downwelling short-
wave radiation, on the y-axis the downwelling longwave radiation. The black dots
correspond to the typical monthly-mean forcing in the Arctic according to Maykut
and Untersteiner [1971]. The blue and white lines mark the zero-crossing of the
growth rates for open water and over ice, which are independent of the state of the
ice. The thick black line is the zero-crossing of net growth rate, and depends on the
state of the ice. At the dashed gray line, the ice surface temperature is at the melt-
ing point of 0◦C. The larger blue and red dots, labelled “W” and “S”, mark typical
winter and summer conditions, for which the conditional probability distributions
of growth rate in Fig. 3.7 are calculated.
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a strong dependence of net ice growth rate on concentration: for the chosen atmo-

spheric summer forcing, ice melts at the rate of 1cm/day for 100% ice concentration,

whereas it melts at a rate of more than 4cm/day for very low ice concentration.

In winter, the IEBM is not a good approximation to the sea-ice thermodynamics

in the AOGCM. As Fig. 3.7d shows, the curve determined from the radiative bud-

get in the IEBM is actually at the lower boundary of the probability distribution of

atmospheric growth rates. For open-water conditions, the IEBM predicts an atmo-

spheric growth rate of 2cm/day, whereas the most frequent value in the AOGCM is

5cm/day, and even values of 8cm/day occur quite often. The missing contribution

comes from the turbulent atmospheric heat flux, which can be very large over open

water during winter. Only if the near-surface atmosphere stratification is very stable

and near-surface winds are very weak, does the turbulent heat flux become so small

that the AOGCM exhibits the dependence derived from the radiation budget in the

IEBM.

Additionally, in winter the oceanic contribution to ice growth becomes large (Fig.

3.7e). The oceanic contribution can be due to horizontal advection of warm water

under the ice, upwelling of warm water through Ekman suction, or entrainment of

warm water when the surface mixed layer deepens. The model shows high ocean–

ice heat fluxes predominantly close to the ice edge. The diagnostic we use does

not differentiate between the processes, but we believe that the major contribution

comes from entrainment of warm water from below during the deepening of the

surface mixed layer. As Lemke [1987] pointed out, especially at the onset of freezing

the convection can be vigorous enough to explain the magnitude of the ocean–ice

heat flux that we see in the model.

For low ice concentration in winter, the ocean–ice heat flux strongly inhibits ice

growth. The most frequent value of the heat flux, expressed as an equivalent melt

rate, is 4cm/day, and even much larger values are possible (Fig. 3.7e). This compen-

sates the large atmosphere–ice heat flux (Fig. 3.7d), so that the net growth rate in

winter depends only weakly on the concentration (Fig. 3.7f). Nevertheless, since sea

ice is closely coupled to the surface mixed layer below, it is the heat content of the

coupled system sea-ice–surface-mixed layer that is essential for the evolution of the

ice. This heat content is determined by the atmospheric heat flux, and we therefore

argue that the atmospheric growth rate in winter is more important than the net
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Figure 3.7: Conditional probability densities with which heat fluxes contributing to
sea-ice growth occur for a given sea-ice concentration. The occurrence probabilities
are diagnosed from a long run of ECHAM5/MPI-OM for representative summer
(a–c) and winter (d–f) conditions. Heat fluxes are given as equivalent ice growth
rates (1cm/day =̂ 35 Wm−2). Heat fluxes shown in (a)+(d) are between the ice and
the atmosphere, and in (b)+(e) between the ice and the ocean. (c)+(f) show the
net growth rates of the sea-ice, which are equivalent to the sum of atmospheric and
oceanic heat flux into the ice. The dashed green line is the dependence found in the
simple radiative ice-energy balance model.
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growth rate. The heat that goes from the mixed layer into the ice and inhibits ice

growth cools the sea water, so that ice formation is affected at a later time.

3.6.4 Implications for sea-ice data assimilation

The dependence of ice growth rate on the concentration, as detailed in the previ-

ous section, has important implications for sea-ice data assimilation. In summer,

the melt rate decreases strongly with increasing concentration. A positive analysis

update of concentration will therefore lead to less melt. Through the dependence

of the concentration rate of change on the thickness rate of change (eq. (3.6)), this

will lead to still higher values of concentration, so that a positive feedback on the

analysis updates is established. In winter, the (atmospheric) growth rate strongly

decreases with increasing concentration. A positive analysis update of concentra-

tion will lead to less growth, and through (3.6) a negative feedback on the analysis

updates is established.

We use the IEBM from the previous section to quantify this effect and illustrate

the difference between the CMT and PMT assimilation techniques. With a con-

tinuous version of the relaxation terms discussed in Sec. 3.3, the IEBM equations

read

dC

dt
= SC = Θ(gw)

gw

h0

(1 − C) + Θ(−Sh)
C

2hm

Sh + T−1
R (C − Co) (3.14)

dh

dt
= Sh = giC + (1 − C)gw + f(T−1

R (C − Co)). (3.15)

The last term on the right-hand side of (3.14) assimilates (nudges) the idealized

concentration observations Co into the model with a relaxation time TR of 10 days.

The last term on the right-hand side of (3.15) represents the different forms of the

functional dependence between the mean-thickness analysis update and the concen-

tration update that we investigate (CMT, CAT or PMT).

As an idealized test case, we prescribe constant forcing for one month and com-

pare the evolution of C and hm with and without the assimilation terms. We choose

the same winter and summer forcing as in the last section and focus on those com-

binations of modeled and observed ice conditions that are problematic for the data

assimilation.
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Figure 3.8: Trajectories of the sea-ice state in the ice energy balance model (IEBM)
with and without assimilation for one month of constant winter conditions (a), and
summer conditions (b). The black trajectory is the IEBM without assimilation, the
blue trajectory is with CMT assimilation, and the orange trajectory is with PMT
assimilation. The target ice concentration is marked by a thin vertical line, and
trajectories start with the same initial conditions marked by a circle. The nudging
parameters are as in the AOGCM experiments. Mean ice thickness for a given
concentration in the AOGCM is typically within the gray shaded area.

For the winter test case (Fig. 3.8a), the trajectories start from high concentration

and 1 m mean thickness. Since the forcing implies freezing conditions, both concen-

tration and mean thickness increase when there is no nudging. When we nudge the

model to low ice concentration, the concentration initially decreases, but after one

month the model and nudging tendencies for concentration almost compensate, and

concentration stays constant at an intermediate level. For the mean ice thickness,

we observe contrasting behavior for PMT and CMT. The CMT trajectory still goes

to higher thickness, and even outgrows the free trajectory. It therefore enters a state

of low sea-ice concentration and high mean ice thickness, which is rather unphysical

and not typically seen in the AOGCM. On the other hand, the PMT trajectory

decreases mean ice thickness, and hence stays within the region of typical ice states.

For the summer test case (Fig. 3.8b), we let the trajectories start at low concen-

tration and 0.2 m mean thickness. The trajectory without the relaxation term goes

to an ice-free state within a month. When we nudge towards high concentration,

the behavior of PMT and CMT is again very different. The CMT trajectory loses

ice volume; since for constant forcing the concentration loss is higher for thinner ice
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(see eq. (3.6)), concentration only initially increases, but soon the thermodynamic

tendency outweighs the nudging tendency. Consequently, the CMT trajectory also

becomes ice-free within a month, even though the data assimilation aims at increas-

ing the ice concentration. On the other hand, the PMT trajectory gains ice volume,

and stays inside the region of typical ice states.

In the coupled model, an indication for the problematic behavior of the CMT

method is found in the winter-time Barents Sea (Fig. 3.9). During the 1990s, the

Barents Sea was mainly ice-free during winter, as derived from the satellite ob-

servations, whereas the model without assimilation is biased towards ice-covered

conditions. When assimilating the observed ice concentration, the ice concentration

in this area decreases, but the decreased concentration leads to enhanced thermo-

dynamic ice growth rates. As a result, there is unrealistically high ice volume in

conjunction with a reduced ice concentration if the CMT method is employed. Only

when we apply PMT, this effect is averted, as the nudging updates of ice volume

compensate the excessive thermodynamic growth rates. Fig. 3.9 shows the compar-

ison of ice concentration and mean thickness for both methods.

3.7 Statistical aspects of understanding assimilation

errors: model error covariances and weight

matrices

We now take a different view on assimilation errors: instead of examining the sea-

ice prognostic equations and how analysis updates affect them, we examine the

covariance structure of thickness and concentration errors in the AOGCM. There

is a well-established theory that connects these so-called model background errors

with the optimal analysis update (see, for instance, Bouttier and Courtier [1999] or

Kalnay [2003]). The analysis updates we apply are not optimal, but derived from

the simple nudging approach. Nevertheless, we can map our different choices for

the analysis update to different model background errors that are implied under the

assumption of optimality. If then the implied model background errors are clearly

unrealistic, we can argue that the assimilation method is prone to fail, since it is very
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Figure 3.9: Average March conditions 1990–1999 when assimilating observed sea-ice
concentration in the AOGCM with the CMT method (top) and the PMT method
(bottom). Ice concentration is similar in CMT and PMT, and quite close to obser-
vations (left). However, mean ice thickness (right) is much too high for CMT, and
realistic for PMT.
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far from being optimal. We use a notation closely following Bouttier and Courtier

[1999] and briefly introduce the basic terminology in the following paragraphs, before

we apply the general terms to our setup from eq. (3.19) on.

The state of a model that has v variables and p grid points is encoded in the

state vector x, a column vector with p · v entries. To obtain the analysis xa, i.e. our

estimate of the true state xt, the model background xb is updated with a term that

depends on the departure of the model state from the observations y:

xa = xb + K(y − Hxb). (3.16)

The observation operator H maps the o observations to the vp-dimensional state

vector x and therefore is a matrix with dimensions o× vp. The (vp×o)-dimensional

matrix K determines how discrepancies between observations and the model state

translate to analysis updates. It is called the gain, or weight matrix. If the weight

matrix is chosen according to

Kopt = BHT (HBHT + R)−1, (3.17)

then the analysis (3.16) is the best linear unbiased estimator of the true state [Bout-

tier and Courtier , 1999].

The optimal weight matrix Kopt is related to the covariance matrices of back-

ground and observation errors B and R, defined by

B := 〈(ǫb − ǭb)(ǫb − ǭb)
T 〉 R := 〈(ǫo − ǭo)(ǫo − ǭo)

T 〉. (3.18)

The model background error ǫb := xb − xt describes the discrepancy between the

modelled and the true state just before an analysis update. Therefore, ǫb depends

not only on the error of the model itself, but also on the applied analysis updates

and the time interval between them. The observation error ǫo := y−Hxt expresses

that the reported value of an observation is not a perfect image of reality, but is

distorted due to instrumental and discretization errors. B has dimensions pv × pv,

and R has dimensions o × o.

After introducing the general terminology, we now apply it to our setup. Because

the simplicity of the setup allows for several algebraic simplifications, we can de-
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rive concise expressions that are useful for understanding the interplay between ice

thickness and ice concentration errors. We order the state vector x so that it starts

with the entries for ice concentration C and ice mean thickness h, followed by all

other model variables:

x :=
(
C1, . . . , Cp, h1, . . . , hp, . . .

)T

. (3.19)

Sea-ice concentration is the only variable observed, and we are not interested in

issues related to the interpolation from observation points to model points. Thus,

we can assume a very simple form for the observation operator:

H =
(
I 0 . . .

)
, (3.20)

with I denoting the p × p identity matrix and 0 denoting the p × p zero matrix.

Furthermore, the observation error covariance matrix R reduces to the p×p matrix

RCC .

We partition the model error covariance matrix and the weight matrix into p × p

submatrices that respectively describe the covariance between each two variables in

the model and the gains for each model variable resulting from the concentration

observations:

B =





BCC BhC . . .

BCh Bhh . . .
...

...
. . .



 K =





KCC

KCh

...



 (3.21)

Using equations (3.19)–(3.21), the analysis update (3.16) can be written as





Ca

ha

...



 =





Cb

hb

...



 +





KCC

KCh

...



 (Co − Cb) , (3.22)

and the optimal weight matrix (3.17) reduces to a form that shows how the concen-
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tration and thickness background errors enter the optimal weight matrix:

Kopt =





BCC

BCh

...




(
BCC + RCC

)−1

. (3.23)

Eq. (3.23) tells us how to obtain the optimal analysis update when we already

know the correct statistics of the background and observation errors. Determining

these error statistics is a difficult task within the data assimilation framework. Here,

we are only interested in conceptual statements that can be derived from the error

covariances, and so we estimate them using simplifying assumptions. We assume

that the observation error covariance RCC is spatially uncorrelated and corresponds

to a constant uncertainty of 10%. This value is a reasonable average error for

concentration observation according to Tonboe and Nielsen [2010]. We estimate

the background error covariances BCC and BCh from the daily differences between

concentration and thickness of two long independent model runs. These background

errors apply when the time interval between analysis updates is very large. For

shorter time intervals between the analysis updates (one day for our setup), the

absolute magnitude of the covariances is smaller, but we expect their spatial structure

to be the same. For instance, in the central Arctic the sea-ice concentration is

usually high, and thus we expect a low concentration background error variance,

whereas in areas that experience a pronounced seasonal cycle of both thickness and

concentration we expect substantial background error covariance.

For the analysis updates of mean thickness, eq. 3.23 defines the optimal weight

matrix

K
opt
Ch = BCh

(
BCC + RCC

)−1

. (3.24)

In our setup, we use weight matrices derived not from the optimality condition, but

from an ad hoc nudging approach. Nevertheless, we can ask the following question:

“Suppose the weight matrix KCh we use is optimal, and we know the background er-

ror covariance for concentration BCC , what would be the corresponding background

error covariance between concentration and thickness BCh?” If the background

covariance that is implied by a prescribed nudging weight matrix KCh looks unre-
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alistic, we can conclude that the weight matrix is far from being optimal and reject

an assimilation scheme that uses this weight matrix as being inconsistent.

For CMT, we do not update mean thickness at all, and so

KCMT
Ch = 0

Optimality
⇐⇒ BCMT

Ch = 0. (3.25)

For CAT, we see from eq. (3.10) that nudging weights vary in time and space,

depending on the background actual thickness. We derive a time-averaged analysis

update by diagnosing a diagonal matrix ht that contains the time average of actual

ice thickness at each grid point over a long model run on the diagonal. With this,

the average weight matrix and implied background error covariance are

KCAT
Ch = KNht

Optimality
⇐⇒ BCAT

Ch = KNht(BCC + RCC). (3.26)

Finally, for PMT the weights are constant. Together with their implied background

error covariance they are given by

KPMT
Ch = KNh∗I

Optimality
⇐⇒ BPMT

Ch = KNh∗(BCC + RCC). (3.27)

The different background error covariances are compared in Fig. 3.10 by showing

maps of their scaled diagonal elements. The absolute value of the covariances are

not important, since they depend on the time interval between the analysis updates.

However, the spatial distribution of high and low covariances has a large influence

on the assimilation performance, as they determine the relative strengths of the

optimal weights.

From Fig. 3.10b we see that background error covariances diagnosed from free

model runs are low in the perennial ice zone of the central Arctic, since there the

concentration is always high, and low at the southern edge of the seasonal ice zone,

since there the mean ice thickness is always low. In between, there is a region where

mean ice thickness and ice concentration co-vary strongly.

The CMT analysis updates imply a covariance structure that is unrealistic: it

is zero everywhere. This implies a perfect representation of thickness forecasts in

the model, which is a bad assumption, as we have seen in Section 3.6. Therefore,

the CMT weight matrix is far from being optimal. Already from this simple anal-
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Figure 3.10: Scaled diagonal elements of the background error covariance matrices;
(a) implied when analysis updates conserve actual thickness, (b) best estimate from
a long free model run, and (c) implied by proportional mean-thickness analysis
updates. The background error covariance implied by analysis updates that conserve
mean thickness is zero everywhere. For an interpretation of the figure see main text.

ysis of background error covariance one could have expected the poor assimilation

performance seen in Section 3.4 and 3.5.

The CAT updates imply a covariance structure that resembles our best guess rea-

sonably well, so that one would expect a useful assimilation performance (Fig. 3.10a).

However, some discrepancies stand out: The implied thickness-concentration co-

variance is too high in the central Arctic, indicating that the weights for updating

mean thickness are too large there. This is potentially problematic, because large

analysis updates in areas of thick ice create problems related to ice advection (see

Appendix 3.B). On the other hand, the implied covariance is too low in the Bering

Sea, the Labrador Sea, and the Barents Sea. One would expect the method to have

difficulties assimilating observations there, since the analysis weights are too small.

Finally, the PMT updates shown in Fig. 3.10c imply a concentration-thickness

covariance structure that is very close to our best guest. There is a tendency to

underestimate covariance in the Arctic shelf seas, and to overestimate it in the

Hudson and Baffin Bays, but overall there is good agreement.

We conclude that the comparison of the background error covariances implied by

the chosen nudging weight matrices KCh corroborates the experimentally found
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differences between the assimilation performance of the CMT, CAT, and PMT

methods. Moreover, we think that the examination of implied background error

covariance is a useful guideline for designing weight matrices: only if the implied

background error covariance looks plausible, we can expect a good performance of

the assimilation method.

3.8 Summary and conclusion

This study is one of only few to deal with sea-ice data assimilation in a global

climate model. We restrict ourselves to observations of northern-hemisphere sea-

ice concentration, and employ a simple Newtonian relaxation approach. Analysis

updates for the mean sea-ice thickness in a grid cell are prescribed as a function of

the concentration analysis updates.

We assess the assimilation performance for three different approaches for the mean

thickness analysis updates. The first approach keeps the mean thickness constant

during the analysis update (CMT). The second approach keeps the actual ice thick-

ness constant (CAT). CMT and CAT have been suggested and used before in sea-ice

data assimilation [Dulière and Fichefet , 2007], but we find that in our assimilation

setup they do not give satisfying results. Therefore, we introduce a third approach,

which prescribes a fixed proportionality between concentration updates and mean

thickness updates (PMT).

We find that PMT has much lower assimilation errors than the other two methods.

For synthetic observation data derived from output of the same model, PMT reduces

the error in northern-hemisphere sea-ice extent by a factor of 6 and the error in

northern-hemisphere sea-ice volume by a factor of 2, when compared to a model run

without assimilation. Similar values are obtained for the gridpoint-wise error in ice

concentration and mean ice thickness in the Arctic Ocean. For the assimilation of

observed sea-ice concentration between 1979 and 2007, the extent error is reduced

by a factor of 4, while a comparison with the few direct observations of sea-ice

volume that are available suggests that at least the volume anomaly in 2007 is well

captured.

The simplicity of the assimilation scheme allows us to investigate the potential
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sources of assimilation errors with conceptual tools. Using a simple model for the

local ice energy balance, and histograms of heat fluxes in the AOGCM, we quantify

how sensitively the ice growth rate depends on ice concentration. Because of this

sensitivity, the assimilated change in sea-ice concentration often causes an unrealistic

change in mean ice thickness. We conclude that this causes the unacceptable assimi-

lation errors in the CMT approach, where no adjustments to the mean thickness are

made during the analysis update. We argue that ice concentration assimilation that

aims at conserving mean ice thickness during the analysis update is therefore not

feasible in an AOGCM, although it may work in ice–ocean models that are forced

by atmospheric surface conditions [Lindsay and Zhang , 2006; Stark et al., 2008].

Instead, in an AOGCM the assimilation method should update mean ice thickness

in accordance with the model background error covariance between concentration

and mean thickness.

The spatial structure of the background error covariance between concentration

and thickness – as implied by the nudging weight matrix – is unrealistic for CMT,

reasonable but deficient for CAT, and realistic for PMT. This finding gives an in-

dependent explanation of the differences in assimilation performance we find exper-

imentally.

We conclude that skillful sea-ice initialization in an AOGCM from ice-concentration

data is possible even with a simple Newtonian relaxation scheme if we choose an ap-

propriate functional relationship between concentration and mean-thickness analysis

updates.
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Appendix 3.A A simple radiative sea-ice energy

balance model

We start from the full model equations for mean thickness (3.1), concentration

(3.2), and the thermodynamic source terms (3.5) and (3.6). Neglecting advection,

the system reduces to two coupled ordinary differential equations:

dhm

dt
= giC + (1 − C)gw (3.28)

dC

dt
= Θ(gw)

gw

h0

(1 − C) + Θ(−Sh)
C

2hm

Sh. (3.29)

An explanation of the symbols is given in the main text.

To obtain a closed system of equations, we need to determine how the growth rates

gw and gi depend on the forcing, i.e. downwelling longwave and shortwave radiation

at the surface, and the state of the ice, i.e. concentration and mean thickness. These

growth rates are directly proportional to the heat fluxes via

gw,i = −
ρ

L
qw,i, (3.30)

where ρ is the density of sea ice, and L is the latent heat of fusion for water.

As motivated in the main text, we neglect turbulent atmospheric surface heat

fluxes and oceanic heat flux to the bottom of the ice, and write the net heat fluxes

over open-water qw and over ice surface qi as

qw,i = (1 − αw,i)SW↓ + LW↓ − σT 4
w,i. (3.31)

The heat flux over open water in a partly ice-covered grid cell is easy to determine:

the temperature of that open water is at the freezing point, so that the the upwelling

longwave radiation is constant. The heat flux over ice is more difficult, since it

depends on the ice surface temperature Ti. The ice surface temperature has to be

determined from the balance of the heat flux at the ice surface qi with the conductive

heat flux through the ice qc and a residual heat flux qr that goes into surface melt:

qi = qc + qr. (3.32)
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The conductive heat flux through the ice is assumed to be proportional to the

difference between the temperature at the top of the ice Ti and the temperature at

the bottom, which is always at the freezing temperature Tf . This is the so-called

0-layer model for ice growth suggested by Semtner [1976]. The proportionality

constant is the heat conductivity of ice k divided by the actual ice thickness ht =

hm/C. The conductive heat flux as a function of ice surface temperature then is

qc(Ti) =
kC

hm
(Ti − Tf ) . (3.33)

In our model, sea ice is assumed to melt at the freshwater melting temperature

Tm = 0◦ C at the top. When Ti < Tm, there is no surface melt, qr = 0, and Ti can

be derived from qi = qc. With a linearization of the black-body radiation around

Tm, we can solve for Ti and obtain

Ti =
TfkC/hm + (1 − αi)SW↓ + LW↓ + 3σT 4

m

kC/hm + 4σT 3
m

. (3.34)

The ice surface temperature cannot get larger than Tm in the model, because for

Ti = Tm the residual heat flux becomes larger than zero, qr > 0, and melts ice at

the surface:

qr

∣∣
Ti=Tm

= qi(Tm) − qc(Tm)

= (1 − αi)SW↓ + LW↓ − σT 4
m −

kC

hm
(Tm − Tf) .

(3.35)

Inserting (3.33) and (3.35) into (3.32), we can write the net heat flux into the

ice-covered part of the cell in a compact form:

qi =
kC

hm
(Ti − Tf) + δ(Ti − Tm)

(
−

kC

hm
(Tm − Tf) + (1 − αi)SW↓ + LW↓ − σT 4

m

)

(3.36)

With this, we have obtained a closed set of equations for the mean ice thickness hm

and the ice concentration C with the downwelling shortwave and longwave radiation

at the surface as an external forcing.
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Appendix 3.B Advective response of sea ice to

analysis updates

We briefly discuss the contribution of internal forces to the sea-ice dynamics, which

can lead to problems for the assimilation of ice concentration and are especially

relevant for the CAT scheme. For thick ice with high concentration, the internal

forces are very large and dominate the momentum balance (3.3), as a scale analysis

reveals.

We consider ice dynamics on a spatial scale of about 100 km (L = 105 m). Em-

pirical velocities are vi = 10−1 m/s for the ice, vo = 100 m/s for the ocean, and

va = 101 m/s for the atmosphere. The magnitude of the Coriolis parameter f is

10−4, for ice density ρi it is 103, and the sea-surface elevation ζ is assumed to be of

order 10−1 m.

The magnitude of atmosphere and ocean drag are calculated according to

τa/o = ρwCw(va/o − vi)
2,

where the drag coefficient Cw is of order 10−3.

For the internal ice forces, we restrict ourselves to consider the internal pressure

P , which describes the resistance of the ice pack against compression:

σij = −Pδij/2 (+ shear stresses).

The equation of state for the internal pressure chosen by Hibler III [1979], and

adopted in ECHAM5/MPI-OM, is

P = P ∗hm e−α(1−C),

with the empirical constants P ∗ = 5000 Nm−2 and α = 20.

Inserting the scales set above, and considering mean ice thicknesses that varies

between 1 and 10 m and ice concentrations that varies between 50 and 100 %, the
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Figure 3.11: Ice acceleration due to internal pressure depending on ice concentration
for the Hibler model. Thick orange for 1m average thickness, thick blue for 5m. The
thin dashed lines give the strength of the atmospheric drag, which is next largest
term in the momentum balance assuming a wind speed of 10m/s.

scale analysis of (3.3) gives

∂tv = −f(k × v) −g∇ζ +
τa

ρihm
+

τo

ρihm
+∇ · σij

10−5 10−5 10−2 ...−3 10−4 ...−3 10−6 ...−1

We see that the magnitude of the internal forces is extremely variable. For low

ice concentrations, internal forces are negligible compared to other contributions,

whereas for thick ice with high concentration they clearly dominate all other contri-

butions. The reason for this is of course the exponential dependence of ice strength

P on ice concentration.

Fig. 3.11 illustrates how the acceleration from internal pressure changes with

concentration, and compares it to the atmospheric drag, which is the second largest

contribution to the ice momentum balance when we assume a wind speed of 10 m/s.

Note that for a mean ice thickness of 5 m, the internal pressure becomes larger than

the atmospheric drag for concentrations higher than about 80%, and it shows a steep

increase as concentration is increased further.

Consequently, if the analysis update artificially increases mean ice thickness or

ice concentration in an area where they are already high, the model’s ice advection

reacts with strong compensating tendencies. This effect might not be desired in the

data assimilation, as it will lead to an unrealistic sea-ice drift.
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Figure 3.12: Mean-thickness analysis updates (left), additional mean-thickness ad-
vection (middle), and deepening of the mixed layer (right) when assimilating ob-
served sea-ice concentration with the CAT method. Shown are the average Septem-
ber conditions north of the Canadian Archipelago in the decade 1990–1999. The
middle and right plot are obtained by subtracting the average conditions in the
1990–1999 decade in the reference run.

In our assimilation experiments, this effect plays an important role north of the

Canadian Archipelago during summer for the analysis updates that conserve ac-

tual thickness (CAT). North of the Canadian Archipelago, the model has a bias

towards low ice concentrations during summer, and the mean ice thickness is quite

high. Since for CAT the mean-thickness analysis updates are stronger when the

background ice thickness is high, eq. (3.10), the analysis updates of ice volume are

positive and strong there, and the ice pressure is kept at very high levels. The ad-

vective updates, as diagnosed from the AOGCM, then show a strong compensating

reaction, which means that the ice is dispersed from this area into the rest of the

Arctic ocean. Fig. 3.12 shows the typical situation in September, when the effect is

most pronounced.
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4 Predictability of large negative

Arctic sea-ice anomalies

In the CMIP5 projections of 21st-century climate, Arctic sea ice declines, and at
the same time exhibits strong interannual anomalies. Here, we investigate the po-
tential to predict these strong sea-ice anomalies with the CMIP5 version of the
Max-Planck-Institute Earth System Model under a perfect-model assumption. We
study two cases of strong negative sea-ice anomalies: a five-year-long anomaly for
present-day conditions, and a ten-year-long anomaly for conditions projected for the
middle of the 21st century. We treat these anomalies in the CMIP5 projections as the
truth, and use exactly the same model configuration for predictions of this synthetic
truth. We start ensemble predictions at different times during the anomalies, con-
sidering two types of initial conditions: lagged-perfect and sea-ice-assimilated initial
conditions. We find that the onset and amplitude of the interannual anomalies are
essentially unpredictable. However, predictions of annual-mean sea-ice extent and
volume that start from a state where the anomaly is already developed correctly
predict the further deepening of the anomaly for typically one year lead time. These
predictions are generally more skillful for present-day conditions than for conditions
in the middle of this century. The magnitude of an extremely low summer sea-ice
minimum is hard to predict: only for lead times up to a few months is the predic-
tive skill better than damped persistence, and from lead times of two years on the
predictive skill is not better than a climatology forecast. Initial conditions obtained
by sea-ice data assimilation are competitive with lagged-perfect initial conditions
for lead times of a year or less, but yield degraded skill on longer lead times. These
results imply that there is limited and decreasing prospect of predicting the large
sea-ice anomalies expected to occur throughout the 21st century.



4 Predictability of Arctic sea ice

4.1 Introduction

The mean state of Arctic sea ice has changed dramatically over the last few decades,

and it is expected to continue to change at a high pace throughout the 21st century

[Arzel et al., 2005; Boé et al., 2009]. The change in the mean state is accompanied

by strong interannual to decadal variability [Bengtsson et al., 2004; Goosse et al.,

2009]. Predictability of these unforced variations would be of great theoretical and

practical value, because Arctic sea ice plays an important role in shaping weather

and climate not only in polar regions, but also well beyond [Bader et al., 2011]. Here,

we use the Max-Planck-Institute Earth System Model to assess the predictability of

large negative interannual anomalies in Arctic sea-ice cover.

Interannual predictions of Arctic sea ice for perfect initial conditions have been

investigated by Holland et al. [2010]. They concluded that predictability of Arc-

tic sea ice is lower for the 2010 decade than for the 1970 decade, supporting the

notion that the strong trends in Arctic sea ice are associated with a changing pre-

dictability regime. Using similar experiments starting in the 2000 decade, Blanchard-

Wrigglesworth et al. [2011b] pointed out that sea-ice predictability is dominated by

secular trends for lead times that exceed three years.

However, predictions of real climate do not start from perfect initial conditions,

because observations of the actual climate state are incomplete and climate mod-

els have errors. Therefore, predictions from non-perfect initial conditions that

are obtained by assimilating observations into the climate model must be inves-

tigated.

Here, we test how much of the potential predictability determined in previous

studies with perfect initial conditions can actually be realized when using non-perfect

initial conditions obtained by the sea-ice data assimilation method developed in

Chapter 3. We extend the discussion of Arctic sea-ice predictability to conditions

expected for the 2050 decade under a moderate emission scenario, and specifically

focus on predictions before and during large negative interannual sea-ice anomalies.

The chapter is structured as follows: Section 4.2 describes the climate model and

the experimental methodology. Section 4.3 analyzes Arctic sea-ice variability in

the climate-change projections that are used as the reference for the predictability

study. Section 4.4 explains how we obtain initial conditions for ensemble predictions,
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and Section 4.5 presents the results of the predictions. The chapter closes with an

outlook in Section 4.6 and a summary of the main results in Section 4.7.

4.2 Model and methods

4.2.1 Earth system model and climate projections

We use the low-resolution version of the Max-Planck-Institute Earth System Model

(MPI-ESM-LR) as it has been used for the Coupled Model Intercomparison Project

Phase 5 (CMIP5). The atmosphere component is ECHAM6 with a T63 horizontal

resolution and 47 vertical levels (M. A. Giorgetta et al., ECHAM6 model description,

technical report in preparation). The model is the successor of ECHAM5 [Roeck-

ner et al., 2003], with the most notable improvements being related to the radiative

transfer code. In comparison to the CMIP3 version of ECHAM5, the CMIP5 version

of ECHAM6 has more vertical levels in the upper atmosphere, so that it is capable

of representing internal variability in the stratosphere, which potentially has an im-

pact on Arctic predictability via stratosphere–troposphere coupling [Shepherd et al.,

2011].

The ocean component is MPI-OM as described by Marsland et al. [2003] with a

few minor modifications. The resolution of the ocean model is approximately 1.5◦

with 40 vertical levels. A dynamic–thermodynamic sea-ice model based on Hibler III

[1979] is embedded in the ocean model. For a description of the ocean circulation

obtained with MPI-OM when coupled to ECHAM5 see Jungclaus et al. [2006].

Land surface processes including a vegetation cover that dynamically adapts

to changed climatic conditions are modelled with JSBACH [Raddatz et al., 2007;

Brovkin et al., 2009]. Ocean biogeochemistry is modelled with HAMOCC [Wetzel

et al., 2005].

CMIP5 climate-change projections are defined in terms of representative concen-

tration pathways (RCP). The RCP4.5 scenario prescribes a pathway of greenhouse

gas concentration that approximately corresponds to an additional radiative forcing

of 4.5 Wm−2 by 2100 [Taylor et al., 2011; Meinshausen et al., 2011]. The CMIP5

RCP4.5 climate projections for the 21st century obtained with MPI-ESM-LR serve

as reference runs for the predictability case studies we perform.
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4.2.2 Experimental methodology

We use three realizations of an RCP4.5 experiment with MPI-ESM-LR as reference

runs. The sea-ice variability occurring in the reference runs is discussed in more

detail in Section 4.3. By visual inspection, we select periods during the 21st century

that show a pronounced difference in ice extent and ice volume between these runs.

We treat the run with anomalously low sea ice as the truth and assess the potential

to predict these anomalies, using exactly the same model setup but different initial

conditions.

We compare predictions from two kinds of initial conditions: (i) lagged-perfect ini-

tial conditions that are obtained by perturbing the “true” model state that develops

the anomaly and (ii) sea-ice-assimilated initial conditions that are derived from an

independent model run which assimilates the “true” sea-ice concentration with the

methods discussed in Chapter 3. Section 4.4 describes the method of obtaining

ensemble initial conditions and their properties in more detail. All predictions are

run with 9 ensemble members, so that we can diagnose some basic intra-ensemble

statistical properties.

There are two important idealizations in the so-called perfect-model approach

that we employ: first, model errors do not play a role in the predictability estimates

we obtain, and second, we can start predictions from initial conditions that are as

close to the truth as we want. Thus, predictability estimates obtained with the

perfect-model approach are an optimistic upper bound on Arctic sea-ice predictabil-

ity achievable with MPI-ESM-LR. If we do not find predictability in this setup, it is

pointless to look for predictability in a more realistic setup. Hence, such a perfect-

model predictability study helps guiding the research on predictability of the real

climate.

We focus on two cases of strong negative interannual sea-ice anomalies for esti-

mating sea-ice predictability: one for present-day conditions, and one for conditions

in the middle of the 21st century. This allows us to compare predictability esti-

mates at different times during the retreat of Arctic sea ice under a global warming

scenario.

The case-study approach also allows for investigation of the relation between the

physical processes and the presence or absence of predictability. As Hermanson and
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Sutton [2009] pointed out, different initial climate states exhibit different degrees of

predictability. Likewise, one would expect that the physical processes that govern

this predictability depend on the initial climate state as well. A study that cal-

culates predictive skill from the average over many predictions starting from many

different climate states cannot make statements about the underlying processes if

these change from case to case. As an example, consider the prediction of Arctic

summer sea-ice extent. In one year, prevailing anomalous surface winds that push

the ice together might be responsible for an anomalously low minimum [Ogi et al.,

2008], whereas in another year anomalous intrusion of warm surface water into the

Arctic Ocean as discussed by Woodgate et al. [2010] might cause a similar response.

Only by studying the two cases separately can we detect the underlying physical

causes.

To quantify predictability, we compare the predicted sea-ice state to the sea-

ice state of the synthetic truth and to two reference forecasts: climatology and

damped persistence. Since Arctic climate is expected to change drastically during

the 21st century, the definition of a climatology is complicated by the existence of

strong secular trends. These trends lead to large predictive skill on interannual to

decadal lead times if the model predicts the trend correctly. Although a skillful

prediction based on that effect might be considered as a success when predicting

the real climate, it is trivial in a perfect-model setup, where the trend is correctly

predicted by construction. Hence, we neglect predictability that relies on trends and

use a 30-year centered running mean as the time-dependent climatology. The so-

defined climatology responds smoothly to the change in climate forcing and does not

exhibit internally generated variability. To establish damped persistence as a second

reference forecast, we approximate the anomaly time series of the sea ice state with

an auto-regressive process and determine appropriate parameters (Section 4.3.3).

We use the Brier skill score (BSS) as a convenient nondimensional measure of the

quality of a prediction [von Storch and Zwiers, 1999]. The BSS measures the skill

of a prediction F relative to a reference forecast R by comparing the mean squared

error of the forecast S2
F with the mean squared error of the reference forecast S2

R:

BSSRF = 1 −
S2

F

S2
R

. (4.1)
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The BSS is 1 for a perfect forecast, 0 for a forecast that is as good as the reference

forecast, and negative if the forecast is even worse than the reference.

We focus on predictions of yearly means and September means of northern-

hemisphere sea-ice extent and volume. While yearly means are relevant for decadal

time scales, the September minimum is the most interesting seasonal mean to pre-

dict, since (i) the variability is highest (see Section 4.3), and (ii) in September the ice

edge is completely within the Arctic Ocean, whereas in winter the ice edge is spread

over separate oceans such as the North Pacific, the North Atlantic, and the Labrador

Sea. Hence, for summer predictability it should be feasible to identify a few impor-

tant physical mechanisms, whereas winter predictability requires consideration of

several unrelated physical mechanisms acting in the different regions.

4.3 Characterization of the reference runs

4.3.1 Arctic sea-ice variability

Three realizations of RCP4.5 climate projections with MPI-ESM-LR serve as the

reference runs for our experiments. Figure 4.1 shows time series of some important

Arctic climate variables for these runs between 1970 and 2100. During this time,

Arctic sea-ice extent and volume decline (Fig. 4.1a–d), and Arctic surface air tem-

perature and ocean heat content increase (Fig. 4.1e–f). In the second half of the 21st

century, nearly ice-free summers in the Arctic Ocean start to occur. Note that the

natural variability in these time series can be large enough to outweigh the secular

trend for decades.

We obtain anomalies for each realization by subtracting the centered 30-year run-

ning mean. The resulting anomaly time series have a stationary mean by construc-

tion, whereas the variance might change over time. The variance of September ice

extent (Fig. 4.1a) increases during the retreat of the ice. The mechanisms behind

this were discussed by Notz [2009] and Goosse et al. [2009]. The variance of Septem-

ber ice volume (Fig. 4.1b), however, decreases. The variance for the annual-mean

time series (Fig. 4.1c–f) stays approximately constant.

In this study, we will restrict ourselves to the prediction of Arctic sea ice itself.

Nevertheless, there are strong correlations between anomalies in Arctic sea ice and
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Figure 4.1: Time series of climate variables related to Arctic sea-ice cover for three
realizations of the CMIP5 RCP4.5 climate projections with MPI-ESM-LR. Shown
are September means of (a) ice extent and (b) ice volume, as well as annual means of
(c) ice extent, (d) ice volume, (e) heat content in the upper 50 meters of the Arctic
ocean, and (f) surface air temperature over the Arctic ocean. Rectangles mark the
time windows of the strong interannual anomalies discussed in Sec. 4.3.2.
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other Arctic climate variables. These correlations are clearly visible in Figure 4.2,

which shows the scaled annual-mean anomalies of ice extent together with annual-

mean anomalies of ice volume, heat content in the upper 50 m of the Arctic Ocean,

and surface air temperature over the Arctic Ocean. We calculate cross-correlations

between these anomalies by considering their time series for four RCP4.5 realiza-

tions. Three of these realization are the reference runs shown in Fig. 4.1, and a fourth

is added to improve statistical robustness. This gives us 400 years of data, which

show that sea-ice extent is positively correlated with sea-ice volume (r = 0.75), and

negatively correlated with Arctic Ocean heat contet in the upper 50 m (r = −0.67)

and Arctic surface air temperature (r = −0.78). The high absolute values of the

correlation coefficient suggest that there are physical processes that robustly couple

anomalies of these climate variables, so that sea-ice extent anomalies are a useful

predictor (or proxy) for other Arctic climate variables.

4.3.2 A present-day and a mid-century case of a large

interannual sea-ice anomaly

From visual inspection, we choose two cases where one realization of the RCP4.5

runs happens to have a strong negative anomaly, while another realization has a

positive anomaly. We define the temporal extent of an interannual Arctic sea-ice

anomaly using the 12-month running mean: the anomaly lasts as long as the 12-

month running mean of northern-hemisphere ice volume is continuously below the

climatological mean.

We choose one case for present-day conditions and one for mid-century conditions.

In the present-day case, realization 0 has a strong negative sea-ice anomaly that

starts in 2011 and lasts until 2017, with a maximal expression in 2014. In the mid-

century case, realization 1 has a strong negative sea-ice anomaly that lasts from

2047 to 2057, with a maximal expression in 2053 (see Figure 4.1).

The range of natural variability demonstrated by these extreme cases is quite

remarkable. Figure 4.3 shows the September ice extent in 2014 and 2053. In 2014,

September ice extent is less than 4 · 106 km2 in realization 0, while it is more than

7 · 106 km2 in realization 2. In 2053, realization 1 is almost ice-free in September,

while realization 2 shows an ice extent of more than 4 · 106 km2.
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Figure 4.2: RCP4.5 run 1 annual-mean time series of anomalies of northern hemi-
sphere sea-ice extent together with anomalies of northern-hemisphere sea-ice volume
(top), inverted anomalies of heat content in the upper 50 m of the Arctic Ocean
(middle), and inverted anomalies of surface air temperature over the Arctic Ocean
(bottom). All anomaly time series are scaled by their respective standard deviations.
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Figure 4.3: Comparison of northern-hemisphere sea-ice concentration in September
for different realizations of the RCP4.5 experiments. (a) for 2014, the year with the
lowest extent during the present-day anomaly, and (b) for 2053, the year with the
lowest extent during the mid-century anomaly.
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4.3 Characterization of the reference runs

To judge if these anomalies are extreme, we compare them with the standard

deviation of the anomaly time series between 1970 and 2100: The maximal amplitude

of the mid-century anomaly is around three standard deviations for yearly-mean

extent and volume, more than three standard deviations for September ice extent,

and close to two standard deviations for September ice volume. For the present-day

anomaly, the maximal expression is more than two standard deviations for yearly-

mean ice extent, more than three standard deviations for yearly-mean ice volume,

and around three standard deviations for September ice extent and volume.

4.3.3 Fitting an autoregressive process to sea-ice anomalies

We use an auto-regressive (AR) process to approximate the statistical properties of

the anomaly time series of annual-mean sea-ice extent and volume. From the AR

process, damped-persistence forecasts can easily be constructed, which then serve

as a benchmark for dynamical predictions with MPI-ESM-LR. All methods used in

this section can be found in the textbooks by von Storch and Zwiers [1999] and Box

et al. [2008].

To estimate the parameters of the AR process that approximates the time series

best, we calculate the autocorrelation function (ACF) and the partial autocorre-

lation function (PACF). The lag-k ACF of a stationary random process {xt} is

defined as the correlation between two realizations of the process separated by a

time difference k:

ACF(k) = corr[xt, xt−k].

The PACF is a helpful tool for determining the order of an AR process, because the

PACF of an AR process of order k has a cutoff after lag k. The lag-k PACF of a

stationary random process {xt} is defined as the correlation between the “adjusted

values” of two realizations of the process separated by a time difference k:

PACF(k) = corr[xt − x̂t, xt−k − x̂t−k],

where the adjustments x̂t and x̂t−k are the best linear predictors of xt and xt−k based

on the realizations xt−1, xt−2, . . . , xt−k+1 (Box et al. [2008], pp. 66ff.).

We estimate the ACF and the PACF from four RCP4.5 realizations for the time
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4 Predictability of Arctic sea ice

between 1970 and 2100. Three of these realization are the reference runs intro-

duced in Fig. 4.1, and a fourth is added to improve statistical robustness. The

estimated ACF and PACF of annual-mean sea-ice extent and volume are shown in

Figure 4.4.

Figures 4.4a,b show that both extent and volume have highly significant autocor-

relation for a lag of one year, and marginally significant autocorrelation for a lag

of two years. Interestingly, marginally significant negative correlation emerges at

lags of about 10 years, which suggests that the time series tend to oscillate around

the running mean with a 20-year period. However, for the purpose of constructing

statistical reference forecasts for only a few years lead time these higher-order effects

are not relevant, and so we do not discuss them here further.

The PACF of the annual-mean extent time series is not significantly different from

zero for lags greater than one (Fig. 4.4c). This indicates that a first-order AR is an

appropriate statistical model. The Yule-Walker estimate of the lag-1 autoregression

coefficient for annual-mean ice extent is α1 = 0.5. For annual-mean sea-ice volume

there is marginally significant negative partial autocorrelation for lag 2 (Fig. 4.4d),

and so a second-order AR process is the appropriate description. The Yule-Walker

estimate of the lag-1 and lag-2 autoregression coefficients for annual-mean ice volume

are α1 = 0.8 and α2 = −0.2.

For September anomalies of sea-ice extent and volume, the same procedure sug-

gests first-order autoregressive processes with estimates of the lag-1 autoregression

coefficient of α1 = 0.4 and α1 = 0.5, respectively.

4.4 Obtaining ensemble initial conditions

We investigate predictions from two kinds of initial conditions: perfect initial con-

ditions, where the full model state is close to the true state, and sea-ice-assimilated

initial conditions, which are obtained from an independent run that assimilates the

“true” sea-ice concentration with the methods described in Chapter 3. By compar-

ing these two kinds of initial conditions, we can assess how much prognostic sea-ice

predictability there is, and how much of it we can realize by initializing the sea-ice

state.
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Figure 4.4: Autocorrelation function (ACF) and partial autocorrelation function
(PACF) for annual-mean sea-ice extent and volume from four realizations of an
RCP4.5 run. The ensemble mean and spread of (partial) autocorrelation are given
by columns with standard error bars. Significance of (partial) autocorrelation can
be inferred from the location of ensemble mean and spread with respect to the
dotted lines, which represent the 95% confidence interval of the null hypothesis of
zero (partial) autocorrelation. To obtain the lag-dependent confidence interval for
the ACF, we use Bartlett’s large-lag approximation. The confidence interval of the
PACF is lag-independent (see Box et al. [2008]).
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4 Predictability of Arctic sea ice

The sea-ice assimilation run starts from a RCP4.5 realization that shows a posi-

tive anomaly during the time when the truth run has a negative anomaly, so that

the difference between the two is maximal during the time when we perform the

assimilation. RCP4.5 realization 2 has such a positive sea-ice anomaly both for

the present-day case study and the mid-century case study, so we take the initial

conditions for the assimilation run from realization 2 (see Figures 4.1 and 4.3).

Figure 4.5 shows July monthly means of selected Arctic sea-ice related quantities

during the present-day case study. The assimilation run starts in January 2010 from

run 2, which exhibits a positive sea-ice anomaly from 2013 to 2018. We show the

July monthly mean, because the interannual predictions in Section 4.5.1 all start in

August. From Figure 4.5 we see that northern-hemisphere sea-ice extent and volume

as well as the heat content in the upper 50 m of the Arctic Ocean agree reasonably

well between the assimilation and the truth run. This means that the conditions in

the true state of these variables were successfully assimilated. However, this is not

true for other properties of the climate system. As an example, we show the heat

content of the upper 500 m of the Arctic Ocean. This quantity potentially plays a

role in sea-ice predictability, because the heat stored in that layer is sufficient to melt

the entire ice cover several times over. Since the assimilation is restricted to surface

properties, the 500 m heat content stays close to run 2 and is hence effectively not

initialized.

For the mid-century case study, the assimilation run starts in January 2049 from

RCP4.5 realization 2. The July time series of sea-ice related quantities show quali-

tatively the same behavior as in the present-day case study (Fig. 4.6). However, the

assimilation error is a bit larger than in the present-day case.

We obtain an ensemble of initial conditions by using the model state from several

days adjacent to the start date of the prediction. With an ensemble size of 9, we

take the model state from the actual start date, from one to four days before the

start date, and from one to four days after the start date.

With this so-called lag-initialization approach, the perturbations to the initial

conditions are exactly the differences between model states separated by a few days.

Thus, the perturbation in the initial conditions is small for slow components of the

climate system like ocean water mass properties and sea-ice cover, and larger for

fast components like the atmosphere.
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4.4 Obtaining ensemble initial conditions

Figure 4.5: Time series of selected Arctic climate variables in July for the present-day
case reference runs. Shown are (a) ice extent, (b) ice volume, (c) heat content in the
upper 50 m and (d) in the upper 500 m of the Arctic Ocean. The assimilation run
starts from the RCP4.5 run 2, which has high ice extent and volume, and assimilates
ice concentration of the RCP4.5 run 0, which has low ice extent and volume.
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4 Predictability of Arctic sea ice

Figure 4.6: Time series of selected Arctic climate variables in July for the mid-
century case reference runs. Shown are (a) ice extent, (b) ice volume, (c) heat
content in the upper 50 m and (d) in the upper 500 m of the Arctic Ocean. The
assimilation run starts from the RCP4.5 run 2, which has high ice extent and volume,
and assimilates ice concentration of the RCP4.5 run 1, which has low ice extent and
volume.
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4.4 Obtaining ensemble initial conditions

To illustrate the differences between the initialization of sea ice, ocean and at-

mosphere, we consider the fields of northern-hemisphere sea-ice thickness h, global

ocean temperature T at 200 m depth, and global atmospheric surface pressure p.

The perfect initial conditions for the prediction start day d are h(P, d), T (P, d) and

p(P, d). These fields are represented by their model state vector, which contains one

entry for each of the N model grid cells. For h we write

h(P, d) ≡ {hi(P, d) : i = 1, . . . , N},

and the notation for T and p is analogous. Initial conditions from an arbitrary model

run R at day d ± n are denoted by h(R, d ± n). We construct a simple measure

of how “close” arbitrary initial conditions are to the perfect initial conditions by

calculating the mean and variance of their field difference:

µh(R, d ± n) :=
1

N

N∑

i=1

(
hi(R, d ± n) − hi(P, d)

)

σ2
h(R, d ± n) :=

1

N

N∑

i=1

(
hi(R, d ± n) − hi(P, d)

)2
,

and analogously for the 200 m ocean temperature fields T and the atmospheric

surface pressure fields p.

To decide whether the perturbation created by the lag initialization is small, we

compare the mean and variance of the field difference with respect to the perfect

initial conditions for (i) the lagged-perfect initial conditions, i.e. µ(P, d ± n) and

σ(P, d ± n), (ii) for S, the second RCP4.5 realization at the same day, i.e. µ(S, d)

and σ(S, d), and (iii) for A, the assimilation run at the same day, i.e. µ(A, d) and

σ(A, d).

Figure 4.7 shows the mean and variance of the difference of the initial condition

fields to the perfect initial condition when starting a prediction on 1st August 2053.

By construction µ(P, d) = σ(P, d) = 0. With each day of lag forward or backward,

the spread σ(P, d ± n) in the initial conditions becomes larger. For the sea-ice

thickness field (Fig. 4.7a), the mean and spread of difference is comparable to lagged-

perfect conditions for the assimilated-sea-ice initial conditions, but much larger for
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4 Predictability of Arctic sea ice

initial conditions taken from S, the second RCP4.5 realization. This confirms that

both lagged-perfect and assimilated initial conditions for sea ice are close to the

perfect initial conditions when compared to the range of natural variability. For

the ocean temperature field at 200 m depth (Fig. 4.7b), the lagged-perfect initial

conditions show a much smaller spread than both the initial conditions from the

sea-ice assimilation run and the second RCP4.5 realization, illustrating that the

state of the subsurface ocean is well initialized in the lagged-perfect ensemble, but

effectively not initialized in the assimilation run. Finally, the atmospheric fields

(Fig. 4.7c) show a much faster separation of the initial conditions: already four

days of lag are sufficient to reach the climatological spread, which does not become

larger when considering the assimilation run or the second RCP4.5 realization. We

conclude that (i) initial conditions from all runs have only weak constraints on the

atmospheric state, (ii) initial conditions from the assimilation run do not constrain

the global ocean state, and (iii) lagged-perfect initial conditions constrain both the

ocean and the sea-ice state to a near-perfect initialization.

4.5 Sea-ice predictability

4.5.1 Predicting large interannual sea-ice anomalies

We now discuss predictions of pan-Arctic annual-mean ice extent and volume that

are initialized at different stages of the large interannual sea-ice anomalies described

in Section 4.3.2. The predictions start in August and have a lead time of three years.

With this set of ensemble predictions, we assess the predictability of the amplitude

and the temporal extent of the large interannual sea-ice anomalies. Additionally, we

start one prediction in January before the onset of the mid-century anomaly that

has a lead time of 12 years. With this ensemble prediction, we assess if the onset of

the anomaly is predictable.

In our annual-mean prediction experiments, ensemble spread depends only weakly

on the lead time and is only slightly below the level of natural variability. Never-

theless, we will see that the predictive skill is nontrivial and depends strongly on

lead time. Therefore we must conclude that widely used indirect indicators of pre-

dictability that rely solely on the ensemble spread, such as the potential prognostic
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Figure 4.7: Mean and variance of the differences between initial condition (IC) fields
used for the ensemble predictions. (a) sea-ice thickness north of 70◦N, (b) global
200m ocean temperature, and (c) global atmospheric surface pressure. IC (P, d− 4)
to (P, d + 4) are model states from the RCP4.5 run 1 between 27 Jul and 4 Aug
2053, which are used as the lagged-perfect initial conditions. IC (A, d) is from the
sea-ice assimilation run on 31 Jul 2053, and IC (S, d) is from the RCP4.5 run 2 on
31 Jul 2053, which has higher ice volume and extent than the RCP4.5 run 1. All
differences are calculated with respect to the IC (P, d), which are the perfect initial
conditions that lead to a perfect prediction.
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predictability [Pohlmann et al., 2004; Koenigk and Mikolajewicz , 2008; Holland et al.,

2010], are not useful here.

The ensemble means of predicted sea-ice extent are shown in Figure 4.8 together

with the reference run from which predictions are initialized and that they try to

predict. The means of two reference forecasts are also shown, the time-dependent

climatology and damped-persistence forecasts. Climatology is given by the centered

30-year running mean, and the damped-persistence forecasts are constructed accord-

ing to Box et al. [2008] from the statistical model that was fitted to the sea-ice time

series in Section 4.3.3. Initial conditions for the prediction ensembles are (i) lagged-

perfect initial conditions and (ii) sea-ice-assimilated initial conditions (see Section

4.4). Since the ensemble spread depends only weakly on the lead time and is only

marginally different for lagged-perfect and sea-ice-assimilated initial conditions, we

show it as a single range. The results for the predicted sea-ice volume are similar to

those of the predicted extent and are therefore not shown here.

For the present-day case study (Fig. 4.8a), the predictions in general show the

following behavior: if started after the onset but before the maximal expression of

the anomaly (start years 2012 and 2013), the ensemble mean correctly predicts the

deepening of the anomaly for a certain lead time of typically one year. After that

time, the predicted ensemble mean behaves similarly to damped persistence until

the climatological mean is reached. If we extended the predictions to longer lead

times, the predicted ensemble mean would follow the climatology (see discussion

by Branstator and Teng [2010]). Predictions starting at the maximal expression of

the anomaly (start year 2014) have a comparatively low mean error because their

regression to the climatological mean coincides with the decay of the anomaly that

happens in the reference run.

We consider the correct prediction of the deepening of the anomaly a very im-

portant point, since this is impossible using a simple damped-persistence forecast.

However, the ensemble mean generally underestimates the strength of the deepening

and returns to the climatological mean too early. Thus, neither the amplitude nor

the temporal extent of the interannual anomaly are predictable.

The mean errors of the predictions in Figure 4.8a that start from sea-ice-assimilated

initial conditions are sometimes comparable with, but generally higher than, those

of the predictions started from lagged-perfect initial conditions. This result is to
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Figure 4.8: Predicted annual-mean northern-hemisphere sea-ice extent for (a) the
present-day case study and (b) the mid-century case study. The black solid line is
the annual mean of the RCP4.5 run that we consider as the truth. The black dashed
line is the climatology defined by the centered 30-year mean. The ensemble mean
of the predictions is denoted by the colored markers connected with solid lines.
The ensemble spread of the predictions is indicated in the lower left of the plot.
The means of damped-persistence reference forecasts are denoted by colored crosses
connected with dashed lines. Colors correspond to the start year of the prediction:
green for 2012/2051, red for 2013/2052, blue for 2014/2053, light blue for 2047.
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be expected, as the components of the climate system that were not correctly ini-

tialized influence the sea-ice state. For the sea-ice-assimilated initial conditions, the

predicted mean can overshoot the climatology instead of approaching it (start year

2014). This is most likely due to the fact that there is still information in the initial

conditions about the “cold” state from which the assimilation run started, which is

evident from the time series of heat content in the upper 500 m in the Arctic Ocean

shown in Fig. 4.5d.

For the mid-century case study shown in Fig. 4.8b, the general features of the

prediction means are as described for the present-day case study. We perform an

additional prediction that starts from lagged-perfect initial conditions in January

2047, before the onset of the interannual anomaly. This ensemble does not predict

the anomaly at all; instead, it stays close to the climatological mean throughout

the whole lead time. From this we conclude that the onset of the mid-century

interannual anomaly is essentially unpredictable.

To allow for a more convenient comparison of predictive skill between mid-century

conditions and present-day conditions on the one hand, and between ice extent and

ice volume on the other hand, we calculate the Brier Skill Score (BSS), defined in

Eq. (4.1), of the prediction ensembles with respect to the climatological forecasts.

The mean squared error of the predictions at each lead year is calculated from

24 individual prediction errors obtained from 3 different start dates with 8 lagged

perfect initial condition each. The mean squared error of the climatological forecast

is calculated from the known mean and standard deviation of the climatology.

Fig. 4.9 shows the BSS of the predictions from lagged-perfect initial conditions

for lead years 1 to 3 with respect to a climatological forecast. The BSS is fairly

similar for sea-ice extent and sea-ice volume. The strong lead-time dependence of

BSS in all cases is evident. For the first lead year, BSS is 0.9 in all cases considered,

whereas for the third lead year, it drops to 0.6 for present-day conditions and to 0.1

for mid-century conditions. We note that predictive skill for the third lead year is

substantially higher for present-day than for mid-century conditions. This result is

consistent with the intuitive notion that a thinner ice pack is less predictable and is

supported by findings of Holland et al. [2010]. However, further analysis is required

to determine the physical causes of such a loss of predictability during the thinning

of the northern-hemisphere sea-ice cover.
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Figure 4.9: Lead-time dependence of Brier skill score for the predictions of annual-
mean sea-ice extent (left) and annual-mean sea-ice volume (right). The score is
calculated for the predictions started from lagged-perfect initial conditions with
respect to a climatology forecast.

4.5.2 Predicting exceptionally low September sea ice

We now investigate the predictability of an exceptionally low September sea-ice min-

imum. The interannual sea-ice anomalies discussed in the previous section are most

strongly pronounced in the summer season (see Section 4.3). For instance, while the

run that we treat as the synthetic truth is almost ice-free in September 2053, real-

ization 2 of the same model setup has an ice extent of more than 4 ·106 km2, which is

comparable to present-day conditions (Fig. 4.3b). Although the strong signal might

encourage us to expect high predictability, a number of studies have shown that the

magnitude of the summer minimum of Arctic sea ice is mostly controlled by fast

atmospheric processes [Ogi et al., 2008; Kauker et al., 2009; Holland et al., 2010],

which suggests that there is little predictability.

We analyse ensemble predictions that are set up exactly in the same way as in

the previous section. We focus on the lead-time dependence of predictability for

two particular events: the September sea-ice state at the maximal expression of

the interannual anomaly, which happens in 2014 for the present-day case study

and in 2053 for the mid-century case study. The predictions start in August, May
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and February of the same year, in August of the previous year, and in November

two years before the September that we predict. As in the previous section, we

compare predictions from lagged-perfect initial conditions and sea-ice-assimilated

initial conditions.

Figure 4.10 shows the predicted ice extent as a function of lead time for September

2014 and September 2053. The results for the predicted sea-ice volume are similar

to those of the predicted extent and are therefore not shown here.

For the present-day case study shown in Fig. 4.10a, all predictions except those

with a very short lead time of one month are biased towards the climatological

mean, which confirms the notion that the predictand is an extreme event. The

ensemble means of the predictions starting from lagged-perfect initial conditions

converge quite regularly towards the climatology with increasing lead time. Be-

cause of the perfect-model assumption, any prediction started sufficiently long in

advance will on average predict the climatology. We see that this is already the

case when starting in November two years before the predicted September. There-

fore, for lead times of two years or more a skillful prediction of the extreme low in

September sea ice extent is impossible. The damped-persistence forecast can only

be beaten if predictions start in the winter before the predicted September, or even

later.

From Fig. 4.10a we also see that the mean error of predictions from sea-ice-

assimilated initial conditions is comparable to the mean error of predictions from

lagged-perfect initial conditions for lead times of up to one year. Considering the

results from the interannual predictions, this suggests that either (i) the importance

of sea-ice initial conditions relative to the initial conditions of the other components

of the climate system is higher for the prediction of summer conditions than for

the prediction of annual-mean sea-ice conditions, or (ii) the initial conditions of

non-sea-ice initial conditions only matter for lead times longer than a year.

For the mid-century case study shown in Fig. 4.10b, the general features of the

mean predicted ice extent are as described for the present-day case study shown in

Fig. 4.10a. However, there are two apparent differences: first, the mean error of

the predictions from lagged-perfect initial conditions at lead times between 4 and

13 months relative to the mean error of a climatological forecast is higher than

for the present-day case. Second, the predictions from sea-ice-assimilated initial
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Figure 4.10: Predicted ice extent at different lead times for exceptionally low Septem-
ber sea ice in case studies for (a) present-day conditions and (b) mid-century condi-
tions. Shown are prediction ensembles starting from lagged-perfect initial conditions
(red) and from sea-ice-assimilated initial conditions (orange). The filled circle rep-
resents the ensemble mean, and the vertical lines indicate the standard deviation of
the ensemble predictions. The true September extent, the previous-year damped-
persistence forecast, and the climatological centered 30-year mean are drawn as
horizontal reference lines.
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conditions do not converge regularly towards climatology, but show non-monotonous

lead-time dependence of the mean error. This is probably due to random errors in

the assimilation run that translate into errors in the sea-ice initial conditions. For

instance, in April 2053, there is too much sea ice in the assimilation run (not shown),

which causes the prediction started in May 2053 to be biased towards too high ice

extent.

To condense the information about the prediction from lagged-perfect initial con-

ditions in Fig. 4.10, we present an estimate of the Brier Skill Score as defined in

Eq. (4.1) for each lead time, in analogy to the annual-mean predictions from the

previous Section. The climatological September value serves as a reference forecast.

The mean squared error of the prediction is calculated from the eight ensemble

members with lagged-perfect initial conditions, the mean squared error of the cli-

matology is calculated from the known variability around the climatological value

assuming a normal distribution.

Fig. 4.11 shows the dependence of BSS on lead time both for ice extent and ice

volume and both for the present-day and the mid-century case study. This figure

allows us to derive some important statements: (i) The maximal lead time at which

we can expect predictive skill at all is two years. This is further evidence that two

years is a strong limit on predictability of Arctic summer sea ice and is in agreement

with the findings by Holland et al. [2010] and Tietsche et al. [2011]. (ii) Predictive

skill is higher for ice volume than for ice extent. This is in contrast to the results

of the annual-mean predictions, and understanding this requires further analysis.

Finally, (iii) predictive skill is higher for present-day conditions than for mid-century

conditions. This confirms what we find from the annual-mean predictions: sea-ice

predictability decreases as the ice cover becomes thinner.

4.6 Outlook

We present estimates of predictive skill that are based on predictions started in a

specific climate state at the onset of large negative Arctic sea-ice anomalies. This

case-study approach allows us to assess the predictability for a specific climate state

and is a convenient test for the usefulness of the sea-ice-assimilated initial conditions.
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Figure 4.11: Lead-time dependence of Brier skill score for the predictions of excep-
tionally low September sea-ice conditions. Shown are the scores for sea-ice extent
(left) and sea-ice volume (right). The score is calculated for the predictions started
from lagged-perfect initial conditions with respect to a climatology forecast.

A complementary study would estimate a generic predictability from predictions

started from many different climate states. This generic estimate might differ from

the one presented here.

When transferring our results to the prediction of real climate, it is important to

remember the idealizing assumptions that we have made: (i) the model is perfect

and (ii) the initial conditions are perfectly known. Any prediction of real climate

will be less skillful, because (i) the model has limitations in the representation of

Arctic climate processes and (ii) the initialization of the model with the observed

climate state is imperfect.

A natural continuation of the research presented here would be to determine the

predictability of other Arctic climate variables from the same experiments. This

would confirm or oppose our hypothesis stated in Sec. 4.3 that predictability of

Arctic sea ice can be used as a “proxy” for the predictability of Arctic climate.

Using the output of MPI-ESM-LR, it is also possible to investigate the connec-

tion of Arctic sea-ice predictability with phenomena outside the Arctic. A prominent

example is the recently suggested influence of low Arctic sea-ice minima on anoma-

lously cold Eurasian winters [Honda et al., 2009].
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Finally, we see it as an integral part of studying climate predictability to establish

the link between the statistical quantification of predictability and the physical

processes that govern the predictability. We hypothesize that atmospheric rather

than oceanic processes dominate the predictability of Arctic sea ice, as is suggested

by the rather short time scales of predictability.

4.7 Summary and Conclusions

To establish upper bounds for predictability of large negative interannual Arctic

sea-ice anomalies in a CMIP5-class global climate model, we perform predictions

with MPI-ESM-LR under the perfect-model assumption. We compare predictions

starting from lagged-perfect initial conditions to predictions that start from sea-ice-

assimilated initial conditions under both present-day and mid-century conditions.

We find that the magnitude of an exceptionally low September sea-ice minimum

during the maximal expression of the interannual anomaly is hard to predict. While

predictive skill is better than a climatology forecast for up to two years lead time,

predictive skill is better than a damped-persistence forecast only if predictions are

started less than a year in advance.

Predictions of annual-mean northern-hemisphere sea-ice extent and volume show

the following generic features when starting at a time when the sea-ice anomaly has

already started to develop: They correctly predict the deepening of the anomaly for a

lead time of typically one year. After that, they start regressing to the climatological

mean. Thus, although such predictions always underestimate the amplitude and

temporal extent of the anomaly, they are potentially useful to decide if an observed

accelerated sea-ice loss is due to a secular trend or natural variability on interannual

to decadal time scales.

By comparing predictions under climate conditions today and in the middle of

the 21st century, we find evidence that predictability of Arctic sea ice decreases

during its retreat forced by 21st-century climate change. Annual-mean predictions

have significantly higher skill in the third lead year for present-day when compared

to mid-century conditions, and September predictions have higher skill for seasonal

lead times.
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4.7 Summary and Conclusions

Finally, we find that predictions started from sea-ice-assimilated initial conditions

are less skillful, but still comparable to, predictions started from lagged-perfect

initial conditions. The degradation of skill is small for lead times of up to one year

and becomes substantial for longer lead times. This implies that the initialization

of the sea-ice state alone allows for skillful predictions of Arctic sea ice with a global

climate model for lead times of up to one year.

95





5 Summary

In this thesis I have discussed the role of initial and boundary conditions on the

predictability of Arctic sea ice, and developed a new method to assimilate observed

sea-ice conditions in a global climate model. I conclude by giving concise answers

to the research questions posed in Chapter 1. For more detail, please refer to the

individual conclusions of Chapters 2, 3 and 4.

Recovery mechanisms of sea ice

Does the ice–albedo feedback lead to threshold behavior during the tran-

sition of the Arctic Ocean to a seasonally ice-free state? If not, what are

the mechanisms that allow the sea-ice to recover from anomalous losses?

From perturbation experiments with ECHAM5/MPI-OM, I conclude that there

is no threshold behavior during the retreat of Arctic sea ice. Sea ice recovers from

prescribed ice-free conditions at the beginning of summer within typically two years.

The perturbation in the large-scale Arctic energy budget is re-reinforced by the ice–

albedo effect during the first summer. In winter, however, heat fluxes at the surface,

the top and the lateral boundaries of the Arctic atmosphere adapt to compensate

for the anomaly. Thus, even a complete loss of Arctic sea ice during a single sum-

mer is reversible, as the ice–albedo feedback is alleviated by large-scale recovery

mechanisms.

Sea-ice data assimilation

Is it possible to improve the simulation of sea-ice concentration and thick-

ness in a global climate model by assimilating only observations of sea-ice

concentration? How do sea-ice concentration and sea-ice thickness inter-
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5 Summary

act under different atmospheric and oceanic conditions, and how is this

reflected in the choice of appropriate assimilation methods?

I develop a new technique for sea-ice data assimilation in ECHAM5/MPI-OM

that is based on Newtonian relaxation of sea-ice concentration to observations and

a prescribed proportionality between analysis updates of sea-ice concentration and

sea-ice thickness. I show that this method is able to significantly reduce the discrep-

ancy between observed and modelled sea-ice concentration and sea-ice thickness. I

construct an ice-energy-balance model to demonstrate that the strong dependence

of sea-ice growth on sea-ice concentration needs to be accounted for in the data

assimilation. The structure of the model background error gives further support for

the newly-developed assimilation method.

Sea-ice predictability

How predictable are large negative interannual anomalies of Arctic sea-

ice? How much of this predictability can be realized by using initial

conditions obtained by the sea-ice assimilation methods developed in this

thesis? How does the change in the mean state during the 21st century

affect predictability of the first kind?

I estimate upper limits of Arctic sea-ice predictability by performing ensemble pre-

diction experiments with MPI-ESM-LR under a perfect-model assumption. I find

that onset and amplitude of large negative interannual sea-ice anomalies are essen-

tially unpredictable. However, ensemble predictions started from initial conditions

where the anomaly has already started to develop correctly predict its deepening

for lead times of typically one year. After that, they regress to the climatological

mean. Initial conditions obtained with the sea-ice assimilation methods developed

in this thesis yield predictive skill comparable to that from lagged-perfect initial

conditions for lead times of up to one year. There is evidence that predictability of

Arctic sea-ice that comes from initial conditions is higher for present-day conditions

than for conditions in the middle of the 21st century.

98



Bibliography

Arzel, O., T. Fichefet, and H. Goosse (2005), Sea ice evolution over the 20th and
21st centuries as simulated by current AOGCMs, Ocean Modell., 12, 401–415,
doi:10.1016/j.ocemod.2005.08.002.

Bader, J., M. D. S. Mesquita, K. I. Hodges, N. Keenlyside, S. Østerhus, and M. Miles
(2011), A review on northern hemisphere sea-ice, storminess and the North At-
lantic Oscillation: Observations and projected changes, Atmospheric Research,
101 (4), 809–834, doi:10.1016/j.atmosres.2011.04.007.

Bengtsson, L., V. A. Semenov, and O. M. Johannessen (2004), The early twentieth-
century warming in the Arctic – a possible mechanism, J. Climate, 17, 4045–4057,
doi:10.1175/1520-0442(2004)017<4045:TETWIT>2.0.CO;2.

Bitz, C. M., and G. H. Roe (2004), A mechanism for the high rate of sea ice thinning
in the Arctic Ocean, J. Climate, 17, 3623–3632.

Blanchard-Wrigglesworth, E., K. C. Armour, C. M. Bitz, and E. DeWeaver (2011a),
Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and
observations, J. Climate, 24, 231–250, doi:10.1175/2010JCLI3775.1.

Blanchard-Wrigglesworth, E., C. M. Bitz, and M. M. Holland (2011b), Influence of
initial conditions and climate forcing on predicting Arctic sea ice, Geophys. Res.
Lett., 38, L18,503, doi:10.1029/2011GL048807.
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