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Zusammenfassung

Die vorliegende Dissertation beschäftigt sich in ihrer ersten Zielstellung mit der quantenmechanischen Berech-
nung der Protonenemission bei der Wechselwirkung eines kombinierten Feldes aus einem Laserstrahl und einem
γ-Strahl mit einem Halo-Kern. Der totale Wirkungsquerschnitt ist wesentlich größer als der bekannte Wert für
den Kernphotoeffekt, bei dem ein sehr energiereiches γ-Quant von einem stabilen Kern absorbiert wird. Desweit-
erens zeigen die Winkelverteilung und das Energiespektrum des emittierten Protons eine starke Abhängigkeit
von der Polarisation und der Intensität des Laserfeldes sowie auch von der Orientierung seines elektrischen
Vektorfeldes gegenüber dem Vektorfeld des γ-Strahls.

Die zweite Zielsetzung der Dissertation ist die Untersuchung der Paarerzeugung von Pionen beim Stoß eines
hochenergetischen Laserfeldes mit einem ultrarelativistischen Protonenstrahl. Die phänomenologische Pion-
Proton Kopplungstärke wurde bei gσ ≈ 7.8 festgelegt, so dass unsere Ergebnisse für den Prozess γ+p→ p+π++
π− mit den von DAPHNE gemessenen Wirkungsquerschnitten als Funktion der Energie des γ-Photons von der
Energieschwelle bis ca. ≈ 480 MeV gut übereinstimmen. Die Ergebnisse wurden mit anderen Arbeiten über die
Myonen-Paarerzeugung durch Multiphoton-Absorption verglichen. Obwohl die Myonmasse wesentlich kleiner
als die Pionmasse ist, ist die Produktionsrate von π+π− Paaren durch 2-Photon-Absorption dominant im
Frequenzbereich zwischen ≈ 150 und 210 MeV.

Abstract

The emission of a proton from a halo-nucleus by absorption of a γ-photon in the presence of a strong laser
beam is studied. It is shown that the maximum value of the total cross section, when plotted as a function of
the γ-photon energy, is considerably larger than those obtained from experimental data of photoproton cross
sections in stable nuclei. Furthermore, the angular distribution and the energy spectrum of the emitted proton
exhibit a strong dependence on field geometries, polarizations and strengths.

The second project deals with the photoproduction of π+π− pairs via multiphoton absorption from an
intense x-ray laser wave colliding with an ultrarelativistic proton. By setting the pion-proton coupling constant
to gσ ≈ 7.8, we reproduce the photoproduction cross section for the process γ + p→ p+ π+ + π− at 440 MeV
as measured with the DAPHNE detector at MAMI. With this choice, we find reasonable agreement with the
experimental data in the energy range from threshold up to ≈ 480 MeV. The results was compared with other
works on multiphoton µ+µ− production. Although the muon mass is substantially smaller than the pion mass,
π+π− production is found to be dominant in the frequency range between approximately 150 and 210 MeV.
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Notations, Units and Conventions

Throughout this thesis we will use the natural Heaviside-Lorentz (H.-L.) units

~ = c = kB = ǫ0 = 1, (1)

where ~ is the reduced Planck’s constant, c is the velocity of light, kB is the Boltzmann constant and ǫ0 is the
vacuum permittivity. So, units of all physical quantities will be attributed in terms of units of energy, i.e. in
MeV, which is a typical energy scale in nuclear physics. The units of length and momentum are inverse of each
other, units of length and time are same and units of energy, momentum and mass are also same. The H.-L.
units set automatically the vacuum permeability µ0 = 1 since c2 = 1/(ǫ0µ0). The product of ~ and c has the
dimension of energy times length and its value is1

~ · c ≈ 197.32 MeV · fm def
= 1, (2)

We can use this fact to convert energy units into length units, for example the rest mass of π± meson is approx.
139.57 MeV or 0.707 fm−1. Value of the fine-structure constant becomes α = e2/4π ≈ 1/137, which clearly
means that the elementary charge e is dimensionless and approximately equals to 0.3. The unit of the cross
section σ is the micro-barn, and we have 1 µb = 10−4 fm2 ≈ 2.5× 10−9 MeV−2.
Thus, to simplify the calculations, our strategy is first to express each physical quantity in MeVr (r ∈ Z) using
convension (1), i.e. in H.-L. units, and then to convert it to SI units by dividing the result by a conversion
constant, which relates both systems of units to each other. We have determined these conversion constants
using the latest internationally recommended values of the fundamental physical constants from the “Committee
on Data for Science and Technology” (CODATA) [1]. The results are shown in Table 1 below.

1We have 1 fm = 10−15 m.
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Quantity
Dimensions

Conversions: 1 · [SI Units] = const. MeVr (r ∈ Z)
SI Units H.-L. Units

Action J · s none 1 · J · s = 9.4825229× 1033 MeV0

Velocity m/s none 1 ·m/s = 3.3356411× 10−9 MeV0

Elementary Charge Coulomb none 1 · e = 0.302822122029789 MeV0

Length m MeV−1 1 · fm = 5.067731496528114× 10−3 MeV−1

Mass kg MeV 1 · kg = 5.609588830519812× 1029 MeV

Time s MeV−1 1 · s = 1.519267660720230× 1021 MeV−1

Energy J ≡ kg ·m2/s2 MeV 1 · Joule = 6241509594067.40 MeV

Temperatur Kelvin MeV 1 ·Kelvin = 8.617343169325341× 10−11 MeV

Momentum kg ·m/s MeV 1 · kg ·m/s = 1.871157424341242× 1021 MeV

Electric Charge Coulomb none 1 · C = 1.890067218174823× 1018 MeV0

Electric Current Ampere MeV 1 · A = 1.244064668156505× 10−3 MeV

Electric Potential Volt MeV 1 · Volt = 3.302268582857398× 10−6 MeV

Electric Field Volt/m MeV2 1 · Volt/cm = 6.516265763429796× 10−17 MeV2

Magnetic Field Tesla = 104 G MeV2 1 · Tesla = 1.953527343534453× 10−10 MeV2

Magnetic Potential Volt · s/m MeV 1 · Volt · s/m = 989.995202432763 MeV

Force Newton MeV2 1 · Newton = 1.23161801749548 MeV2

Power Watt MeV2 1 ·W = 4.108235668696141× 10−9 MeV2

Intensity Watt/m2 MeV4 1 ·W/cm2 = 1.599661676609436× 10−30 MeV4

Production Rate s−1 MeV 1 · s−1 = 6.582118647387887× 10−22 MeV

Cross-Section m2 = 1028 b MeV−2 1 · µb = 2.568190187212365× 10−9 MeV−2

Table 1: List of conversion constants for various physical quantities relating SI units to H.-L. units using the
2010 CODATA [1]. We shall use these values throughout this thesis.
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Introduction

Since the beginning of the 20th century, nuclear physics has dealt with the physical properties, structures and
reaction mechanisms of atomic nuclei and other forms of nuclear matter. It represents a fundamental branch
of modern physics, which was developed intensely after the discovery of the atomic nucleus by Rutherford’s
famous scattering experiments in 1911. Before, it was difficult to prove the existence of the atomic nucleus
because of its tiny dimensions and the shielding of its Coulomb field by the surrounding electrons in the atom.
Rutherford’s accomplishment thus signalled the birth of nuclear physics.

Two decades after the discovery of the atomic nucleus, photonuclear reactions have started to provide an
important means to gain knowledge about the nuclear structure and nuclear forces. The research field was
opened with the experiments by Chadwick and Goldhaber on the photodisintegration of the deuteron where γ-
rays from a radioactive source were utilized [2]. Systematic investigations of the photonuclear effect were carried
out since the early 1930’s by Bothe and Gentner in Heidelberg which relied on high-energy γ-rays produced
with the aid of a proton accelerator [3]. From 1934 to 1957, various research activities on the photonuclear
effect have been initiated at the Kaiser-Wilhelm Institute for Medical Research (KWImF). After Bothe’s death
in 1958, the KWImF became the Max Planck Institute for Nuclear Physics (MPIK) and the two main building
were later named Bothe- and Gentner laboratories.

Photonuclear reactions are dominated by various giant resonance phenomena [4] occurring in the energy level
spacing from a few to several tens of MeVs. Studies of such resonance phenomena are of particular importance
in determining bulk properties of atomic nuclei (masses, radii, compression moduli, separation energies) and
also in investigating radiation from unstable nuclei. In addition, studies of the photonuclear effect have made
important contributions to the understanding of some astrophysical processes [5, 6] and for producing artificial
radioisotopes as well as proton and neutron sources, which have been used in a variety of applications such as
in nuclear medicine, radiography, chemistry and fusion reactors.
Until now, experiments on photonuclear reactions have typically applied energetic photons from synchrotron,
electron bremsstrahlung or Compton backscattering sources [7, 8]. However, due to a large and still ongoing
technological progress during the last two decades, intense coherent photon beams from powerful laser sources
are emerging nowadays into a novel tool for photonuclear studies [9–12], opening the research field of laser-
nuclear physics. A facility devoted particularly to laser-nuclear physics is currently being constructed as part
of the Extreme Light Infrastructure project [13].

Direct interactions between laser fields and nuclei are usually very weak because of the large mismatch
of the relevant energy scales: Both the laser photon energy and the electric work performed by the laser
field over the nuclear extension are smaller than the typical nuclear level spacing by orders of magnitude.
Indirect laser-nucleus coupling schemes have therefore mostly been considered which are mediated by secondary
particles such as electrons. Prominent examples are nuclear reactions in laser-produced plasmas where, for
instance, photofission and the generation of photoneutrons through high-energy bremsstrahlung emission by
laser-accelerated electrons has been observed [10–12]. The emission of secondary bremstrahlung γ-rays have
also led to the observation of an efficient e+e− pair production through the Bethe-Heitler effect [14]. The setup
also offers prospects for Bethe-Heitler creation of muon pairs [15] and single pion photoproduction through the
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8 CHAPTER 1. INTRODUCTION

reaction [16] p+ γ → n+π+. Particle reactions such as µ+µ− and π+π− production were also considered in an
e+e− plasma coupled to a photon field [17–20]. Theoreticians have investigated moreover laser-assisted internal
conversion [21–23], the electron-bridge mechanism [24], nuclear excitation in laser-driven muonic atoms [25].
In view of the ever increasing available laser intensities as well as frequencies also the possibilities for direct
laser-induced nuclear reactions are meanwhile being studied. Resonant photoexcitation of nuclear transitions
may occur when an intense x-ray laser pulse interacts with a counterpropagating nuclear beam of moderately
relativistic energy [26, 27]. For certain applications, it could also be interesting to combine a laser beam with
an incoherent radiation source such as x-rays or γ-rays. The study of the (γ, p) reaction and the streaking
of low-energy protons may be performed experimentally using the proton streaking technique, where a high-
frequency laser beam (of a few attoseconds or 10 keV photons) is used to measure the lifetimes of such nuclear
processes [13].

Apart from direct laser-induced nuclear processes, also laser-assisted processes are of interest. These are
processes which can already occur without the presence of a laser field and may be modified when a laser field
is present. Examples are the laser-assisted internal conversion mentioned above as well as laser-assisted nuclear
β-decay, which was studied by several authors [28, 29]. Laser-assisted processes have been studied thoroughly
in atomic physics. They comprise laser-assisted electron-atom scattering, laser-assisted x-ray scattering, laser-
assisted Mott and Møller scattering and laser-assisted electron-ion recombination. In particular, the laser-
assisted photoeffect in atoms has been investigated intensively both in theory and experiment [30–35] in recent
years. These studies were motivated and rendered feasible by the availability of synchronized IR and XUV
beams, with the latter being produced by a Free Electron Laser (FEL) or High Harmonic Generation (HHG).
Characteristic modifications of the photoelectron spectra due to the presence of the low-frequency field have
been found. Besides, the process may be utilized to probe the properties of the ionizing FEL/HHG pulse. Here
too it would be important to study analogue laser-assisted processes in nuclear physics.
Also, particle accelerators are important tools for fundamental nuclear physics research. The latest generation
of high-current particle accelerators (linac, synchrotrons, cyclotrons) are used for increasing the energy of
charged particles, up to multi TeV scale. The Tevatron Collider at the Fermi National Accelerator Laboratory
(Fermilab) can run at a center of mass energy of 1.96 TeV, and the Large Hadron Collider (LHC) at CERN
up to 3.5 TeV per beam with a final expected energy of 7 TeV. When such particles interact directly with
intense laser beam, nonlinear quantum electrodynamic (QED) and hadronic processes can well occur, because
the frequency and field strength of the electromagnetic field are largely Doppler-enhanced in the particle rest
frame. In the late 1990’s, multiphoton e+e− pair production was observed in ultrarelativistic electron-laser
collisions by a pioneering experiment [36] at the Stanford Linear Accelerator Center (SLAC) in the USA. It
would be interesting to look at analogue multiphoton processes in hadronic physics. In recent years the interest
in the process of pion photoproduction has been revived by improved experimental data which were obtained
by using polarized tagged photon beams at the Mainz Microtron (MAMI) in Germany [37, 38], the GRAAL
facility in Grenoble/France [39–41], and the Jefferson Laboratory located in Newport News/USA [42–44]. At
GRAAL, the high-energy photon beam is produced by Compton backscattering of laser light on a relativistic
electron beam. These studies allow insights into the internal structure and excitation spectrum of the proton.
A particular focus lies on polarization asymmetry measurements which are sensitive to interference cross terms.

In the present work we will use single or several photons of energy between 2 eV to 3 MeV from different
kinds of radiation sources to study different problems associated with nuclear and hadronic processes in super-
intense light-matter interaction. Our first study include the photonuclear effect when an exotic halo-nucleus
interacts with a combined field consisting of a strong optical laser and a high-energy photon (such as a γ-ray).
Here we shall use a halo-nucleus because of its small binding energy (between 0.1 and 1 MeV) and large spatial
extension (between 3 and 9 fm), so that photonuclear reactions can easily be induced by using high-energy
photons. We therefore expect that photonuclear cross sections are much easier to measure for halo-nuclei than
for stable ones. It is important to note that the current realistic and phenomenological models of atomic nuclei,
which have been developed to explain the data from (photonuclear reactions and scattering) experiments using
stable nuclei only, are in disagreement with a wide range of experiments on the properties of exotic nuclei. We
investigate a laser-assisted process which may help to gain new insights in the understanding of exotic states
of nuclear matter, and hence to make more consistency between theory and experimental observations. In a
second study, we consider the laser-induced pion pair production in ultrarelativistic proton-laser collisions. This
study combines the well-established approach to multiphoton QED processes [45–47] with a phenomenological
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hadronic model to describe the pion-nucleon interaction. We note that the hadronic interaction is assumed to
be mediated by the exchange of isoscalar-scalar σ mesons, and the laser photons participate directly in the pair
production process in contrast to the indirect participation mentioned above [10–12, 14]. Such investigation
might add important insights to understand the Coulomb and nuclear effects in nuclear matter, parallel to the
physics of heavy ion collisions and the astrophysics.
In general terms, the present studies may be considered a first step towards an extension of the theory of
laser-dressed QED into the realm of nuclear- and hadronic physics. Our general goal is to generalize tools and
knowledge from atomic physics and QED in strong laser fields to laser-nuclear physics.

The present thesis is organized in five Chapters with accompanying two Appendices for Chapters 4 and
5, that contain detailed informations about mathematical techniques that help the reader to understand our
projects better. In order to justify our motivation to carry out this work, we give in Chapter 2 a background
in nuclear and laser physics, by presenting in Section 2.1 an overview on the basic properties of nuclei and on
the nuclear models, and then in Section 2.2 an overview on the historical and future development of intense
radiation sources. Chapter 3 provides theoretical methods for the main topics used in this thesis as well as it
builds a theoretical framework for further analysis. In Chapter 4 we study the photonuclear effect occurring
in the combined electromagnetic fields of γ-rays and an intense laser beam. The proton is emitted by the
photonuclear effect, which is assisted here by the strong laser field. In the theoretical part 4.3, we calculate the
total and differential cross section of the process by using an approximate wave function of the initially bound
halo state. The final state is approximated by a nonrelativistic Volkov wave function in the continuum. In
Section 4.4, we investigate the cross section in terms of the number of the absorbed laser photons, the photon
energy of the γ-radiation and the polar emission angle of the proton-halo. Chapter 5 deals with the production
of π+π− pair via multiphoton absorption from an intense x-ray laser wave colliding with an ultrarelativistic
proton beam. In the theoretical part 5.2, we calculate the differential and total cross section of the process
by including the contributions from both the electromagnetic and hadronic interactions, where the latter are
described phenomenologically by a Yukawa potential. Order-of-magnitude estimates for π+π− production on
the proton by two- and three-photon absorption from the high-frequency laser field are obtained in Section 5.3
and compared with the corresponding rates for µ+µ− pair production. Finally, our conclusions and outlook
follow in Chapter 6.
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Background in Nuclear and Laser Physics

2.1 Basic Concepts in Nuclear Physics

There is compelling experimental evidence that the fundamental constituents of matter are six flavor quarks
(u, d, s, c, b, t) possessing three types of color charge, and six leptons (e, νe, µ, νµ, τ, ντ ). The atomic nucleus
consists essentially of bound states of uncharged neutrons and positively charged protons, that are made up of
quarks. In the nucleus, all the four fundamental forces known at present appear. According to quantum physics,
the forces between elementary and composite particles in the nucleus arise from an exchange of field quanta.
The field quanta for the electromagnetic interaction are photons, massless and electrically neutral bosons with
spin one. At the subnuclear level, or in other words in quantum chromodynamics (QCD), the field quanta
for the strong interaction are eight gluons carrying color-anticolor charge pair, and therefore they can interact
strongly among themselves. Gluons are responsible for the binding of protons and neutrons in the very small
space volume of a nucleus, otherwise they would drift apart by the electromagnetic forces.

2.1.1 Properties of Stable Nuclei

What do we know about the physical properties of nuclei? To date, modern scattering experiments and high-
resolution spectroscopic methods provide direct evidence for the following physical properties of the atomic
nucleus:

(a) The masses of the proton and neutron in the nucleus are approximately the same. The force between two
protons is equal to the force between two neutrons (i.e., charge independence of the nuclear force), but it
depends strongly on the relative spin orientation. These properties can be proven by studying the inelastic
scattering of protons and neutrons by deformed exotic nuclei or by studying the mirror nucleus. Therefore,
one introduces the concept of isospin symmetry by considering the proton and the neutron as two different
quantum states of the same particle, the nucleon.

(b) The nuclear force has a very short range (approximately π-meson Compton wavelength). This property
provides a good approximation of the nuclear radius, which can be determined by measuring the isotope
shift in atomic transition frequencies by use of high precision laser-resonance spectroscopy on single atoms
or by the scattering of low-energy electrons from nuclei. The root mean square (rms) charge radius is
estimated by [48, 49]

rrms ≈ r1 · A1/3 fm, (2.1)

11
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with r1 = 1.16 fm and A is the total number of nucleons in the atomic nucleus. That is, for the stable
isotopes in the periodic table of elements we have

1 fm . rrms . 5 fm, (2.2)

which is roughly 105 times smaller than the atomic radius.

(c) There is no attractive center, which produces the (strong) binding potential. The exact form of the nuclear
potential is not precisely known at present, while in the atom, the Coulomb potential (∝ 1/r) is responsible
for binding the electrons to the nucleus.

(d) A nucleon may only interact (strongly) with a fixed number of its nearest neighbors and next-nearest
neighbors. If one adds a further nucleon, only the nuclear volume becomes larger, not the binding energy
per nucleon. From this it follows that the atomic nucleus is a saturated system.

(e) The nuclear interior is homogeneous and isotropic; that is, all directions are equivalent and there is no
direction preferred to others. This rotational symmetry is very helpful for investigating the equation of
state (EoS) for nuclear matter and generally in theoretical nuclear physics.

(f) The mean free path of the nucleon is much larger than the nucleon size or even larger than the nuclear
medium itself, so that one can apply a model of “independent particles”.

From these physical properties, the atomic nucleus can be compared with a liquid drop, where nucleons
play the role of “molecules” in normal liquid. This phenomenological ansatz is known as “liquid-drop model”,
whereby the behavior of the total binding energy B is determined as function of the total number A of nucleons
and its different values for different isotopes. For a given stable nucleus of volume V and total mass M ,
consisting of Z bound protons and N = A − Z bound neutrons of free masses mp and mn, one assumes B to
be approximately the sum of different types of energies,

B = Bvolume +Basymmetry +Bsurface +BCoulomb + ..., (2.3)

= av · A− asym ·
(N − Z)2

A
− asurf · A2/3 − aC · Z(Z − 1)A−1/3 + ...,

which is equal to the mass defect M − Zmp − Nmn. This is known as the semi-empirical mass formula [50]
(sometimes also called the Bethe-Weizsäcker mass formula). The coefficients av, asym, asurf, and aC are constants
that can be calculated empirically by fitting to experimentally measured masses of different nuclei. The first
term corresponds to the volume energy, which results from the mutual attraction between nucleons. Because the
attraction is short-range and rotationally symmetric, the binding energy per nucleon Eb ≡ B/A is considered to
be independent of A, and thus B is proportional toA. So the first term gives an explanation of the experimentally
observed constant density of nucleons nB, whereby the volume V is proportional to the number A = V · nB of
nucleons. If we simply estimate V as 4πr31/3 and using Eq. (2.1), the saturation density in the nuclear interior
amounts to an extremely high value of

nB = (np + nn) ≈ 0.153 Nucleons/fm3, (2.4)

where np = Z/V and nn = N/V are the densities of protons and neutrons, respectively. Furthermore, the
empirical value of the binding energy per nucleon is known with good accuracy from experimental data [48,49]

5 MeV . Eb . 8 MeV. (2.5)

This value can be obtained from the semi-empirical mass formula (2.3) by considering an isospin symmetric
nuclear matter (nn = np) in the thermodynamic limit (A, V →∞), so that all terms vanish except the volume
energy. The second term in expression (2.3) has a quantum mechanical meaning, namely, the nucleus can be
considered as a quantum degenerate Fermi gas, in which all energy levels are occupied separately by protons and
neutrons up to the Fermi energy. From the Pauli exclusion principle, each level allows just two particles of the
same type with opposite intrinsic spin orientations. Owing to this prevention, the more nucleons are added, the
higher are the energy levels that they have to occupy, increasing the total energy of the medium and decreasing



2.1. BASIC CONCEPTS IN NUCLEAR PHYSICS 13

the binding energy (the latter will be maximum when protons and neutrons occupy the lowest possible levels).
If there is an unequal number of protons and neutrons (usually there are more neutrons than protons), the
energies of the highest occupied proton and neutron levels, which are the Fermi energies, are unequal. In that
case, a contribution to the binding energy should assure that protons and neutrons have the same Fermi energy;
otherwise, the energy difference would be balanced through β±-decay of neutrons into protons or vice versa.
This contribution is the asymmetry energy. Thus, the asymmetry energy supports the equilibrium between
proton and neutron number, vanishes for nn = np, and reduces the total binding energy B for increased the
difference nn − np. The empirical value of the asymmetry energy coefficient at the saturation density (2.4) is
also well known [51]:

asym ≈ 32.5 MeV. (2.6)

The third term in the mass formula (2.3) describes the relationship from the surface to the volume of the
nucleus. The nuclear binding energy is much larger for the central nucleon than that for the surface nucleon,
because the latter is surrounded by fewer nearest neighbors than a nucleon inside the nucleus. From there, a
destabilizing term (i.e. with minus sign) is needed, which is proportional to the surface of the nucleus. Since V
is proportional to A and the nuclear radius to A1/3, the surface term should be proportional to A2/3 as shown
by Eq. (2.3). Finally, the fourth term appearing in the mass formula, which is known as the Coulomb term,
takes into account the electrostatic repulsion of the Z(Z − 1)/2 pairs of protons in the nucleus. The expression
of the Coulomb term, as given by this equation, can be approximately calculated using the potential energy of
such a charge distribution in a spherical nucleus (i.e. of radius proportional to A1/3). We note that there are
many other correction terms we have not included in the above semi-empirical mass formula and they will not
be discussed in this Chapter.

The next important quantity in the study of nuclear properties is the nucleon effective massm∗
N, which results

from the mass defect of the nucleon owing to the interaction with its nearest neighbors. From experiments,
one determines m∗

N by measuring the density of states of the nucleon and the single-particle energy levels in
nuclei [52]. However, a precise value is not known at present. So far as known, the range at saturation density,
far away from the Fermi surface and for nn = np, is [53, 54]

656.8 MeV . m∗
N . 750.6 MeV. (2.7)

As we mentioned in the Introduction, photonuclear reactions have proved to be valuable tools for the studies of
giant resonance phenomena in nuclei which occur in the energy range between a few and several tens of MeVs [4].
These studies are of particular importance in determining the compression modulus K of the atomic nucleus.
This quantity is related with the collective oscillation processes of protons against neutrons in the nucleus, which
can be excited to oscillate collectively through absorption of γ-quanta via the photonuclear effect or through
inelastic scattering of α particles. Thereby, there are radial (monopole) and nonradial (dipole or quadrupole)
oscillations, in which the deformation of the nucleus changes with the oscillation periods. Concretely, the
compression modulus can be extrapolated from experimental data on the strength function distribution of the
isoscalar giant monopole resonance (GMR) in different heavy nuclei [55–57]. Like the nucleon effective mass, a
precise value of the compression modulus is not known at present, but in recent years it has been estimated to
be in the range [57–60]

230 MeV . K . 250 MeV. (2.8)

As an example, we mention that the value K ≃ 234.0 MeV, has been estimated by Myers and Swiatecki [49] using
Thomas-Fermi model calculations. Youngblood et al. have reported [56] that K = 231± 5 MeV by measuring
the strength function distribution of the GMR in 90Zr,116 Sn,144 Sm, and 208Pb using inelastic scattering of
240 MeV α particles at extremely forward angles.

2.1.2 Properties of Exotic Halo Nuclei

In some cases, the properties of nuclei might be different from those discussed in the previous Subsection 2.1.1,
i.e. regarding their sturctures, density distributions, binding energies, symmetries, etc. These kind of nuclei are
referred to as “exotic nuclei”. One important species is the so-called “halo-nuclei”. A halo-nucleus contains a
tightly bound inner core surrounded by a few outer nucleons that are loosely bound to it. The outer “halo”
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nucleons are unusually far from the nuclear-core leading to a relatively large rms matter radius between [61]

3 fm . rrms . 9 fm, (2.9)

which is substantially higher than the value predicted by the liquid drop model in Eq. (2.1). The binding energy,
that holds a nucleon-halo to the nuclear-core is usually between

0.1 MeV . Eb . 1 MeV, (2.10)

which is substantially smaller than the binding energy (2.5) of stable nuclei. In general, we can divide halo-nuclei
into neutron-halos and proton-halos. The number of neutron-halos discovered so far exceeds significantly the
number of proton-halos due to the Coulomb barrier and the l = 1 angular momentum barrier, which hinder the
proton to penetrate into the out region of the nuclear-core. The formation and stability of halo-nuclei cannot
be explained by the classical physics but by the quantum physics. The most known quantum-mechanical effect
taking place is the quantum tunnelling, where the wave function of the nucleon-halo tunnels out of the nuclear-
core to the classical forbidden region, and hence giving rise to the large rms radius (2.9). Another important
effect is the asymmetry energy contribution to the nuclear binding energy as explained above, since halo-nuclei
are generally very neutron-rich or proton-rich systems with low A. The larger the proton-neutron asymmetry
in the nucleus, the smaller the saturation density, and hence the lower the binding energy that holds nucleons
together in the nucleus. In a previous work [62], we have found that nuclei become unbound at a proton-neutron
fraction η ≡ (nn − np)/(nn + np) slightly larger than 0.8. This region is called “drip line”, at which halo-nuclei
may be formed. As a consequence, halo-nuclei are characterised by their short lifetimes, so generally between

0.43 ms . τhalo . 64.5 s. (2.11)

The first and the most well-studied case is the neutron-rich 11Li. This isotope was identified as a two-neutron
halo-nucleus by Tanihata and co-workers in 1985 at Berkeley [63] from the measurement of the interaction
cross sections of a high-energy radioactive beam of 11Li with various target elements. In 1987, Hansen and
Jonson [64] explained the large matter radius of 11Li by considering it as binary system of a stable 9Li core
(containing three protons and six neutrons) surrounded by a halo of two neutrons. The 6He and 11Be isotopes
with two- and one-neutron halo, respectively, have also been well studied in many experiments [65, 66] by
measuring the experimental differential and integrated cross sections for their elastic breakup on 12C and 208Pb
targets. Few other halo-nuclei have also now been confirmed or predicted, such as the 19C with one-neutron
halo [67], 17B, 19B and 22C [68] with two-neutron halos, the 8He and the 14Be with four-neutron halos. Notice
that two-nucleon-halos are called Borromean nuclei, because they share with Borromean rings (named after the
Borromeo family from the 15th century) the property of making the three-body nuclear system unbound when
any one of them is removed. Nevertheless, nuclei which have a one-proton-halo include 8B and 26P [69–76],
presumably the 17Ne with two-proton-halos [77] and the 100Sn with one-proton-halo [78]. Let us focus on the
8B, because we will need it later in Chapter 4. This isotope contains a formed heart of four protons and three
neutrons surrounded by a halo of one proton. It has an rms radius of a0 = 2.58± 0.04 fm and an rms distance
of Rp = 4.73 fm for the 7

4Be + p system [79, 80]. The lifetime of the 8
5B against β+-decay and fission is about

τB ≈ 769 ms. By γ-ray absorption, it breaks up into beryllium via the following photonuclear reaction

Boron : 8
5B+ γ −→7

4 Be + p. (2.12)

The lifetime of the 7
4Be is about τBe ≈ 53.22 days. It decays by electron capture with a decay energy of roughly

0.862 MeV or by γ-radiation with a decay energy of 0.477 MeV [61]. The binding energy, that holds the proton-
halo in 8

5B to the nuclear-core is about Eb ≈ 0.137 MeV [81–83]. Note that the study of the cross sections for
the reaction (2.12) is important for the understanding of some astrophysical processes, in particular the stellar
nucleosynthesis [5, 6] and the solarboron-neutrino flux [84, 85].

So far we discussed some general properties of both stable and exotic nuclei, that would be necessary for
the study of nuclear and hadronic processes when such objects interact with photons of sufficient energy. Our
study is basically related to the investigation of the projectile-target interaction. When the target is a single
proton or a halo-nucleus, the projectile, i.e. the photon, must have sufficient energy to exert an appreciable
influence on it, i.e. above 5 MeV according to Eq. (2.5) and above 0.1 MeV according to Eq. (2.10). Values
given by Eqs. (2.5) and (2.10) are typical energy scales in nuclear physics, and photons of such energies can



2.1. BASIC CONCEPTS IN NUCLEAR PHYSICS 15

well be generated in the laboratories, as we shall show in Section 2.2. Through the interaction, interesting
physical effects could happen due to the electromagnetic as well as the hadronic nature of the photon. Here
we mention: the photoeffect both in its photoelectric and photonuclear forms, (nuclear) Compton scattering,
lepton- and meson pair production. The interaction can also lead to nuclear excitations, transfer-, fission and
fusion reactions.

When the photon energy reaches or exceeds the π-meson mass (corresponding to the γ-ray domain), the
hadronic nature of photons appear and their interaction with the electric field of the charged target seem to be
independent of the electric charge. These photons would mainly interact like massive particles, mesons, with the
fundamental constituents of the target from quarks and gluons with the same quantum numbers as each photon,
namely spin S = 1 and parity P = −1. Those mesons include the isoscalar-vector ω and the vector-isovector
ρ mesons. In this energy regime, resonant photoproduction of neutral pseudoscalar mesons (pion, Kaon, η)
can well occur. Such hadronic process is known as Primakoff effect [44, 86, 87], which takes place inside the
hot plasma of stars powered by ultra-strong magnetic fields, where the strength is approximately equal to the
Schwinger value Hc = m2

e/e = 0.862 MeV2 = 4.41× 109 T.

2.1.3 Nuclear Models

Due to the complexity of strong interactions and the substructure of nucleons, the field of nuclear physics has
later on emerged into various branches of physics. Among them we cite hadronic physics, whose degrees of
freedom include baryons and mesons, and QCD, whose degrees of freedom include quarks and gluons. Hadronic
physics ignore, so far at least, the high-energy processes occurring at the subnuclear level. However, the unified
goal of theoretical hadronic physics with QCD is to develop mathematical models, that provide an accurate
description of nuclear structure and dynamics over a wide range of energies, from the few hundreds of keV to
the GeV regime, and this over a wide range of distances, from a small fraction of a femtometer (quark-gluon
plasma phase) to a few femtometers.

In general, one tries to reproduce the experimental data as optimally as possible, and on the other hand,
one tries to make qualitative and quantitative predictions on the physical behavior of the nuclear system, which
are unknown so far. Because the formulation of the quantum mechanics and the relativity, different theoretical
approaches have been developed, which can be divided into two different models:

• Microscopic models based on realistic hadron-hadron interaction, and

• Effective models based on a phenomenological parametrization of the interaction potentials.

Numerical solutions of realistic models, such as the [Dirac-] Brückner-Hartree-Fock theory, is very complicated,
so they cannot be applied to nuclear systems of finite dimensions. Rather simple and successful approaches
generally offer the phenomenological models, such as the [Skyrme-] Hartree-Fock (SHF) model, the effective
global color model of QCD, the Nambu-Jona-Lasinio model, the relativistic (σ − ω) mean field theory (RMF),
etc. The latter model provides an accurate description of the nucleon-nucleon interaction at large distances but
breaks down at short distances, because it treats baryons and mesons as elementary degrees of freedom and, of
course, at short distances quarks and gluons manifest themselves. In contrast, the theory of elementary degrees
of freedom of quarks and gluons, that is, QCD, is simple at short distances but complicated at large distances
(in the confinement region). The attempt that allows a transition from QCD out into hadronic physics is known
as “hadronization” which is, however, not solved so far.

Significant efforts have also been devoted to develop better models to reproduce the main halo properties (e.g.,
separation energies of the nucleon-halos, mean square radii, etc.) and to study their reaction mechanisms [88,89].
A Glauber model calculation has been successful to evaluate the reaction, interaction, and two-neutron removal
cross sections of 11Li [90, 91]. On the other hand, the phenomenological SHF model [89] with standard force
parameters and the (σ − ω) RMF [78,92] theory have been used to reproduce the one-proton separation energies
and mean square radii of some halo-nuclei. Using relativistic Hartree-Bogoliubov theory, Meng and Ring [93]
also found a good agreement with experimental values for the total binding energies and the radii of the isotope
chain 6Li to 11Li.

Most of the effective hadronic models of nuclei use a Yukawa-type meson exchange potential to describe
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the nuclear forces between nucleons. Thereby, pions and other mesons (σ, ω, ρ, . . . ) are responsible for the
binding of protons and neutrons. For example, the standard version of the (σ − ω) model has been developed to
describe the exchange of σ and ω mesons between nucleons, which is known to provide the intermediate-range
attraction and short-range repulsion in the nucleon-nucleon potential. The effective interaction is characterized
by the meson parameters such as their masses and coupling constants, which are “adjusted” to reproduce the
saturation properties of stable nuclei.

−200

−100

0

100

200

300

400

0 0.5 1 1.5 2

E
ff
ec
ti
v
e
N
u
cl
ea
r
P
o
te
n
ti
a
l
V
σ
,ω
(|
~x
|)

[f
m
]

|~x| [fm]

ω –Exchange (mω ≈ 783 MeV)

σ –Exchange (mσ ≈ 550 MeV)

Delicate 2π–Exchange

Q
u
a
rk

R
eg
io
n

≈
0
.3

fm

Vσ,ω(|~x|)
Vσ(|~x|)
Vω(|~x|)

Figure 2.1: Effective nuclear potential in the (σ−ω) model illustrating short-range repulsion and intermediate-
range attraction.

This interaction can be expressed phenomenologically for equal numbers of protons and neutrons in terms
of two Yukawa potentials,

Vσ,ω(|~x|) = Vσ(|~x|) + Vω(|~x|) =
(
− g

2
σ

4π
· e

−mσ|~x|

|~x|

)
+

(
g2ω
4π
· e

−mω|~x|

|~x|

)
, (2.13)

where gσ, gω, mσ and mω are the coupling constants and masses of the σ and ω mesons, respectively, and |~x|
is the relative distance between two nucleons. The minus sign tells us that the σ meson potential is attractive.
Moreover, the heavier (lighter) the exchanged meson is, the more rapidly (slowly) decreases the potential with
increasing distance |~x|. Therefore, the range of the resulting interaction (2.13) is mostly determined by the
masses of the exchanged σ and ω mesons and the strength by their coupling constants gσ and gω as shown
in Fig. 2.1. We shall use this meson exchange potential in the second project of our thesis (Chapter 5) to
study the process of π+π− pair production. This is one of the analogies we want to draw with field-induced
processes known from atomic physics [45–47], where photon exchange (Coulomb) potential is used to study pair
production of e+e− [94–101] and µ+µ− [100, 102, 103].

2.2 Novel Radiation Sources

In the present thesis our target particle is first a pre-accelerated proton and second a halo-nucleus. Our projectile
is a single or several photons of energy between 2 eV to 3 MeV using different kinds of radiation sources. In this
context, we will deal with different problems associated with nuclear and hadronic processes in the interaction
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between high-energy photons and matter at the hadronic level. In order to justify our motivation to carry out
this work, we should have the right balance between the typical nuclear level spacings and energies discussed
above, and the recent advances in the development of high-energy and high-intensity radiations. Let us then
give a brief overview on the present status and future development of radiation sources.

2.2.1 Laser Sources

A laser source is characterised by its coherence, monochromaticity, directionality and high photon density.
Since the invention of the first working laser in the early 1960’s, the laser-based spectroscopic methods open
further opportunities for the study of nuclear structures and properties. For example, in determining the nuclear
charge radii of both stable and exotic nuclei via atomic transitions [104]. However, the use of lasers to induce
high-energy reactions become especially apparent since the invention of the Chirped Pulse Amplification (CPA)
technique by Strickland and Mourou in 1985 [105] for the amplification of ultrashort pulses to high energies. To
date, it has been proven that nuclear and hadronic processes can be induced indirectly, when a petawatt laser
(peak intensity above 1019 W/cm2) is focused to dimensions of several microns and impinges on a solid-state
target. In the resulting plasma wakefields, electrons can be accelerated to relativistic energies up to several
100 MeV and emit secondary bremstrahlung γ-rays. These have led to the observation of laser-induced nuclear
fission [106, 107], proton or neutron emission [10–12], and efficient e+e− pair production through the Bethe-
Heitler effect [14]. In 1999, Ditmire et al. [108] have observed the laser-driven inertial fusion from the explosions
of deuterium clusters heated with a compact table-top laser. This fusion process is followed by the production
of large amounts of neutrons.

A lot of large-scale petawatt and multiterawatt-class laser facilities exist around the world, or are in planning.
One of them is the NOVA facility at the Lawrence Livermore National Laboratory in California. The produced
16 trillion watts of laser light can accelerate proton with energies up to 58 MeV [109], and heavier ions such
as carbon, aluminium and lead with up to 7 MeV per nucleon [110]. The currently highest laser intensities
in the world is about 1022 W/cm2 [111] delivered by the Titanium-Sapphire laser at the Center for Ultrafast
Optical Science (CUOS) at Michigan in the USA. This is followed by the VULCAN petawatt laser at the
Rutherford Appleton Laboratory in the United Kingdom. Using the CPA technique on the Titanium-Sapphire
laser, VULCAN operates at a wavelength of 800 nm and delivers pulses down to 30 fs, giving access to focused
intensities of 1020 to 1021 W/cm2. With such intensities, many isotopes have been produced and photofissions of
238U and 232Th was for the first time experimentally demonstrated [106,107]. Some authors, such as Esirkepov
et al. [112] showed with the help of relativistic Particle-in-Cell (PIC) simulations that at laser intensity of
1021 W/cm2, proton and ions gain an energy as high as 1 GeV due to the Coulomb explosion.

Going further with high intensities and energies, Dubietis et al. [113] proposed in 1992 the optical para-
metric chirped-pulse amplification (OPCPA) for the generation of ultrashort pulses as a promising variant to
CPA techniques. The OPCPA is a second-order nonlinear optical process which combines optical parametric
amplification (OPA) and CPA technologies to amplify chirped pulses. In this combination, the photon energy
and the momentum of an optical source (called the “pump”) are converted into a new wave known as ”idler”
and an amplified signal that retains the linear chirp and spatial wavefront characteristics of a weak signal source
(called the ”seed”). The OPCPA has been adopted in some laser facilities around the world to achieve in the
future very high energies and peak power intensities of 1026 to 1028 W/cm2. Recent studies [114, 115] used
the PIC simulations to show that the proton energy scales with laser intensity, which theoretically means that
with these zetta- and exawatt-lasers, particles may be accelerated at energies up to 100 TeV. At such energy
level, (which is not achievable at the Tevatron or even at the LHC, see the Introduction) the photon energy and
the electric work performed by the laser field over a nuclear extension of a few femtometers are in the order of
magnitude of the typical nuclear level spacing, so that direct laser-nucleus interactions involving giant resonance
phenomena and structural changes of the nucleus, become relevant. The study of laser-nucleus interaction in
such ultrarelativistic regime would also open up a completely new era of subnuclear physics, that could provide
new opportunity for testing specific aspects of QCD, both in the perturbative and nonperturbative regimes,
without a direct access to particles accelerators.

In addition to high intensities, also high frequencies laser exist around the world. In recent years, many
physicists have started experiments with the aim of generating coherent and polarized x-rays such as the x-ray
free electron laser (XFEL) at the Deutsches Elektronen-Synchrotron (DESY) in Hamburg. The XFEL uses the



18 CHAPTER 2. BACKGROUND IN NUCLEAR AND LASER PHYSICS

principle of self-amplified spontaneous emission (SASE) to produce high laser frequencies about 0.1 keV. By
the SASE-principle, small bunches of electrons is accelerated to high energies, causing the emission of coherent
x-ray radiation from each electron, and each electromagnetic radiation interacts primarily with the nearest-
neighbor electrons along the way. The total interaction leads to a “micro-arrangement” (or microbunching) of
the electrons, which are so arranged that the spontaneously delivered radiation strengthens exponentially with
the properties of high-frequency laser light. We note that the currently highest x-ray laser frequency in the
world is about 1 keV, which is produced by the Linac Coherent Light Source (LCLS) at the SLAC National
Accelerator Laboratory in Stanford, and in the future coherent laser frequencies up to 10 keV may be achieved.
Coherent x-rays are also envisaged via high-order harmonics from oscillating plasma surfaces [116] or atomic
gas jets [117]. Such compact and portable x-ray sources hold the potential to be operated in conjunction with
the LHC proton beamline. Also efforts are undertaken to develop bursts of coherent γ-rays from an ensemble
of long-lived excited (metastable) nuclei, called isomers. The process is known as Induced γ-Emission (IGE),
which takes place when an external exitation, such as x-rays or accelerated charged particles, drives a fluorescent
emission of γ-rays from isomers. This is quite analogous to conventional fluorescent emission of a photon by
an excited electron in an atomic systems, so that quantum control techniques known from atomic physics
(quantum electronics) can be transferred to nuclear physics (quantum nucleonics). The significant amounts of
excitation energy that may be stored within nuclei over long periods of time, and are capable of being released
as pure electromagnetic emission, may allow physicists to construct nuclear batteries or an ultimate coherent
light source, the so-called γ-ray laser [118, 119].

2.2.2 Incoherent Radiations

Sources of incoherent radiation are also of increasing importance in nuclear researches. When a charged par-
ticle, usually an electron or proton, is accelerated it radiates photons in the form of electromagnetic waves by
the mechanisms of bremsstrahlung and synchrotron emission [7, 8]. The emitted radiation has a continuous
wavelengths spectrum, from the infrared to the γ-ray region, which becomes more intense and shifts toward
higher frequencies by increasing the energy of the accelerated particle. Here we should make clear what we
mean by incoherent radiations. First, when the decelerated particle produces electromagnetic waves with the
same wavelength and same phase, so that the difference in phase between them remains constant, then the ra-
diation is called coherent. For example, the XFEL source is partially coherent. In contrast, when the produced
electromagnetic waves have different wavelengths and/or phases, the radiation is called incoherent.

In general, x-rays and γ-rays from particle accelerators are incoherent like the natural light, since the bunches
containing a large numbers of charged particles circulating in the accelerator are longer than the wavelengths they
are emitting. Incoherent radiations have been widely used in a variety of applications such as in nuclear medicine,
radiography, and chemistry. Since the early 1930’s, it’s well known that incoherent γ-rays can induce nuclear
reactions in nuclei, involving fission, fusion and photonuclear emission of neutrons, protons and deuterons. The
photonuclear effect was investigated in detail by Wolfgang Gentner with his teacher Walther Bothe in 1937.
They produced artificial radioisotopes using high-voltage equipment of 500 keV, enabling them to generate
γ-rays of 17 MeV by bombarding 7Li with protons [3]. These γ-rays made possible the first observation of the
photonuclear effect in medium-heavy nuclei. However, at that time, it was not possible to generate γ-photons
with energies larger than a few MeVs. More recently, modern particle accelerators provide a new, more efficient
technique for generating high-energy γ-photons.

To date, incoherent radiations up to photon energies of about 20 GeV can be generated on earth via Comp-
ton backscattering or synchrotron emission from relativistic charged particles. The emitted γ-rays can well be
detected in various laboratories using γ-spectroscopy detectors by the mechanisms of the photoeffect, Compton
effect, and pair production. The first mechanism is preferred since all the energy of the incident γ-ray can
be absorbed by the detector. For example, in the APOLLON- or in the HERMES experiment at the electron
storage ring of the HERA accelerator at DESY, highly polarized γ-photons in the energy range between 10
and 20 GeV are generated by Compton backscattering of an ultraviolet laser beam, the so-called LCS, on a
longitudinally polarized electron beam of 27.5 GeV energy [120]. Also polarized and tagged photon beam of a
few GeV energy is generated at the GRAAL facility [39–41] by the same mechanisms, at the National Institute
for Advanced Industrial Science and Technology (AIST) [121], at the MAMI Microtron [37, 38] and at the Jef-
ferson Laboratory [42,43]. One of the main goals of the GRAAL project (and also in the other facilities) in the
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future is to detect ultra-energetic γ-rays above 20 GeV, which may provide a better understanding of various
astrophysical phenomena related to the γ-ray bursts from collapsing stars and supernova explosions.

Thus, we can conclude this Chapter by saying that coherent and incoherent radiation sources may be
generated by different techniques in modern laboratories. As a result, high-energy and high-intensity levels have
already been achieved, and further increases and improvements in terms of coherence, monochromaticity and
intensity are expected in the future. By comparing these photon energy levels with the nuclear excitation energies
of nuclei as discussed in Section 2.1, we can easily say that these radiation sources can be used thoroughly for
nuclear physics experiments and the experimental results could open up new theoretical studies of high-energy
phenomena in the interaction between photons and matter from subnuclear particles, atoms, and molecules, to
stars and galaxies.



20 CHAPTER 2. BACKGROUND IN NUCLEAR AND LASER PHYSICS



–III–

Theoretical Methods

3.1 Strong-Field Approximation in Laser-Assisted Dynamics

We have mentioned above that a strong laser beam is characterised by its high photon density and monochro-
maticity, so that its depletion by emitting or absorbing photons from it is negligible. For these reasons, the laser
field can be treated classically as an electromagnetic plane wave. Usually the strong laser field is characterised
by its frequency ωL and its electric field strength EL. Its time dependent vector potential may be represented
by the following linearly polarized or circularly polarized plane wave

~AL = a cos
(
ωLt− ~kL~r

)
· ~ex + a δ0 sin (ωLt− ~kL~r) · ~ey, (3.1)

where a = | − EL/ωL| and ~kL is the laser wave vector. The term δ0 = 0 stands for linear and δ0 = ±1 for

circular polarization of the laser field. We work in the Coulomb gauge with div ~AL = 0 and vanishing scalar
potential, VL = 0.

The time-dependent Schrödinger equation, as well as the Klein-Gordon or the Dirac equation, of a free
charged particle in an electromagnetic plane wave can be solved analytically, which are known as Volkov
states [122]. These exact solutions have been used extensively by several authors to explore numerous QED
processes such as Compton scattering, photoelectric effect and pair production. In general terms, the present
study may be considered a first step towards an extension of the theory of laser-dressed QED into the realm of
hadronic physics.

Notice that the use of Volkov wave function to describe particle in continuum state is denoted as “Strong-
Field Approximation” because other interactions which might be present (such as the Coulomb forces) are
assumed to be weaker than the strong laser field.

3.2 Volkov States

3.2.1 Nonrelativistic Volkov States

Let us consider a spinless particle of rest mass m, which carries an electric charge e and momentum ~p moving
in the potential of a strong laser field. We assume the laser parameters ωL and EL, where the dynamics of
the particle remains nonrelativistic. This means that the coupling parameter ξ between the laser field and the
particle defined by

ξ =
eEL

mωL
, (3.2)

will always be small, ξ ≪ 1. Generally, values of ωL ≡ |~kL| are between 10−6 and 10−3 MeV, which correspond
to wavelengths λL ≡ 2π/ωL above 106 femtometer. Since λL is much larger than the relevant values of |~r| of
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few femtometers, and also much larger than the excursion length ξ · λL of the particle in the continuum, then
we can approximate

exp
(
i ~kL · ~r

)
= 1 + i ~kL · ~r + · · · ,

by its first term, unity. This is known as “the dipole approximation”. Consequently, the term “propagation
direction” of the laser field or any other formulation close to define a “laser wave vector, ~pL ≡ ~kL”, has no
definite meaning under this approximation. Hence, the vector potential can be written as

~AL = a cos (ωLt) · ~ex + a δ0 sin (ωLt) · ~ey. (3.3)

In this Subsection we briefly discuss the nonrelativistic Volkov states. For a detailed discussion on this field,
readers can refer to Ref. [122]. We first assume that our particle is a pointlike object and moving at nonrelativistic
speed in the time-dependent potential (3.3) created by the laser field. The Hamiltonian governing the dynamics
of the free particle is given by

H0 =
1

2m

(
p̂− e ~AL(t)

)2
=

p̂2

2m
− e p̂ ~AL(t) +

e2AL(t)
2

2m
, (3.4)

where p̂ ≡ −i~∇ is its momentum operator, which corresponds to the spatial derivative ~∇. The Schrödinger
equation describing the evolution of the particle wave function ψ(~r, t) in the laser field is then

i
d

dt
ψ(~r, t) = H0 ψ(~r, t), (3.5)

which may be solved analytically, and gives the so called Volkov wave function

ψp(~r, t) =
1√
V

exp

[
i~p~r − i

2m

∫ t

0

(
~p− e ~AL(t

′)
)2
dt′
]
. (3.6)

Here V is a normalization constant and the subscript “p” in ψp(~r, t) denotes the momentum of the particle,
which means that to each p there corresponds a Volkov wave function. The nonrelativistic wave function (3.6)
will be used in Chapter 4 to study the laser-assisted photonuclear effect in halo-nuclei.

3.2.2 Relativistic Gordon-Volkov States for Composite Particles

We now discuss a more complicated example of Volkov states. We consider a charged spinless particle with
internal structure, for example a π-meson, and moving at relativistic speed in the following laser four-potential

Aµ
L(kLx) = aµ1 cos (kLx) + aµ2 δ0 sin (kLx). (3.7)

Here aµ1 and aµ2 are two constant four-vectors and kL ≡ kµL = (ωL, ~kL). The space-time four-vector and the
four-momentum of the particle are denoted by x ≡ xµ ≡ (t, ~x) and pµ = (p0, ~p), respectively. The free space-
time evolution of the particle wave function φ(x) may be described by the following unperturbed covariant
Lagrangian density up to second order in Fµν [123]

L0 = (Dµφ)
∗ (Dνφ) [δµν −Kµν ]−m2φφ∗. (3.8)

Here Dµ = ∂µ + ieAµ
L denotes the gauge covariant derivative with respect to the laser field, where ∂µ = ∂/∂xµ

and δµν is the Kronecker symbol. All terms in Eq. (3.8) multiplied by the Kronecker symbol contribute to
the usual Lagrangian density for a pointlike spinless particle in an external electromagnetic field. The internal
structure of our relativistic particle is taken into account by including its electric and magnetic polarizabilities
λe and λm, which may be expressed by the following symmetric contribution

Kµν =
λe + λm
mπ

FµαFνα, (3.9)

where Fµν = ∂µAν
L − ∂νA

µ
L is the antisymmetric strength tensor of the external electromagnetic field of the

laser. We note that the electromagnetic polarizabilities are fundamental low-energy characteristics of the strong
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hadronic interactions. They are a measure for the strength of the induced electric dipole moment ~PL = λe · ~EL

and the induced magnetic moment ~ML = λm · ~BL of the charged particle by the external laser field.

The field theory of L0 in Eq. (3.8), which contains the electromagnetic coupling of the charged particle to
the laser field, can be solved exactly1. Namely, we use the Hamilton’s principle of least action with respect to
φ(x) (i.e. the Euler-Lagrange equation)

∂L0
∂φ(x)

− ∂µ
∂L0

∂ (∂µφ(x))
= 0, (3.10)

to obtain from L0 the equation of motion of the relativistic particle. So, using Eq. (3.10) with respect to the
complex conjugate of φ(x), we have

∂L0
∂φ∗(x)

=
(
−ieAµ∂νφ(x) + e2AµAνφ(x)

)
[δµν −Kµν ]−m2φ(x).

∂L0
∂ (∂µφ∗(x))

= (∂νφ(x) + ieAνφ(x)) [δµν −Kµν ] .

⇐⇒ ∂µ
∂L0

∂ (∂µφ∗(x))
− ∂L0
∂φ∗(x)

=

[
∂µ∂ν + ie∂µAν + ieAµ∂ν − e2AµAν

]
[δµν −Kµν ]φ(x) +m2φ(x) = 0

⇐⇒ (∂µ + ieAµ) (∂ν + ieAν) [δµν −Kµν ]φ(x) +m2φ(x) = 0

⇐⇒ DµD
µφ(x) −Dµ [Kµν (Dνφ(x))] +m2φ(x) = 0. (3.11)

For a pointlike boson, we have λe = λm = 0 =⇒ Kµν = 0, and then we arrive at the following known
expression for the Klein-Gordon equation

(D2 +m2)φ(x) = 0.

Eq. (3.11) is thus a generalization of the Klein-Gordon equation for composite spin-zero particle interacting
with an external electromagnetic field. We now require that the four-potential2 (3.7) satisfies the Lorentz gauge
condition with respect to the phase variable η = kµx

µ

∂µA
µ(η) =

d (Aµ(η))

dxµ
= kµ

d (Aµ(η))

dη
=
d (kµA

µ(η))

dη
= 0 =⇒ kµA

µ(η) = const. = 0,

and as a boundary condition we suppose that its switch-on is adiabatic in space and time, lim
x→±∞

Aµ(η) = 0.

Taking these approximations into account, we can start to derive from Eq. (3.11) the relativistic Gordon-
Volkov wave function for a composite spinless particle. To simplify the notations, we shall put φ ≡ φ−(t, ~x),
and after expanding Eq. (3.11), we write it as follows H = E − F , where

E = DµD
µφ+m2φ and F = Dµ [Kµν (Dν)]φ.

First we have

E = (∂µ + ieAµ) (∂
µ + ieAµ)φ+m2φ

=
[
∂µ∂

µ + ie∂µA
µ + ieAµ∂

µ − e2AµA
µ +m2

]
φ

= ∂µ∂
µφ+ ie [∂µ (A

µφ) +Aµ∂
µφ]− e2A2φ+m2φ

= ∂µ∂
µφ+ ie


∂µAµ

︸ ︷︷ ︸
=0

· φ+Aµ∂µφ+Aµ∂
µφ


+m2φ− e2A2φ

= ∂µ∂
µφ+ 2ieAµ∂µφ− e2A2φ+m2φ, (3.12)

1The calculations can also be found in Ref. [123].
2To simplify the notations, we leave out the subscript L from the laser vector potential (Aµ

L
→ Aµ).
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and second

F = (∂µ + ieAµ) [Kµν (∂νφ+ ieAνφ)]

= ieAµKµν (∂ν + ieAν)φ+ ∂µKµν (∂ν + ieAν)φ

= Kµν

(
ieAµ∂ν − e2AµAν

)
φ+ (∂µKµν) · (∂ν + ieAν)φ+Kµν (∂µ∂ν + ie∂µAν)φ

= Kµν

(
∂µ∂ν + 2ieAµ∂ν + ie(∂µAν)− e2AµAν

)
φ+ (∂µKµν) · (∂ν + ieAν)φ. (3.13)

In order to find an expression for the symmetric tensor Kµν given by Eq. (3.9), we use again the Lorentz
gauge condition: ∂iA

i(η) = kiA
i(η) = 0 with η = kix

i, ∀ i = µ, ν, α. Furthermore, the electromagnetic four-
potential of the laser described by Eq. (3.7) corresponds to a circularly or linearly polarized plane wave, so that

both the electric and magnetic field vectors, ~EL and ~BL, are perpendicular to the wave vector ~kL and we have
‖ ~EL‖ = ‖ ~BL‖ (for more details, see Appendix B.4). Thus we have FµνF

µν = 0, and then we obtain

Kµν =
λe + λm

m
FµαFνα

=
λe + λm

m


∂µAα − ∂αAµ︸ ︷︷ ︸

=0




∂νAα − ∂αAν︸ ︷︷ ︸

=0




=
λe + λm

m
(∂µAα∂νAα)

=
λe + λm

m
· kµ

∂Aα

∂η
· kν

∂Aα

∂η
. (3.14)

This result means that all terms in the upper expression of F containing Aµ and Aν will vanish as well. That
is,

F =
λe + λm

m
· kµkν

(
∂Aα

∂η

)2

∂µ∂νφ,

and then we arrive at

H = ∂µ∂
µφ+ 2ieAµ∂µφ− e2A2φ+m2φ− λe + λm

m
· kµkν

(
∂Aα

∂η

)2

∂µ∂νφ = 0. (3.15)

We look now for solutions of the differential equation (3.15) in the form φ(x) = ei(px)F (η). For our physical
particles corresponding to plane wave photons (k2 = kiki = 0 with i = µ, ν) and to a real boson (p2 = m2) we
have

∂µφ(x) = ipµe−i(px)F (η) + e−i(px) · dF (η)
dη

kµ,

∂µ∂µφ(x) = −p2ei(px)F (η) + 2i(kp)ei(px)
dF (η)

dη
+ k2︸︷︷︸

=0

ei(px)
d2F (η)

dη2
,

∂µ∂νφ(x) = −pνpµei(px)F (η) + ipνe
i(px) dF (η)

dη
kµ + ipµe

i(px) dF (η)

dη
kν + ei(px)

d2F (η)

dη2
kνkµ.
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Inserting these three expressions in (3.15) yields

−p2F (η) + 2i(kp)
dF (η)

dη
+ 2ieAµ

(
ipµF (η) + kµ

dF (η)

dη

)
+m2F (η)− e2A2F (η)−

λe + λm
m

kµkν

(
∂Aα

∂η

)2(
−pνpµF (η) + ipνkµ

dF (η)

dη
+ ipµkν

dF (η)

dη
+ kνkµ

d2F (η)

dη2

)
= 0

⇐⇒ dF (η)

F (η)
= −i

[
e(pA)

(kp)
+
e2A2

2(kp)
− λe + λm

2m
(kp)

(
∂Aα

∂η

)2
]
dη̃

⇐⇒ F (η) = F (η → 0) · exp
[
−i
∫ kx

−∞

(
e(pA)

(kp)
+
e2A2

2(kp)
− λe + λm

2m
(kp)

(
∂Aα

∂η

)2
)
dη̃

]

⇐⇒ φ(x) = N · exp
[
i(px)− i

∫ kx

−∞

(
e(pA)

(kp)
+
e2A2

2(kp)
− λe + λm

2m
(kp)

(
∂Aα

∂η

)2
)
dη̃

]
. (3.16)

We now calculate for this wave function the corresponding current density to obtain the proper normalization
constant N = F (η → −∞). We have

jµ(x) ≡ −i
(

∂L
∂ (∂µφ)

φ− ∂L
∂ (∂µφ∗)

φ∗
)

=
1

i

[(
D+

ν φ
∗
)
φ− (Dνφ)φ

∗
]
[Kµν − δµν ]

=
1

i
[(∂νφ

∗)φ− ieAνφ
∗φ− (∂νφ)φ

∗ − ieAνφφ
∗] [Kµν − δµν ]

=
1

i
[(∂νφ

∗)φ− (∂νφ)φ
∗ − 2ieAν] [Kµν − δµν ]

=
N2

i

{[
−ipν + ikν

(
e(pA)

(kp)
+
e2A2

2(kp)
− λe + λm

2m
(kp)

(
∂Aα

∂η

)2
)]
−

[
ipν − ikν

(
e(pA)

(kp)
+
e2A2

2(kp)
− λe + λm

2m
(kp)

(
∂Aα

∂η

)2
)]
− 2ieAν

}
[Kµν − δµν ] · e0

⇐⇒ jµ(x) = 2N2

[
pµ + eAµ −

(
e(pA)

(kp)
+
e2A2

2(kp)
− λe + λm

2m
(kp)

(
∂Aα

∂η

)2
)
kµ

]
(3.17)

The electromagnetic potential A ≡ Aµ
L(kx) is a periodic function, so that the mean value of jµ(x) gives

jµ(x) = 2N2

[
pµ −

(
e2A2

L

2(kp)
− λe + λm

2m
(kp)

(
∂Aα

∂η

)2
)
kµ

]
, because Aµ

L(kx) = 0.

On the other hand, we have

A2
L(η) = −a2 cos2 η − a2δ20 sin2 η =⇒ A2

L := −a
2

π

∫ π

0

cos2 ηdη − a2δ20
π

∫ π/2

−π/2

sin2 ηdη = −a
2

2
(1 + δ20).

We define

qµ
def
= pµ −

(
e2A2

L

2(kp)
− λe + λm

2m
(kp)

(
∂Aα

∂η

)2
)
kµ = pµ +

a2

4(kp)

(
e2 − λe + λm

m
(kp)2

)
(1 + δ20)k

µ,
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as an effective momentum of the spin-zero particle in the electromagnetic field of the laser. Taking into account
that k2 = 0 and p2 = m2, we get

q2
def
= m∗2 = qµqµ = m2 −

(
e2A2

L

2(kp)
− λe + λm

2m
(kp)

(
∂Aα

∂η

)2
)
· 2(kp) = m2(1 + ξ2),

where

ξ
def
=

√√√√−
(
e2A2

L

m2
− λe + λm

m3
(kp)2

(
∂Aα

∂η

)2
)

=
a

m
√
2
·
√(

e2 − λe + λm
m

(kp)2
)
(1 + δ20),

denotes an effective electromagnetic intensity parameter related to an effective mass m∗ = m
√
1 + ξ2 of the

particle. Thus we can write
jµ = 2N2qµ.

In order to determine the normalization constant N , we can consider the time component of the averaged
current density j0 as the probability to find our particle wave function inside an infinitesimal volume dV = d3~x,
that is

P
!
= 1 =

∫

space volume V

d3~xj0 ⇐⇒ 1 = 2V N2q0 ⇐⇒ N =
1√
2V q0

.

Finally, if we consider φ to be normalized in a box having a large (but finite) volume V = L3, then we obtain

φ(x) =
1√
2V q0

· exp
[
i(px)− i

∫ kx

−∞

(
e(pA)

(kp)
+
e2A2

2(kp)
− λe + λm

2m
(kp)

(
∂Aα

∂η

)2
)
dη̃

]
, (3.18)

which corresponds to the wave function for a composite spin-zero particle of charge e in the external laser field.
The corresponding antiparticle wave function can easily be obtained by making the substitution: p ←→ −p.
The relativistic wave function (3.18) will be used later in Chapter 5 to study the multiphoto-production of
charged pion pairs in proton-laser collision.

3.2.3 Relativistic Gordon-Volkov States for Pointlike Particles

A relativistic Gordon-Volkov wave function for pointlike and spin-zero particle may easily be obtained from the
previous derivations just by setting λe = λm = 0 =⇒ Kµν = 0, and hence we arrive at

φ(x) =
1√
2V q0

· exp
[
i(px)− i

∫ kx

−∞

(
e(pA)

(kp)
+
e2A2

2(kp)

)
dη̃

]
. (3.19)
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Laser-Assisted Photonuclear Effect in

Halo-Nuclei

In the present Chapter we start our theoretical study of nuclear processes in intense light-matter interaction
with the laser-assisted photonuclear effect in exotic ‘halo’ nuclei. While the photoelectric effect can knock out
electrons from the atom, the photonuclear effect can knock out hadrons from the nucleus. The principle is the
same, but the energy scales and the physical processes involved in both reactions are not. In particular, we
focus on one-proton-halo-nuclei like 8B, because the proton can be affected by the electromagnetic forces. To
the best of our knowledge, there are no theoretical studies on nuclear processes involved in the interaction of
high-power electromagnetic radiations with halo-nuclei, but there are many reasons which have led us to make
this study, which will be discussed in the Outlook of this work.

4.1 Historical Background

The research field of the photonuclear effect was opened with the experiments by Chadwick and Goldhaber on
the photodisintegration of the deuteron where γ-rays from a radioactive source were utilized [2]. In 1934, they
measured the active cross section of the following (γ, n) reactions

Deuteron : 2
1H+ γ −→ 1

1p +1
0 n, (4.1a)

Beryllium : 9
4Be + γ −→ 8

4Be +
1
0 n, (4.1b)

which was found to be σ ≈ 2 − 5 × 10−26 cm2 = 20 − 50 millibarn at a γ-photon energy of 2.62 MeV [2].
Systematic investigations of the photonuclear effect were carried out since the early 1930’s by Bothe and Gentner
in Heidelberg which relied on high-energy γ-rays produced with the aid of a proton accelerator. Inspired by the
experiments of Chadwick and Goldhaber, Bothe and Gentner published in 1938 on the energy dependence of the
photonuclear effect, which was the first clear evidence that photonuclear absorption spectra are accumulative
and continuous, a phenomenon later known as the nuclear giant dipole resonance [4]. From 1934 to 1957,
Bothe supervised various research activities on the photonuclear effect, which have been initiated at the Kaiser-
Wilhelm/Max-Planck-Institute for Medical Researches. One year after his death, this institute became the Max
Planck Institute for Nuclear Physics and its main building was later named Bothe laboratory. Ever since then,
Bothe’s students succeeded in investigating photonuclear reactions in further elements, such as

Sulphur : 32
16S + γ −→ 31

16S +1
0 n,

Aluminum : 27
13Al + γ −→ 26

13Al +
1
0 n,

Copper : 63
29Cu + γ −→ 62

29Cu +1
0 n.

Up to date, the (γ, n) reactions have been more investigated by several authors (see, e.g., [124] and re-
cently [125, 126]). Furthermore, (γ, p), (γ, d) and (γ, α) reactions involving the photoemission of protons,
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deuterons and α-particles have also been reported [127–129], where high energy photons from synchrotron and
electron bremsstrahlung sources with end point energies ranging from 22 to 30 MeV were utilized. Recent
studies show that (γ, p) reactions are playing an important role in the synthesis of proton-rich nuclei [130,131],
and hence for our understanding of stellar nucleosynthesis and galactic chemical evolution. However, no exper-
imental studies of the photonuclear effect in halo-nuclei were carried out so far, which may be performed in the
laboratory, and also there are no theoretical treatments of this process. This is what we shall try to do in the
next lines of the present Chapter.

By a direct laser-induced photonuclear reaction in halo-nuclei, the pulse duration of the laser should be
shorter than the lifetime of the halo-nucleus we want to study. Furthermore the laser photon energy should be
higher than the binding energy of the nucleon-halo. The first condition is fulfilled by using, for example, the
VULCAN (∼ 30 fs) or the XFEL (∼ 100 fs) type laser. But the second condition is not, when the halo-nucleus
is initially considered in a stationary state. In what follows we will show how we can solve this problem, but
we first give several estimates and orders of magnitude.

4.2 Motivations

We consider a one-proton-halo-nucleus A
Z [Xp], which initially is in a stationary state and exposed to a laser

beam of frequency ωL and electric field strength EL. Since the proton can be affected by the electromagnetic
forces, an appreciable influence on it depends mainly on ωL and/or EL. At low frequency where the radiation
wavelength λL = 2π/ωL is much larger than the rms matter radius Rp, the proton oscillates linearly back and
forth, at the same frequency ωL as the laser field itself. However, at high energy interesting physical effects
could happen, if one of the following conditions is fulfilled (, or both of them):

(i) The work done by the electric field on the (weakly bound) proton over the rms matter radius Rp approaches
the nuclear binding energy, Eb ≃ eELRp.

(ii) The laser frequency is greater than or equal to the nuclear binding energy, ωL & Eb.

In the second case, the proton would be well ejected from the core via the photonuclear effect with the kinetic
energy Ekin = Eph−Ecore−Eb, where Eph = ωL (or Eph = nωL in the multiphoton case) is the initial energy of
the laser photons, and Ecore the kinetic energy of the recoiling nuclear-core. This principle of energy conservation
shows that the velocity of the proton is mainly affected by the photon energy of the laser radiation. The first
condition may be viewed as a semiclassical limit of the laser, while the second one is a quantum mechanical
process by which the proton-halo escapes from the nuclear-core by simultaneously absorbing one or several
photons.
Our first aim here is to remove the proton directly from the halo-nucleus via the photonuclear reaction. So
theoretically we need to fulfil the condition (i) and/or (ii). For (i), taking Rp = 4.73 fm and Eb = 0.137 MeV
(for Boron-8), we obtain EL & 2.89× 1017 V/cm, which corresponds to a laser intensity of 1.1× 1032 W/cm2.
Such intensity exceeds the Schwinger critical value of roughly 4.6× 1029 W/cm2, and thus cannot be achieved
for either current or near future laser source technologies. Also the second condition cannot be fulfilled even
with the currently highest frequencies of 1 keV from the LCLS machines [132, 133]. Thus, it is not possible to
generate directly a laser induced photoproton reaction from halo-nuclei, and of course from stable ones, since
the vast majority of them have an average binding energy above 100 keV per nucleon, as given by Eqs. (2.10)
and (2.5) in Section 2.1.

However, inspired from the discussion in Chapter 2, our first aim can well be realised when the weakly bound
proton interacts with a combined field consisting of a strong laser pulses and a γ-ray photon of frequency ω′

above the nuclear binding energy Eb (ω′ & 0.137 MeV), i.e. according to the following (γ, p) reaction scheme

A
Z [Xp] + ω′ + nωL −→ A−1

Z−1[X] +
1
1 p. (4.2)

Obviously, the use of the γ-ray photon in the absence of the laser is enough to remove the proton-halo via a
photonuclear reaction. But one of the motivations behind our attempt is to look if the assisting laser field can
modify the properties of the photonuclear effect in a characteristic way, and if this would be the case, then we
might have to recognize which conclusions and lessons can be drawn from the results of our study.
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Figure 4.1: An illustration of the process of using a combined field consisting of a strong optical laser (green)
and a hard x-ray or a γ-ray (red) photon to induce a photoproton emission from an exotic ‘halo’ nucleus.

After simultaneous interaction with both radiation fields, the proton-halo is first emitted through the pho-
tonuclear effect and its trajectory is influenced afterwards by the strong laser field. Thus, we may expect that
the laser will serve as an accelerator or eventually inhibitor (retarder) of the photoproton, whereby its mean
kinetic energy changes with increasing intensity and/or decreasing frequency of the laser. The process described
by Eq. (4.2) is illustrated in Figure 4.1.

The present Chapter is organized as follows: In the theoretical framework, Sec 4.3, we calculate the differ-
ential and total cross sections for the laser-assisted reaction (4.2) by using the theoretical methods described in
Chapter 3, and also by introducing and discussing various approximation levels which characterize the process.
Afterward, we discuss in Section 4.4 the theoretical results at different input parameters, field geometries and
polarizations of the laser wave and of the γ-radiation.

4.3 Theoretical Framework

The wave function describing the proton-halo of nuclear binding energy −Eb and mass mp, which initially is in
a stationary state, may be approximated by

ψ0(~r, t) = ψ0(~r) · exp (iEbt), (4.3a)

with [134]

ψ0(~r) =
c0√
4π

(
1−

( |~r|
a0

)2
)
exp

(
−|~r|
r0

)
. (4.3b)

Here the spin-orbit coupling between the proton-halo and nuclear-core is neglected due to the large scale
structure of the halo-nucleus. We also neglect the kinetic energy of the recoiling nuclear-core, Ecore, due to its
higher rest mass-energy. The above approximation of the radial wave function (4.3b) is not unique, but using
Hartree-Fock calculations [89] it appears to be adequate for describing the main halo properties (e.g., the mean
square radii, binding energies).
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Figure 4.2: Schematic diagram of the laser-assisted photonuclear effect. The electric field strengths of the laser
wave and the γ-photon are perpendicular to each other, ~EL ⊥ ~E′.

Throughout, we denote by ~r the position of the proton-halo measured back from the center of mass of the
daughter nucleus. Notice that relevant values of |~r| correspond to the range of the, let’s say, “nuclear-halo
potential” (∼ 1 − 9 fm), where the exchange of photons takes place. We suppose that the initial quantities
a0, r0 and Eb define thoroughly the one-proton-halo isotope A

Z [Xp], which are phenomenological fit parameters
to experimental values of the mean square radius, density distribution and one-proton separation energy. The
constant c0 can easily be calculated by the normalization condition

∫
d3~r 〈ψ0|ψ0〉 = 4π

∫ +∞

0

d|~r| r2ψ0(~r)
2 !
= 1,

which yields

c0 =

(
2

r0

)3/2
a20√

45r40 + 2a40 − 12(a0r0)2
.
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Input Parameters Values

Proton rest mass mp = 938.272 MeV

Binding energy of the proton-halo Eb = 0.137 MeV

Mean square radius of the proton-halo a0 = 2.58 fm

Density distribution of the proton-halo r0 = 1.45 fm

Table 4.1: The input parameters that will be used later for the numerical calculations. As discussed in Sub-
section 2.1.2, values of Eb, a0 and r0 appearing in the wave function (4.3) correspond approximately to the
proton-halo-isotope 8

5B [79–83], where its lifetime against β+-decay and fission is about τB ≈ 769 ms [61].

Now, we turn to the description of the proton-halo in the final state. Before we proceed, the dipole approxi-
mation for the laser vector potential discussed in Section 3.1 can be used: We will assume laser field parameters,
where the dynamics of the emitted proton remains nonrelativistic. This means that the coupling parameter ξ
in Eq. (3.2) between the laser beam and the proton-halo will always be small, ξ ≪ 1. Here ωL and EL denote
as before the frequency and the electric field strength of the laser field, respectively, while e denotes the electric
charge of the emitted proton-halo. Further, the particle mass m in Eq. (3.2) should be replaced by the proton
mass mp. Besides, in the present situation, the dipole approximation for the laser vector potential may be used,
which gives Eq. (3.3).

As mentioned above, the laser serves as an accelerator or eventually inhibitor of the emitted proton. While
the accelerations can significantly change the emitted proton energy, the work performed by the laser field on the
proton will always be much smaller than the proton rest mass for the laser parameters under study. The final
photoproton wave function can therefore be approximated as a nonrelativistic Volkov state in the continuum,
as given by Eq. (3.6)

ψV (~r, t) =
1√
Vp

exp

[
i~p~r − i

2mp

∫ t

0

(
~p− e ~AL

)2
dt′
]
, (4.4)

where ~p represents the free momentum of the emitted proton-halo. In Eq. (4.4), the Coulomb interaction
between the photoproton and the core-halo (having a total electric charge (Z − 1) · e) is neglected to another
good approximation, because the velocity v of the photoproton is assumed to be high enough, that the latter
cannot be affected significantly by the Coulomb field of the core. More details about this approximation will
be pointed out in the beginning of Section 4.4.

By inserting Eq. (3.3) into Eq. (4.4) and by evaluating the integrals in the exponent, the Volkov wave
function (4.4) of the photoproton-halo may be written in the following general form

ψV (~r, t) =
1√
Vp

exp i

[
~p~r − p2

2mp
t− Upt

]
· f(t), (4.5)

with the time-dependent periodic function

f(t) = exp
[
i (α1 sinωLt− α2 cosωLt− β1 sin 2ωLt)

]
. (4.6)

Assuming the laser field to be a monochromatic plane wave, polarized in the xy-plane and its electric field vector
~EL perpendicular to the electric field vector ~E′ of the γ-ray, we obtain

α1 ≡ α⊥
1 =

eEL

ω2
Lmp

px, (4.7a)

α2 ≡ α⊥
2 =

eEL

ω2
Lmp

δ0 py, (4.7b)

β1 =
(eEL)

2

8ω3
Lmp

(1− δ20). (4.7c)
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Here the superscript “⊥” is used to indicate that the laser electric field vector is perpendicular to the polarization
vector ~ε of the γ-ray, which is assumed along the z-axis throughout, as illustrated in Figure 4.2. The cycle
averaged kinetic energy, also called the “ponderomotive energy” of the photoproton is given by

Up =
(eEL)

2

4ω2
Lmp

(1 + δ20), (4.7d)

which accelerates or decelerates the photoproton as it travels out through the laser field. As we can see in this
equation, the proton energy increases as the oscillation period TL = 2π/ωL and the electric field strength EL

increase. Notice that in Eq. (4.5) a constant phase eELδ0py/(ω
2
Lmp) arising from the lower boundary t′ = 0 in

Eq. (4.4) was ignored, because it will vanish by squaring the S-matrix as will be shown later.

The kinematic and dynamic behaviors of the photoproton depend not only on the physical quantities ωL and
EL of the laser, but also on those of the γ-radiation, namely the wave vector ~k′ ≡ ~p ′, the frequency ω′ ≡ 2π/λ′

and the polarization vector ~ε ≡ ~ez. The vector potential of the γ-radiation have to be expressed without the
dipole approximation, because its wavelength λ′ is not too large in comparison with the relevant values of |~r|
at the nuclear scale. It is thus safe to keep only the (resonant) energy-conserving terms in the γ-photon-proton
interaction by writing the vector potential as follows

~A′ =

√
2π

Vph · ω′
· ei(~p ′~r−ω′t)~ε. (4.8)

This is known in quantum optics as the “rotating wave approximation”.

In fact, in our theory, the proton-halo is affected by three types of interaction: First, the laser-proton
interaction after the proton is removed from the nuclear-core by the γ-ray-induced photonuclear effect. This
interaction may be described by the unperturbed Hamiltonian H0 as expressed by Eq. (3.4). Second, the
simultaneous interaction of the proton-halo with both radiation fields (the laser and the γ-ray), let us denote
it by Hcoupling. Third, the strong interaction between the bound-proton-halo and the nuclear-core denoted
Vnuclear halo. To take into account all these interactions, we can write the total Hamiltonian as follows

H =
1

2mp

(
p̂− e ~AL − e ~A′

)2
+ Vnuclear halo,

=
1

2mp

(
p̂− e ~AL

)2
+

e

mp

(
p̂− e ~AL

)
~A′ +

e2 ~A′2

2mp︸ ︷︷ ︸
≈0

+Vnuclear halo,

= H0 +Hcoupling + Vnuclear halo. (4.9)

In the second line we considered the term e ~A′ as a perturbation, so that the second-order term e2 ~A′2/2mp can
be neglected. Now, the action of H0 on the final proton wave function yields the Volkov State (4.5). Further,
we assume that the action of Vnuclear halo on the initial proton wave function yields the wave function (4.3)
describing the bound-proton-halo state. Thus, we can use the expressions (4.3), (4.4) and (4.8) to write down
the S-matrix in the first-order Born approximation for the transition from the initial bound halo state to the
continuum Volkov state as follows

S =
ie

mp

∫
dt d3~r 〈ψV |

(
−i~∇− e ~AL

)
~A′ |ψ0〉

=
i e
√
2π

mp

√
VpVphω′

∫
dt d3~r ~ε

(
~p− e ~AL

)
· e−i(~p−~p ′)·~r · ei

(

p2

2mp
+Up−ω′

)

·t · ψ0(~r, t) · f(t). (4.10)

Here the momentum operator −i~∇ − e ~AL describes the electromagnetic coupling between the laser and the
photoproton. The expression of the Volkov state in Eq. (4.5) is not well suited for calculating the S-matrix
elements (4.10) due to the sinusoidal time dependent terms that appear on the right-hand side of the following
expression

~ε
(
~p− e ~AL

)
· f(t) = ~ε~p · f(t)− aeεx · cos (ωLt)f(t).
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In order to make progress on this issue, we first make the calculations for a linearly polarized laser beam,
δ0 = 0 ⇒ α2 = 0, then we expand analytically f(t) and cos (ωLt)f(t) into Fourier series of coefficients Bn and
Cn, respectively, we have

f(t) =
+∞∑

n=−∞

Bn e
−inωLt, (4.11a)

cos (ωLt)f(t) =
+∞∑

n=−∞

Cn e
−inωLt. (4.11b)

These coefficients can be expressed in terms of the generalized Bessel-functions J̃ of integer order n

J̃n(α1, β1) =

+∞∑

m=−∞

Jn−2m(α1)Jm(β1), (4.12)

where J are ordinary Bessel-functions. We use the so-called “Jacobi-Anger expansion”, which gives (see
App. A.1)

exp(iα1 sinωLt) =

+∞∑

l=−∞

Jl(α1) e
−ilωLt, (4.13a)

exp(−iβ1 sin 2ωLt) =

+∞∑

m=−∞

Jm(β1) e
−im2ωLt. (4.13b)

Thus, we can express f in Eq. (4.6) (at δ0 = 0) as follows

f(t) = exp (iα1 sinωLt− iβ1 sin 2ωLt)

=
+∞∑

l=−∞

Jl(α1) e
−ilωLt ·

+∞∑

m=−∞

Jm(β1) e
−i2mωLt

=

+∞∑

m=−∞

+∞∑

l=−∞

Jl(α1)Jm(β1) exp


−i (l+ 2m)︸ ︷︷ ︸

=n

ωLt




=

+∞∑

m=−∞

+∞∑

n=−∞

Jn−2m(α1)Jm(β1) · e−inωLt

=

+∞∑

n=−∞

(
+∞∑

m=−∞

Jn−2m(α1)Jm(β1)

)
· e−inωLt

=

+∞∑

n=−∞

J̃n(α1, β1) · e−inωLt. (4.14)

The above transitions from line 2 to line 4 are always true since the sum over n runs from −∞ to +∞. Now a
simple identification of Bn and Cn by using Eqs. (4.11) and Eq. (4.14) yields1

Bn = J̃n(α1, β1), (4.15a)

Cn =
1

2

[
J̃n+1(α1, β1) + J̃n−1(α1, β1)

]
. (4.15b)

Hence, the S-matrix elements (4.10) can be written in the following discrete form

S =
i e
√
2π

mp

√
VpVphω′

+∞∑

n=−∞

∫
dt exp

[
i

(
p2

2mp
+ Up − ω′ − nωL

)
· t
]
×
[
~ε~p Bn − aeεx Cn

]
×

∫
d3~r exp

[
− i (~p− ~p ′) · ~r

]
· ψ0(~r). (4.16)

1The result in Eq. (4.15b) is obtained by replacing cos (ωLt) in Eq. (4.11b) by
(

eiωLt + e−iωLt
)

/2.
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The first integral over time gives the following delta function

∫
dt exp

[
i

(
p2

2mp
+ Up − ω′ − nωL

)
· t
]
= 2π × δ

(
p2

2mp
+ Up + Eb − ω′ − nωL

)
,

which expresses the energy conservation for the photonuclear process observed in the center of mass of the
daughter nucleus (or the core-halo). Further, we simplify the notations by setting q = ‖~p− ~p ′‖ the momentum
transfer from the γ-ray field to the photoproton, and by

Mn ≡M⊥
n = ~ε~p Bn − aeεx Cn, (4.17)

the transition amplitude for the photonuclear process, which is expressed in terms of the above generalized
Bessel-functions. The second integral in Eq. (4.16) over the three spherical coordinates yields the fourier
transform of the bound halo state

G(q) =
4r30

[
12r20 (q2r20 − 1) + a20(1 + q2r20)

2
]

a20(1 + q2r20)
4

. (4.18)

We finally arrive to the following expression for the S-matrix

S =
2i
√
2c0eπ

2

mp

√
VpVphω′

+∞∑

n=n0

Mn ·G(~p− ~p ′) · δ
(

p2

2mp
+ Up + Eb − ω′ − nωL

)
, (4.19)

where n0 represents the smallest integer that satisfies the energy conservation relation for the photonuclear
reaction (4.2)

n0 = floor

[
1

ωL

(
p2

2mp
+ Up + Eb − ω′

)]
+ 1. (4.20)

The total rate for the photonuclear proton emission in the presence of the combined field consisting of the
strong optical laser and the γ-radiation is obtained by squaring the S-matrix (4.19), integrating over all possible
momenta configurations of the final proton state and dividing by a unit time T , that is

R =
1

T

∫
Vp d

3~p

(2π)3
· |S|2. (4.21)

First the square of Eq. (4.19) is

|S|2 =
8π4(ec0)

2

VpVphω′m2
p

·
∑

n>n0

∑

n′>n0

MnMn′ G(q)2 · δ(Qn)δ(Qn′),

with

Qn ≡
p2

2mp
+ Up + Eb − ω′ − nωL.

For large but finite values of T , we consider transitions in the time interval [−T/2, T/2], during which the total
energy nωL of the exchanged laser photons, satisfies the energy conservation relation Qn → 0. In that case, the
energy δ-function can approximately be written as follows

δ(Qn′) ≈ 1

2π

∫ T/2

−T/2

dt eiQn′ t =
1

2πQn′

·
[
sin (Qn′t)− i cos (Qn′t)

]T/2

−T/2

=
1

πQn′

sin

(
T

2
Qn′

)
.

Since we have

lim
Qn′→0

δ(Qn′) =
T

2π
lim

Qn′→0

sin

(
T

2
Qn′

)

(
T

2
Qn′

) =
T

2π
,
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the square of the S-matrix under the constraint Qn′ → 0 becomes

|S|2 =
4π3(ec0)

2 T

VpVphω′m2
p

·
∑

n>n0

M2
n G(q)

2 · δ(Qn). (4.22)

After substitution of Eq. (4.22) into Eq. (4.21) we thus arrive at the following expression for the total rate

R =
1

T

∫
Vp d

3~p

(2π)3
· |S|2

=
(ec0)

2

2Vphω′m2
p

+∞∑

n=n0

∫ π

0

dθ

∫ 2π

0

dϕ

∫ +∞

0

dp |~p|2M2
n ·G(~p− ~p ′)2 · δ

(
p2

2mp
+ Up + Eb − ω′ − nωL

)
. (4.23)

We remember that the total and differential rates refer to the core-halo frame. The polar emission angle θ is
measured with respect to ~ez, which coincides with the polarization direction of the γ-ray, and perpendicular to
its wave vector ~k′ = k′~ex (see Fig. 4.2). The integration over the photoproton momentum p can be performed
by using the following general formula

∫
dp δ (g(p))F (p) =

m∑

i=1

F (pi)

|g′(pi)|
,

where pi are the roots of the equation g(p) = 0. In our case the function g of p is equivalent to g(p) ≡ Qn =
p2/(2mp) + Up + Eb − ω′ − nωL, so that its derivative with respect to p is simply g′(p) = p/mp, and we have
only one positive root

pn ≡ ‖~p‖ =
√
2mp (ω′ + nωL − Up − Eb). (4.24)

From there we can deduce the three components of the final photoproton momentum as follows

px = pn sin θ cosϕ, (4.25a)

py = pn sin θ sinϕ, (4.25b)

pz = pn cos θ. (4.25c)

Physically, the subscript n refers to the number of coherently emitted (for n > 0) or coherently absorbed (for
n < 0) laser photons. Further, the above function F is equivalent to

F (p) ≡ |~p|2 [~ε~p Bn − aeεx Cn]
2 ·G(~p− ~p ′)2.

Thus the expression of the total rate in Eq. (4.23) becomes

R =

+∞∑

n=n0

Rn =
(ec0)

2

2Vphω′mp

+∞∑

n=n0

∫ π

0

dθ

∫ 2π

0

dϕ pn M2
n ·G(~pn − ~p ′)2. (4.26)

We finally deduce the total cross section of the photonuclear process by dividing Eq. (4.26) by the γ-photon
flux Φ = 1/Vph, i.e. the number of photons (quanta of the γ-radiation) per unit area per unit time, to obtain
explicitly

σ =

+∞∑

n=n0

σn =
(ec0)

2

2ω′mp

+∞∑

n=n0

∫ π

0

dθ

∫ 2π

0

dϕ pn [~ε~pn Bn − aeεx Cn]
2 ·G(~pn − ~p ′)2. (4.27)

This equation gives a measure of the probability that reaction (4.2) will occur and can be solved numerically.
It includes two integrals, one over the polar emission angle θ and the other over the azimuthal angle ϕ, and a
summation of infinite series associated with Bessel-functions.
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4.4 Results and Discussion

For the presentation of the numerical results we have chosen to mainly discuss the characteristic influences of
the assisting laser field on the properties of the photonuclear effect. We investigate the energy distribution of
the ejected proton in terms of the number of absorbed laser photons, as well as the angular proton distribution
as a function of the polar emission angle with respect to the electric field vector of the γ-photon, which coincides
with ~ez. The dependencies on the photon energy, the laser polarization, and the field geometry are discussed
as well. We first show and discuss the results obtained for the case where the laser beam is linearly polarized,
and after that the case of circular polarization.

In fact, we extend our discussion of the numerical results by considering two scenarios of the laser assisted
photonuclear process: (i) The electric field vectors of the laser wave and the γ-photon are perpendicular to

each other, ~EL ⊥ ~E′, as illustrated before in Figure 4.2, and (ii) the electric field vectors of the laser wave and
the γ-photon are parallel to each other, so that the laser beam copropagates with the γ-ray along the x-axis,
~EL ‖ ~E′, as illustrated in Figure 4.3.

Figure 4.3: Schematic diagram of the laser-assisted photonuclear effect. The z-axis has been chosen along the
polarization direction of the laser wave and the γ-radiation, ~EL ‖ ~E′.

In the second scenario, few modifications should be made to the arguments α⊥
1 and α⊥

2 of the Bessel-functions,
as well as to the transition amplitude for the photonuclear process. Concretely, Eq. (4.7a) should be replaced
by2

α1 ≡ α‖
1 =

eEL

ω2
Lmp

pz, (4.28)

and Eq. (4.17) by
Mn ≡M‖

n = ~ε~p Bn − aeεz Cn. (4.29)

Values of the input parameters indicated in the Table 4.1 of Section 4.3 have been used throughout the discussion
of our results. Furthermore, we keep the γ-ray photon energy fixed at ω′ = 3 MeV (i.e. λ′ ∼ 413.28 fm)

2In analogy to what we did before, the superscript “‖” is used to indicate that the laser electric field vector is parallel to the

polarization vector ~ε of the γ-ray, i.e. ~EL ‖ ~E′, as illustrated in Figure 4.3.
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for the following reason: In the theoretical calculation, we assumed that the velocity vn = pn/mp (for an
explicit expression of pn, see Eq. (4.24)) of the photoproton is high enough, that the latter cannot be affected
significantly by the Coulomb field of the core-halo. This approximation may be justified from the rather small
Gamow factor [135]

G =
η

1− e−η
≃ 1 ∼ 3, (4.30)

with η = 2π(Z − 1)α/vn ≪ 1 and α is the fine-structure constant. So, taking Z = 5 for boron, the Gamow
factor varies between 1 and 3, which means that the nonrelativistic Volkov state given by Eq. (4.4) remains a
reasonable approximation for the description of the final photoproton wave function in the continuum, and may
be applied instead of the so called “improved Coulomb-Volkov state” [30, 32, 33].

4.4.1 The case of linearly polarized laser beam

We first consider a linearly polarized hard x-ray free-electron laser (e.g. based on planar undulator systems)
with wavelength λL ≃ 0.62 nm and photon energy ωL = 2 keV. This energy scale can in principle be achieved
experimentally by the XFEL at DESY or the LCLS at SLAC.

In Figure 4.4 we show the total cross section σ⊥ for the photoproton as a function of the frequency ω′ of the
γ-ray photon, keeping fixed the laser’s electric field strength at EL = 3.07× 1013 V/cm for the red curve. This
plot is compared with the case when the photonuclear process is induced classically, i.e. without the assistance
of the high-frequency laser beam as shown by the dashed black curve. We see that both curves practically
superpose on each other, which means that the presence of the laser beam, with such a high frequency and
electric field strength, has only a minor effect on the γ-photon energy dependence of the total cross section.

Photonuclear reactions σmax [mb]

4He(γ, p)3H ≈ 1.75 [136]
12C(γ, p)11B ≈ 13.1 [137]
17O(γ, p)16N ≈ 4.0 [138]
24Mg(γ, p)23Na ≈ 25.0 [138]
26Mg(γ, p)25Na ≈ 18.0 [138]
28Si(γ, p)27Al ≈ 45.0 [138]
34S(γ, p)33P ≈ 33.0 [138]
93Nb(γ, p)92Zr ≈ 15.0 [139]

Table 4.2: Maximum cross sections of some photoproton reactions that have been induced by energetic photons
(between 22 and 30 MeV) from synchrotron and electron bremsstrahlung sources. The cross-sectional data are
taken from [136–139].

In both cases, the total cross section attains its maximum value of roughly 366.7 mb at ω′ ≈ 0.74 MeV,
and decreases steadily towards higher γ-photon energies. This maximum value is approximately 16 times larger
than those obtained from experimental data of photoproton cross sections in stable nuclei [136–139], as listed in
Table 4.2. The result confirms our expectation that it is easier to induce a photonuclear reaction in halo-nuclei
than in stable ones by using high-energy photons, because of their small binding energy and their large spatial
extension.
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Figure 4.4: The total cross section given by Eq. (4.27) for the photoproton-halo in the presence of the combined
field of the γ-ray and the high-frequency laser, as a function of the photon energy of the γ-ray. The input
parameters for the red curve are: EL = 3.07 × 1013 V/cm and ωL = 2 × 10−3 MeV, which correspond to a
laser intensity of 1.25× 1024 W/cm2. The dashed black curve represents the classical case of the photonuclear
reaction (4.2) induced by the γ-photon without the assistance of the laser beam. The electric field vectors of

both the laser wave and the γ-photon are perpendicular to each other, ~EL ⊥ ~E′. The results were compared with
those obtained from the Breit-Wigner single level formula, which permits to calculate the photodisintegration
cross section of the deuteron (black dot-dashed curve).

It would be interesting to compare our results with those obtained from relevant theories of photonuclear
reactions. For example, the cross section for the reaction (4.2) my be estimated by the following Breit-Wigner
formula [140, 141]

σ(ω′) =
8π(Ze)2

3mpEb
·
(Eb(ω′ − Eb)

ω′2

)3/2

, (4.31)

which is one of the most successful expressions ever written in nuclear and hadronic physics. We point out
that the following assumptions are behind Eq. (4.31): First, it gives the photodisintegration cross section of the
deuteron (Z = 1) described by the photonuclear reaction (4.1a), around the resonance energy, and considers
the transition from the bound 3S1 state to the 1S0 state of the continuum. Second, Eq. (4.31) assumes that the
reaction (4.1a) is induced at energies far above the threshold.
Compared to our calculations, the Breit-Wigner cross section is strongly dependent on the γ-photon energy,
strongly suppressed and peaked at small energies, as shown in Fig. 4.4 by the black dot-dashed curve. At
ω′ = 0.274 = 2 · Eb, the total cross section attains its maximum value of 290.889 mb, which is roughly 76 mb
smaller than those obtained in our calculations.

In Figs. 4.5 and 4.6, we investigate the energy distribution of the photoproton in terms of the number n
of absorbed (n > 0) or emitted (n < 0) laser photons by considering different polarization directions of the
radiation fields. Here, the photoproton absorbs an amount of energy from the laser beam equal to nωL. In
each graph we keep the γ-ray photon energy fixed at 3 MeV, the laser frequency at 2 keV and we increase the
laser’s electric field strength from 2.45 × 1011 V/cm to 3.07 × 1013 V/cm, or equivalently the laser intensity
from 8× 1019 W/cm2 to 1.25× 1024 W/cm2.
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Figure 4.5: The energy distribution of the photoproton in term of the number n of exchanged laser photons
and at various laser intensities. For example, when n = 12, the proton absorbs an amount of energy from
the laser light equal to 12 × 2 keV = 24 keV. The polarization directions of the laser field and the γ-ray are
perpendicular to each other, ~EL ⊥ ~E′ as described by Fig. 4.2. Values of the photon energy of the laser and of
the γ-ray are held fixed as before. The laser’s electric field strength is increased from top to bottom as follows:
EL = 2.45 × 1011, 1.22 × 1012, 6.14 × 1012, and 3.07 × 1013 V/cm. The corresponding laser intensities are
indicated on each graph. The total cross section σ⊥ =

∑
n σ

⊥
n remains unchanged in all graphs at roughly

67.6 mb.

For a given integer n, each photonuclear reaction in Eq. (4.2), involving emission or absorption of n laser
photons, has its own probability and cross section σn. For each type of multiphoton or single-photon reaction
channel, we obtain an individual probability, so that the total probability of any photonuclear reaction occurring
is the sum of the individual probabilities. Similarly, the sum of all the individual photoproton cross sections σn
is the total cross section σ, which remains unchanged at

σ ≡ σlinear = 67.578± 0.001 mb, (4.32)

for a linearly polarized laser. This value is independent on the orientation of the electric field vector ~EL with
respect to ~E′ of the γ-ray, i.e. we have σ⊥ = σ‖ = 67.578 ± 0.001 mb at ω′ = 3 MeV, and it also remains
unchanged when the laser is turned off.
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Figure 4.6: Same as Fig. 4.5 except that the second scenario described by Fig. 4.3 is considered, where ~EL ‖ ~E′.

There are two other common characteristics shared by Figs. 4.5 and 4.6, independently on the laser intensity.
First, the energy spectrum becomes broader by increasing the laser intensity, and in each graph the total cross
section remains constant at the value given by Eq. (4.32). Second, all graphs are symmetric around n = 0,
which means that the absorption and the emission of n laser photons have almost the same probabilities. The
latter characteristic agrees with that reported by the Low’s theorem for multiphoton processes [142].

Apart from common characteristics, there are also some noteworthy differences between Figs. 4.5 and 4.6.
First of all, in Fig. 4.5 where ~EL ⊥ ~E′, σ⊥

n reaches its maximum value for n = 0, where the laser does not
interact with the photoproton, and afterwards it decreases with increasing the number of absorbed or emitted
laser photons. This behavior is explained by the fact that the arguments α⊥

1 and β1 in Eqs. (4.7) are much
smaller than 1 at all intensities. So we have 4.7× 10−5 6 α⊥

1 6 5.7× 10−3 and 3.9× 10−7 6 β1 6 6.1× 10−3.
Therefore, we can well approximate Bn(α

⊥
1 ) and Cn(α

⊥
1 ) as: const · (α⊥

1 )
n and the cross section behavior is

perturbative

σ⊥
n ∼ α2n

1 .

In contrast, in Fig. 4.6 where ~EL ‖ ~E′, the α2n
1 approximation of σ

‖
n cannot be justified for high intensities,

because 9.6× 10−2 6 α
‖
1 6 12.03. A maximum value of σ

‖
n for n = 0 can already be seen in the first and second

graphs of Fig. 4.6, but just at laser intensity below 2× 1021 W/cm2 because we still have α
‖
1 < 1. The meaning

of this result is clear: When the intensity of the assisted linearly polarized laser is low, the change of orientation
of ~EL with respect to ~E′ plays no significant role on the photonuclear effect.



4.4. RESULTS AND DISCUSSION 41

However, the third and fourth graphs in Fig. 4.6 show that the assisting laser field with high intensity modifies
the properties of the photonuclear effect in a characteristic way. In other words, when I & 5 × 1022 W/cm2

and ~EL ‖ ~E′, we have 2.4 . α
‖
1 6 12.03, i.e. greater than 1, and therefore we cannot approximate Bn(α1) and

Cn(α1) as: const ·(α1)
n. In that case, the coupling of the continuum proton to the laser field is nonperturbative.

For this reason, we cannot see a maximum value of the cross section for n = 0 in the high-intensity regime, and
σn depends strongly on the laser parameters ωL and EL.

From this comparison we conclude that the multiphoton character of the photonuclear reaction (4.2) in the
halo-nucleus A

Z [Xp] becomes most apparent at higher laser’s electric field strengths and for copropagating waves.
In contrast, single-photon character of the photonuclear process is apparent at low electric field strengths and
particularly for orthogonally propagating waves. In general terms, we observed a strong effect of the orientation
of the laser’s electric field vector on the energy spectra of the photoproton-halo, particularly in the high-intensity
regime. As we shall explain below, the dependence on the field orientation arises from the fact that the photo-
proton is preferentially emitted along the polarization direction of the γ-ray field (i.e., ~ez), whereas the coupling
strength between the proton and the laser field depends on the proton momentum component along the laser
polarization direction.
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Figure 4.7: The cross sections of the photoproton as a function of the laser intensity for various numbers of
absorbed laser photons. The left plot gives the cross section when ~EL ⊥ ~E′ and the right one when ~EL ‖ ~E′. The
photon energies of the γ-ray and of the laser beam are held fixed at ω′ = 3 MeV and ωL = 2 keV, respectively.

Inspired from the results obtained in Figs. 4.5 and 4.6, we want to check now whether the photonuclear
reaction in the halo-nucleus can be affected by increasing the laser intensity and by changing as before the
polarization directions of the laser wave and the γ-photon, or not. In the left plot of Figure 4.7 we give the
photoproton cross section in term of the laser intensity for various numbers of absorbed (n > 0) laser photons

and when ~EL ⊥ ~E′. In the right plot we give the same cross section but when ~EL ‖ ~E′. The dashed curves
represent the “total” cross sections by summing over all the number of absorbed laser photons from 1 to 6.

When ~EL ⊥ ~E′ and for one-photon absorption, the cross section attains its maximum value of

σ⊥
max[n = 1, linear] ≃ 12.54 mb, (4.33)

at I = 1.04× 1023 W/cm2, as indicated by the solid black curve in the left plot. When ~EL ‖ ~E′, the maximum
value of the cross section increases to

σ‖
max[n = 1, linear] ≃ 19.94 mb, (4.34)

at lower intensity of I = 4.65× 1022 W/cm2, as indicated by the solid black curve in the right plot. This fact
can be intuitively understood from the values of the first argument α1 of the generalized Bessel-function, which
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depends on px = ‖~p‖ sin θ sinϕ when ~EL ⊥ ~E′ as given by Eq. (4.7a), and on pz = ‖~p‖ cos θ when ~EL ‖ ~E′ as
given by Eq. (4.28). Since the integration over the polar emission angle θ goes from 0 to π, and the emission of

the photoproton is mostly pronounced in the same direction as ~E′ (i.e. along the z-axis), we have θ ∼ 0 and

thus px < pz. That is α⊥
1 < α

‖
1. By comparing the transition amplitude (4.17) with (4.29) for n = 1, we have

|M⊥
n=1|2 6 |M‖

n=1|2, because

|J̃n=1(α
⊥
1 , β1)|2 6 |J̃n=1(α

‖
1, β1)|2 ∀ ϕ ∈ [0, 2π],

and consequently, σ⊥
max < σ

‖
max. This means physically, that the probability of inducing the photonuclear

process by one-photon absorption, that we have defined in Eq. (4.10) by the transition from the initial bound
halo state to the continuum Volkov state, is higher when the high-frequency laser wave is copropagating with

the γ-ray. Indeed, we have found that 2×10−4 6 α⊥
1 6 8×10−3 and 0.67 6 α

‖
1 6 16.57 when the laser intensity

varies between 1020 and 1024 W/cm2.

There are some common and contrasting features between the left and right plots in Fig. 4.7: First, in each
one the photoproton cross section decreases with increasing the number of absorbed laser photons from 1 to 6.

Second, for any n > 0 the cross sections σ⊥
n and σ

‖
n exhibit a monotonous increase at low laser intensities. The

larger the integer n, the broader the linear region will be. This happens because α
‖
1 (∼ 0.67) and particularly

α⊥
1 (∼ 2 × 10−4) are less than 1, so that the coefficients Bn and Cn appearing in Eqs. (4.15) [, which are

expressed in terms of the generalized Bessel-function J̃n(α1, β1)] are proportional to αn
1 . After the region of

linearity, i.e. at higher intensities, the cross sections exhibit a decreasing behavior, which is mainly caused by
the Bessel-functions like Jn(α1)

2. This behavior also agrees with that reported by C. Leone et al. in 1988 by
studing “two-frequency multiphoton ionization of hydrogen atoms” [32].

Above 1023 W/cm2, the cross section σ
‖
n is strongly affected by the asymptotic behavior of the Bessel-functions,

i.e. it oscillates with slowly decreasing amplitude for large arguments α
‖
1 and β1, or briefly at higher electric

field strength EL. On the other hand, the cross section σ⊥
n is less sensitive to the oscillation of the Bessel-

functions. The non-oscillating behavior observed for σ⊥
n at such a high intensity is due to the fact that α⊥

1 is

always less than 1, while α
‖
1 becomes greater than 1 (∼ 16.5, and hence causing the decreasing oscillation of σ

‖
n).

Physically, we explain these facts by the back and forth motion of the photoproton as it travels out through
the high-frequency laser field, which becomes more sensitive for copropagating waves than for orthogonally
propagating waves.

Let us now explore the dependencies of the angular proton distribution on field orientations and intensities.
First, we display in Fig. 4.8 the differential cross sections for the photonuclear reaction (4.2) as a function of
the polar emission angle θ of the photoproton between 0 and π/2. Here dσ/d cos θ are computed by integrating
the azimuthal angle ϕ as usual from 0 to 2π and summing over all numbers of absorbed laser photons. We
consider as before two polarization directions of the radiation fields, i.e. ~EL ⊥ ~E′ and ~EL ‖ ~E′ as illustrated
in Figs. 4.2 and 4.3, respectively. In both scenarios, the polar emission angle θ is measured with respect to the
z-axis, which coincides with ~E′.
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Figure 4.8: The differential cross sections as a function of the polar emission angle of the proton-halo. The left
plot gives dσ/d cos θ when the polarization directions of the high-frequency laser wave and the γ-photon are

orthogonal to each other, ~EL ⊥ ~E′ (see Fig. 4.2); while the right plot gives dσ/d cos θ when the x-axis is chosen

along the “propagation direction of the laser wave” and the γ-ray, ~EL ‖ ~E′ (see Fig. 4.3). The photon energies
of the γ-ray and of the laser beam are held fixed at ω′ = 3 MeV and ωL = 2 keV, respectively.

In each plot, we compute dσ/d cos θ, where the electric field strength EL is held fixed at 3.07× 1013 V/cm
as shown by the red curves. The corresponding laser intensity is indicated on each plot, the laser frequency and
the γ-ray photon energy are held fixed as before. Both were compared with the dashed black curves, where the
photonuclear process is induced without the assistance of the laser beam. We see that both curves practically
superpose on each other (so that the dashed black curves are hardly visible), which means that the presence
of the laser field in terms of very high intensity or orientation does not modify the angular distribution of the
photoproton-halo. Apart from that, both differential cross sections tend to shift towards small ejection angles
due to the strong dynamical influence of the incident γ-photon. Indeed, this behavior exhibits a clear analogy
to situations reported by several authors in atomic physics [30, 32, 33].

In a second investigation of the angular proton distribution, we plot in Fig. 4.9 dσ/d cos θ in term of cos θ for
one-, two- and three-photon absorption. The different input parameters and field geometries are shown on each
plot. As we can see, the oscillation behavior of the angular distribution is strongly dependent on the arguments

α⊥
1 and α

‖
1 of the Bessel-function as given by Eqs. (4.7a) and (4.28), respectively. Because px < pz, the right

three plots where ~EL ‖ ~E′, exhibit more oscillations than the left ones where ~EL ⊥ ~E′, and this nonperturbative

behavior arise from the large values of α
‖
1 (from top to bottom we have found α

‖
1 ≈ 9.46, 4.73, 11.83). The

larger the argument α, the more sinusoidal the oscillations of the Bessel functions become.

On the other hand, the left three plots begin to oscillate (although weak compared with the right ones) at
small emission angle θ, because the component px of the photoproton momentum is maximized when θ → 0.
Another factor which leads to increase α1, and hence the oscillation behavior of the angular distribution,
is the ratio EL/ω

2
L as given by Eqs. (4.7a) and (4.28), which has the smallest value in the middle plots of

Fig. 4.9. According to our calculations, we have found for ~EL ⊥ ~E′ and from top to bottom that α⊥
1 ≈

1.04× 10−4, 5.2× 10−5 and 1.3× 10−4 (i.e. α1 ≪ 1), and this corresponds to the perturbative regime.

Thus, we can conclude from this comparison that, it is more difficult to gain informations about the prob-
ability for the photoproton to be emitted in a certain direction for copropagating linearly polarized laser and
γ-ray photon than for orthogonally propagating ones. Further, the probability of inducing the photonuclear
reaction (4.2) in the presence of the linearly polarized laser beam decreases by increasing the number n of
absorbed laser photons, which means that the laser serves as an inhibitor (retarder) of the photoproton, and

this effect becomes especially apparent when ~EL ⊥ ~E′. This conclusion also agrees with various reports by the
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authors cited above.
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Figure 4.9: The angular distribution as a function of the polar emission angle of the photoproton-halo for
one-, two- and three-photon absorption. The photon energies of the γ-ray is held fixed as before, and the laser
parameters ωL and EL are indicated on each plot.
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4.4.2 The case of circularly polarized laser beam

We now discuss the results obtained from the laser-assisted photonuclear reaction (4.2) when the laser wave
is circularly polarized (δ0 = 1). Circular polarization of the laser wave leads to expressions for the cross
sections and rates identical to those obtained for the linear polarization, except that the generalized Bessel-
functions (4.12) are replaced by the ordinary Bessel-functions (B.3). In order to proceed with our discussion,
we may consider again the two scenarios described in Figs.4.2 and 4.3.

(i) When ~EL ⊥ ~E′, we replace the transition amplitude (4.17) by

Mn ≡M⊥
n = ~ε~p Bn − aeεx Cn − aeεy Dn, (4.35)

where the Fourier coefficients Bn, Cn and Dn are expressed in terms of the ordinary Bessel-functions of integer
order n as follows

Bn = Jn(α)e
inη0 , (4.36a)

Cn =
1

2

[
Jn+1(α)e

i(n+1)η0 + Jn−1(α)e
i(n−1)η0

]
, (4.36b)

Dn =
1

2i

[
Jn+1(α)e

i(n+1)η0 − Jn−1(α)e
i(n−1)η0

]
, (4.36c)

and the argument α is given by

α
def
=
√
α2
1 + α2

2 ≡ α⊥ =
eEL

ω2
Lmp

p̃, (4.37a)

p̃ =
√
p2x + p2y, (4.37b)

η0 ≡ η⊥0 = arccos

(
px
p̃

)
. (4.37c)

(ii) When ~EL ‖ ~E′, we replace the transition amplitude (4.17) by

Mn ≡M‖
n = ~ε~p Bn − aeεy Cn − aeεz Dn. (4.38)

Here the Fourier coefficients Bn, Cn and Dn have the same expressions as in Eqs. (4.36), but the argument α
in Eqs. (4.37) should be replaced by

α
def
=
√
α2
1 + α2

2 ≡ α‖ =
eEL

ω2
Lmp

p̃, (4.39a)

p̃ =
√
p2y + p2z, (4.39b)

η0 ≡ η‖0 = arccos

(
py
p̃

)
. (4.39c)

Otherwise, all other derivations performed in Section 4.3 are mathematically identical.

For the presentation of numerical results we have chosen circularly polarized laser radiations with different
frequencies and intensities, so varying from Ruby/HeNe up to VUV/XUV lasers. Concretely, we shall consider
the following frequencies: ωL = 2, 20 and 200 eV, which correspond to wavelengths of λL ≈ 620, 62 and 6.2
nm, respectively. The photon energy of the γ-ray is held fixed at 3 MeV as before.

In Fig. 4.10, we show the photoproton energy spectra in term of the number n of absorbed (n > 0) or emitted

(n < 0) laser photons, where ~EL ⊥ ~E′. The photoproton absorbs an amount of energy from the laser beam equal
to nωL. When the laser intensity varies between 1013 and 9 × 1013 W/cm2, the shapes of the energy spectra
show roughly similar behavior in comparison with the spectra obtained in Fig. 4.5. That is, the spectrum
becomes broader by increasing the laser intensity and in each graph the total cross section remains constant at
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roughly 67.6 mb. Furthermore, the sidebands in each energy spectrum become a bell-shaped distribution and
each spectrum reaches its maximum value for n = 0, where the laser does not interact with the photoproton.
Afterwards, it decreases with increasing the number of exchanged laser photons. This happens because we have
found from Eq. (4.37a) that 1.15 × 10−2 6 α⊥

1 6 5.7 × 10−2, so that the approximation of Bn(α
⊥
1 ), Cn(α

⊥
1 )

and Dn(α
⊥
1 ) in Eqs. (4.36) as const · (α⊥

1 )
n always holds. The larger the argument of the Bessel-functions, the

less likely is the multiphoton proton emission process, and the coupling of the continuum photoproton to the
low-frequency laser field is perturbative.
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Figure 4.10: The energy distribution of the photoproton in term of the number of absorbed laser photons and
for different values of the laser intensity. The electric field vectors of the laser and the γ-ray are perpendicular
to each other, ~EL ⊥ ~E′, as described by Fig. 4.2. Values of the photon energy of the γ-ray and of the laser
field are held fixed at ω′ = 3 MeV and ωL = 2 eV, respectively. The laser’s electric field strength is increased
from top to bottom as follows: EL = 0.0, 6.1× 107, 1.22× 108, 1.84× 108, 2.45× 108, and 3.07× 108 V/cm.
The corresponding laser intensities are indicated on each graph. The total cross section σ⊥ =

∑
n σ

⊥
n remains

unchanged in all graphs at roughly 67.6 mb.
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However, above 1.6 × 1014 W/cm2 and for |n| < 50 the sidebands in the photoproton energy spectrum
exhibit drastic fluctuations (see the fifth and sixth graphs at the bottom of Fig. 4.10), which originate from the
oscillating behavior of the Bessel-functions as α⊥ takes larger values. We note that the maximum value of α⊥

appears when θ → π/2 and from (4.37) we obtain: p̃→ pn, so that

α⊥ −→ α⊥
max =

eEL

ω2
Lmp

pn ≈ 946.3≫ 1.
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Figure 4.11: Same as Fig. 4.10, but ~EL ‖ ~E′.

If we look at Fig. 4.11 in the case when ~EL ‖ ~E′, we can see that the photoproton energy spectrum looks
qualitatively different in comparison with that in Fig. 4.10. In fact, the spectrum becomes broader by increasing
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the laser intensity (from top to bottom), and its height increases with increasing the number of exchanged laser
photons. As a first conclusion we can say that the energy spectrum depends strongly on the direction of
the photoproton motion with respect to ~E′. In addition, the sidebands in Fig. 4.11 exhibit oscillation-like
fluctuations when the laser intensity varies between 1013 and 2.5× 1014 W/cm2, and these fluctuations become
apparent even between n and n+ 1 exchanged laser photons. This behavior can also be attributed to the large
values of the arguments α‖ in Eq. (4.39a), which varies between 23.65 and 118.28. The larger the argument of
the Bessel-functions, the more likely is the multiphoton proton emission process, which means that the coupling
of the continuum photoproton to the low-frequency laser field is nonperturbative.

The increase of the sidebands in each energy spectrum with increasing n, which is more clearly seen in
Fig. 4.11 than in Fig. 4.6, can be understood as follows: The photoproton is preferentially emitted parallel to
~E′ where θ → 0 due to the strong influence of the γ-photon’s polarization. When ~EL ‖ ~E′, the argument α of
the Bessel-functions is maximized, since |px| < |pz| and hence, from Eqs. (4.37a) and (4.39a) we get α⊥ < α‖.
According to our calculations, values of the momentum components px, py and pz of the photoproton are roughly
14.37, 6.70 and 71.56 MeVs, respectively, so that in total we have

‖~p‖ ≡
√
p2x + p2y + p2z ≈ 73.3 MeV. (4.40)

The total cross section remains unchanged at the value obtained previously for linearly polarized laser beam,
i.e.

σ ≡ σcircular = 67.578± 0.001 mb = σlinear. (4.41)

We note that, in the case of two copropagating waves, the increase in the energy spectrum towards the side wings
where the number n of exchanged photons is large has also been reported by Leone et al. [32]. In their study
of two-frequency multiphoton ionization, an hydrogen atom is exposed to a combined field consisting of a low-
frequency linearly polarized laser beam (ωL ≃ 1.17 eV) and a high-frequency photons (50 eV < ω′ < 100 eV).
The initial state was the ground state of the hydrogen atom and the final state was the Coulomb-Volkov
state [30, 32, 33]. This comparison should not be understood as a verification of the validity of our calculations
or of others in atomic physics, because the energy levels and the physical mechanisms involved in the two
processes are entirely different, but rather as a first step of the generalization of the strong-field approximation
to laser-assisted processes from atoms to nuclei.

The comparison between Fig. 4.10 and Fig. 4.11 leads us to the following conclusions: Similarly to the case
of linearly polarized laser field, the multiphoton character of the photonuclear reaction (4.2) in the halo-nucleus
A
Z [Xp] becomes apparent for copropagating circularly polarized laser and γ-ray photon. In contrast, single-
photon character is apparent for orthogonally propagating laser and γ-ray photon. In both cases, multiphoton
and single-photon characters, appear more clearly and rapidly by increasing the electric field strength, or equiv-
alently the intensity of the circularly-polarized laser beam. However, this result is quite different to what we
have seen before by comparing Fig. 4.5 with Fig. 4.6 in the case of linearly polarized laser: The difference
between the multiphoton and the single-photon character becomes most apparent at higher intensities of the
linearly-polarized laser, not at lower intensities. In general terms, we observed a strong effect of the orientation
of the laser’s electric field vector on the energy spectra of the photoproton-halo.

Let us now investigate the photonuclear reaction (4.2) by increasing the intensity of the circularly polarized

laser beam. In the left three plots of Figure 4.12 where ~EL ⊥ ~E′, we show the cross sections σ⊥
n of the

photoproton as a function of the laser intensity for different numbers of absorbed laser photons. In the right

three plots we show σ
‖
n where ~EL ‖ ~E′.
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Figure 4.12: The cross sections σ⊥
n and σ

‖
n of the photoproton as a function of the laser intensity for different

numbers of absorbed photons (n = 1, . . . , 4). The left plots give the cross section when ~EL ⊥ ~E′ and the right

ones when ~EL ‖ ~E′. The photon energy of the γ-ray is held fixed at ω′ = 3 MeV and the laser frequency is
increased from top to bottom as follows: ωL = 2, 20 and 200 eV.
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When ~EL ⊥ ~E′ and for one-photon absorption, the cross sections (see the solid black curves in the left plots)
attain the same maximum value of

σ⊥
max[n = 1, circular] ≃ 17.4 mb. (4.42)

That is, it remains unchanged by increasing the laser frequency from top to bottom as follows ωL = 2, 20
and 200 eV. The laser intensities corresponding to this maximum value are I ≈ 1.25 × 1011, 1.25 × 1015 and
1.25× 1019 W/cm2. On the other hand, when ~EL ‖ ~E′, we obtain a quite larger value of

σ‖
max[n = 1, circular] ≃ 21.7 mb, (4.43)

and the laser intensities corresponding to this maximum cross section are quite smaller: I ≈ 7.3×1010, 7.3×1014
and 7.3× 1018 W/cm2, as shown by the solid black curves in the right plots. Essentially the same remarks can
be made for the cases when (n = 2, 3, . . .) photons from the laser are absorbed.
These results can be explained in a manner similar to that discussed in the previous Subsection regarding
Fig. 4.7, which indicate that the photoproton is preferentially emitted parallel to ~E′ due to the strong infulence
of the γ-photon’s polarization. When ~EL ‖ ~E′, the argument α of the Bessel-functions is maximized, and hence,

σ⊥
max < σ

‖
max. According to our calculations, we have found that 1.5× 10−4 6 α⊥

1 6 0.1 and 0.3 6 α
‖
1 6 771.0.

In order to ensure a fair comparison between circular and linear polarization, we have computed in Fig. 4.13
the photoproton cross sections σn with exactly the same input parameters for the laser and the γ-ray as in

Fig. 4.7. We have found that values of both σ⊥
max and σ

‖
max obtained in Eqs. (4.42) and (4.43), which also

remain unchanged for ωL = 2 keV, are respectively larger by the factors 1.38 and 1.08, than those obtained
previously in Eqs. (4.33) and (4.34), where the laser is linearly polarized.
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Figure 4.13: The cross section of the photoproton as a function of the laser intensity for different numbers of
absorbed photons (n = 1, . . . , 4). The left plot gives the cross section when ~EL ⊥ ~E′ and the right ones when
~EL ‖ ~E′. The photon energies of the γ-ray and of the laser beam are held fixed at ω′ = 3 MeV and ωL = 2 keV,
respectively. We compare this Figure with Fig. 4.7 to show the influence of linearly and circularly polarized
laser on the photoproton cross section.

This means physically, that the probability of inducing the photonuclear reaction (4.2) by absorbing n-
photons (with total energy nωL) from a circularly polarized laser is higher than that from a linearly polarized
laser. This result is in good agreement with experimental observations of Fox, Kogan and Robinson [143,144] in
atomic physics, as they measured the total multiphoton ionization rates of atomic cesium by the simultaneous
absorption of Ruby-laser photons. In addition, our result also agrees with perturbation theory calculations for
weak couplings (see [145–147] and more recently in [148, 149]), which indicate that circular polarization cross
sections and rates are somewhat larger than for linear polarization due to the field correlation (photon statistics)
effects in single-photon and multiphoton processes. We note, for example, that Lambropoulos [146] came to this
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conclusion as he derived the rate of two-photon transition from the ground 1s to the 2s state in hydrogenlike
atom interacting with plane waves, and found that the rates depend on the correlation function of the radiations
field.

We further note that, the (decreasing) oscillation of the photoproton cross section above 1023 W/cm2 be-
comes more apparent for circular than for linear polarization of the laser field. However, at low intensities
below 1023 W/cm2, there is no substantial influence of the laser polarization. This behavior is expected due to
the py-contribution of the photoproton momentum in the argument α of the Bessel-functions when the laser is
circularly polarized.

Now in Fig. 4.14 we plot dσ/d cos θ as a function of the polar emission angle between 0 and π. The solid
curves show dσ/d cos θ where the azimuthal angle ϕ is integrated as usual from 0 to 2π, and summing over all
numbers of absorbed laser photons. The dashed and the dot-dashed curves show dσ/d cos θ where ϕ is held
fixed first at 0 and then at π, respectively. These are divided by 2π in order to make a comparison with the
differential cross sections shown by the solid curves. The laser’s electric field strength is held fixed for all curves
at 6.14× 1012 V/cm, which corresponds to a laser intensity of 5× 1022 W/cm2.

When the photoproton is ejected at ϕ = 0, the total cross section is σ ≃ 79.925 mb, which is larger than
the one obtained previously in Eq. (4.41). However, the cross section, or equivalently, the probability to eject
the proton at ϕ = π is quite smaller, since we obtained σ ≃ 56.296 mb. In these cases, the kinetic energy of
the ejected photoproton-halo is about 2.913 MeV, which corresponds to a nonrelativistic momentum of 73.93
MeV and a velocity of 2.36 × 107 m/s. The left and right plots in Fig. 4.14 are quite similar, and this result
confirms that the angular proton distribution depends neither on the polarization of the laser light, nor on the
orientation of its electric field vector ~EL with respect to that of the γ-photon, i.e. ~E′.
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Figure 4.14: The differential cross sections as a function of the polar emission angle of the proton-halo. The left
plot gives dσ⊥/d cos θ where ~EL ⊥ ~E′; while the right one gives dσ‖/d cos θ when ~EL ‖ ~E′. Both are divided
by 2π. The photon energies of the γ-ray and of the laser beam are held fixed at ω′ = 3 MeV and ωL = 2 eV,
respectively. The azimuthal angle of the ejected photoproton is held fixed at ϕ = 0 (dashed curves) and ϕ = π
(dot-dashed curves).

Finally, we show in Fig. 4.15 the angular distribution of the photoproton-halo by one-, two and three-photon
absorption. Our aim here is to gain informations about the probability for the photoproton to be emitted in a
certain direction when we know the number of absorbed laser photons, and also for given field configurations
and strengths. This Figure is analogous to that presented in Figure 4.9 where the laser is linearly polarized.
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Figure 4.15: The angular distribution as a function of the polar emission angle of the photoproton-halo for
one-, two- and three-photon absorption. The photon energies of the γ-ray is held fixed as before, and the input
parameters ωL and EL of the circularly polarized laser are indicated on each plot.

In left three plots of Fig. 4.15, we see that for orthogonally propagating laser and γ-ray photon, the maxima
of the differential cross sections are shifted toward smaller angle, and strongly oscillating near θ = 0. These
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behaviors arise from the rapid oscillations of the Bessel-functions for such field geometries, which means that
the nonperturbative effects are dominant.

Furthermore, we see from top to bottom that dσ⊥/d cos θ increases with increasing the laser parameters
ωL and EL. That is, the higher the energy of the incoming laser photons, the more likely the photoproton is
emitted. On the other hand, the ratio EL/ω

2
L is maximized for the first left plot followed by the second one,

and for this reason the first plot exhibits the strongest oscillations. Thus, we can say that the laser beam serves
as an accelerator of the photoproton, and basically the same remarks can be made for dσ‖/d cos θ.

It is also important to note that for copropagating laser and γ-ray photon (when ~EL ‖ ~E′), the differential
cross sections exhibit oscillating growth toward smaller angle, a phenomenon which is not observed when
~EL ⊥ ~E′. Further, dσ‖/d cos θ shows a qualitative difference between linearly and circularly polarized laser at
fixed input parameters ωL and EL. That is, we have oscillations like f(x) ≈ x+x · sin(x) for linear polarization
and f(x) ≈ x2 + (x · sin(x))2 for circular polarization (compare the right three plots in Figs. 4.9 and 4.15).
Thus, we can conclude from these comparisons that single-photon and multiphoton angular distributions of the
photoproton at a given proton energy depend strongly on the field geometries, polarizations and strengths.
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–V–

Multiphoto-Production of Charged Pion

Pairs on the Proton1

We have already studied in Chapter 4 the laser-assisted photonuclear effect in halo-nuclei. In this Chapter
we shall deal with another high-energy process in intense light-matter interaction on the hadronic scale: the
multiphoto-production of charged pion pairs, when a relativistic proton collides with an ultra-high laser beam.

5.1 Background and Motivations

Photoproduction of pion pairs on the proton has been studied extensively both in theory and experiment
since the 1960s. In recent years the interest in the process has been revived by improved experimental data
which were obtained by using polarized tagged photon beams at the MAMI Microtron [37, 38], the GRAAL
facility [39–41], and the Jefferson Laboratory [42, 43]. At GRAAL, the high-energy photon beam is produced
by Compton backscattering of laser light on a relativistic electron beam. These studies allow insights into the
internal structure and excitation spectrum of the proton. A particular focus lies on polarization asymmetry
measurements which are sensitive to interference cross terms. Photoproduction of neutral mesons in nuclear
electric fields, known as the Primakoff effect [86, 87], was clearly observed at the Jefferson Laboratory [44].
This process could also give a direct evidence for the production of charged meson pairs (π+π−,K+K−), when
high-energy photons interact with hadrons.

When charged particles interact directly with intense laser beams (rather than with single photons from
synchrotron or Compton backscattering sources), multiphoton processes may arise involving the simultaneous
absorption of more than one photon. Multiphoton e+e− pair production was observed in ultrarelativistic
electron-laser collisions at SLAC [36] and theoreticians have studied related e+e− pair production processes
by relativistic proton impact on intense laser beams [94–101]. In this setup, the laser frequency and field
strength are largely Doppler-enhanced in the projectile rest frame. Inspired by the sustained progress in laser
technology, very recently theoreticians started to study laser-induced µ+µ− pair production in proton-laser
collisions [100, 102, 103]. The apparent gap between the laser photon energy and the ∼ 100 MeV energy
scale of the process can in principle be bridged by combining upcoming x-ray laser sources (ωlab

L ∼ 10 keV)
with the ultrarelativistic proton beam at the LHC (γ ≈ 7000) [150]. The Doppler-upshifted photon energies
ωL ≈ 2γωlab

L ∼ 100 MeV lie in the desired range. This effect is explained in more detail below. Large-
scale [151,152] as well as table-top [153] free-electron lasers (FELs) are currently being developed aiming at the
generation of intense coherent x-ray pulses. Coherent x-rays are also envisaged via high-order harmonics from
oscillating plasma surfaces [116] or atomic gas jets [117]. Such compact and portable x-ray sources hold the
potential to be operated in conjunction with the LHC proton beamline.

In this Chapter, we propose a phenomenological model of π+π− pair production by multiphoton absorption

1Chapter based on A. Dadi, C. Müller, Phys. Lett. B 697, 142 (2011).
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in ultrarelativistic proton-laser collisions, i.e. the reaction

p+ nωL −→ p∗ + π+ + π−, (5.1)

with the photon number n ≥ 1 (see Fig. 5.1).

Figure 5.1: A simplified sketch of the π+π− photoproduction through a head-on collision of an incident laser
beam with an ultrarelativistic proton.

To this end, we combine the well-established approach to multiphoton processes in QED [45–47] with a
simple phenomenological model to describe the pion-nucleon interaction. In general terms, the present study
may be considered a first step towards an extension of the theory of laser-dressed QED into the realm of hadronic
physics. More specifically, our main goals are

(i) to provide order-of-magnitude estimates for π+π− multiphoto-production rates, demonstrating the ob-
servability of the process;

(ii) to compare with the corresponding rates for µ+µ− production through the reaction

p+ nωL −→ p∗ + µ+ + µ−, (5.2)

and show that a range of laser frequencies exists where π+π− production dominates over the (direct)
production of muons; and

(iii) to discuss prospects why detailed investigations of multiphoto-production of pions might be useful.

We note that highly energetic reactions can also be induced indirectly when high-power laser pulses interact
with solid targets. In the resulting plasma wakefields, electrons are accelerated to relativistic energies and
emit secondary bremstrahlung γ-rays. These have led to the observation of photonuclear reactions [10–12]
and efficient e+e− pair production through the Bethe-Heitler effect [14]. The setup also offers prospects for
Bethe-Heitler creation of muon pairs [15] and single pion photoproduction through the reaction [16]

p+ γ −→ n+ π+, (5.3)

We point out that the latter process relies on single photo-absorption and does not exhibit the multiphoton
character of the process studied below. Particle reactions such as µ+µ− and π+π− production were also
considered in an e+e− plasma coupled to a photon field [17–20]. Single pion production in strong magnetic
fields [154] and in collisions of laser-accelerated protons with nuclei have been studied theoretically as well [155].

5.2 Theoretical Framework

The aim of this theoretical part is to determine the cross section σ for reactions (5.1) and (5.2). This quantity is
very important in hadronic physics that expresses the probability of such hadronic process occurring. We first
briefly review the existing laser-dressed QED approach to muon pair production in the combined field consisting
of an electromagnetic wave and an atomic nucleus [94–97,100, 102, 103].
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5.2.1 QED Description of Multiphoton Muon Pair Creation

Within the external-field approximation of QED, the Lagrangian density of the problem reads

L = ψ[iγµ(∂
µ + ieAµ

L + ieAµ
C)−m]ψ, (5.4)

where ψ is the bispinor field of µ+µ− leptons; Aµ
L and Aµ

C are the four-potentials of the laser wave and the
nuclear field, respectively, m and e are the muon mass and coupling constant. In the spirit of the Furry picture,
one may split the total Lagrangian L = LV + LC into an unperturbed part

LV = ψ(iγµD
µ −m)ψ, (5.5)

and a remaining interaction

LC = eψγµA
µ
Cψ. (5.6)

Here, Dµ = ∂µ + ieAµ
L denotes the gauge covariant derivative with respect to the laser field where ∂µ = ∂/∂xµ

and x ≡ xµ ≡ (t, ~x). The laser field is assumed to be a monochromatic plane wave with the four-potential given
by Eq. (3.7). For δ0 = ±1, the amplitude of the vector potential (3.7) is given by the two constant four-vectors
aµ1 = (0, a, 0, 0) and aµ2 = (0, 0, a, 0) perpendicular to each other, which means that the wave propagates along

the z-axis with the vector kµL ≡ (ωL, ~kL) = ωL(1, 0, 0, 1). Further, the square of the averaged value of Aµ
L(kLx)

is

A2
L = −a

2

2
(1 + δ20),

and the laser phase is given by

kLx = kµLxµ = ωL · (t− z),

with

k2L = kLAL = kLa1 = kLa2 = a1a2 = 0.

The field theory of LV in Eq. (5.5) can be solved exactly by the so-called Dirac-Volkov states ψp±,s± which include
the interaction of the leptons with the plane-wave laser field up to all orders [156]. The leptons are characterized
by their four-momenta pµ± and spin projections s± outside the laser field. The Dirac-Volkov solutions may be
used as basis states in perturbative calculations with respect to the remaining Coulomb interaction with the
nucleon. As a result, the leading-order S-matrix element for multiphoton muon pair production on a proton at
rest reads

Sµ+µ− = i

∫
d4x ψp−,s−(x)γ

0ψp+,s+(x)VC(x), (5.7)

where

VC(x) = eA0
C(x) =

e2

4π|~x| (5.8)

denotes the Coulomb potential energy in this frame and γ0 is a Dirac matrix. Although the laser field is
treated as a classical electromagnetic wave, photons arise from a mode expansion of the oscillatory parts in
the S-matrix (5.7) which contains multiphoton processes of arbitrary order as given by Eq. (4.10). The µ+µ−

production rate is obtained from (5.7) as

Rµ+µ− =

∫
d3~p+
(2π)3

∫
d3~p−
(2π)3

∑

s+,s−

|Sµ+µ− |2. (5.9)

The cross section of the QED reaction (5.2) may be obtained by dividing out the photon flux Φ = ωLa
2/4π of

the classical wave.

A few additional remarks are in order here.
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1. For a proper description of muon pair production in the field of a heavy nucleus, the finite nuclear
extension needs to be taken into account in general [102, 103]. Here we restrict our consideration to
protons as projectiles, which may be treated as pointlike [see Eq. (5.8)] to a good approximation.

2. Being interested in order-of-magnitude estimates for the production rates, the recoil suffered by the proton
during the process is ignored for simplicity.

3. We will consider x-ray laser fields where the value of the Lorentz-invariant parameter ξµ = ea/m is
much smaller than unity. In this regime of laser-matter coupling, a process involving n photons could,
in principle, be calculated within n-th order of perturbation theory in the photon field. We find it more
convenient, however, to work within the framework of laser-dressed QED.

5.2.2 Effective Hadronic Model of Multiphoton Pion Pair Production

Theoretical studies of meson photoproduction off nucleons has been made since the 1960’s and many theoretical
problems were solved along the way. Most of the models used are phenomenological, which are based on
effective Lagrangians for the meson-nucleon interaction [157] or dynamical models using effective Hamiltonian
approaches [158–161]. Among them we also cite the unitarized pole models for pion photoproduction and
πN scattering, which incorporate the current-algebra low-energy theorems [162–164]. Some authors [165, 166]
presented a phenomenological fit of the data on single-pion photoproduction, whereby the photoproduction
amplitude consists of the Born approximation and the standard Breit-Wigner parametrization for the resonance
contributions taken from pion-nucleon scattering data. Aznauryan [167] includes the so-called “Regge-poles”
amplitudes to the Breit-Wigner parametrization of resonance contributions in order to take into account the
exchange of heavier mesons. Others authors [168] extended the study of pion photoproduction to Kaon and η
mesons by combining the low energy QCD Lagrangian and the quark model.

In the phenomenological models of π+π− photoproduction, which are based on effective Lagrangians for the
pion-nucleon interaction, it was found that a proper description of the process requires the inclusion of more
than 40 Feynman graphs (see, for example, [157] and references therein). In the present case of interest, where
the pions are created by the absorption of more than one photon, the number of relevant Feynman diagrams
increases tremendously, which renders a consideration on this level almost prohibitorily involved. However,
order-of-magnitude estimates for π+π− multiphoto-production rates may be obtained by applying the following
model.

We consider a charged pion of rest mass mπ and free four-momentum pµ = (p0, ~p) moving in the potential of
combined ultra-strong laser and nuclear Coulomb fields. The corresponding laser four-potential in the radiation
gauge is given by Eq. (3.7). We first have to formulate the S-matrix elements to obtain the total and differential
cross sections for the pair production process, i.e. for the reaction (5.1). Thereby, we shall take into account
the underlying structure of pions from quarks and gluons, since the latter interact not only through the strong
forces (with each other) but also through the electromagnetic forces. This is the first major difference between
the study of lepton- and meson pair production. We therefore use the exact Volkov-solutions of the equation of
motion for composite and spin-zero particles in an external electromagnetic field calculated in Subsection 3.2.3
of Chapter 3.

Before we begin to formulate the S-matrix, let us give an estimate of how high the frequency and the intensity
of the laser field should be to induce the reaction (5.1). We define the coupling parameter ξ between the laser
beam of electric field strength EL = aωL and a given charged particle of mass m by

ξ = ea/m = eEL/(mωL).

Pair production via absorption of few high-frequency photons with ωL 6 m takes place when ξ ≪ 1, while
for ξ ≫ 1 and EL ≪ Ecr

L the pair production is a tunneling process. Here Ecr
L is the critical field strength

for pair production via the Schwinger process. In the tunneling process of π+π− (or equivalently e+e−), the
laser’s electric field strength should be high enough that it can spontaneously tunnel virtual π+π− (e+e−) pairs,
out of the QCD (QED) vacuum, into real π+π− (e+e−) pairs. In that case, values of Ecr

L can be estimated
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by considering that the work produced by the laser field on one of these particles over a reduced Compton

wavelength λC must be equal to m, eEcr
L · λC

!
= m. Since λC = 1/m, we then obtain for e+e− pairs

Ecr
e+e− =

m2
e

e
≈ 0.862 MeV2 ≈ 1.323× 1016 Volt/cm, (5.10a)

which corresponds to a critical intensity in QED of

IQED = (Ecr
L )

2 ≃ 0.74 MeV4 ≈ 4.65× 1029 W/cm2. (5.10b)

For π+π− we deduce

Icrπ+π− ≡ IQCD =

(
mπ

me

)4

IQED ≈ 4× 10−3 GeV4 = 2.5× 1039 W/cm2. (!) (5.11)

These very high values, both for QED and QCD, required to achieve directly the phenomenon of vacuum pair
production is a main obstacle to the experimental realization and verification of the theories. The second critical
field intensity in Eq. (5.11) is out of reach, but the first one in Eq. (5.10b) may be achieved indirectly in the
nuclear rest frame of a target nucleus, when it moves with a relativistic velocity and colliding head-on with a
high-frequency laser beam. For example, in a head-on collision geometry, when the laboratory values of the
laser photon energy is around ωlab

L ≃ 10 keV, the electric field strength Elab
L ≃ 2 × 1012 V/cm and, on the

other hand, when a proton moves with a Lorentz factor of γ ≈ 7000, then the laboratory values of both the
laser field strength and frequency will be enhanced by a factor (1 + β)γ in the proton rest frame due to the
relativistic Doppler effect, leading to EL ≈ 3.6× 1016 V/cm and ωL ≈ 140 MeV ≈ mπ± in this frame. In that
situation, nonlinear hadronic and QED processes can well occur. The presence of such ultra-strong laser field in
the proton rest frame can polarize the QCD vacuum, from which virtual π+π− (or evidently e+e−) pairs can be
created. The sufficient energy is imparted into the QCD vacuum to bridge the energy gap to the positive-energy
continuum, and hence creating real pions.

In principle, the pion energy scale can be achieved experimentally by a combination of an x-ray free electron
laser (e.g. the XFEL at DESY or the LCLS at SLAC) with an ultrarelativistic proton beam as at the LHC
in CERN. Also efforts are undertaken to develop tabe-top x-ray laser devices, which could be operated in
conjunction with the LHC [169]. We remind that the currently highest laser frequency in the world is about 1
keV produced by the LCLS at SLAC, and in the future coherent frequencies up to 10 keV may be achieved.
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Figure 5.2: A head-on collision in the laboratory system of the incident laser beam (red) with an ultrarelativistic
proton beam (black) creating a π+ (blue) and π− (green) particle pair.

In the following calculations, π+π− pairs are created by a head-on collision of the laser wave with an
ultrarelativistic proton of electric charge |e| and intial four-momentum Qµ

i = (Q0
i ,
~Qi) moving at γ ≈ 7000,

as shown in Figure 5.2. After the interaction, the laser dressed four-momentum of the proton becomes Qµ
f =

(Q0
f ,
~Qf ) and the momentum transfer to the proton is Qµ = Qµ

i −Q
µ
f = (Q0, ~Q). We point out that the proton

is treated as an external potential which will be specified later, not as a quantum particle. The dynamics of the
created pions is described by the following covariant Lagrangian density up to second order in Fµν [123]

L = L0 + Lhad = (Dµφ)
∗
(Dνφ) [δµν −Kµν ]−m2

πφφ
∗ + Lhad, (5.12)

which includes the unperturbed part L0 as given by Eq. (3.8). Here φ ≡ φ−(x) = (φ1 − iφ2)/
√
2 denotes the

scalar π−-meson field and φ∗ ≡ (φ1 + iφ2)/
√
2 its complex conjugate. The complex structure of the produced

pions is taken into account by including their electric and magnetic polarizabilities λe and λm. The experimental
value λe + λm ≈ 0.16× 10−4 fm3 has recently been measured in Primakoff scattering of high-energy pions with
the COMPASS spectrometer at the Super Proton Synchrotron (SPS) in CERN in 2004 [170], (see also [171]).
Theoretically, λe and λm can be calculated in the framework of effective field theory models, such as the
non-perturbative QCD or the linear σ-model.

Similarly as in Subsection 5.2.1, we decompose the Lagrangian density (5.12) into an unperturbed part
L0 ≡ L − Lhad and a remaining interaction Lhad. The field theory of L0, which contains the electromagnetic
coupling of the π+π− mesons to the laser field, can be solved exactly as presented in Subsection 3.2.2. Namely,
we use the Hamilton’s principle of least action (i.e. the Euler-Lagrange equations, Eq. (3.10)) with respect to
φ(x) and φ∗(x) to derive the equations of motion of the π+π− meson pairs. Thus, similarly to Eq. (3.11) we
obtain

DµD
µφ(x) −Dµ [Kµν (Dνφ(x))] +m2

πφ(x) = 0, (5.13a)

D+
µD

µ
+φ

∗(x)−D+
µ

[
Kµν

(
D+

ν φ
∗(x)

)]
+m2

πφ
∗(x) = 0, (5.13b)

with2 D+
µ = ∂µ − ieAµ.

2To simplify the notations, we leave out again the subscript L from the laser vector potential (Aµ

L
→ Aµ).
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Now, taking the approximations made for the laser vector potential (3.7) into account (i.e. the Lorentz
gauge and the boundary conditions), and following exactly the same derivations as those of the previous Sub-
section 3.2.2, Eqs. (5.13) give two normalized solutions generalizing the known Volkov-Gordon states for the
charged π− and π+ mesons in the presence of the laser wave in a normalizing volume V . These solutions
correspond to positive and negative energies at t→ ±∞, respectively

φ−(x) =
1√
2V q0−

· exp
[
i(p−x)− i

∫ kx

−∞

(
e(p−A)

(kp−)
+

e2A2

2(kp−)
− λe + λm

2mπ
(kp−)

(
∂Aν

∂η

)2
)
dη̃

]
, (5.14a)

φ+(x) =
1√
2V q0+

· exp
[
−i(p+x) − i

∫ kx

−∞

(
e(p+A)

(kp+)
− e2A2

2(kp+)
+
λe + λm
2mπ

(kp+)

(
∂Aν

∂η

)2
)
dη̃

]
. (5.14b)

The quantity q0− (q0+) in Eqs. (5.14) denotes the time component of an effective momentum of π− (π+) in the
laser field, which is defined by3

qµ
def
= pµ +

a2

4(kp)

(
e2 − λe + λm

mπ
(kp)2

)
(1 + δ20)k

µ, (5.15a)

and we have well kq = kp. The square of qµ gives the square of an effective pion mass

q2
def
= m∗2

π = m2
π(1 + ξ2),

which is related to an effective4 dimensionless Lorentz-invariant intensity parameter of the laser field

ξ
def
=

a

mπ

√
2
·
√(

e2 − λe + λm
mπ

(kp)2
)
(1 + δ20). (5.15b)

This is an expression of the fact that the quivering motion forced upon the π+ and π− mesons by the presence of
the laser wave increases its inertia, and then leads to a higher effective massm∗

π. The latter can be interpreted as
a mass shift of π+π− mesons due to the electromagnetic pion-laser coupling as well as to the pion polarizablities.
The gauge potential Aµ

L in (3.7) couples directly to the π± meson current density, as expressed by Eq. (3.17)

jµ(x) ≡ −i
(

∂L
∂ (∂µφ)

φ− ∂L
∂ (∂µφ∗)

φ∗
)

=
1

V q0

[
pµ + eAµ −

(
e(pA)

(kp)
+
e2A2

2(kp)
− λe + λm

2mπ
(kp)

(
∂Aα

∂η

)2
)
kµ

]
.

Let us now focus on the pion-proton and the pion-laser interactions. The term Lhad in Eq. (5.12) represents
the hadronic interaction between the pion and the proton. In the present model, this interaction is assumed
to be mediated by the exchange of the isoscalar-scalar σ meson of mass mσ and coupling constant gσ, which is
described by the following Yukawa-type potential

Vhad(x) =
g2σ
4π

e−mσ|~x|

|~x| . (5.16)

3Here also we simplify the notations by leaving out the “±” sign from pµ and qµ.
4We have introduced this word because of the momentum dependence of ξ.
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Figure 5.3: Graphical equation in terms of Feynman diagrams for laser-induced multiphoto-production of π+π−

pairs on the proton. In the present model, the pion-proton coupling is mediated by σ meson exchange, described
by the Yukawa-type potential (5.16). The pion-laser interaction is accounted for to all orders by using the
Gordon-Volkov states (5.14). They are indicated by the double lines in the Furry-Feynman diagram on the
left-hand side of the equation, which corresponds to the amplitude (5.17).

The latter models the pion-proton interaction via σ meson exchange [172, 173]. It reflects the short-range
nature of the hadronic interaction, which represents an essential difference with the long-range Coulomb po-
tential (5.8) (∝ 1/|~x|). The squared coupling constant gσ in Eq. (5.16) may be viewed as the product of the
σ-meson coupling constants to the proton and the pion, g2σ = gσppgσππ. In our model, gσ is considered as a free
parameter whereby we determine its numerical value by taking reference to the available experimental data on
π+π− production by single-photon absorption on the proton. The interaction of the pions with the laser field is
accounted for to all orders by using the Gordon-Volkov states (5.14). When the pion-laser coupling parameter
is small, ξ = ea/mπ ≪ 1, a perturbative expansion into ordinary Feynman diagrams may be performed. Some
typical low-order terms are shown on the right-hand side of the equation, with the wavy lines symbolizing the
absorbed (or emitted) laser photons (see Fig. 5.3).

The leading-order S-matrix element for π+π− multiphoto-production on the proton in the presence of the
intense laser field may be written as (B.1).

S
(1)
π+π− = i

∫
d4x

(
φ∗−
←→
∂t φ+

)
Vhad(x) = i

∫
dx0d3~x

(
φ∗− (∂tφ+)−φ+

(
∂tφ

∗
−

))
Vhad(x). (5.17)

Before we proceed, we have to specify the polarization of the laser beam; we assume the latter to be circularly
polarized, i.e. δ0 = 1. Inserting the wave functions (5.14) into Eq. (5.17) yields

S
(1)
π+π− =

i

2V
√
q0−q

0
+

·
∫
d4x Vhad(~x)

[
− i
(
q0− − q0+

)
+ iωLβ1 cos (η) + iωLβ2 sin (η)

]
×

exp
[
−i
(
qµ− + qµ+

)
xµ + iα1 sin (η)− iα2 cos (η)

]
, (5.18)

where (B.2)

αj =

[
(ajp−)

(kp−)
− (ajp+)

(kp+)

]
· e, (5.19a)

βj =

[
(ajp−)

(kp−)
+

(ajp+)

(kp+)

]
· e, (5.19b)

for j = 1, 2. Here, p− and p+ stand for the free four-momentum of π− and π+ with positive and negative energy,

respectively, when the external laser field is turned off. For further evaluation of the S
(1)
π+π− -matrix elements,

we can expand analytically all periodic terms of Eq. (5.18) into Fourier series and compute their coefficients
Bn, Cn and Dn using ordinary Bessel-functions of integer order n, we obtain (B.2)

S
(1)
π+π− =

i

2V
√
q0−q

0
+

·
+∞∑

n≥n0

Mn

∫
d4xVhad(~x) exp

[
−i
(
qµ− + qµ+ − nkµ

)
xµ
]
. (5.20)

Here the reduced transition amplitudeMn of the process is expressed as follows

Mn = i
(
q0+ − q0−

)
Bn + iωLβ1Cn + iωLβ2Dn,



5.2. THEORETICAL FRAMEWORK 65

with

Bn = Jn(α)e
−inη0 , (5.21a)

Cn =
1

2

[
Jn−1(α)e

−i(n−1)η0 + Jn+1(α)e
−i(n+1)η0

]
, (5.21b)

Dn =
1

2i

[
Jn−1(α)e

−i(n−1)η0 − Jn+1(α)e
−i(n+1)η0

]
, (5.21c)

and α1 = α cos η0, α2 = α sin η0 and α :=
√
α2
1 + α2

2 are the arguments of the ordinary Bessel-functions. The
integer n0 in Eq. (5.20) denotes the minimum number of photons needed from the laser field to produce the
π+π− pairs. In order that reaction (5.1) may take place, the absorbed photon energy nωL in the nuclear rest
frame must be greater than or equal to the rest energy of the created pairs in the final state, that is

nωL ≥ m∗
π− +m∗

π+ =⇒ n0 = floor

[
2m∗

π±

ωL

]
+ 1 (5.22a)

and then we can get

p + nωL −→ p∗ + π− + π+ for n ≥ n0. (5.22b)

The integral of the exponential term in Eq. (5.20) can be easily calculated by decomposing the four-momentum

transfer to the proton Qµ
n

def
= qµ− + qµ+ − nkµ into space and time coordinates. The integration over time

coordinate yields a delta-function of energy conservation between both π± states. The integration over the
three dimensional space coordinates gives the known Fourier transform of the Yukawa potential (5.16) (For
more details, see Appendix B.2).

Squaring the S-matrix (5.20) and dividing by a unit time T yields the differential production rate

d6R =
1

T

V d3~q+
(2π)3

V d3~q−
(2π)3

|S(1)
π+π− |2 (5.23)

⇐⇒ d5R =
g4σ

128π5

∑

n≥n0

dE+ sin θ+dθ+dϕ+ sin θ−dθ−dϕ−|~q+||~q−|
M2

n(
m2

σ + | ~Qn|2
)2 ,

similarly as in Eq. (5.9) but with the spin sum omitted. In the last line we used the relation

|~q−|2d|~q−|δ
(
q0+ + q0− − nk0

)
= |~q−|q0−dE−δ(E+ + E− − nωL),

with E± = q0± and we integrated over the energy E− of the π−-meson. Thus, the diffrential rate for the pair
production process becomes

d5R =
g4σ

128π5

∑

n≥n0

dE+ sin θ+dθ+dϕ+ sin θ−dθ−dϕ−|~q+||~q−|
M2

n(
m2

σ + | ~Qn|2
)2 . (5.24)

Integrating over all possible momenta yields the total number of produced π+π− pairs per time by absorbing
n ≥ n0 photons, namely (B.3)

R =
g4σ

64π4

∑

n≥n0

∫ nωL−m∗
π

m∗
π

dE+

∫ π

0

sin θ+dθ+

∫ π

0

sin θ−dθ−

∫ 2π

0

dϕ−
|~q+||~q−|(

m2
σ + | ~Qn|2

)2M2
n. (5.25)

Finally, the cross section of the hadronic reaction (5.1) may be obtained by dividing out the photon flux
Φ = ωLa

2/4π.
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5.3 Numerical Results and Discussion

5.3.1 Results on π+π− Production by Single-Photon Absorption

First, we use our theory to investigate the π+π− photoproduction by single-photon absorption, where a compar-
ison with experimental data is possible. Value of the σ meson mass taken throughout the numerical calculation
is mσ = 550 MeV [174]. By setting gσ = 7.79, we reproduce the π+π− photoproduction cross section σπ+π−

at 440 MeV as measured with the DAPHNE detector at MAMI [37, 38]. With this choice, we find reason-
able agreement with the experimental data in the energy range from threshold up to ≈ 480 MeV, as shown
in Fig. 5.4. Due to the adjustment of gσ to the measured cross section, the Yukawa potential in Eq. (5.16)
becomes an effective potential which mimics the contributions from the other relevant Feynman graphs [157] in
an approximate way.
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Figure 5.4: Total cross sections for π+π− production by single-photon absorption on the proton. Shown are
the experimental data recorded with the DAPHNE detector at MAMI [37,38] and the results from the present
phenomenological model. The coupling constant for the pion-nucleon interaction was set to gσ = 7.79 in order
to reproduce the measured cross section at 440 MeV.

We note that, at higher photon energies, our predictions nevertheless would deviate significantly from the
experimental data in [37, 38]. In fact, within our model the cross section raises to a good approximation like a
power law

σπ+π− ∼ (ωL − 2mπ)
κ, (5.26)

with κ ≈ 2.3, and thus cannot reproduce the saturation occurring above 700 MeV observed in experiment. Such
high energies, however, are not crucial in view of π+π− multiphoto-production. Namely, when a pion pair is
created by the absorption of two photons with a total energy of 700 MeV, the energy of each single photon
already lies above the π+π− threshold. Since the probability for an n-photon process generally scales like ξ2n

in the perturbative coupling regime (ξ ≪ 1), the two-photon process is strongly suppressed as compared with
the dominant single-photon process. Hence, for our purposes the good agreement in the energy range up to 480
MeV may be considered sufficient to obtain order-of-magnitude estimates for π+π− multiphoto-production.

Figure 5.5 displays the angular distribution of one of the produced pions by one photon absorption as a
function of the polar emission angle θ, which is measured with respect to the incident laser wave vector ~kL (see
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Fig. 5.2). In each curve an amount of energy of ωL = 360, 400, 440, 460 and 480 MeV is absorbed from the laser
beam. The spectra have been normalized to the same height in order to facilitate their comparison.

ωL [MeV] 360.0 400.0 440.0 460.0 480.0

θmax [deg] 40.80 33.96 29.67 27.61 25.61

Table 5.1: Energy dependence of the polar emission angle θ of one of the produced pions.

The position of the maximum at each value of ωL is shown in Table 5.1 and the results are in reasonable
agreement with experimental observation [175]. As we can see, the larger the photon energy, the more shifted is
the maximum towards smaller angles and the more narrow become the distributions. This happens because by
increasing ωL, the momentum ~q of the created pion becomes larger and larger and shifted along the propagation

direction of the laser wave vector in the z-direction, so that θ ≡ (~̂q, ~ez) goes to zero.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

N
o
rm

a
li
ze
d
A
n
g
u
la
r
D
is
tr
ib
u
ti
o
n

d
R

d
c
o
s
θ

cos θ

n = 1

ωL = 360 MeV
ωL = 400 MeV
ωL = 440 MeV
ωL = 460 MeV
ωL = 480 MeV

Figure 5.5: Normalized angular distributions of one of the particles in π+π− photoproduction on the proton by
one photon absorption. The spectra refer to the proton frame and the angle is measured with respect to the
laser beam direction (i.e. with respect to ~kL).

5.3.2 Results on Multiphoton π+π− Production

Based on Eq. (5.17), we calculate total rates and angular spectra for multiphoto-production of π+π− pairs in
ultrarelativistic proton-laser collisions. The value gσ = 7.79 is used for the pion-nucleon coupling constant in the
effective potential (5.16). The threshold for π+π− production by two-photon absorption lies at an x-ray laser
frequency of ωlab

L ≈ mπ/2γ ≈ 10 keV in the laboratory frame, when the proton beam is counterpropagating
the laser beam with a Lorentz factor of γ = 7000. This frequency domain is aspired by the currently emerging
x-ray laser facilities [116, 117, 151–153]. Below, we mainly concentrate on processes involving two photons.

Figure 5.6 shows our results on the total production rates as a function of the photon energy, referring
to the rest frame of the proton. In the laboratory frame, the rates are reduced to Rlab = R/γ due to time
dilation. For the laser vector potential, the value ea = 5.1 keV has been assumed. It corresponds to x-ray
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intensities of the order of 1022 W/cm2 in the laboratory frame. In view of the remarkable recent advances in
x-ray technology, this level appears achievable nowadays at large-scale XFEL machines, though lying about
three orders of magnitude above their original design values. For example, the recently commissioned Linac
Coherent Light Source in Stanford/USA is currently able to produce 1-keV x-ray pulses with an intensity up
to 1018 W/cm2 [152]. Reduction of the present focal area of ∼ 1 µm2 down to ∼ (10 nm)2 would enhance the
intensity to 1022 W/cm2. Corresponding improved x-ray focusing techniques are on the way [176].

Let us consider an example. For a photon energy of 200 MeV in the proton frame, the π+π− production rate
by two-photon absorption amounts to R ∼ 103 s−1 as shown in Figure 5.6. Hence, in the collision of an LHC
proton beam containing 1011 particles [150] with an x-ray pulse of 100 fs duration [151,152], the probability for
production of one pion pair would be 10−8, assuming that a million protons interact with the field due to only
partial beam overlap. An average production rate of about one π+π− pair per hour is obtained by taking the
envisaged x-ray pulse repetition rate of 10 kHz into account [151]. Note that the latter could be synchronized
with the revolution frequency of the LHC proton beam. The π+π− production rate by two-photon absorption
scales as the square of the applied x-ray intensity, as long as ξ ≪ 1 holds.
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Figure 5.6: Total rates for π+π− and µ+µ− pair production on the proton by one- and two-photon absorption,
as functions of the photon energy. The amplitude of the laser vector potential is ea = 5.1 keV, corresponding
to lab-frame photon intensities Ilab = (ωlab

L a)2/4π of the order of 1022 W/cm2.

We note that the effect of the electric and magnetic pion polarizabilities turns out to be immaterial for the
present parameters. The reason is that the parameter

(λe + λm)(p±k)
2

mπ
/ ≈ (λe + λm)m3

π ∼ 10−5, (5.27)

which effectively quantifies the coupling of the external laser field to the pion polarizabilities [123], is much
smaller than its coupling e2 ≈ 0.0917 to the pion charge.

In order to detect the process of π+π− production by two-photon absorption unambiguously in experiment,
it is necessary to discriminate it from competing pion production channels. A strong background of π+ will
form through the single-photon reaction (5.3). The produced neutron may further lead to π− creation via the
subsequent reaction

n+ ωL −→ π− + p.
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For the purpose of discrimination, the angular and energetic distributions of the generated π− might serve
as a fingerprint for the nonsequential two-photon process; see also Fig. 5.7 below. Besides, a background of
e+e− pairs will arise from the ordinary (single-photon) Bethe-Heitler process on the proton. Note that these
background processes are not so strong to deplete the x-ray beam noticeably [102, 103].

It is interesting to compare the π+π− production rate by two-photon absorption with the corresponding rate
for µ+µ− production [102, 103]. Although the muon mass is substantially smaller than the pion mass, π+π−

production is dominant in the frequency range between approximately 150 and 210 MeV, as shown in Figure 5.6.
For example, at a photon energy of 200 MeV, the production of pions exceeds the production of muons by three
orders of magnitude. The dominance of π+π− production is due to the much larger strength of the hadronic
interaction. The purely electromagnetic contribution to π+π− production [resulting from the Coulomb potential
of the proton in Eq. (5.8)] is suppressed by four orders of magnitude and, thus, smaller than the µ+µ− rate. For
higher photon energies (ωL > 2mπ), the channel of µ+µ− production by a single photon opens and represents
the dominant process. Our results imply that in the frequency interval 150 MeV . ωL . 210 MeV muon pairs
are predominantly produced indirectly via two-photon π+π− production and subsequent pion decay

π+ −→ µ+ + νµ, (5.28a)

and

π− −→ µ− + ν̄µ. (5.28b)

Figure 5.7 displays our results on the angular distribution dR/d cos θ of one of the created pions by one-,
two- and three-photon absorption. The respective photon energies were chosen such that the energy absorbed
in total is always 360 MeV. The polar emission angle θ is measured with respect to the incident laser wave
vector.
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Figure 5.7: Angular distributions of one of the particles in π+π− and µ+µ− photoproduction on the proton. The
spectra refer to the proton frame and the angle is measured with respect to the laser beam direction (i.e. with

respect to ~kL). In all cases, an identical amount of energy is absorbed from the laser field (nωL = 360 MeV).
The spectra have been normalized to the same height in order to facilitate their comparison.

The calculated angular spectrum for π+π− production by one photon attains a maximum at θ ≈ 41.5◦. We
note that the position of the maximum is in reasonable agreement with experimental observation [175]; our
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model overestimates, however, the contributions from very large emission angles. For two- and three-photon
absorption the position of the maximum is shifted towards slightly larger angles (θ ≈ 42.5◦ and θ ≈ 44◦,
respectively) and the distributions become more narrow. These are characteristic multiphoton effects which
have also been found in e+e− pair production by few-photon absorption [177].

We draw again a comparison with two-photon production of µ+µ− pairs. As Figure 5.7 shows, here the
angular distribution is peaked at smaller angles around θ+ ≈ 25◦ and the contribution from large angles is
suppressed. The differences are caused by the long-range nature of the Coulomb potential (5.8) as compared
to the short-ranged Yukawa potential (5.16). In the latter case, the particles are mainly produced at short dis-
tances which gives rise to large momentum transfers q corresponding to large emission angles. For the muons,
small momentum transfers are relatively more important since the Fourier transform of the Coulomb potential
is proportional to 1/q2, as compared to 1/(q2 + m2

σ) for the Yukawa potential (5.16). For more details, see
Eq. (B.8) of Appendix B.2.
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Figure 5.8: The photon number distributions of one of the particles in π+π− photoproduction on the proton
as a function of the number n of the absorbed laser photons. The distributions are computed at various
photon energies: ωL = 90, 120, 180, 360 MeV of the circularly polarized laser. The corresponding intensities are
respectively 7.32× 1021, 1.30× 1022, 2.93× 1022 and 1.17× 1023 W/cm2 in the laboratory frame.

In Figure 5.8 we show the photon number distributions of π− or π+ meson as a function of the number n
of the absorbed laser photons. We see that the photoproduction rate decreases with increasing the number of
absorbed laser photons from 1 to 5. We explain this behavior by the fact that the arguments α in Eqs. (5.21) of
the ordinary Bessel-functions are much smaller than 1 at all intensities. According to our calculations we have
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found that α 6 10−8, so that we can well approximate Bn(α), Cn(α) and Dn(α) as: const · αn, and the π+π−

photoproduction process is perturbative.

5.3.3 Kinematic Investigation of π+π− Pair Production

It would be interesting to investigate the hadronic reaction (5.1) kinematically in order to obtain informations
about the velocities and masses of all particles after interaction. Before the proton has been treated as an
external potential, i.e. its recoil motion was neglected, while here as a massive particle and we want to look
into proton recoil. We consider the reaction (5.1) for n = 1 as illustrated in Figure 5.2. We denote the
four-momentum of the photon before interaction by

kµL = (ωL, ωL · ~ez),

and the proton by

pµ = (γmp, −γmpβ · ~ez).

After interaction, we denote the four-momentum of

• the π−-meson by: pµ− ≡ (γ−mπ, γ−mπβ− · ~e1),

• the π+-meson by: pµ+ ≡ (γ+mπ, γ+mπβ+ · ~e2), with p2− = p2+ = m2
π, and

• the recoiling proton by: p∗µ = (γ∗m∗
p, −γ∗m∗

pβ
∗ · ~ez),

where we assumed that the accelerated proton is not deflected from its direction of propagation. The conserva-
tion of energy and momentum merely equates the sum of energies and momenta before and after interaction,
that is

kµL + pµ
!
= pµ− + pµ+ + p∗µ. (5.29)

Squaring both sides of this equation gives

2m2
π

m2
p

[
1 + γ−γ+(1− β−β+ cos ̂(~p−, ~p+))

]
= 1 +

(
m∗

p

mp

)2

+

ωL

[
γ

mp
(1− β · cos (̂~ez, ~p))−

γ∗

mp
(1− β∗ · cos ̂(~ez , ~p∗))

m∗
p

mp

]
− 2γγ∗(1 − ββ∗ cos (̂~p, ~p∗))

m∗
p

mp
. (5.30)

We suppose that π+ and π− travel in the yz plane with the same speed and kinetic energy, i.e. β− = β+ =

βπ± ⇒ γ− = γ+ = γπ± , and ̂(~p−, ~p+) = 2θ. Values of θ can be taken from the results of Subsection 5.3.1. We

also have (̂~ez, ~p) = ̂(~ez, ~p∗) = π and (̂~p, ~p∗) = 0. Thus, we can solve equation (5.30) for m∗
p, the solution will be

in terms of the photon energy of the laser beam ωL, the reduced velocity of one of the created pions βπ± and
the reduced velocity of the nucleon resonance β∗.

In Figures 5.9 we show the dependence of the nucleon resonance rest mass m∗
p with its reduced velocity and

the reduced velocity of the created π±-pions. By increasing the laser photon energy up to 480 MeV, the mass of
the exited proton after interaction exceeds 1200 MeV, which corresponds to the nucleon resonances ∆

uud

+(1236),

N∗(1440), N∗(1520) and ∆+(1700).
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Figure 5.9: Map of the nucleon resonance rest mass m∗
p as a function of its reduced velocity and the reduced

velocity of one of the created pions by one-photon absorption. The input parameters are: Laser photon energy:
ωL = 360 MeV (Left) and ωL = 480 MeV (Right). The corresponding angles between π+ and π− particles
momenta are taken from Table 5.1 and multiplied by 2. The initial Lorentz Factor of the proton: γ = 7000
with a rest mass of roughly 938.27 MeV..

In Figure 5.10 we take the velocities of the created pions as βπ± = 0.9, and we show the dependence of the
nucleon resonance rest mass with its reduced velocity and the photon energy of the laser beam. In the photon
energy range between 300 and 500 MeV, m∗

p is between 1.0 and 1.44 GeV. This result is in agreement with
phenomenological calculations based on effective Lagrangians for the meson-nucleon interaction [157].
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Figure 5.10: Map of the nucleon resonance rest mass m∗
p as a function of its reduced velocity and the laser

photon energy. Th velocities of the created pions is taken as βπ± = 0.9.

We note that by n > 1, Eq. (5.30) yields the same results as by one photon absorption, as long as the
total photon energy nωL fulfils Eq. (5.22a). Furthermore, we see that for proton energies of about 360 MeV,
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the proton recoil is small, rendering the description of the proton by an external potential in the previous
Subsection 5.3.2 reasonable.
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–VI–

Conclusions and Outlook

In the present doctoral thesis, we have dealt with different problems associated with nuclear- and hadronic
processes in intense light-matter interaction. In the first part, we have studied the photoemission of a weakly-
bound proton from a halo-nucleus by absorption of a γ-ray photon in the presence of a strong optical laser
beam. The electromagnetic interaction of the emitted proton with the laser photon field was incorporated into
nonrelativistic Volkov state using the dipole approximation, while an approximated wave function was used to
describe the intial state of the weakly bound proton-halo. It was shown that the assisting laser field modifies
the properties of the photonuclear effect in a characteristic way. We have investigated the energy distribution
of the photoproton in terms of the number of absorbed laser photons, as well as the angular proton distribution
as a function of the polar emission angle. The dependencies on field frequencies, polarizations and geometries
were discussed as well. The results presented in the first part of the thesis yield the following conclusions:

(1) The presence of the laser beam, with high frequency and high electric field strength, has a minor effect on
the γ-photon energy dependence of the total photoproton cross section.

(2) The maximum value of the total cross section, when plotted as a function of the γ-photon energy, is
considerably larger than those obtained from experimental data of photoproton cross sections in stable
nuclei [136–139]. This result confirms our expectation that it is easier to induce a photonuclear reaction
in halo-nuclei than in stable ones by using high-energy photons, because of their small binding energy and
their large spatial extension.

(3) For fixed input parameters of both the γ-ray photon and the laser field (i.e., ω′, E′, ωL and EL), the total
photoproton cross section remains unchanged. The total cross section is also independent of the orientation
of the electric field vector ~EL with respect to ~E′ and of the laser polarization (circular or linear).

(4) The photoproton energy distribution, when plotted as a function of the number n of exchanged laser
photons, is symmetric around n = 0, which means that the absorption and the emission of n laser photons
have almost the same probabilities. This characteristic agrees with that reported by the Low’s theorem for
multiphoton processes [142].

(5) The multiphoton character of the photonuclear effect becomes apparent for copropagating γ-ray photon and
circularly polarized laser field. In contrast, single-photon character is apparent for orthogonally propagating
ones. In both cases, multiphoton and single-photon characters, appear more clearly and rapidly by increasing
the electric field strength, or equivalently the intensity of the circularly-polarized laser field. This result is
quite different when the laser is linearly-polarized: The difference between the multiphoton and the single-
photon character becomes most apparent at higher laser intensities. In general terms, we have observed a
strong effect of the orientation of the laser’s electric field vector on the energy spectra of the photoproton-
halo.

(6) The probability of inducing the photonuclear effect by one-photon absorption, is higher for copropagating
laser and γ-ray photon than for orthogonally propagating ones, and this fact is true for any polarization of
the laser field.

75
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(7) As the proton is ejected from core-halo by the γ-ray photon and travels out through the high-frequency
laser, its back and forth motion becomes more sensitive for copropagating waves than for orthogonally
propagating waves.

(8) The probability of inducing the photonuclear reaction in a halo-nucleus by absorbing n-photons from a
circularly polarized laser beam is higher than that from a linearly polarized laser. This result is in good
agreement with experimental observations in atomic physics [143, 144]. In addition, our result also agrees
with perturbation theory calculations for weak couplings [145–149], which indicate that circular polarization
cross sections and rates are somewhat larger than for linear polarization due to the field correlation (photon
statistics) effects in single-photon and multiphoton processes.

(9) The angular proton distribution, when summing over all exchanged laser photons, depends neither on the

polarization of the laser field, nor on the orientation of its electric field vector ~EL with respect to that of
the γ-photon, i.e. ~E′.

(10) Single-photon and multiphoton angular distributions of the photoproton at a given proton energy depend
strongly on the field geometries, polarizations and strengths.

We have thus learned from this part how to induce a photonuclear reaction in exotic halo-nuclei with optimum
field configurations, i.e. in terms of orientation, polarization and strength. We would say that low-frequency
circularly polarized laser beam and orthogonally propagating with a γ-ray photon would be the best field con-
figuration. In addition, there is no reason to restrict this estimation to exotic halo-nuclei, since by increasing
the laser electric field strength and at the same time the photon energy of the γ-ray, we can achieve the typical
nuclear level spacing required to induce a photonuclear reaction in stable nuclei.

In the second part of the thesis, a phenomenological model of π+π− production by multiphoton absorption
on the proton has been presented. The electromagnetic interaction of the pions with the photon field was
incorporated into scalar-relativistic Volkov states, while an effective potential was used to describe the hadronic
pion-nucleon coupling. The model contains one free parameter which has been adjusted to a measured cross
section of π+π− single-photon production at 440 MeV. Multiphoto-production of pion pairs could, in principle,
be realized by utilizing the 7 TeV proton beam at CERN-LHC in conjunction with a compact 10-15 keV x-ray
laser source.

Predictions for total rates of two-photon π+π− production were provided. In particular, it was shown that
the two-photon production of π+π− pairs substantially dominates over the (direct) production of muon pairs
for photon energies above 150 MeV up to the threshold for µ+µ− single-photoproduction. In this range of
photon energies, muons are thus predominantly created indirectly via pion decays. We note that a similar
conclusion was drawn in [15] with respect to pion and muon production by single bremsstrahlung photons in a
laser-generated plasma.

Angular pion spectra have also been calculated which reflect the short-range nature of the hadronic interac-
tion. When the π+π− pair is created by more than one photon, the typical emission angles are slightly larger
corresponding to larger momentum transfers in the process.

Throughout the second part, the accelerated proton has been treated as an external potential, i.e. its recoil
motion was neglected. By investigating the π+π− photoproduction process kinematically where the proton is
treated as a massive particle, we have found that for proton energies of about 360 MeV, the proton recoil is
small, rendering the description of the proton by an external potential reasonable.

Outlook

As an outlook for further research, we discuss some general issues for which the processes of laser-assisted
photonuclear effect in halo-nuclei and the multiphoto-production of pions might prove to be especially useful.

• For the laser-assisted photonuclear effect in halo-nuclei:
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One may ask, “What could happen after the emission of the proton from the halo-nucleus?” In reality, when
the proton is emitted through the γ-ray-induced photonuclear effect, different scenarios could happen after
its acceleration or deceleration by the strong laser field. For example, (a) a proton recombination with the
core-halo, which may be seen as an inverse process of the photonuclear effect, (b) further nuclear fissions
giving rise to other nuclides before any γ- or β-decay occurs, (c) a proton-impact double ionization, etc. From
there it would be interesting to investigate these scenarios and to specify the optimum field configuration to
drive these reaction chains. So, we can get from these studies time informations in the nuclear dynamics of
the dissociation process. These investigations are analogous to what people might have calculated for the
photoelectron emission [17, 102, 178], and thus it would be important to draw analogies with field-induced
processes known from atomic physics. The first part of this thesis is thus a first step of the generalization of
the recollisions concept from atoms to nuclei.

Owing to a large and still ongoing technological progress in generating intense coherent photon beams from
powerful laser sources, the synthesis of nuclei in the laboratories with large proton-neutron asymmetry or with
other exotic properties might be possible. However, to this day, it is still unclear at the theoretical level how
the protons and neutrons are held together to form such exotic objects, even if the lifetimes of some of them
are too short. The current realistic and phenomenological models of atomic nuclei, which have been developed
to explain the data from photonuclear reactions using stable nuclei only, are in disagreement with a wide range
of experiments on the properties of exotic nuclei. Thus, our study of laser-assisted photonuclear processes may
help to improve our understanding of the structures and dynamics of exotic nuclei far from stability, and hence
to make more consistency between theory and experimental observations.
We can extend our stuy by using the so called “improved Coulomb-Volkov state” [30, 32, 33] instead of the
“Volkov state” to take into account the Coulomb interactions between the nuclear-core and the emitted proton.
But in general, we can try to construct our Hamiltonian (or the Lagrangian density for a relativistic treatment)
which includes: (a) the kinetic energy of the proton, (b) the Coulomb interactions between the proton and
the nuclear-core, (c) the spin-orbit coupling between the bound proton-halo and the nuclear-core, and (d) the
strong interaction between the bound-proton and the nuclear-core using a meson-exchange potential or simply a
Woods-Saxon potential. Afterwards, we should impose some constraints on the Hamiltonian or the Lagrangian,
so that the derived wave function from the equation of motion of the proton fulfils two conditions: First, the
initial wave function for the bound-proton should experimentally be adequate for describing the main halo
properties of the isotope we want to investigate (e.g., the mean square radius, binding energy, etc.); Second,
the continuum wave function of the proton should describe the motion of the proton traveling out through a
strong electromagnetic field, for example, it may be similar to the Coulomb-Volkov wave function.

In these ways, our study of laser-assisted photonuclear processes in halo-nuclei, or especially the study of
the laser-assisted (γ, p) reactions, may potentially contribute to understand various astrophysical processes. For
example, the solarboron-neutrino problem [84, 85], the existence of hyperons in neutron stars [179], the stellar
nucleosynthesis, i.e. the synthesis of chemical elements in the stars which takes place via photonuclear reactions
with exotic nuclei, and especially in nucleosynthesis of heavy proton-rich nuclei during supernovae explosions [5,
6]. Third, our study may provide a better understanding of high-density high-temperature phenomena in
ultrarelativistic heavy-ion collisions [180].

This work may also give relevant informations and confidence to experimentalists about how to generate
proton beam from laser-assisted or laser-induced (γ, p) reactions with optimum field configurations as discussed
in detail here, and as we know, the proton beam generation is very important in various disciplines, such as in
nuclear medicine, proton beam radiography in tumor detection, nuclear chemistry and in fusion reactors.

• For the multiphoto-production of π+π− pairs in ultrarelativistic proton-laser collisions:

Due to their long wavelength, photons interact uniformly over the nuclear volume and can therefore provide
quantitative information on the entire structure of a given nucleus. Multiphoton processes such as π+π− pro-
duction might be able to complement insights into the nuclear interior from single-photon reactions, since the
momentum transfers involved exhibit a different distribution. This might help to gain an improved understand-
ing of the short-range repulsion and intermediate-range attraction in the nucleon-nucleon potential.
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A main focus of pion photo-production is presently lying on polarization observables [39–43]. Pion pair
production via multiphoton absorption from a circularly polarized laser beam could be of particular interest in
this regard. Since all photons carry the same helicity, the simultaneous absorption of several of them might
lead to characteristic signatures in the polarization properties of the produced pions.

Finally, photoproduction of pions possesses an interesting analogy in atomic physics. A formal relation
between the strong-field processes of e+e− pair production and atomic photoionization in intense laser fields
has already been revealed (see, e.g., [95]). In the same spirit, a connection between photoionization of atoms
and photoproduction of pions may be established, taking into account that pions can be produced both as
single particles and in pairs. An analogy with single and double ionization of helium by one- and two-photon
absorption is therefore suggestive. These four different ionization processes have found a sustained interest in
atomic physics because of their sensitivity to electron-electron correlations [181]. While the production of single
pions and pion pairs by one photon has been examined for a long time, we presented in the second part of this
thesis a first study of pion pair production by two-photon absorption. The picture consisting of all four channels
may be completed by a consideration of single pion production by two-photon absorption.
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Some Complements to Laser-Assisted

Photonuclear Effect

In this Appendix we present a brief discussion of some equations derived in Section 4.3.

A.1 The Jacobi-Anger Expansion

For any (x, t) ∈ (R× R), n ∈ Z we have

exp (ix sin t) =
+∞∑

n=−∞

cne
int, with cn =

1

T

∫ +T/2

−T/2

eix sin te−intdt for T = 2π.

Thus, cn is the integral representation of ordinary Bessel-functions

Jn(x) ≡
1

2π

∫ +π

−π

exp [−i(nt− x sin t)]dt = cn. (A.1)

That is,

eix sin t =

+∞∑

n=−∞

Jn(x)e
int, (A.2a)

or

e−ix sin t =

+∞∑

n=−∞

Jn(x)e
−int. (A.2b)

A.2 The γ-Ray Photon Flux

According to Eq. (4.8), the electrostatic and magnetic fields of the γ-ray are given by

~E′ = −∂
~A′

∂t
= iω′A′

0e
i(~p ′~r−ω′t) · ~ez, (A.3a)

~B′ =
−→
rot ~A′ = −ip′A′

0e
i(~p ′~r−ω′t) · ~ey, (A.3b)

where A′
0 =

√
2π

Vph · ω′
. Assuming that ~p ′ = p′x · ~ex ≡ k′~ex we get ~p ′~r = k′x.
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To determine the γ-ray photon flux, we first calculate the mean value of the Poynting vector when averaged
over time, and then dividing it by the photon energy. We have

Φ =
〈~R′〉
ω′

=
1

ω′
· 1
2

1

πµr
Re
(
~E′ × ~B′∗

)

=
1

ω′
· A′2

0 ω
′k′

=
1

µrVph
. (A.4)

If we neglect the effect of the laser beam when the proton is initially bound to the nucleus, we can take the
relative permeability µr = 1, which simply yields Φ = 1/Vph.
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Pair Production Rate

In this Appendix we present in detail the proofs of different equations from Chapter 5 and we discuss their
physical contents.

B.1 The first order of the T -Matrix Expansion

Proof of Eqs. (5.17):

The first order of the Klein-Gordon T -matrix by an scattering potential V̂ (x) =
(
∂µV

µ(x) + Vµ(x)∂
µ
)
de-

scribing the process of π+π− pair production is

S
(1)

π+π− =
i1

1!

∫
d4x T {φ∗−V̂ φ+}

= i

∫
dx0d3~x φ∗−

(
∂µV

µ + V µ∂µ
)
φ+

= i

∫
dx0d3~x φ∗−


(∂µV µ)︸ ︷︷ ︸

=0

·φ+ + V µ · (∂µφ+) + V µ (∂µφ+)


 (Lorentz gauge)

= i

∫
dx0d3~x

(
φ∗− (∂µφ+)−φ+

(
∂µφ

∗
−

))
V µ(x) because φ∗− · (∂µφ+) = −

(
∂µφ

∗
−

)
· φ+

= i

∫
d4x

(
φ∗−
←→
∂µφ+

)
V µ(x). (B.1)

By taking V µ(x) as a scalar Yukawa-type potential, i.e V µ(x) = (Vhad(x),~0), then we get

S
(1)
π+π− = i

∫
dx0d3~x

(
φ∗− (∂tφ+)− φ+

(
∂tφ

∗
−

))
Vhad(x). (B.2)

Q.E.D. (5.17)

B.2 Evaluation of the S
(1)
π+π−-Matrix Elements

Proof of Eqs. (5.20), (5.21):

The function f defined by f(η)
def
= exp ie [α1 sin (η) − α2 cos (η)] is periodic for all values of η = kµxµ of period

2π, as well as cos (η)f(η) and sin (η)f(η). These three functions appearing in the S(1)-matrix (5.18) can be

81



82 APPENDIX B. PAIR PRODUCTION RATE

expanded analytically into Fourier series of coefficients Bn, Cn and Dn, respectively. That is

f(η) =

+∞∑

n=−∞

Bne
+inη, cos (η)f(η) =

+∞∑

n=−∞

Cne
+inη and sin (η)f(η) =

+∞∑

n=−∞

Dne
+inη.

Inserting these transformations into Eq. (5.18) then yields Eq. (5.20). Now in order to determine Bn, Cn and
Dn as in eqs.(5.21) we first write f as follows

f(η) = exp ie [α sin (η − η0)],

for α =
√
α2
1 + α2

2, α1 = α cos (η0) and α2 = α sin (η0).

The Jacobi-Anger expansion: For any (x, t) ∈ (R× R), n ∈ Z we have

exp (ix sin t) =

+∞∑

n=−∞

cne
int, with cn =

1

T

∫ +T/2

−T/2

eix sin te−intdt for T = 2π.

Thus, cn is the integral representation of ordinary Bessel-functions

Jn(x) ≡
1

2π

∫ +π

−π

exp [−i(nt− x sin t)]dt = cn. (B.3)

That is,

eix sin t =

+∞∑

n=−∞

Jn(x)e
int or e−ix sin t =

+∞∑

n=−∞

Jn(x)e
−int.

i. Identification of Bn: x −→ α, t −→ η − η0

⇐⇒ eiα sin (η−η0) =

+∞∑

n=−∞

Jn(α)e
in(η−η0) =

+∞∑

n=−∞

Jn(α)e
−inη0 · einη.

⇐⇒ Bn = Jn(α)e
−inη0 . (B.4)

ii. Identification of Cn:

+∞∑

n=−∞

Cne
inη !

=cos (η)eiα sin (η−η0)

=
1

2

(
eiη + e−iη

)
eiα sin (η−η0)

=
1

2

+∞∑

n=−∞

Jn(α)e
−inη0

(
eiη + e−iη

)
einη

=
1

2

+∞∑

n=−∞

Jn(α)e
−inη0ei(n+1)η +

1

2

+∞∑

n=−∞

Jn(α)e
−inη0ei(n−1)η

=
1

2

+∞∑

n′=−∞

Jn′−1(α)e
−i(n′−1)η0ein

′η +
1

2

+∞∑

n′′=−∞

Jn′′+1(α)e
−i(n′′+1)η0ein

′′η

=

+∞∑

n=−∞

1

2

[
Jn−1(α)e

−i(n−1)η0 + Jn+1(α)e
−i(n+1)η0

]
einη

⇐⇒ Cn =
1

2

[
Jn−1(α)e

−i(n−1)η0 + Jn+1(α)e
−i(n+1)η0

]
. (B.5)
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iii. Identification of Dn:

+∞∑

n=−∞

Dne
inη !

=sin (η)eiα sin (η−η0)

=
1

2i

(
eiη − e−iη

) +∞∑

n=−∞

Jn(α)e
−inη0e−inη

⇐⇒ Dn =
1

2i

[
Jn−1(α)e

−i(n−1)η0 − Jn+1(α)e
−i(n+1)η0

]
. (B.6)

Q.E.D. (5.21)

Now taking Qµ
n

def
= qµ− + qµ+ − nkµ for µ = 0, 1, 2, 3, we decompose the integral I of the exponential term in

Eq. (5.20) into space and time coordinates

I :=

∫
d4xVhad(x) exp

[
−i
(
qµ− + qµ+ − nkµ

)
xµ
]

=
g2σ
4π

∫ +∞

−∞

dt exp
[
−i
(
q0− + q0+ − nωL

)
t
]
·
∫
d3~x

e−mσ|~x|

|~x| exp
[
−i
(
~q− + ~q+ − n~kL

)
~x
]

=
g2σ
2
δ
(
q0− + q0+ − nωL

)
·
∫ +∞

0

x2dx

∫ π

0

sin θ dθ

∫ 2π

0

dϕ
1

x
e−i| ~Qn|·x cos θ−mσ·x

=πg2σ δ
(
q0− + q0+ − nωL

)
·
∫ +∞

0

xdx

+i| ~Qn| · x

∫ π

0

(
+i| ~Qn| · x sin θ

)
e−i| ~Qn|·x cos θ−mσ·xdθ

=πg2σ δ
(
q0− + q0+ − nωL

)
·
∫ +∞

0

dx

i| ~Qn|
e−mσ·x

(
ei|

~Qn|·x − e−i| ~Qn|·x
)
. (B.7)

The Integral in the last expression is no more divergent at x −→∞, because of the factor e−mσx. After integral
evaluation we obtain

I =πg2σ δ
(
q0− + q0+ − nωL

)
·
{

1

i| ~Qn|

∫ +∞

0

dx
(
e(−mσ+i| ~Qn|)x − e−(mσ+i| ~Qn|)x

)}

=πg2σ δ
(
q0− + q0+ − nωL

)
· 1

i| ~Qn|
·
{

1

−mσ + i| ~Qn|

[
e(−mσ+i| ~Qn|)x

]+∞

0
+

1

mσ + i| ~Qn|

[
e−(mσ+i| ~Qn|)x

]+∞

0

}

=πg2σ δ
(
q0− + q0+ − nωL

)
· 1

i| ~Qn|
·
{

2i| ~Qn|
m2

σ + | ~Qn|2

}

=
2πg2σ

m2
σ + | ~Qn|2

δ
(
Q0

n

)
. (B.8)

Finally, the Klein-Gordon S(1)-matrix (5.20) becomes

S
(1)
π+π− =

iπg2σ

V
√
q0−q

0
+

·
+∞∑

n≥n0

Mn

m2
σ + | ~Qn|2

δ
(
Q0

n

)
. (B.9)

Q.E.D. (5.20)

B.3 The Total Pair Production Rate

Proof of Eqs. (5.25):
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The square of the S(1)-matrix is

|S(1)
π+π− |2 =

π2g4σ
q0−q

0
+V

2
·
∑

n≥n0

∑

n′≥n0

MnMn′

(
m2

σ + | ~Qn|2
)2 δ

(
Q0

n

)
δ
(
Q0

n′

)
. (B.10)

For large but finite T we consider transitions in the time interval [−T/2, T/2], during which the total energy
of the absorbed photons is equal to the sum of the effective energies of the created π+π− pairs. The energy
δ-function can approximately be written as follows

δ
(
Q0

n′

)
≈ 1

2π

∫ T/2

−T/2

dteiQ
0

n′ t =
1

2πQ0
n′

·
[
sin
(
Q0

n′t
)
− i cos

(
Q0

n′t
)]T/2

−T/2

=
1

πQ0
n′

sin

(
T

2
Q0

n′

)
. (B.11)

Since

lim
Q0

n′→0
δ
(
Q0

n′

)
=

T

2π
lim

Q0

n′→0

sin

(
T

2
Q0

n′

)

(
T

2
Q0

n′

) =
T

2π
,

we arrive under the constraint Q0
n′ → 0 at

|S(1)
π+π− |2 =

πg4σ
2V 2q0−q

0
+

· T
∑

n≥n0

M2
n(

m2
σ + | ~Qn|2

)2 δ
(
Q0

n

)
. (B.12)

We know that the dynamics of π+π− mesons is described by the Gordon-Volkov wave functions (5.14) with the

wave numbers ~k∓ = 2π/λ∓ = ~q∓ (We always use the H.-L. units (1)). Let us require that the density of states
for these wave functions is stationary in a box having a large (but finite) volume V = L3, that is

L = n∓
x λ

∓
x , L = n∓

y λ
∓
y and L = n∓

z λ
∓
z ⇐⇒ k∓x · L = 2πn∓

x , k∓y · L = 2πn∓
y and k∓z · L = 2πn∓

z .

Then we get

d3n∓ = dnxdnydnz =
L3

(2π)3
d~k∓x d

~k∓y d
~k∓z =

V

(2π)3
d~k∓ =

V

(2π)3
d3~q∓.

The differential rate for π+π− pair production by absorbing n ≥ n0 photons is given by

d6R =
1

T
d3n+d

3n−|S(1)
π+π− |2

1

T

V d3~q+
(2π)3

V d3~q−
(2π)3

|S(1)

π+π− |2

=
πg4σ

2(2π)6

∑

n≥n0

d3~q+
q0+

d3~q−
q0−

M2
n(

m2
σ + | ~Qn|2

)2 δ
(
Q0

n

)

=
πg4σ

2(2π)6

∑

n≥n0

|~q+|2
q0+

d|~q+| sin θ+dθ+dϕ+
|~q−|2
q0−

d|~q−| sin θ−dθ−dϕ−
M2

n(
m2

σ + | ~Qn|2
)2 δ

(
Q0

n

)
. (B.13)

In the last line we expressed d3~q∓ in spherical coordinates, d3~q∓ ≡ |~q∓|2d|~q∓| sin θ∓dθ∓dϕ∓. The quantities qµ−
and qµ+ are Lorentz-invariant, that is:

q2∓ = const. =⇒ 2qµ∓dq∓µ = 0⇐⇒ |~q∓|d|~q∓| = q0∓dq
0
∓.

Multiplying each side of |~q−|d|~q−| = q0−dq
0
− by |~q−|δ

(
Q0

n

)
yields

|~q−|2d|~q−|δ
(
q0+ + q0− − nk0

)
= |~q−|q0−dE−δ(E+ + E− − nωL).
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Integrating over E− we obtain

d5R =
πg4σ

2(2π)6

∑

n≥n0

dE+ sin θ+dθ+dϕ+ sin θ−dθ−dϕ−|~q+||~q−|
M2

n(
m2

σ + | ~Qn|2
)2
∫ nωL−m∗

π

m∗
π

dE−δ(E+ + E− − nωL)

︸ ︷︷ ︸
=1

,

⇐⇒ d5R =
πg4σ

2(2π)6

∑

n≥n0

dE+ sin θ+dθ+dϕ+ sin θ−dθ−dϕ−|~q+||~q−|
M2

n(
m2

σ + | ~Qn|2
)2 . (B.14)

Taking into account that d5R independent on ϕ+ and integrating over all possible momenta yields the total
number of produced π+π− pairs per time by absorbing n ≥ n0 photons

R =
g4σ

64π4

∑

n≥n0

∫ nωL−m∗
π

m∗
π

dE+

∫ π

0

sin θ+dθ+

∫ π

0

sin θ−dθ−

∫ 2π

0

dϕ−
|~q+||~q−|(

m2
σ + | ~Qn|2

)2M2
n . (B.15)

Q.E.D. (5.25)

B.4 Intensity of a Laser Field

Proof of Eqs. (5.10):

We have assumed the laser field to be a monochromatic, linearly polarized or circularly polarized plane wave
with the four-potential given by Eq. (3.7). We work as before in the Coulomb gauge with div ~AL = 0 and
vanishing scalar potential, VL = 0. We have

~AL = a cos (ωLt− ωLz) · ~ex + aδ0 sin (ωLt− ωLz) · ~ey = Ax · ~ex +Ay · ~ey.

The magnetic field is

~BL =
−→
rot ~AL = ~∇× ~AL = aωLδ0 cos (ωLt− ωLz) · ~ex + aωL sin (ωLt− ωLz) · ~ey and BL ≡ ‖ ~BL‖ = aωL.

The electrostatic field is

~EL = −−−→grad VL︸ ︷︷ ︸
=0

−∂
~AL

∂t
= aωL sin (ωLt− ωLz) · ~ex − aωLδ0 cos (ωLt− ωLz) · ~ey and EL ≡ ‖ ~EL‖ = aωL.

The corresponding Poynting vector is

~RL
def.
= ~EL × ~HL =

1

µ0µr

~EL × ~BL =
ε0c

2

µr

~EL × ~BL =
ε0c

2

µr
a2ω2

L

[
sin2 (ωLt− ωLz) + δ20 cos

2 (ωLt− ωLz)
]
· ~ez.

Since the intensity of the electromagnetic field of the laser is the time-averaged magnitude of the Poynting
vector, then we get

Imedium
plane wave

def.
= ‖〈~RL〉‖ =

ε0
2µr

(1 + δ20)(aωLc)
2.

In vacuum the relative permeability µr is equal to 1 an then

Ivacuumplane wave =
1

2
(1 + δ20)ε0c

2(aωL)
2 with (aωL)

2 = E2
L = B2

L.

Thus, in H.-L. units we obtain

Ivacuumplane wave =
1

2
(1 + δ20)(aωL)

2. (B.16)
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