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Abstract

We calculate explicitly the Betti numbers of a class of barely G2 manifolds - that is,
G2 manifolds that are realised as a product of a Calabi-Yau manifold and a circle, modulo
an involution. The particular class which we consider are those spaces where the Calabi-
Yau manifolds are complete intersections of hypersurfaces in products of complex projective
spaces and the involutions are free acting.

1 Introduction

One of the key concepts in String and M-theory is the concept of compactification - here the
full 10- or 11-dimensional spacetime is considered to be of the form M4 × X where M4 is the
“large” 4-dimensional visible spacetime, while X is the “small” compact 6- or 7-dimensional
Riemannian manifold. Due to considerations of supersymmetry, these compact manifolds have
to satisfy certain conditions which place restrictions on the geometry. In the case of String
theory, the 6-dimensional manifolds have to be Calabi-Yau manifolds - that is Kähler manifolds
with vanishing first Chern class. The existence of Ricci-flat Kähler metrics for these manifolds
has been proven by Yau in 1978 [1]. One of the first examples of a Calabi-Yau 3-fold (6 real
dimensions) was the quintic - a degree 5 hypersurface in CP

4. Later, Candelas et al [2] found
the first large class of Calabi-Yau manifolds - the Complete Intersection Calabi-Yau (CICY)
manifolds, which are given by intersections of hypersurfaces in products of complex projective
spaces. We review the details in section 3.1. Since then even larger classes of Calabi-Yau
manifolds have been constructed - such as Weighted Complete Intersection manifolds [3], and
complete intersection manifolds in toric varieties [4]. So overall there is a very large pool of
examples of Calabi-Yau manifolds, and it is in fact still an open question whether the number
of topologically distinct Calabi-Yau 3-folds is finite or not. One of the great discoveries in
the study of Calabi-Yau manifolds is Mirror Symmetry [5, 6]. This symmetry first appeared
in String Theory where evidence was found that conformal field theories (CFTs) related to
compactifications on a Calabi-Yau manifold with Hodge numbers (h1,1, h2,1) are equivalent to
CFTs on a Calabi-Yau manifold with Hodge numbers (h2,1, h1,1). Mirror symmetry is currently a
powerful tool both for calculations in String Theory and in the study of the Calabi-Yau manifolds
and their moduli spaces.

However if we go one dimension higher, and look at compactifications of M -theory, a natural
analogue of a Calabi-Yau manifold in this setting is a 7-dimensional manifold with G2 holonomy.
These manifolds are also Ricci-flat, but being odd-dimensional they are real manifolds. The first
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examples of G2 manifolds have been constructed by Joyce in [7]. While some work has been
done both on the physical aspects of G2 compactifications (for example [8, 9, 10, 11] among
others) and on the structure and properties of the moduli space (for example [7, 12, 13, 14, 15]
among others), still very little is known about the overall structure of G2 moduli spaces. One of
the problems is that there are relatively few examples of G2 manifolds, and for the ones that are
known it is hard to do any calculations, because the examples are not very explicit. However
there is a conjectured method of constructing G2 manifolds from Calabi-Yau manifolds, which
could potentially yield many new examples of G2 manifolds. Here we take a Calabi-Yau 3-fold Y
and let Z = (Y × S1)/σ̂ where σ̂ acts as antiholomorphic involution on Y and acts as z −→ −z
on the S1. In general, the result will have singularities, and it is still an unresolved question how
to systematically resolve these singularities to obtain a smooth manifold with G2 holonomy.
This construction has been suggested by Joyce in [7, 16]. A more basic approach is to only
consider involutions without fixed points, so that the resulting manifold Z is smooth. Manifolds
belonging to this class have been called barely G2 manifolds in [8]. Such manifolds do not have
the full G2 holonomy, but rather only SU (3) ⋉ Z2. However, they do share many of the same
properties as full G2 manifolds, so for many purposes they can play the same role as genuine
G2 manifolds [8, 17]. In particular, if we consider a specific class of of Calabi-Yau manifolds,
such as CICY manifolds, we can construct a corresponding class of barely G2 manifolds rather
explicitly. This is what we focus on in this paper. We first give an overview of G2 manifolds and
CICY manifolds, and then describe the algorithm that was used to systematically calculate the
Betti numbers of the barely G2 manifolds corresponding to the independent CICY manifolds.

Acknowledgements. I would like to thank Tristan Hübsch for the useful correspondence
about CICY Hodge number, and Rahil Baber for the help with programming.

2 G2 manifolds

2.1 Basics

We will first review the basics of manifolds with G2 holonomy. The 14-dimensional exceptional
Lie group G2 ⊂ SO (7) is precisely the group of automorphisms of imaginary octonions, so it
preserves the octonionic structure constants [18]. Suppose x1, ..., x7 are coordinates on R

7 and
let eijk = dxi ∧ dxj ∧ dxk. Then define ϕ0 to be the 3-form on R

7 given by

ϕ0 = e123 + e145 + e167 + e246 − e257 − e347 − e356. (2.1)

These precisely give the structure constants of the octonions, so G2 preserves ϕ0. Since G2

preserves the standard Euclidean metric g0 on R
7, it preserves the Hodge star, and hence the

dual 4-form ∗ϕ0, which is given by

∗ ϕ0 = e4567 + e2367 + e2345 + e1357 − e1346 − e1256 − e1247. (2.2)

Now suppose X is a smooth, oriented 7-dimensional manifold. A G2 structure Q on X is a
principal subbundle of the frame bundle F , with fibre G2. However we can also uniquely define
Q via 3-forms on X. Define a 3-form ϕ to be positive if we locally can choose coordinates such
that ϕ is written in the form (2.1) - that is for every p ∈ X there is an isomorphism between
TpX and R

7 such that ϕ|p = ϕ0. Using this isomorphism, to each positive ϕ we can associate a
metric g and a Hodge dual ∗ϕ which are identified with g0 and ∗ϕ0 under this isomorphism. It is
shown in [16] that there is a 1− 1 correspondence between positive 3-forms ϕ and G2 structures
Q on X.

So given a positive 3-form ϕ on X, it is possible to define a metric g associated to ϕ and this
metric then defines the Hodge star, which in turn gives the 4-form ∗ϕ. Thus although ∗ϕ looks
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linear in ϕ, it actually is not, so sometimes we will write ψ = ∗ϕ to emphasize that the relation
between ϕ and ∗ϕ is very non-trivial.

It turns out that the holonomy group Hol (X, g) ⊆ G2 if and only if X has a torsion-free G2

structure [16]. In this case, the invariant 3-form ϕ satisfies

dϕ = d ∗ ϕ = 0 (2.3)

and equivalently, ∇ϕ = 0 where ∇ is the Levi-Civita connection of g. So in fact, in this case ϕ is
harmonic. Moreover, if Hol (X, g) ⊆ G2, then X is Ricci-flat. The holonomy group is precisely
G2 only if the first Betti number b1 vanishes.

Special holonomy manifolds play a very important role in string and M -theory because of
their relation to supersymmetry. In general, if we compactify string or M -theory on a manifold
of special holonomy X the preservation of supersymmetry is related to existence of covariantly
constant spinors (also known as parallel spinors). In fact, if all bosonic fields except the metric
are set to zero, and a supersymmetric vacuum solution is sought, then in both string and M -
theory, this gives precisely the equation

∇ξ = 0 (2.4)

for a spinor ξ. As lucidly explained in [10], condition (2.4) on a spinor immediately implies
special holonomy. Here ξ is invariant under parallel transport, and is hence invariant under the
action of the holonomy groupHol (X, g). This shows that the spinor representation ofHol (X, g)
must contain the trivial representation. For Hol (X, g) = SO (n), this is not possible since the
spinor representation is reducible, soHol (X, g) ⊂ SO (n). In particular, Calabi-Yau 3-folds with
SU (3) holonomy admit two covariantly constant spinors and G2 holonomy manifolds admit only
one covariantly constant spinor. Hence eleven-dimensional supergravity compactified on a G2

holonomy manifold gives rise to a N = 1 effective theory. From [10],[11] and [9] we know that
the deformations of the G2 3-form ϕ give b3 real moduli which combine with the deformations
of the supergravity 3-form C to give b3 complex moduli. Together with modes of the gravitino,
this gives b3 chiral multiplets. Decomposition of the C-field also gives b2 abelian gauge fields,
which again combine with gravitino modes to give b2 vector multiplets. The structure of the
moduli space has been studied in detail in [15].

Examples of compact G2 manifolds have been first constructed by Joyce [7] as orbifolds T 7/Γ
for a discrete group Γ. There Γ is taken to be a finite group of diffeomorphisms of T 7 preserving
the flat G2-structure on T 7. The resulting orbifold will have a singular set coming from the
fixed point of the action of Γ, and these singularities are resolved by gluing ALE spaces with
holonomy SU (2) or SU (3).

2.2 G2 manifolds from Calabi-Yau manifolds

A simple way to construct a manifold with a torsion-free G2 structure is to consider X = Y ×S1

where Y is a Calabi-Yau 3-fold. Define the metric and a 3-form on X as

gX = dθ2 × gY (2.5)

ϕ = dθ ∧ ω + ReΩ (2.6)

where θ is the coordinate on S1, ω is the Kähler form on Y and Ω is the holomorphic 3-form on
Y . This then defines a torsion-free G2 structure, with

∗ ϕ =
1

2
ω ∧ ω − dθ ∧ Im Ω. (2.7)
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However, the holonomy of X in this case is SU (3) ⊂ G2. From the Künneth formula we get the
following relations between the Betti numbers of X and the Hodge numbers of Y

b1 = 1

b2 = h1,1

b3 = h1,1 + 2 (h2,1 + 1)

In [7] and [16], Joyce describes a possible construction of a smooth manifold with holonomy
equal to G2 from a Calabi-Yau manifold Y . So suppose Y is a Calabi-Yau 3-fold as above. Then
suppose σ : Y −→ Y is an antiholomorphic isometric involution on Y , that is, χ preserves the
metric on Y and satisfies

σ2 = 1 (2.8a)

σ∗ (ω) = −ω (2.8b)

σ∗ (Ω) = Ω̄. (2.8c)

Such an involution σ is known as a real structure on Y . Define now a quotient given by

Z =
(
Y × S1

)
/σ̂ (2.9)

where σ̂:Y ×S1 −→ Y ×S1 is defined by σ̂ (y, θ) = (σ (y) ,−θ). The 3-form ϕ defined on Y ×S1

by (2.6) is invariant under the action of σ̂ and hence provides Z with a G2 structure. Similarly,
the dual 4-form ∗ϕ given by (2.7) is also invariant. Generically, the action of σ on Y will have a
non-empty fixed point set N , which is in fact a special Lagrangian submanifold on Y [16]. This
gives rise to orbifold singularities on Z. The singular set is two copies of Z. It is conjectured
that it is possible to resolve each singular point using an ALE 4-manifold with holonomy SU (2)
in order to obtain a smooth manifold with holonomy G2, however the precise details of the
resolution of these singularities are not known yet. We will therefore consider only free-acting
involutions, that is those without fixed points.

Manifolds defined by (2.9) with a freely acting involution were called barely G2 manifolds
by Harvey and Moore in [8]. The cohomology of barely G2 manifolds is expressed in terms of
the cohomology of the underlying Calabi-Yau manifold Y :

H2 (Z) = H2 (Y )+ (2.10a)

H3 (Z) = H2 (Y )− ⊕H3 (Y )+ (2.10b)

Here the superscripts ± refer to the ± eigenspaces of σ∗. Thus H2 (Y )+ refers to two-forms on
Y which are invariant under the action of involution σ and correspondingly H2 (Y )− refers to
two-forms which are odd under σ. Wedging an odd two-form on Y with dθ gives an invariant
3-form on Y × S1, and hence these forms, together with the invariant 3-forms H3 (Y )+ on Y ,
give the three-forms on the quotient space Z. Also note that H1 (Z) vanishes, since the 1-form
on S1 is odd under σ̂. Now, given a 3-form on Y , its real part will be invariant under σ, hence
H3 (Y )+ is essentially the real part of H3 (Y ). Therefore the Betti numbers of Z in terms of
Hodge numbers of Y are

b1 = 0 (2.11a)

b2 = h+
1,1 (2.11b)

b3 = h−1,1 + h2,1 + 1 (2.11c)

Hence in order to construct barely G2 manifolds we need to be able to find involutions of Calabi-
Yau manifolds and determine the action of the involution on H1,1 (Y ). A relatively large class of
Calabi-Yau manifolds for which this is not hard to do are the complete intersection Calabi-Yau
manifolds. We review the properties of these manifolds in the next section.
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3 Complete intersection Calabi-Yau manifolds

3.1 Basics

Complete intersection Calabi-Yau (CICY) manifolds were the first major class of Calabi-Yau
manifolds which was discovered by Candelas et al in [2]. Such a manifold M is defined as a
complete intersection of K hypersurfaces in a product of m complex projective spaces W =
CP

n1 × ...× CP
nm. Each hypersurface is defined as the zero set of a homogeneous holomorphic

polynomial
fa (zµ

r) = 0 a = 1, ...,K. (3.12)

Each such polynomial is homogeneous of degree qr
a with respect to the homogeneous coordinates

of CP
nr . By complete intersection it is meant that the K-form

Θ = df1 ∧ ... ∧ dfK

does not vanish on M . This condition ensures that the resulting manifold is defined globally. In
order for M to be a 3-fold, we obviously need

K =

m∑

i=1

ni − 3. (3.13)

The standard notation for a CICY manifold is a m× (K + 1) array of the form

[n‖ q] (3.14)

where n is a column m-vector whose entries nr are the dimensions of the CP
nr factors, and q is a

m×K matrix with entries qr
a which give the degrees of the polynomials in the coordinates of each

of the CP
nr factor. Each such array defining a CICY is known as a configuration matrix, while

an equivalence class of configuration matrices under permutation of all rows and all columns
belonging to q is called a configuration. Clearly each such a permutation defines exactly the
same manifold.

As it was shown in [2], Chern classes can be computed directly from the defining quantities
n and q. In particular, we immediately get the condition for a vanishing first Chern class:

nr + 1 =

K∑

a=1

qr
a ∀r (3.15)

That is, the sum of entries of in each row of q must equal to the dimension of the corresponding
CP

nr factors. This is hence precisely the condition for the complete intersection manifold to
be Calabi-Yau. Moreover from the expressions for Chern classes, an expression for the Euler
number is also obtained. This is given by

χE (M) =








m∑

r,s,t=1

crst
3 xrxsxt



 ·
K∏

b=1

(
m∑

u=1

qu
b xu

)



coefficient of
Q

m

r=1
(xr)nr

(3.16)

where

crst
3 =

1

3

(

(nr + 1) δrst −
K∑

a=1

qr
aq

s
aq

t
a

)

and δrst = 1 for r = s = t and vanishes otherwise.
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Varying the coefficients of polynomials in a CICY configuration generally corresponds to
complex structure deformations, but as it was shown in [19], there is no one to one correspon-
dence. So it is said that each configuration corresponds to a partial deformation class. There are
also various identities which relate different configurations, so not all configurations are inde-
pendent. There are however 7868 independent configurations. A method for calculating Hodge
numbers of the CICY manifolds has been found by Green and Hübsch in [19] and in [20] Green,
Hübsch and Lütken calculated the Hodge numbers for each of the 7868 configurations. They
found there to be 265 unique pairs of Hodge numbers. Unfortunately, the original data with
the CICY Hodge numbers has been lost, and the original computer code by Hübsch has been
written in a curious mix of C and Pascal so the original code had to be rewritten in standard
C in order to be able to recompile the list of Hodge numbers for CICY manifolds, which is
necessary to be able to calculate the Betti numbers of corresponding barely G2 manifolds.

3.2 Involutions

Antiholomorphic involutions of projective spaces have been classified in [17], and here we briefly
review their results. First consider involutions of a single projective space CP

n. Suppose we
have homogeneous coordinates (z0, z1, ..., zn) on CP

n, then we can represent an anti-holomorphic
involution σ by a matrix M which acts as

zi −→Mij z̄j (3.17)

Without loss of generality we fix detM = 1 since multiplication by any non-zero complex number
still gives the same involution. Moreover, involutions which differ only by a holomorphic change
of basis can be regarded to be the same.

Also σ2 = 1 must be true projectively, so we get

MM̄ = λI. (3.18)

Taking the determinant of (3.18) we find that λn+1 = 1, and taking the trace we see that λ
is real. Thus λ = 1 for n even and λ = ±1 for n odd. The involution σ is required to be an
isometry - that is, it must preserve the standard Fubini-Study metric of CP

n. Together with
previous restrictions on M, this gives the condition

MM † = I. (3.19)

Combining (3.18) and (3.19), we see that for λ = 1 these equations imply that M is symmetric,
and for λ = −1 that M is antisymmetric. Moreover, due to (3.18), the real and imaginary
parts of M commute, and so can be simultaneously brought into a canonical form - diagonal for
λ = 1 and block-diagonal for λ = −1. Another change of basis can be used to normalize the
coefficients. Hence we get two distinct antiholomorphic involutions

A : (z0, z1, ..., zn) −→ (z̄0, z̄1, ..., z̄n) (3.20a)

B : (z0, z1, ..., zn−1, zn) −→ (−z̄1, z̄0, ...,−z̄n, z̄n−1) . (3.20b)

The involution A corresponds to λ = +1 and is defined for n both odd and even, whereas the
involution B corresponds to λ = −1 and is only defined for n odd. An important difference
between the two involutions is that A has a fixed point set {zi = z̄i}, whereas B acts freely
without any fixed points.

So far we considered antiholomorphic involutions of a single projective space, but in general
we are interested in products of projective spaces, so we should also consider involutions which
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mix different factors. As pointed out in [17], the only possibility for this is two exchange two
identical projective factors CP

n, giving another involution C:

C : ({yi} ; {zi}) −→ ({z̄i} ; {ȳi}) . (3.21)

This involution clearly has a fixed point set {yi = z̄i}.
Now that we have antiholomorphic involutions of projective spaces, we can use these to

construct barely G2 manifolds from CICY manifolds, as in (2.9). In general we must either have
an involution acting on each projective factor - either involutions A or B on single factors or
involution C on a pair of identical projective factors.

Given a CICY configuration matrix, we will denote the resulting barely G2 manifold by the
same configuration matrix, but indicating in the first column of the configuration matrix which

involutions are acting on each projective factor. These actions will be denoted by n̄, n̂ and

⌢
n
n
⌣

for involutions A, B and C, respectively. For example, consider the configuration matrix:





1̂
⌢

1
1
⌣

2
3

∥∥∥∥∥∥∥∥∥∥∥

0 0 0 0 2
0 0 1 1 0
0 0 1 1 0
1 1 1 0 0
1 1 0 1 1





1,39

(3.22)

This denotes the barely G2 manifolds constructed from CICY with the same configuration
matrix but with involution A acting on the CP

2 and CP
3 factors, involution B acting on the

first remaining CP
1 factor and involution C acting on the remaining CP

1 ×CP
1. The superscripts

(1, 39) give the Betti numbers b2 and b3 of the resulting 7-manifold. Note that since this example
includes the action of involution B which has no fixed points, the full involution acting on the
whole CICY is also free, so the resulting space is a smooth barely G2 manifold.

When the projective space involution restricts to the complete intersection space, conditions
are imposed on the coefficients of the defining homogeneous equations. Thus the involutions must
be compatible with the defining equations, and this may not always be possible. In particular, the
invariance of the defining equations under the involution implies that the transformed equations
must be equivalent to the original equations. Let us use the configuration matrix (3.22) to
demonstrate this. Let ui, vi, wi for i = 0, 1 be the homogeneous coordinates on the CP

1

spaces, let yj for j = 0, 1, 2 be coordinates on CP
2 and zk for k = 0, 1, 2, 3 be the homogeneous

coordinates on the CP
3 factor. Then the original defining equations are






f1 (y, z) = f2 (y, z) = 0
g1 (v,w, y) = g2 (v,w, z) = 0

h (u, z) = 0
, (3.23)

where the fi and gi are polynomials homogeneous of degree 1 in their variable and h is a
polynomial which is homogeneous of degree 2 in ui and of degree 1 in zk. Under the involution
presented in (3.22), after taking the complex conjugates, these equations become






f̄1 (y, z) = f̄2 (y, z) = 0
ḡ1 (w, v, y) = ḡ2 (w, v, z) = 0

h̄ (û, z) = 0
, (3.24)

where û2k = −u2k+1 and û2k+1 = u2k. Then for some complex numbers λ1, λ2 and λ3 we must
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have

g1 (v,w, y) = λ1ḡ1 (w, v, y) (3.25a)

g2 (v,w, z) = λ2ḡ2 (w, v, z) (3.25b)

h (u, z) = λ3h̄ (û, z) (3.25c)

and for some matrix M in GL (2,C) we must have

and

(
f1 (y, z)
f2 (y, z)

)
= M

(
f̄1 (y, z)
f̄2 (y, z)

)
. (3.26)

For consistency in (3.25a) and (3.25b), we find that λ1λ̄1 = 1 and λ2λ̄2 = 1. Without loss of
generality, we can set λ1 = λ2 = 1. From (3.25c), we have

h (u, z) = λ3h̄ (û, z) = λ3λ̄3h
(
ˆ̂u, z
)

= λ3λ̄3h (u, z) . (3.27)

Here we have used the fact that h (u, z) is of degree 2 in ui, so even though ˆ̂u = −u, the minus
sign cancels, and we get λ3λ̄3 = 1. So we can set λ3 = 1 without loss of generality. In order for
(3.26) to be consistent, we find that we must have MM̄ = I, but M = I satisfies this condition
and so fulfills the consistency criteria. We can see that all these conditions on the coefficients
of the defining polynomials halve the number of possible choices for the coefficients. This also
shows that not all combinations of involutions are possible. In particular, suppose if we wanted
a B involution to act on the CP

3 factor. Then since ˆ̂z = −z, and h (u, z) is of degree 1 in z,
from (3.27) we would get that λ3λ̄3 = −1, which is clearly not possible. Also, the C involution
is not always possible - the configuration must be invariant under the interchange of factors.

In order to construct all possible barely G2 manifolds from CICY manifolds, we must be
able to find all possible involutions of a given CICY configuration. Since we want freely acting
involutions, we only consider those combinations of involutions which contain a B involution.

The overall strategy is the following. We first find all possible combinations of C involutions,
and then for each such combination we find the possible B involutions. The remaining factors
which do not have any involutions acting on them get an A involution.

Suppose we have a configuration matrix with m rows and K columns - that is we have K
hypersurfaces in a product of m projective factors. Let the coordinates be labelled by x1, ..., xm

and let the homogeneous polynomials be f1, ..., fK . So the intersection of hypersurfaces is given
by

f1 = f2 = ... = fK = 0 (3.28)

We want to check whether a C involution is possible on the first two factors. For this we
assume that the two factors are of the same dimension, as this is a basic necessary condition
for a C involution. Then we have to make sure that after the interchange of x1 and x2 the
new set of homogeneous equations is equivalent to (3.28). This is true if and only if under
the interchange of x1 and x2 the polynomials remain the same up to a change of ordering. In
terms of the configuration matrix this means that under the interchange of two rows the matrix
remains invariant up to a permutation of the columns. For more than one C involution acting
on the same configuration matrix, we thus require that under the full set of row interchanges
the matrix remains invariant up to a permutation of the columns.

To find all the possible C involutions for a given configuration matrix we do an exhaustive
search of all possibilities. First we find all the possible combinations of pairs of rows that
correspond to projective factors of equal dimensions. Then for each such combination of pairs
we check if under the interchange of rows in each pair the configuration matrix stays invariant
up to a reordering of columns. If this is true, then it is possible to have C involutions acting
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on each of these pairs of rows. This procedure then gives us the full set C = {C1, ..., CN} of all
possible combinations of C involutions acting on the configuration matrix.

Now given all the possible C involutions on a configuration matrix, for each such combination
Ci ∈ C we need to find the possible B involutions. Suppose we have a configuration matrix as
before, and we want to check whether a B involution is possible on the first projective factor.
The basic necessary condition is that the dimension of this projective factor is odd. Then we
need to make sure that the new set of homogeneous equations is equivalent to the old set. Let
I be the set of columns which have non-zero entries in the first row - or equivalently, the set
of polynomials that involve x1. First suppose that all columns in I are distinct. Then for each
i ∈ I we require

fi

(
z1, ...

)
= λif̄i

(
ẑ1, ...

)
(3.29)

for some constant λi ∈ C. As in (3.27), we then have the consistency requirement

fi

(
z1, ...

)
= λif̄i

(
ẑ1, ...

)
= λiλ̄ifi

(
ˆ̂z1, ...

)
(3.30)

However, ˆ̂z1 = −z1, but fi is homogeneous of degree q1i in z1, so fi

(
ˆ̂z1, ...

)
= (−1)q

1

i fi

(
z1, ...

)
.

Hence in order for (3.30) to be consistent, q1i needs to be even for each i. If this is true, then
we can have a B involution on the first projective factor.

More generally, however, suppose that we have some identical columns in I. In particular
assume that columns k1, ..., kr ∈ I are all identical, and that the remaining columns in I are
distinct from these. These columns correspond to polynomials which have the same degrees in
projective space coordinates. We can have an involution B if and only if

fk1
= fk2

= ... = fkr
= 0 ⇐⇒ f̂k1

= f̂k2
= ... = f̂kr

= 0.

So for some matrix M ∈ GL (r,C) we must have




fk1

(
z1, ...

)

...
fkr

(
z1, ...

)



 = M




f̄k1

(
ẑ1, ...

)

...
f̄kr

(
ẑ1, ...

)



 . (3.31)

From (3.31) we have the consistency condition




fk1

(
z1, ...

)

...
fkr

(
z1, ...

)



 = MM̄





fk1

(
ˆ̂z1, ...

)

...

fkr

(
ˆ̂z1, ...

)



 = (−1)QMM̄




fk1

(
z1, ...

)

...
fkr

(
z1, ...

)



 , (3.32)

where Q = q1k1
+ ... + q1kr

. If r is even, then we can always find a block-diagonal real matrix M
such that MM̄ = M2 = −I, so in this case the condition (3.32) is always consistent, independent

of the parity of Q. For example for r = 2 we could set M =

(
0 1
−1 0

)
. However if r is odd,

then it is not possible to find a matrix which satisfies MM̄ = −I, so we then cannot have Q
odd.

To find all possible B involutions, we again proceed with an exhaustive search. We look for
all possible combinations of B involutions for each combination of C involutions Ci ∈ C. First we
find the set R of all possible combinations of rows such that the dimensions of the corresponding
projective factors are odd, and such that these rows do not have a C involution from Ci acting
on them. Given a combination R ∈ R, we want to check if it is possible to have a B involution
acting on each row in R. We look for the set I of columns which have a non-zero entry in at
least one of the rows in R. The set I is then split into maximal subsets of identical columns.
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For each such subset we evaluate Q as above, and if for some subset of size r rQ is odd, then the
consistency condition (3.32) is not fulfilled, and so the combination of rows R does not admit a
B involution.

The above algorithm has been implement in the programming language C. After running
the algorithm, for each configuration matrix in the original list of 7868 CICY configurations we
find the possible combinations of C-involutions, and for each combination of C-involution all
the possible combinations of B involutions. Since we are interested in manifolds with free-acting
involutions, we are only concerned with those configuration that admit a B-involution. It turns
out that a total of 4652 configurations do admit a B-involution, out of which 153 have unique
pairs of Hodge numbers. The Hodge pairs for which there exist configurations that admit a B
involutions are listed in (3.33)

h1,1 h2,1

1 65, 73, 89
2 50 + 2k for k = 0, ..., 13, 18
3 31 + 2k for k = 0, 2, 3, ..., 17, 19, 22
4 26 + 2k for k = 0, 1, ..., 19, 21
5 25 + 2k for k = 0, 1, ..., 18
6 24 + 2k for k = 0, 1, ..., 13, 15
7 23 + 2k for k = 0, 1, ..., 10, 12, 13
8 22 + 2k for k = 0, ..., 11
9 21 + 2k for k = 0, ..., 9
10 20 + 2k for k = 0, ..., 7
11 19 + 2k for k = 0, ..., 6
12 18 + 2k for k = 0, ..., 3, 5
13 17 + 2k for k = 0, ..., 4
14 16 + 2k for k = 0, 1, 3
15 15, 21
16 20
19 19

(3.33)

As we can see there is a clear pattern - all these pairs of Hodge numbers have an even sum. In
fact the only pairs of Hodge number that have an even sum but do not admit any B involutions
are (2, 46) , (2, 64) , (3, 27) and (3, 33) .

4 Barely G2 manifolds

4.1 Betti numbers

Now that we have found the CICY involutions, we can calculate the Betti numbers of the
corresponding barely G2 manifolds. Thus we need to find the harmonic forms on these manifolds.
As we know from section 2.1, for this we only to determine the stabilizer of the involution σ acting
on the H1,1 (Y ) of a CICY manifold Y . Suppose h1,1 = m, the number of complex projective
factors in the given CICY manifold. Then the harmonic (1, 1)−forms on Y are simply the
pullbacks of the Kähler forms J1, ..., Jm on the corresponding complex projective factors. Now
suppose we have some involutions acting on Y × S1. First let us consider the case when there
are no C involutions. In this case, no projective factors are mixed, and each of the Kähler forms
is odd under the involution. Hence in this case, h−1,1 = h1,1 and h+

1,1 = 0. From (2.11), we thus
have on the 7-dimensional quotient space that b2 = 0 and b3 = h11 + h2,1 + 1.

Now consider the case when we have one C involution acting on Y . Without loss of generality
assume that the C involution acts on the first two projective factors. Then J1 +J2 is odd, while
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J1 − J2 is even under this involution. The remaining Kähler forms remain odd as before. So
in this case, h−1,1 = h1,1 − 1 and h+

1,1 = 1, and so b2 = 1 and b3 = h1,11 + h2,1. When we have
multiple C involutions, b2 correspondingly is equal to the number of C involutions:

b2 = nc (4.34a)

b3 = h1,1 + h2,1 + 1 − nc (4.34b)

where nC is the number of C involutions acting on the base CICY manifold.
Thus far we have assumed that on the CICY manifold h1,1 = m. However this is not always

the case - in the list of CICY manifolds by Green et al, 4874 configurations satisfy this criterion,
while the rest do not. The class of CICYs for which this equality holds has been referred to as
favourable by Candelas and He [21]. It is known however, that there are various identities which
link together configuration matrices. One of the simplest identities [2] is

[
1
X

∥∥∥∥
a+ b
M

]
=




1
1
X

∥∥∥∥∥∥

1 a
1 b
0 M



 (4.35)

This is derived from the basic identity

[
1
1

∥∥∥∥
1
1

]
= CP

1 (4.36)

which essentially says that a homogeneous hypersurface of degree 1 in CP
1 ×CP

1 is again CP
1.

Using (4.35) we can expand any configuration matrix which has a CP
1 to an arbitrary size.

In particular, if h1,1 > m for the original configuration matrix, we can expand the matrix so
that it has precisely h1,1 projective factors. Once we have such a matrix, we again find the
possible involutions and calculate the Betti numbers of the corresponding barely G2 manifolds.
Employing this procedure, we can cover all but 37 configurations.

After doing all the calculations we find the following pairs of Betti numbers of the barely G2

manifolds
b2 b3
0 31 + 2k for k = 0, ..., 22, 24, 29, 30
1 30 + 2k for k = 0, ..., 19, 21
2 29 + 2k for k = 0, ..., 10, 12, 13, 15
3 28 + 2k for k = 0, ..., 7, 9, 10
4 27 + 2k for k = 0, ..., 3, 5, 7
5 26 + 2k for k = 0, 1, 3, 4
6 25, 31
7 24

(4.37)

Thus we have a total of 84 distinct pairs of Betti numbers. All of these pairs have odd b2 + b3
, and while most of Joyce’s examples of G2 holonomy manifolds have b2 + b3 ≡ 3 mod 4, here
we have a mix between b2 + b3 ≡ 1 mod 4 and b2 + b3 ≡ 3 mod 4.

5 Concluding remarks

We have obtained the Betti numbers of barely G2 manifolds obtained from Complete Intersection
Calabi-Yau manifolds. This gives a class of manifolds that have an explicit description. One
of the ways to use these examples is to try and understand the moduli spaces. On one hand
we know the structure of the moduli space of the underlying CICY manifolds, but on the other
hand, previous general results about the structure of G2 moduli spaces [14, 15] could be applied
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to these specific cases. In particular, quantities like the Yukawa couplings and curvature could be
calculated for these examples. This should then give a relationship between the corresponding
Calabi-Yau quantities and the G2 quantities. This could then lead to much better understanding
of G2 moduli spaces and their relationship to Calabi-Yau moduli spaces.

Another direction could be to construct barely G2 manifolds from some larger class of Calabi-
Yau manifolds. In particular it is interesting to see what is the relationship between manifolds
constructed from Calabi-Yau mirror pairs, and whether this could shed some light on possible
G2 mirror symmetry.
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