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via Musei 41, 25121 Brescia, Italy
dINFN Gruppo Collegato di Trento, Università di Trento,
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1 Motivation

String field theory is a non-perturbative approach aiming to describe, at least in some of

its parts, the microscopical geometrodynamics of Nature. Two of its most widely studied

incarnations are open string field theory [1–3] (OSFT; e.g., [4–6]) and boundary string

field theory [7–10] (BSFT; e.g., [5]), both of which are playgrounds whereon to develop

new physical and mathematical ideas.

In particular, the OSFT effective action of the tachyon field, associated with the decay

of unstable brane configurations, is manifestly non-local, inasmuch as it contains an infinite

number of spacetime derivatives through operators of the form e�, where � = ∂µ∂
µ is the

target (that is, spacetime) d’Alembertian. It entails a novel type of dynamics [11, 12], often

too complicated to be solved except with perturbative or numerical methods of limited

range of validity. Stimulated by this problem, analytical non-perturbative methods have
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been found, and sometimes rediscovered from not-so-recent literature, which allow to handle

pseudo-differential operators and find solutions of the non-local effective dynamics.

One of these methods [13–17] introduces an auxiliary coordinate r along which the

system is made to evolve according to the diffusion equation

(� + ∂r)φ = 0 , (1.1)

where φ = φ(r, x) is a scalar field (in the OSFT case, the tachyon). The infinite num-

ber of degrees of freedom corresponding to the initial conditions of the non-local ‘Cauchy

problem’ is encoded in the continuous variable r. The main consequences of eq. (1.1) are

that (i) dynamical equations become algebraic equations [14, 15, 17, 18], (ii) the action

of the e� operator is a translation along the r direction [13–15], (iii) the spacetime dy-

namics is reduced to a well-defined local Cauchy problem [15], and (iv) explicit solutions

can be constructed. Regarding string theory, approximate analytic solutions were found

for the Lorentzian bosonic and supersymmetric (susy) OSFT tachyon [13] and for the Eu-

clidean supersymmetric OSFT tachyon [16, 17], while an exact solution of the p-adic string

was recovered [16].

In parallel, some surprising relations were found between OSFT and BSFT solu-

tions [13, 16], which all pointed towards an interpretation of string theory as a diffusing

system. Further support was gained in [17], where the lower-level action of the OSFT su-

persymmetric tachyon was reconstructed starting from the diffusion equation for a scalar

field with certain boundary conditions.

All these results are based upon effective equations and, once these are given, the

embedding within string theory can be forgotten. In doing so, however, it becomes increas-

ingly difficult to explain and properly assess virtues and limitations of the method within

the big picture of the full theory. The level of accuracy of solutions of OSFT equations

of motion [13, 16, 17] and the brane tension ratio in a brane decay process [17] are so

good that one wonders how this can happen considering that several approximations (level

truncation, effective potential, and so on) are entailed.

It is the purpose of this paper to address these issues and discuss the link between

the diffusion equation method and the universal structure of string field theory. Although

approaches based on truncated actions have partly become obsolete because of the recent

success in treating the full bosonic theory without integrating out the massive spectrum

(see [6] for a review), the same techniques will make us better understand why and under

what circumstances string field theory can be described, at the level of target embedding,

as a diffusing system. Conversely, the heat-equation recipe for the construction of explicit

tachyon solutions is potentially relevant also for different brane configurations or other

fields of the string spectrum. Moreover, it was instrumental for the construction of kink

solutions interpolating different vacua of the theory [16, 17]. These solutions are still out

of the scope of analytic techniques of modern OSFT, which have been applied to vacuum

or marginally deformed configurations. Thereby, non-vacuum solutions with non-vanishing

momentum are an open subject of study.

We will show that the diffusion equation (1.1) implements a gauge transformation

at the level of the effective spacetime action, which allows one to construct non-trivial
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solutions from trivial configurations in a different frame. These configurations are the

analogue of projector states in the conformal field theory (CFT) formulation, which are

non-normalizable states formally satisfying the equation of motion. The target solutions

found so far have a structure mimicking the exact analytic solutions of the non-truncated

theory, corresponding to integral representations of the solution in terms of surface states.

The relation between the CFT and spacetime results suggests novel applications of the

same techniques. We give an example by arguing that also perturbative (marginal defor-

mations) and non-perturbative (lumps, kinks) geometric configurations admit an integral

representation in the bosonic and supersymmetric full theory.

The paper is organized as follows. In section 2 we review bosonic OSFT and its analytic

solutions from the point of view of the string worldsheet. The spacetime effective theory

and the solutions found with the diffusion equation method are discussed in section 3, which

also contains new material (section 3.3) about the integral representation of solutions. The

latter, eq. (3.23), plays a crucial role in establishing the link between the full theory and

the spacetime framework. In section 4 we discuss how spacetime effective solutions are

expected to obey the diffusion equation on the grounds of the conformal properties of the

exact solutions. The first goal is to argue from the properties of full OSFT that spacetime

solutions are expected to be diffusing, while so far the diffusion equation method has been

just a useful trick without any such motivation. A second goal is to explain why certain

initial conditions of the diffusion equation did not work as well as others. Concrete novel

applications of these results to SFT and other non-local models are described in section 5.

The only solution constructed both in the target effective system and the full theory is

the bosonic rolling tachyon with wild oscillations (marginal deformations). We draw a new

detailed comparison between the diffusing and the exact solution in section 5.1. Examples

of finite superpositions of solutions are given in section 5.2, while sections 5.3 and 5.4 are

devoted to solutions of non-local toy models. Future directions are outlined in section 6.

2 OSFT

2.1 OSFT action and tachyon

In α′ = 1 units, the OSFT bosonic action is [1]

S = − 1

g2
o

∫
(

1

2
Ψ ∗QΨ +

1

3
Ψ ∗ Ψ ∗ Ψ

)

, (2.1)

where go is the open string coupling, * is a non-commutative product describing the gluing

interaction of open strings, Q is a BRST operator, and the string field Ψ is a linear super-

position of states whose coefficients correspond to the particle fields of the string spectrum.

The open string field equation of motion is

QΨ + Ψ ∗ Ψ = 0 . (2.2)

Contrary to the bosonic open string, there are several proposals for open superstring

field theory, the first being Witten’s [19–24]. The action was later modified in [25–27]: on
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a single non-BPS Dp-brane,

S = − 1

g2
o

∫

Y−2

(

1

2
Ψ+ ∗QΨ+ +

1

3
Ψ+ ∗ Ψ+ ∗ Ψ+ +

1

2
Ψ− ∗QΨ− − Ψ+ ∗ Ψ− ∗ Ψ−

)

,

(2.3)

where Y−2 is a double-step inverse picture-changing operator and the string field Ψ± is a

linear superposition of states (made of matter (super)fields Xµ, ψµ and (super)ghosts b, c,

β, γ) in the GSO(±) sectors [28], respectively.

Although we will often recall results for the susy version of OSFT, for simplicity we

concentrate on the bosonic case, eq. (2.1). This action is invariant under the infinitesimal

gauge transformations

δΨ = QΨ + Ψ ∗ Λ − Λ ∗ Ψ , (2.4)

where Λ is a zero ghost number state. The gauge group of string theory is very large

and, to the best of our knowledge, its full extent is still unknown. It includes spacetime

diffeomorphisms and supersymmetry transformations [29], as well as reparametrizations of

the open string (mappings of the string coordinate patch on the same region of the complex

plane) [30]. In particular, when two states are related by a reparametrization, they are

gauge equivalent. The converse may not be true, since one can define, e.g., one-parameter

families of maps which are not reparametrizations for certain values of the parameter [31].

In terms of the perturbative vacuum, the string field is a superposition of parti-

cle modes,

Ψ ∼= |Ψ〉 = [φ(x) + . . . ]c1|0〉 , (2.5)

where the first step indicates the state-vertex operator isomorphism, c1 is a Laurent coeffi-

cient of the c ghost, c1|0〉 is the ghost vacuum with ghost number −1/2, and x is the string

center of mass. At the lowest truncation level, all particle fields in Ψ are neglected except

the tachyonic one φ. The zero-momentum tachyon state c1|0〉 belongs to the universal

subalgebra Huniv of the algebra of open string fields [32, 33].

As already pointed out from the very beginning [1], conservation of the BRST current

implies invariance under reparametrizations of the open string, so one can make a partial

gauge fixing and choose a particular parametrization, for instance one which locates the

string midpoint at a convenient place in the conformal plane (by ‘convenient,’ we mean

one simplifying technical calculations).

For practical purposes one has to choose a CFT wherein to represent the string con-

tent. Different mappings of the string on this plane (conformal frames) are possible [6, 34],

from upper half disks [4] to strips and cylinders [6]; these are associated with gluing pro-

cedures [32, 33, 35, 36] which describe the Witten vertex. In particular, the representation

of a string as a semi-infinite cylinder turned out to be very effective in the construction

of an exact vacuum (translation invariant) solution in bosonic OSFT [30, 37–42] and in

Berkovits’ [43] and cubic (polynomial) superstring field theories [44–47]. Different CFT’s

in the same conformal frame can describe different geometries; in this sense the CFT

formulation of OSFT can be regarded as background independent [48, 49].
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2.2 Wedge states and projectors

An essential tool for the construction of OSFT solutions are surface states [34], of which

wedge states and the sliver projector are the most studied examples [33, 50–70] (for the

supersymmetric case, see [62, 63, 66]). Recent discussions on the subject are [37, 64, 71].

Wedge states |Wr〉, often indicated as |r〉 = |Wr−1〉, are a commutative subalgebra

(with zero ghost number) of the string field star algebra [33]:

|Wr〉 ∗ |Wq〉 = |Wr+q〉 . (2.6)

In the CFT presentation on the unit disk, |Wr〉 corresponds to a wedge of the disk with

opening angle πr at the origin, while in the cylinder presentation it is a semi-infinite

strip of width π(r + 1)/2 (see [6, 54]). The state |W0〉 corresponds to the identity state

|I〉 [33, 64, 72–76], |W1〉 is the SL(2,R) invariant vacuum |0〉, |W2〉 = |0〉 ∗ |0〉, while |W∞〉
is the sliver state.

Wedge states are made of an infinite superposition of eigenstates (L+)n|0〉 of L0:

|Wr〉 = e
1−r
2

L+ |0〉 , r ≥ 0 , (2.7)

where L+ = L0 + L†
0 and L0 is the zero mode of the stress-energy tensor in the sliver

conformal frame, defined in terms of Virasoro generators [37, 64]:

L0 ≡ L0 − 2

∞
∑

k=1

(−1)k

4k2 − 1
L2k .

The perturbative vacuum c1|0〉 is an eigenstate of L0. In general, eigenstates of L0 are

formed by arbitrary powers of L†
0, B

†
0 and c ghosts, where

B0 ≡ b0 − 2

∞
∑

k=1

(−1)k

4k2 − 1
b2k .

Surface states are convenient because they entail a change of representation of the

string field Fock space, from one where the interaction term in eq. (2.2) is complicated

and the BRST charge Q is diagonal to one where the former term is converted to a linear

form (see the discussion on squeezed states in [50]). In eq. (2.7), r can be thought of as

defining the size of a ‘probe’ making a scale-dependent ‘measurement’ on the Fock vacuum.

Solutions are non-local inasmuch as they are composed of probes at all scales r ≥ 0 (see

below). Equation (2.7) defines a solution of
(

2∂r + L+
)

|Wr〉 = 0 , (2.8)

which is a universal diffusion equation. By universal we mean that involves only Virasoro

(and, later, ghosts) operators [32]. The inner product of a wedge state with a primary

field Oh of weight h is proportional to the vacuum expectation value of the field with

rescaled argument:

〈0|Oh(z)|Wr〉 =

(

2

r

)h

〈0|Oh

(

2z

r

)

|0〉 . (2.9)

The rescaling of the argument of Oh is typical of diffusing fields.
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Projectors [33, 34, 77, 78], in particular special projectors [40], were first introduced

in vacuum string field theory (VSFT) [51, 79–82]; they are defined as surface states whose

corresponding Riemann surfaces feature the string midpoint in their boundary. This implies

that they are idempotent states for the star product,

|P∞〉 ∗ |P∞〉 = |P∞〉 . (2.10)

They are important as they define conformal frames wherein OSFT can be solved. Equation

(2.10), in fact, is the equation of motion of the matter sector of VSFT.

The sliver projector |W∞〉 is a solution representing the bosonic D25-brane [52] but it

can also be constructed for boundary CFT’s associated with other geometric configurations

(for instance, the D-instanton sliver [53, 60, 61]). It does not have finite norm but is

instrumental for the construction of analytic solutions.

The sliver is only one of an infinite set of projector states, but others have been

constructed, for instance the butterfly state [33, 34, 77, 83–85] and the nothing state [33,

34, 77]. In general [40], one can define surface states which obey eq. (2.6),

|Pr〉 = e−
r
2
L+ |I〉 r ≥ 0 , (2.11)

where L+ = (L0 + L⋆
0)/s, s > 0, and [L0,L⋆

0] = s(L0 + L⋆
0). ⋆ denotes BPZ conjugation

(Ln → (−1)nL−n), which coincides with Hermitian conjugation for all twist-even projectors

(such as the sliver, s = 1). The diffusion equation (2.8) is unaltered, and L0|P1〉 = 0; in

particular, |P1〉 = |0〉 in the sliver-based family of wedge states. |Pr〉 are wedge states if L+

is defined in the conformal frame of the sliver. There (cylinder presentation), the operator

e−qL+

creates a semi-infinite strip of width πq. Pure-gauge solutions do not contain a

component along the vacuum state |P1〉 (in this sense, their normalization is arbitrary).

The only common state of different families of surface states is the identity |P0〉 = |I〉.
Since L0|P∞〉 = 0 [40], L0 is the zero-mode Virasoro operator in the special projector

conformal frame. In these conformal frames the string midpoint is on the boundary and

the left and right half-strings behave as independent objects.

Different projector frames associated with the same boundary CFT give gauge-

equivalent solutions. To any twist-invariant, single-split projector there corresponds a so-

lution in a different gauge; special projectors yield simpler solutions [40]. Projectors are re-

lated with each other (in particular, the sliver) by finite midpoint-preserving reparametriza-

tions (i.e., large gauge symmetries) of the open string coordinate τ . Corresponding to a

reparametrization τ ′ = ϕ(τ), there is an operator Uϕ acting on the space of string fields

and representing an OSFT gauge transformation, |Wr〉 = Uϕ|Pr〉.
Within a given family of surface states, there is also a reparametrization leaving the

projector invariant and mapping the states into one another, |Pr〉 → |Peβr〉, where β is real.

This corresponds to a conformal rescaling Pr → Pr′ of the associated one-punctured disk

in the presentation where the local coordinate patch is that of the projector |P∞〉. In the

sliver family, any wedge state can be made to approach the sliver [30, 83], although regular

surface states cannot be mapped to projectors by a finite reparametrization as they define

different topologies.
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The main features of the solutions of OSFT are shown by a toy model with zero ghost

number. The general solution of its equation of motion

(L0 − 1)Ψ + Ψ ∗ Ψ = 0 (2.12)

is [40]

|Ψs〉 = |P∞〉 +

∫ ∞

0
drµs(r)L

+|Pr〉 , (2.13)

where µs is a one-parameter family of measures. Projectors automatically solve eq. (2.12).

The number of special projectors for a given s is argued to be finite. Examples are the

sliver (s = 1), the butterfly and the moth (s = 2). In the first case, 2µ1 =
∑∞

n=1 δ(r − n).

Otherwise, the integral measure is 0 for r < 1. The solution can be also recast as

|Ψs〉 = fs(L
+)|I〉 ,

where fs(x) = [1F1(1, 1+1/s, x/2)]−1 . The measure µs(r) is the inverse Laplace transform

of fs(2x)/(2x). It is amusing that the Kummer function 1F1 appears both in the full zero-

ghost-number theory (as a functional of the Virasoro operator L+) and, in special cases,

also in the effective target system [14, 16] (as lowest-level solutions of the effective equation

with non-local operators).

As a superposition of surface states, the solution eq. (2.13) ‘interpolates’ between the

identity state and the special projector. We shall see that this is the same structure of

target effective solutions.

2.3 Vacuum revolution

In order to construct solutions to the OSFT equation of motion, the simple subalgebra of

wedge states must be modified introducing ghost operators. The zero-momentum tachyon

vacuum solution was first found by Schnabl [37] as a sum over wedge states with inser-

tions, ψr:

Ψ = ψ∞ −
∞
∑

r=0

∂rψr . (2.14)

This solution is normalizable, as the divergence from the sliver cancels out the one from

the infinite sum of states. Notice that wedge states with insertions can be written as [38]

ψr = 2c1|0〉∗|Wr−1〉∗B+c1|0〉, whereB+ = B0+B†
0, so they obey the diffusion-type equation

∂rψr + c1|0〉 ∗ |Wr−1〉 ∗B+L+c1|0〉 = 0 , r ≥ 1. (2.15)

As it is constructed on a specific conformal frame (the sliver’s), this solution is frame

dependent but this does not result in any loss of generality, as Schnabl’s solution can

be built on other projector frames [30]. Like eq. (2.8), it is universal but background

dependent, in the sense that it is formulated only in terms of Virasoro and ghost operators

which describe a particular brane configuration/CFT.
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Schnabl’s solution obeys the gauge condition B0Ψ = 0, which does not fix the gauge

completely [86]. Indeed, the second piece of the solution can be written as the limit of a

pure gauge state satisfying the B0 gauge [38] (star product is understood):
∞
∑

r=0

∂rψr = lim
λ→1

Ψλ = lim
λ→1

λ(QΦ)
1

1 − λΦ
= lim

λ→1
e−Λ(λ)QeΛ(λ) , (2.16)

where Λ(λ) = − ln(1−λΦ) =
∑∞

n=1(λΦ)n/n and Φ = B+c1|0〉 is the tachyon vacuum with

ghost operator B+. When λ < 1, eq. (2.16) is gauge equivalent to Ψλ = 0. The construction

of non-trivial solutions from pure gauge configurations was formalized in [38, 41, 87, 88]

(see also [46, 47] for the vacuum solution of cubic open superstring field theory).

2.4 Marginal deformations

When the worldsheet action of the CFT is deformed by an exactly marginal operator

J at the boundary, one obtains a one-parameter family of boundary conditions which

represents a dynamical perturbation of the same geometric configuration, typically a Dp-

brane [48, 89–94]. Wilson lines and the rolling tachyon are examples of marginal deforma-

tions. Perturbative tachyon solutions for exactly marginal deformations were constructed

for bosonic OSFT [43, 87, 88, 95–100] and Berkovits’ OSFT [43, 87, 101–103]. These rolling

tachyon solutions are interpreted as the beginning (or the end, if the tachyon vacuum is

perturbed [99]) of a brane decay, but they do not capture the whole dynamical process

since the initial and final geometric configurations of the decay are very different in terms

of the underlying boundary CFT. In particular, lumps and kinks are not exactly marginal

deformations, and we do not expect them to be described by a perturbative series in the

deformation parameter λ.

Let J(z) = cO(z), where O is a dimension-one matter primary operator. The operator

O(z) = eX
0(z) describes a tachyon field which starts rolling from the unstable vacuum at

x0 = −∞ towards the non-perturbative vacuum [104, 105]. The time-dependent bosonic

solution is [95, 96]

Ψλ =
+∞
∑

n=1

λnψn , (2.17)

where ψ1 = J(0)|0〉 is a solution of the linear equation Qψ1 = 0 and ψn are wedge states

with n insertions of J on their boundary in the sliver frame, and are determined recursively

from ψ1. This is almost of the same form as the vacuum solution (2.14), with the difference

that the latter is pure gauge when λ < 1, ill-defined when λ > 1, and physical when λ = 1,

while eq. (2.17) is a family of physical solutions also for λ < 1. This family of solutions

respects the Schnabl gauge if J has regular operator product expansion (OPE), otherwise

one must add perturbative counterterms which violate it. In the superstring case, O is a

superconformal primary field of dimension 1/2 [87, 101] and, due to the form of Berkovits’

equation of motion, the solutions also happen to be pure gauge configurations from the

perspective of bosonic OSFT.

In [88] an interesting variant of the above construction was proposed, where one

starts with an exact solution in a ‘large’ Hilbert space (where states are in general non-

normalizable) and defines a singular gauge transformation which pushes this solution into
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a perturbative solution in the physical Hilbert space. In other words [99], the solution is

of the form Ψλ = e−Λ(λ)QeΛ(λ). When eΛ ≈ I + Λ can be deformed to the identity state,

Ψλ is a pure gauge solution, otherwise Λ defines a large (even singular) gauge transfor-

mation and the solution becomes physical. The procedure of [88] makes use of integrated

vertex operators and a general construction was obtained in [97]. The solutions of [95, 96]

(non-integrated vertex operators) and [88, 97] are all gauge equivalent [100].

Diffusing states will be important in what follows and it is worth noticing that solutions

with marginal deformations are constructed in terms of generalized wedge states [97]. These

are defined as

|Ur〉 =

∞
∑

n=0

λn|U (n)
r 〉 = |Wr〉 +O(λ) , (2.18)

and they obey the usual composition rule Ur • Uq ≡ Ur ∗ U−1
0 ∗ Uq = Ur+q under a de-

formed star product •. These states are closed for the BRST operator Q on the deformed

background, Q|Ur〉 = 0.

2.5 String field theories and gauge equivalence

We conclude this section by reviewing the relations between different solutions in the same

SFT and solutions of different SFT’s. Regarding the former, it was established in [31]

that, if the BRST operator Q around the tachyon vacuum has no cohomology at any ghost

number, every solution Ψ of bosonic OSFT can be written as a formal gauge transformation

of the tachyon vacuum,

Ψ = U−1QU . (2.19)

If the transformation U is singular (or, perhaps, just large), the solution is physical. This

happens when U annihilates a rank-one projector |P∞〉 of the star algebra, i.e., when |P∞〉
is in the right kernel of U , U |P∞〉 = 0. The examples considered in [31] include all known

cases: the non-perturbative vacuum (|P∞〉 = |0〉, by definition), the perturbative vacuum

(|P∞〉 = |W∞〉, sliver), marginal deformations with trivial OPE [95, 96] (|P∞〉 = |U∞〉,
generalized sliver of [97]) and marginal deformations with non-trivial OPE [43, 88, 97]

(|P∞〉 = |U−1/2U∞U
−1/2〉).

As far as different theories of interacting strings are concerned, solutions of OSFT and

BSFT can be mapped onto each other, as pointed out in [13, 31, 86, 106]. The marginal

rolling tachyon solution can be mapped to the bounded BSFT solution, so that its wild os-

cillations [12, 13, 106, 107] are interpreted as an artifact of a complicated time-dependent

gauge transformation [86]. Within OSFT’s, there also exists a mapping between super-

symmetric and bosonic classical solutions [43, 87], cubic and Berkovits’ supersymmetric

SFT’s [47, 108], and between different polynomial supersymmetric SFT’s [109]. For these

reasons, it is not restrictive to consider solutions of one particular SFT (for instance, those

of eq. (2.3)) and, on the other hand, the physical interpretation of such solutions can be

made more transparent when considering their duals in another theory.

By merging the above results, it is reasonable to expect that (a) the findings of [31]

can be extended to superstring field theory and (b) solutions with and without marginal

deformations can be treated on the same ground, eq. (2.19). These are important points
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as the susy effective non-local system stemming from eq. (2.3) admits solutions which do

not correspond to marginally deformed CFT’s but have been constructed with the same

method (diffusion equation) as for bosonic and susy solutions for marginal deformations.

Therefore, it is natural to ask whether this method is actually a spacetime formulation

or approximation of the gauge properties of the CFT framework. Once this question was

answered, one could have a clearer guidance for future applications of the same techniques.

We will argue the answer to be affirmative.

3 Effective spacetime action and diffusing solutions

3.1 Lowest-level non-local spacetime actions

Let us consider the bosonic action eq. (2.1) introduced in section 2.1. In Siegel gauge (b0Ψ =

0) and around the perturbative vacuum, the BRST operator is Q = c0L0 = (p2−1)c0 + . . . ,

where L0 is the Virasoro zero mode of the total stress-energy tensor in the upper-half disk

presentation and −p2 is the Fourier transform of the d’Alembertian. At lowest truncation

level in eq. (2.5), one can write down an effective spacetime action for the tachyon, which

exhibits a non-local interaction [2, 3]:

S =
1

g2
o

∫

dDx

[

1

2
φ(� + 1)φ− e3r∗

3
φ̃3

]

, (3.1)

where φ̃ ≡ er∗�φ and

r∗ = ln(33/2/4) ≈ 0.2616 . (3.2)

The value of r∗ is dictated by conformal invariance (which partly survives although level

truncation breaks gauge invariance even without explicit gauge fixing) and does not depend

on the type of presentation chosen for the string worldsheet. It also appears in susy OSFT,

for instance in the formulation given by eq. (2.3).

There, the operator Y−2 can be either chiral and local [26, 27] or non-chiral and bilo-

cal [25] (see the literature and the review [4] for details). These two theories predict the

same tree-level on-shell amplitudes but different off-shell sectors. The non-local effective

action for the tachyon has been constructed for the non-chiral version [25, 110, 111]. In

the 0 picture and at level (1/2, 1), which is the lowest for the susy tachyon effective action,

all particle fields in Ψ± are neglected except the tachyonic one and an auxiliary level −1

field u(x). This field is responsible for the emergence of a quartic effective potential for

the tachyon. In fact, the Fock-space expansion of the string field is truncated so that the

spacetime action on a Dp-brane reads [110, 111]

S =
1

g2
o

∫

dp+1x

[

1

2
φ�φ+

1

4
φ2 + u2 − e2r∗

3
(er∗�u)(er∗�φ)2

]

. (3.3)

Combining the equations of motion for u and φ, one obtains an equation for φ̃ alone:
(

� +
1

2

)

e−2r∗�φ̃− e4r∗

9
φ̃ e2r∗�φ̃2 = 0 . (3.4)

The effective potential is extremely complicated and until recently [17] it has made it

prohibitive to find even numerical solutions of this system.
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3.2 Diffusion equation method

The form of the effective equations (3.1) and (3.4) triggered a considerable amount of

work on non-local theories [11, 12, 112–121]. The difficulties one meets when dealing with

non-local operators are both interpretative and technical. On one hand, the construction

of non-perturbative solutions is a highly non-trivial task also for a Minkowski metric. A

truncation of e� operators leads to a higher-derivative effective theory, which is arguably

different from the original in all respects, unless certain unverifiable conditions (for instance,

slow variation of the fields or convergence of perturbative series) are satisfied. On the other

hand, the Cauchy problem is unclear, as one should specify an infinite number of initial

conditions which would correspond to the knowledge of the solution (if analytic) around

the initial point.

Among the attempts to address these issues, the diffusion equation method turned

out to be a convenient mathematical tool. Its early applications to OSFT and the p-

adic string [122–124] were soon followed by an extensive study of the dynamics of these

diffusing systems with analytic, semi-analytic, or numerical techniques [13–18, 125–129].

The method can be summarized as follows [13, 15, 16].

• Interpret r∗ as a fixed value of an auxiliary evolution variable r, so that the scalar

field φ = φ(r, x) is thought to live in 1 +D dimensions and evolve via the diffusion

equation (1.1).

• Given the initial condition φ(0, x) at r = 0, the solution of the diffusion equation is

φ(r, x) = er�φ(0, x) . (3.5)

• In particular, the effect of the non-local operator eq� is a shift of the auxiliary vari-

able r:

eq�φ(r, x) = e−q ∂rφ(r, x) = φ(r − q, x) . (3.6)

• As a consequence, the system becomes local in spacetime variables. For this reason

the Cauchy problem is well-defined and one has to specify only a finite number of

initial conditions [14, 15, 120]. Intuitively, the infinite number of degrees of freedom

of the non-local system have been transferred into a field configuration at r = 0. The

(1 +D)-dimensional system solved by some φ(r, x) is referred to as localized.

• The Hamiltonian and conjugate momenta are easily constructed from non-local La-

grangian systems. Quantization of the degrees of freedom, if desired, stems from a

finite symplectic structure.

• Not only the calculation of the energy-momentum tensor Tµν for the localized system

is much simpler than in the non-local case [130], but it shows that the form of Tµν

is precisely the one for a diffusing scalar [15]. This is a self-consistent check that all

known solutions of the original non-local model obey the diffusion equation.

The construction of explicit solutions goes through the following steps.
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(A) Find a solution φ(0, x) of the corresponding local system (r = r∗ = 0 everywhere).

This is the initial condition for a system that evolves in r.

(B1) If the initial condition is chosen to be constant almost everywhere, the final con-

figuration φ(r∗, x) obtained by diffusion along r is a smooth function which solves

(exactly or approximately) the original non-local system.

(B2) If the initial condition is chosen to be continuous, then:

(B2a) Solve the eigenvalue equation of the d’Alembertian operator, �Gp(x) =

−p2Gp(x). The eigenfunctions Gp are just plane waves in the Minkowski case,

so the checklist below is easy to carry out for string theory [13]. It is much less

trivial on curved backgrounds [14].

(B2b) Write the local solution φ(0, x) as a linear combination (sum or integral) of the

eigenfunctions of the d’Alembertian operator, e.g., φ(0, x) =
∑

p cpGp(x).

(B2c) Look for non-local solutions φ(r, x) of the type φ(r, x) = er�φ(0, x) =
∑

p e
−rp2

cpGp(x), for some constant r.

(C) The constant r∗ and the normalization such that φ(r∗, x) is a solution (exact or

approximate) can be found by looking at the asymptotic behaviours of the equation

of motion.

Examples of a constant initial condition in the sense of distributions are the p-adic

string [16], supersymmetric OSFT [16, 17], and some cosmological toy models [18]. In the

first case, the equation of motion admits φ = 0 as constant solution, so that φ(0, x) = δ(x)

is a local solution everywhere except at the origin. The diffusion equation (1.1) smoothens

it to a Gaussian lump; this solution is exact. In the second case, the initial condition is a

step function corresponding to the position of the two local minima of the tachyon potential

(φ = ±1). Upon diffusion, this configuration evolves to a one-dimensional kink:

φ = erf

(

x√
4r

)

(3.7)

for some r, where erf is the error function. This solution is approximate with very good

accuracy [17]. No such solution has yet been found in the full theory.

Examples of continuous initial conditions are the rolling tachyon with marginal de-

formations [13, 123] and some cosmological toy models [14]. In the first case the bosonic

tachyon profile is

φ = et −
+∞
∑

n=2

(−1)ncne
nt , (3.8)

where t = x0 is the time coordinate and [13, 107, 123]

cn = 61−nne−(4n2−9n+5)r∗ , (3.9)

while for the non-chiral bilocal susy OSFT [13]

φ = 3

+∞
∑

n=0

(−1)ne−r∗(2n+1)2e(2n+1)t/
√

2. (3.10)
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Both solutions are approximate and display the well-known wild oscillations.

The pseudo-differential operator e� may be seen also as a rescaling, rather than a

translation, in r. This happens when the diffusion equation is of the form

(� + r∂r)φ = 0 , (3.11)

where now the r gradient is logarithmic. Then, defining ̺ ≡ ln r,

eq�φ(r, x) = e−q∂̺φ(e̺, x)

= φ(e̺−q, x)

= φ(e−qr, x) . (3.12)

We shall use this property to prove one the main results of the next section.

3.3 Solutions in integral form

At this point we stress a property of the solutions of the diffusion equation which have been

often noticed informally. For simplicity we only discuss the one-dimensional homogeneous

case, where the heat equation is (we adopt signature −+· · ·+)

(∂2
t − α∂r)φ = 0 . (3.13)

If α = +1 (eq. (1.1)), diffusion occurs towards the natural direction and the solution of

(3.13) is C∞. On the other hand, when α = −1 one expects to find a singularity somewhere

during the field evolution (see [13] below eq. (35)). On general grounds, if a solution φ(r, t)

of eq. (3.13) is not C∞, then its Wick-rotated version φ(r, it) (i.e., the Euclidean solution

if the starting point was Minkowski) is a regular solution. Of course, it is not guaranteed

that φ(r, it) is also a solution of the Wick-rotated equation of motion; in fact, this hope

has been betrayed in all known cases [13, 16].

Another way to recast these considerations is to construct a solution of eq. (3.13) in

integral form, once the initial condition in r is known. If the diffusion coefficient is positive,

the standard procedure is based on the heat kernel

K(r, σ) =
e−

σ2

4r

2
√
πr

. (3.14)

The normalization is chosen so that

lim
r→0

K(r, σ) = δ(σ) , (3.15)

in the sense of distributions. Since K(r, σ) is the solution of the heat equation

(∂2
σ − ∂r)K = 0 (3.16)

with eq. (3.15) as initial condition, any solution φ(r, t) of the heat equation with initial

condition φ(0, t) can be easily obtained as the convolution of the heat kernel with the

initial condition:

φ(r, t) =

∫ +∞

−∞
dt′K(r, t− t′)φ(0, t′) . (3.17)
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The simplest non-trivial example of (smooth) solution of this form is the error function

eq. (3.7) (x = t), corresponding to the initial condition φ(0, t) = sgn(t).

If the diffusion coefficient is negative, the convolution with the heat kernel cannot be

done directly in general. However, one can apply a different method. Let us consider an

harmonic function u in the variables (t, σ),

∇2u(t, σ) = ∂2
σu+ ∂2

t u = 0 , (3.18)

and let φ(0, t) = u(t, 0). Then,

φ(r, t) =

∫ +∞

−∞
dσK(r, σ)u(t, σ) (3.19)

is the solution of the diffusion equation (3.13) with α = −1 and initial condition φ(0, t),

provided u(t, σ) satisfies certain conditions. The initial condition is trivially satisfied by

virtue of eq. (3.15). Then, (∂2
t + ∂r)φ(r, t) = 0, where we have used eqs. (3.18) and (3.16)

and integrated by parts twice.

Therefore, the conditions required on u are those that legitimate the double in-

tegration by parts, i.e., u and its first σ derivative do not possess singularities along

the real σ axis and, asymptotically, u be polynomially bounded (then, Ku tends to

zero at σ → ∞). The spiky solutions of [13] are indeed of this form; see eqs. (23)

and (40) therein, but with the limit taken in the strong sense. In the bosonic case,

u(t, σ) ∝ (1 + cosh t cos σ)/(cosh t + cosσ)2. At t = 0 the denominator of u develops

poles in the integrand, which are responsible for the spike at the origin. Also the wildly os-

cillating solutions (bosonic and susy) can be written in integral form, eq. (45) of [13] (they

are actually the analytic continuation of the spiky solutions with t < 0). On the other

hand, there is no regular harmonic function associated with either the error function or

any other solution of the diffusion equation with distribution-like initial condition.1 After

regularizing the initial condition, however, one can apply eq. (3.18), and eq. (3.19) follows

when removing the regulator.

Equations (3.17) and (3.19) are two different ways to write the solution of the diffusion

equation. However, while eq. (3.19) cannot be recast as eq. (3.17), the converse is true.

Suppose to take eq. (3.19) with u being a function obeying the wave (rather than Laplace)

equation. Then, the resulting φ is a solution of the diffusing equation with α = +1, hence

always regular. To pass from one case to the other, it is sufficient to make a Wick rotation

σ → iσ or t→ it.

To summarize, solutions of the diffusion equation (3.13) always admit the integral

representation eq. (3.19), where u is harmonic in its variables and u(t, 0) = φ(0, t). If

α = −1, u = u(t, σ), while if α = +1 one has u = u(t, iσ).

We now further manipulate eq. (3.19) into a very useful form to be invoked later. Since

K is even in σ, one has

φ(r, t) =

∫ +∞

0
dσ

e−
σ2

4r√
πr

w(t, σ) ,

1The Gaussian lump of the p-adic string is the other notable example [16].
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where w is (proportional to) the even part of u:

2w(t, σ) = u(t, σ) + u(t,−σ) , w(t, 0) = φ(0, t). (3.20)

Notice that

(a) If u obeys the Laplace or wave equation, so will w. In the first case,

∂2
tw + ∂2

σw = 0 . (3.21)

(b) Since ∂σw is odd by construction, it vanishes at the origin:

∂σw(t, σ)
∣

∣

∣

σ=0
= 0 . (3.22)

After the change of variable

ρ ≡ σ2

4r
,

one gets

φ(r, t) =

∫ +∞

0
dρµ(ρ) w(t, 2

√
rρ) , (3.23)

where we defined the measure

µ(ρ) ≡ e−ρ

√
πρ

,

∫ +∞

0
dρµ(ρ) = 1 . (3.24)

Now all the (t, r) dependence is in w and since φ solves the diffusion equation in these

variables, so must w at least upon integration. To prove it, one notices that w solves, say,

the Laplace equation with respect to the (t, σ) variables but, on the other hand, inside the

integral a second derivative with respect to σ can be replaced by a first derivative with

respect to r. Then, the Laplace equation is equivalent to the heat equation (if w obeys the

wave equation, one will get the heat equation with opposite coefficient). In fact,

∫ +∞

0
dρµ(ρ) ∂rw(t, 2

√
rρ) =

∫ +∞

0
dρ

e−ρ

√
πr

∂σw(t, 2
√
rρ)

= − e−ρ

√
πr
∂σw

∣

∣

∣

∣

+∞

0

+

∫ +∞

0
dρ

e−ρ

√
πr

∂ρ∂σw(t, 2
√
rρ)

=

∫ +∞

0
dρµ(ρ) ∂2

σw(t, 2
√
rρ)

= −
∫ +∞

0
dρµ(ρ) ∂2

tw(t, 2
√
rρ) , (3.25)

where σ = 2
√
ρr and in the last equality we used eq. (3.22).

Moreover, the r and ρ dependence of w is symmetric, so that a logarithmic derivative

in r is also equal to a logarithmic derivative with respect to ρ:

r∂rw = ρ ∂ρw . (3.26)
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This implies that, when integrated with measure µ(ρ), w obeys a diffusion equation in

ρ and t like eq. (3.11), which differs from eq. (1.1) simply by how the extra coordinate

transforms: rescaling in the first case (eq. (3.12)), translating in the second.

Therefore, we conclude that

φ(r, t) can be written as an integral with measure µ(ρ)dρ, eq. (3.24), times

a function w(t, 2
√
rρ) which, upon integration, is a solution of the diffusion

equation in ρ and t.

In section 3.2 we outlined the diffusion equation method as conceived in previous papers.

There, we identified spacetime solutions to the diffusion equation in r frozen at a particular

value r = r∗ [16] with solutions of the dynamical system. The integral representation

(3.23) brings a different and, as we shall see, more fertile perspective. The parameter r is a

rescaling of the argument of a solution of the heat equation in ρ, whose value is determined

by the system dynamics.

4 Diffusion equation in string theory

In a series of papers, we developed the diffusion equation method as a tool to solve the

spacetime effective equation of motion of the string tachyon and the p-adic string. In

most cases these solutions were approximate but the level of approximation was good

and under control. Some results, such as the brane tension ratio of [17], were perhaps

impressive. Regardless the encouraging positivity of these achievements, the situation is

unsatisfactory because we do not have an explanation of the method within OSFT. Without

such explanation, the method would be just a fortunate, sometimes miraculous, trick. In

fact, it applies to the lowest-truncation-level equation of motion of just one field of the

string spectrum, and the obtained solutions are not exact. There is no obvious reason

why, in such a crude scenario, one would obtain correctly all the qualitative and most of

the quantitative features of tachyon condensation. Moreover, the main drawback of the

method is that it provides no existence condition for the solutions of the non-local scalar

equation, also because there is no systematic way to choose the initial field configuration.

Summarizing, it is desirable to answer the following questions:

(Q1) Can we justify the status of the diffusion equation method within OSFT?

(Q2) How to choose the initial conditions of the diffusion equation? Why, and in which

sense, is the kink solution more accurate than the one with wild oscillations?

(Q3) Can the spacetime-based method yield information which presently has not yet been

extracted from the full theory? Do we expect the kink solution to have a counterpart

in the full theory and, if so, of which form?

We shall now partly fill these gaps.

Having revisited some results in the worldsheet and effective spacetime formulations,

we are in a position to interpret the diffusion equation in terms of the former. The starting
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point is to observe, for instance in the Polyakov action [131, 132], that a conformal trans-

formation Ω2(z) of the worldsheet metric can be regarded also as a conformal rescaling

Ω2(X) of the D-dimensional target metric ηµν (the converse is not true).

This statement filters down to the effective theory as follows. Consider aD-dimensional

metric ḡµν and a conformal transformation gµν ≡ Ω−2ḡµν , where Ω = Ω(x) is a function of

the coordinates. We also define the vector Ωµ ≡ ∂µ ln Ω. Let φ be a massless scalar field

which obeys the free Klein-Gordon equation

�̄φ = 0 (4.1)

in the ḡ frame. Then, in the other frame

Ω2�̄φ = [� + (D − 2)Ωµ∂
µ]φ = 0 . (4.2)

The above equation is nothing but the diffusion equation (1.1) as soon as one denotes the

Lie derivative along the vector Ωµ as ∂r = (D − 2)L~Ω.

The choice of metric gµν and initial conditions will determine which class of functions

Ω(x) realizes the conformal transformation dual to the diffusion process associated with the

solution φ(r, x). For instance, let us take the kink eq. (3.7) solving the diffusion equation

(∂2
x − ∂r)φ = 0. A quick check shows that the resulting conformal factor is

Ω(x) = Ω0 exp

[

− x2

4(D − 2)r

]

, (4.3)

where Ω0 is an arbitrary constant.

The conformal transformation can be seen as one going from zero2 to finite momentum.

As we have recalled, in the CFT state space this can be understood as a reparametrization

of the vacuum. But the diffusion equation (1.1) (whose CFT counterpart are eqs. (2.8) and

(2.15)) is a background-dependent way to implement it. Therefore, in the effective theory

one has to find the equivalent of the operator U of section 2.5 realizing a large/singular

gauge transformation.

Recently, the vacuum solution (2.14) was written in a very appealing form, that is, as

an integral over wedge states [133]:

Ψ =

∫ +∞

0
dre−rPWr , (4.4)

where P = c + cL+B+c/4. For non-vacuum solutions, the form of the operator P will be

different. We are now able to collect evidence that a large class of exact OSFT solutions

admit an integral representation where they are expanded on a basis of diffusing states

(surface states).

This ‘large class’ contains at least the exact analogues of the known spacetime dif-

fusing solutions (bosonic marginal deformations, supersymmetric marginal deformations,

supersymmetric kink configurations), and it is likely to be much wider. The point is that

2One can always redefine the scalar field so that a mass term be reabsorbed. Given a constant β, the

field φ̄ = e−βrφ obeys the massive diffusion equation (� + β + ∂r)φ̄ = 0.
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eq. (3.23) is the spacetime counterpart of eq. (4.4). Since (a) diffusing solutions of the tar-

get effective theory, bosonic and supersymmetric, have all the same structure as the known

full solutions, (b) they all admit the integral representation (3.23), and (c) they include

marginal deformations and non-trivial configurations such as kinks (full brane decay), then

also the CFT counterparts of the wild oscillations (so far known only as a perturbative

series in the bosonic theory) and the kink (so far unknown) should be of the form (4.4).

This conclusion is supported also by the discussion in section 2.5 on the bosonic string.

In fact, the diffusion equation can be regarded as a change of gauge which simplifies the

problem and recasts the effective dynamics of OSFT in a gauge convenient form. In par-

ticular, in [17] we started from a solution around the tachyon vacuum, i.e., a distributional

constant solution φ = sgn, representing the minima of the effective double-well potential.

This is tantamount to asking that in the gauge frame ḡ the solution be constant (eq. (4.2))

and extremizes the effective potential, so that the equation of motion (2.2) is the free

equation. In this frame the solution plays the same role of a projector, as it is idempotent

(Ψ ∗ Ψ = Ψ) and closed (QΨ = 0) in the sense of eq. (4.1). Equations (2.7) and (2.11) are

nothing but the universal version of the statement that solutions of the diffusion equation

are of the form eq. (3.5) and one can identify surface states (eventually with insertions)

as such solutions, and the initial condition in eq. (3.20) which evolves via eq. (3.23) as a

projector which ‘evolves’ via eq. (4.4). The conformal mappings describing the sliver state

are singular but the state itself is well-defined [54]. In the background-dependent frame-

work of the diffusing system, the initial condition in diffusion time may be a discontinuous

distribution, but the diffusion flow smears it to a smooth spacetime function, eq. (3.23).

This should answer question (Q1). The diffusion equation method works because it

is recognized to be an implementation at spacetime level of the gauge (reparametrization)

freedom of the full theory. Therefore, spacetime solutions inherit the diffusing property of

the exact ones, as long as the initial conditions are chosen correctly. This is unexpected.

One of the most beautiful achievements in string theory is that non-trivial solutions to the

equation of motion are built starting from a non-normalizable state living in an ‘enlarged’

Hilbert space and performing a large or singular gauge transformation on this state, which

‘drags’ it into the physical Hilbert space. The non-normalizable state is a trivial formal

solution, the ending point is a non-trivial physical solutions. Here we find that the same

construction applies to effective spacetime solutions. In general relativity or quantum

field theory we do not enjoy of such inheritance property: to find a solution entails a

gauge choice (of the metric, of the frame, etc.) which spoils the symmetries of the theory

(diffeomorphism and Lorentz invariance). Here, on the other hand, we start with a theory

endowed with a certain symmetry group. We make some approximations, choose frames

and CFT’s (backgrounds), employ a mysterious diffusion equation, and so on. We end

up with solutions which common sense would label as qualitative at best. They are not,

because the ‘diffusing’ character of the full theory propagates down to them. This has

very concrete consequences, partly explored in previous papers and partly below. In this

sense, the most logical and appealing way to present the method would have been first to

understand its interpretation, and then support it via the results of [13, 15–17].
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An answer to question (Q3) is also within reach. We already have two concrete

examples of solutions not yet constructed in the full theory: a supersymmetric OSFT

profile with wild oscillations and a kink solution obeying Sen’s descent relation. The last

is important also for another reason. The conjecture that general exact solutions are

superpositions of surface states is not new, but here we formulate it upon the integral form

eq. (4.4) and include non-marginal deformations explicitly, while noticing the existence of

examples (wild oscillations, kink) supporting the claim.

4.1 Why spacetime diffusing solutions are approximate (but good)

Diffusing solutions of the effective lowest-order theory do not encode all the information

of a full solution but they capture their main behaviour according to their accuracy. This

was verified both for the rolling tachyon with marginal deformations in bosonic and susy

OSFT [13] and the kink solution of susy OSFT [16, 17]. In the first case, the solution

reproduced all the qualitative features of the wild oscillations, the coefficients of the series

representation being all very close to those obtained with perturbative techniques. In the

second case, the solution was global and very accurate, and it was shown to realize a brane

decay, the brane tension ratio being close to the expected value at 1% level. These solutions

are lowest-level in the truncation scheme and approximate, yet they describe the tachyon

dynamics quantitatively in agreement with independent results.

From the usual formulation of the diffusion method of section 3.2, it would be natural

to explain why spacetime solutions are approximate by interpreting them as ‘semiclassical’

solutions peaked at one surface state in the continuum basis. Then, one could try to

improve a solution by taking finite or infinite superpositions of copies of the solution with

different r’s. However, the reinterpretation of section 3.3 via eq. (3.23) demonstrates that

all diffusing spacetime solutions can already be written as integrals of formal solutions of

the diffusion equation times an appropriate weight function. Thus, any attempt to reduce

the global error by considering finite or infinite superpositions of solutions is bound to fail.

We checked it explicitly. Even if these ‘integrated solutions’ are not of much use in string

theory, below we report these results in detail because they will incidentally indicate a

route towards solutions of other non-local models such as the p-adic string.

Having excluded the ‘semiclassical’ interpretation of spacetime approximate solutions,

the most obvious source of inaccuracy is level truncation. This claim is not trivial. On one

hand, the level-0 approximation is good, at least for marginal deformations and brane decay

configurations, only because non-locality (off-shell potential) is taken into account. On the

other hand, the diffusion equation method yields approximate solutions of the truncated

effective theory but its roots go beyond level truncation, deep into the structure of the

full theory (eqs. (2.8) and (4.4)). This is why all qualitative and most of the quantitative

features of the full theory of tachyon condensation are captured by diffusing spacetime

solutions.

Question (Q2) has also been answered in part. The diffusion equation is nothing but

a reparametrization of a solution which is trivial in the distributional sense (the initial

condition), so non-trivial initial profiles should be illegal. If the initial conditions are close

enough to the analogue of a ‘trivial state’, then they should still be able to catch some
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qualitative features. A comparative example is the kink solution versus wild oscillations

(below analyzed in detail). Also, solutions of the diffusion equation are already superpo-

sitions of diffusing states, so it is not useful to consider such superpositions. The next

section provides explicit examples.

Interestingly, there may be also another explanation for the approximate nature of

spacetime diffusing solutions. Before the discovery of Schnabl’s gauge, a method for finding

normalizable solutions was proposed [83]. There, VSFT is regularized, so that the regular-

ized sliver state is an approximate solution of the theory when the regulator is kept finite,

and it reduces to the sliver projector when the latter is removed. In particular, one defines a

deformed Siegel gauge (or deformed CFT) with kinetic operator Q = c0(1+a−1L0). When

a → 0, Q tends to the BRST operator, while when a → ∞ it is the pure ghost operator

of VSFT. In [77, 85] it was shown that there exists a unique (regularized) gauge invariant

surface state in (regularized) bosonic VSFT, and that upon removing the regulator this

state is the butterfly and solves VSFT exactly. If the regulator a is kept finite, then the

‘deformed butterfly’ is an approximate solution of the equation of motion (it is a projector

only at leading order in a regulator expansion). A generalization to other projectors was

studied in [78].

The spacetime diffusing solutions could be regarded also as configurations with a finite

regulator. Then, the coefficient a−1 in front of the kinetic operator can be reabsorbed

in a coordinate redefinition, which in turn can be seen as a rescaling of the perturbative

tachyon mass. Extending the same philosophy to the supersymmetric theory, this would

explain why the most accurate kink solution of the OSFT lowest-level action with non-local

potential (eq. (3.4)) featured a value r∗ different from that of OSFT (this can be readjusted

by rescaling the coordinate and then the mass) [17]. On the other hand, the solution of the

simplified system with approximate non-locality (local potential, eq. (5.10)) has the usual

value of the mass [17]. In either case, the expected brane tension ratio is reproduced, so at

this stage it is not clear whether the finite regulator picture is useful or not.

5 Applications to OSFT and non-local theories

We would like to see whether and how the results of the previous section affect the construc-

tion of spacetime solutions. We have already argued that the diffusion equation method

is a spacetime implementation of the gauge freedom of the full theory, thus explaining its

physical origin. This also enables us to better select the initial conditions or combinations

of diffusing states which will produce a solution of the equation of motion; sections 5.1, 5.2

and part of 5.3 are devoted to this task. The rest of 5.3 and section 5.4 discuss the general

structure and some examples of approximate solutions of string-inspired non-local models.

5.1 Wild oscillations

As an application of formula (3.23), one can easily recover eq. (3.10) starting from the

initial condition

φ(0, t) = 3
2 sech(t) . (5.1)
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For brevity, we have rescaled time by a factor
√

2 which can be restored at the end of the

calculation. An analytic function f(t+ iσ) whose real part coincides with ψ(0, t) at σ = 0

is, by construction,

f(t+ iσ) =
3

2

1

cosh(t+ iσ)

=
3 cos(σ) cosh(t)

cos(2σ) + cosh(2t)
− i

3 sin(σ) sinh(t)

cos(2σ) + cosh(2t)
. (5.2)

When t < 0 we get

φ(r, t) =
3

2

∫ +∞

0
dρ

e−ρ

√
πρ

Re

[

1

cosh(t+ 2i
√
rρ)

]

= 3

∫ +∞

0
dρ

e−ρ

√
πρ

Re

[ ∞
∑

n=0

(−1)ne(2n+1)(t+i2
√

rρ)

]

= 3

+∞
∑

n=0

(−1)ne−r(2n+1)2e(2n+1)t, (5.3)

which indeed coincides with eq. (3.10) under rescaling t → t/
√

2. In the above equation,

the domain t < 0 was chosen to justify the expansion of the hyperbolic secant and the

subsequent term-by-term integration. Once integrated, the convergence domain of the

series extends to the whole t axis.

The bosonic and susy solutions with wild oscillations of [13] were not global solutions,

although they did capture the qualitative behaviour of the well-known solutions in series

representation [12, 96, 106, 107]. The reason is now clear: even if the initial condition

(5.1) is a solution of the susy equation of motion with r = 0, this corresponds to case

(B2) of section 3.2, which does not correspond to a free field solution (i.e., one extremizing

the tachyon potential). This might suggest that case (B2) never leads to exact solutions,

as one could have already noticed from the discussion of section 4. A way to find global

solutions with continuous initial conditions is to generalize the free equation (4.1) in the ḡ

frame with an interaction or a source term. Only restrictions on the source term will allow

one to solve the dynamical problem concretely. Let the inhomogeneous diffusion equation

be (� + ∂r)φ = �f , where f(x) is some function. The non-local exponential operator acts

on φ as a translation along the r direction, plus an extra contribution:

es�φ(r, x) = φ(r − s, x) +
(

es� − 1
)

f . (5.4)

If f is a polynomial or an eigenstate of �, the non-local term in the right-hand side can be

computed explicitly.

Here we will not consider the interesting consequences of this modification of the dif-

fusion equation recipe. For the time being, we stress that case (B2) is still allowable from

a phenomenological point of view, at least for the bosonic rolling tachyon with marginal

deformations. Since this is the only non-trivial solution we know in both the full bosonic

theory and the effective spacetime picture, it is worth collecting sparse results in the litera-

ture on the coefficients cn of the bosonic series eq. (3.8) and draw an explicit comparison of
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Pert. L2 [106] Pert. L16 [107] Non-pert. L0 [13, 123] Exact [96]

c3 2.187 · 10−3 (1.8%) 2.342 · 10−3 (9%) 2.139 · 10−3 (0.4%) 2.148 · 10−3

c4 3.926 · 10−6 (50%) 4.844 · 10−6 (85%) 3.297 · 10−6 (26%) 2.619 · 10−6

c5 4.941 · 10−10 (77%) 5.134 · 10−9 (≫) 5.876 · 10−10 (111%) 2.791 · 10−10

c6 −6.323 · 10−12 (≫) 7.357 · 10−13 (≫) 1.240 · 10−14 (343%) 2.801 · 10−15

c7 – – 3.136 · 10−20 (≫) 2.729 · 10−21

Table 1. Comparison of the coefficients cn of the exact rolling tachyon solution of [96] with

the perturbative calculations at level L [106, 107] and the non-perturbative solution found with

the diffusion equation method [13, 123]. The percentage in brackets denotes the deviation ∆n ≡
|cn − cexact

n
|/|cexact

n
| from the exact value. When indicated as ≫, this error is about or larger than

one order of magnitude.

the numerical values obtained with perturbative techniques [106, 107], the diffusion equa-

tion method [13, 123] and the exact result in the full theory [96]. These are summarized in

table 1. The coefficient c2 = 26/311/2 ≈ 0.152 is the same in all cases. Errors of order 100%

are still acceptable as the coefficients have the same order of magnitude and are exponen-

tially suppressed (in fact, a better estimate of the error is on the logarithmic coefficients,

∆̃n in figure 1). With the only exception of level-2 c5, all the other coefficients of the

diffusing non-perturbative series are much closer to the exact values than those computed

with other methods. This is because the level-0 calculation takes non-local effects into

account, while higher-level results are obtained on-shell (local models).

The coefficients of the exact solution are given in integral form, and numerically up to

n = 7, in [96]. We checked that they can be well described by the non-linear fit

cexact
n ≈ 1.069n e1.032n−1.154n2

, (5.5)

while the coefficients (3.9) of the level-0 diffusing solution are

cn ≈ 1.622n e0.563n−1.046n2

. (5.6)

The coefficients ratio is, respectively,

cexact
n+1

cexact
n

≈ 0.885e−2.309n

(

1 +
1

n

)

, (5.7)

and
cn+1

cn
≈ 0.617e−2.093n

(

1 +
1

n

)

. (5.8)

Both numbers in eq. (5.8) are slightly smaller than those in eq. (5.7), which is why the

coefficients cn of the diffusing solution are greater than the exact ones (see table 1 and

figure 1). At large t, the time exponentials start to dominate and amplify the error on

the coefficients. In this sense, the diffusing solution of [13, 123] was claimed to be a good

solution for not too large t [13]. However, eqs. (5.7) and (5.8) show that the diffusing solu-

tion well captures the behaviour of the exact solution at all times, not only asymptotically;

see figure 1.
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Figure 1. Top panel: the coefficients ln cexact

n (dots) and ln cn (squares) of the exact and diffusing

series, respectively. Bottom panel: ∆̃n ≡ | ln cn − ln cexact

n
|/| ln cexact

n
|.

Since the n-th element of the level-0 non-perturbative series obeys the diffusion equa-

tion individually, the spacetime effective solution (3.8) can be already considered a ‘super-

position of wedge states,’ as is clear from the structure of the exact coefficients (see [96],

eq. (3.3)). The differences, small as they are, between eqs. (5.7) and (5.8) can be ascribed

mainly to the truncation expansion, absent in the first case and lowest-order in the second.

To improve the solution (3.8) one could leave r∗ arbitrary and see what is the best

fit for the exact coefficients, or what is r such that one obtains one of the coefficients in

eq. (5.5). In either case, the resulting r would not be the same as eq. (3.2), in accordance

with the finite-regulator interpretation. This situation is remindful of the kink solutions

of [17]. There, and for the potential in eq. (3.4), one could either obtain an approximate

solution for r = r∗ or another, more accurate, with different r. The latter is a solution of

an equation of motion formally identical with the OSFT effective equation, but with other

values of the constants. However, the same type of solution (with r 6= r∗) might actually

arise from a non-local diffusion equation of the form �φ(r′, x) + ∂rφ(r, x) = 0, where

r 6= r′. Other possibilities, such as an inhomogeneous diffusion equation, were discussed in

section 4.
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Another option is to consider the fact that the r, n dependence of the diffusing series

coefficients is simple for all n. Each coefficient cn in the exact series is given by a multiple

integration of operators along the length of the strip corresponding to the n-th wedge

state. The n-dependence from the length of the wedge state is therefore difficult to assess,

and in general some approximation should be employed to obtain a simple expression like

eq. (3.9).3 Therefore it would be natural to replace r∗ → rn and make a fit which solves the

OSFT effective equation of motion. However, the discussion in section 4.1 suggests that

naive superpositions of a spacetime solution with different r’s would not yield improved

solutions. It may be instructive to show this in a particular instance.

5.2 Finite superposition of solutions

A new kink-type candidate solution could be made of the sum of a number of copies of the

kink eq. (3.7), each with coefficient rn 6= rl. This might increase the accuracy of the result

with respect to the simplest case rn = rl, ∀ l, n. Let us take the superposition of just two

one-dimensional kinks with same asymptotics as eq. (3.7),

φ = C erf

(

x√
4r1

)

+ (1 − C) erf

(

x√
4r2

)

, (5.9)

where C is a constant. For illustrative purposes and without loss of generality, we are

interested in a simplified version of eq. (3.4) [111] where the scalar potential is a pure

power without non-local insertions:

(

∂2
x +

1

2

)

e−2r∗∂2
xφ = σφ3 . (5.10)

For the kink solution, this approximation was shown to lead to the same dynamics of

eq. (3.4) [17].

The asymptotics at x = ∞ fixes the coupling σ = 1/2 (or, alternatively, the normaliza-

tion of the solution for a given σ). Moreover, since the leading term in a x ∼ 0 expansion of

the right-hand side of eq. (5.10) is cubic, the O(x) term in the left-hand side must vanish.

This fixes the coefficient C = C(r1, r2, r∗). Setting, e.g., r1 = 1.5, there remains only one

free parameter to be tuned in order for the error on the equation of motion to be minimized.

The latter is defined as

∆max ≡ sup
x

∆(x) ≡ sup
x

∣

∣

∣

∣

l.h.s. − r.h.s.

scale

∣

∣

∣

∣

, (5.11)

where l.h.s. and r.h.s. are, respectively, the left- and right-hand side of eq. (5.10), and the

denominator is some characteristic scale of the solution. A typical choice is l.h.s. + r.h.s. ,

but others are possible and do not change much the error estimate (see [13, 14, 17] for

details). One can show that values around r2 = 1.3 minimize the error to ∆max ≈ 1.4%.

3For instance, the mean value theorem for integration applied to eq. (3.34) of [96] does work for n ≤ 5

(n ≤ 4 in the notation of [96]). Surprisingly, the point in the interval [0, 1] which realizes this approximation

is about the same for all n ≤ 5 (and equal to tn = 0.375). This way the first coefficients acquire a simpler

n-dependence. As n increases, however, the error propagates and the approximation breaks down.
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This is only slightly smaller than the error for the single-kink solution of the equation of

motion with the same values of the parameters r∗, m and σ, which is ∆max ≈ 1.5% (it can

be calculated directly on the second duplication formula of [17]).

Repeating the same procedure for a three-kink solution, we checked that it is possible

to fix the parameters r1,2,3 and the coefficients of the linear combination so that the error is

about ∆max ≈ 1.4%, but not lower. Therefore, the tachyonic kink solution is not improved

appreciably by a linear superposition of kinks.

Rather than fixing r1 beforehand, one can set all the free parameters by imposing

the coefficients of the coordinate expansion near the origin to vanish, but to no avail.

This typically happens in cases where one is not using a complete functional basis to

express a solution to the equations of motion, but we have shown that this is not the case.

A possibility, which we shall not pursue here, is to consider a finite linear combination

of diffusing solutions with different boundary conditions. Another is to take an infinite

superposition of kinks.

5.3 Integrated solutions of non-local models

Let φ(r, x) be an approximate or exact solution of both the diffusion equation and the

non-local equation of motion of a given model. We define as the ‘integrated solution’

the function

ψ =

∫

I
dr µ(r)φ(r, x) , (5.12)

where I = [a, b], a and b are non-negative and µ is a one-dimensional measure weight

such that ∫

I
dr µ(r) = 1 , (5.13)

in order for ψ to have the same normalization as φ.

There is a caveat regarding the integration interval [a, b]. Because the heat equation is

a conformally transformed free Klein-Gordon equation, all its (one-dimensional) solutions

depend on the argument y ≡ x2/(4r). Every value of y can be achieved by any other value

of the space(time) coordinate under a suitable rescaling in r. In particular, the points

y = 0 and y = ∞ are degenerate as they correspond to two different asymptotics: one in

space(time) (x = 0 and x = ∞, respectively) and one in the extra direction (r = ∞ and

r = 0). Therefore, if one integrates the solution on the whole positive real axis one may

encounter unwanted singularities in the solution or its derivatives.

The following proposition (valid in one dimension but easily extendable to the general

case) holds which prevents this to happen. All C∞ integrated solutions (5.12) which can

be analytically continued on the whole real axis are of the form

ψ =

∫ +∞

0
dr µ(r)φ(r, y) , (5.14)

where

µ(n)(0) = 0 , n ∈ N , (5.15)

and the superscript (n) denotes the n-th derivative. For instance, weights of the form

µ ∼ rne−r produce a discontinuity in ψ(n+2), since µ(n)(0) 6= 0. On the other hand, there
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exist weights which respect the singularity-free and normalization requirements. Examples

are (all l, n positive integers)

µ(r) ∝ e−1/rn

r2
, µ(r) ∝ (rn + r−n)−l , (5.16)

µ(r) =
4n

πr0

(

r

r0

)n−1 1

[(r/r0)n + (r0/r)n]2
, (5.17)

where I = R
+ and r0 is a scale. The last measure has two interesting properties: for n = 1

it is invariant under the inversion r → 1/r, and in the large n limit it tends to µ ∼ δ(r−r0).
As anticipated, the integrated kink (which is still a kink) is no longer a solution of the

effective equation of motion with potential ψ3, for any of the above measures. This is true

also for eq. (3.4) (non-local potential).4

It is instructive to draw a comparison between non-integrated and integrated solutions

for another model, a modified p-adic equation of motion:

(e−s� −m2)ψ = σψn. (5.19)

This toy model was often considered in the literature [125, 127, 129, 134–137] as a useful

hybrid between the string field tachyon and the p-adic string. On one hand, the mass term

is strictly non-zero as for the OSFT tachyon, our reason being technical (see below). On

the other hand, the equation of motion becomes purely algebraic in the local limit, as for

the p-adic string.

The parameter s is a constant we will assume to be either s = +1 or s = −1. Consider

the case n = 3, s = −1 and one-dimensional spatial configurations, e−s� = e∂
2
x . As a

characteristic scale of the problem, we take the denominator of eq. (5.11) to be 1 (the

asymptotics of the solution). Then, one can show that eq. (3.7) is an approximate solution

and the error (5.11) is minimized at ∆max . 0.1% for r ≈ 1.78. The mass is fixed by the

vanishing of the O(x) term in eq. (5.19), m2 =
√

r/(r + s) ≈ 1.511 (this is the reason why

m 6= 0), while the normalization of the potential is σ = 1 −m2 < 0.

The integrated solution

ψ(x) = β

∫ +∞

0
dr
e−β/r

r2
erf

(

x√
4r

)

=
x

√

x2 + 4β

is a kink with same asymptotics as the error function but different slope. This is a candidate

solution for the n = 3, s = +1 system. We checked that the error is minimized for β ≈ 0.7

and m2 ≈ 0.62 (σ > 0), but the global error is rather high, ∆max . 6%. The same result

4To show it, one has to employ the formula

erf

„

x√
4r1

«

erf

„

x√
4r2

«

≈ 1 − e
−

x
2

π

√

r1r2 , (5.18)

which can be obtained in a way similar to the duplication formulæ of [17] and is valid also upon integration

in r1 and r2. The integration intervals I1,2 = [a, +∞) are chosen so that a > 2r∗ and both sides of eq. (3.4)

(which have different signs in the non-local exponents, and thus require a limitation of the domains) are

well-defined.
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holds for the measure µ = e−β/r2

/r2, but not for eq. (5.17): an r0 = 0.33 yields an error

of about 2%. All these features are valid also when taking a different integration interval

I (e.g., I = [a,+∞) with a 6= 0).

The operation of integrating a solution for a given non-local system with chosen s will

yield a candidate solution for the same system but with s → −s. In the p-adic case this

change of sign can be regarded as a switch from the Minkowski to the Euclidean problem

(or vice versa).

5.4 Toy models with polynomial potentials

We conclude with the construction of kink solutions for a family of toy models of the form

φ(γx) = V [φ(x)] , (5.20)

where γ is a constant. The p-adic string equation is of this type. On the left-hand side,

the rescaling of the coordinate can be achieved by a generic pseudo-differential operator.

Here we limit ourselves to the exponential operator and φ = erf. Then, around the origin

√
πφ(γx) = 2γx− 2γ3x3

3
+
γ5x5

5
+O(x7) .

To match all powers up to O(xl+1), the right-hand side of eq. (5.20) should be of the form

V [φ] =
l

∑

n=0

an(γ)φn , (5.21)

for some set of coefficients an(γ) which can be obtained recursively order by order. In this

case, a2n = 0, a1 = γ, a3 = −πγ(γ2 − 1)/12, and so on. The solution at large x is fixed by

the polynomial equation
l

∑

n=0

an(γ) = 1 , (5.22)

Up to O(x12), one gets an l = 11 potential and a solution with global error ∆max ≈ 10−5

for any of the four allowed values of γ 6= 1 according to eq. (5.22).

The massive p-adic model (5.19) corresponds to the case l = 3. Equation (5.22) gives

γ = (
√

1 + 48/π − 1)/2 ≈ 1.517 (then, a3 = 1 − γ ≈ −0.517) and minimizes the error

to ∆max ≈ 0.1%, all numbers in agreement with section 5.3. The error can be lowered to

0.04% by a slightly different value, γ = 1.511.

6 Conclusions

In this paper we have shown that the structure of all known analytic solutions of open

string field theory is inherited by tachyonic solutions of the effective spacetime action;

compare eqs. (3.23) and (4.4). In both cases, the diffusion equation plays an important

role for the construction of solutions. We have established a connection between two rather

different setups (one exact and universal, the other approximate and spacetime dependent)
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which can be instrumental to finding other solutions in either framework. In particular,

the construction of an exact supersymmetric solution with marginal deformations (in series

and integral form) and of a non-perturbative non-marginal kink in the full theory will help

to verify, and hopefully strengthen, the picture advanced here.
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