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1. Introduction

Since the discovery of the pure spinor formalism [ a new method to efficiently com-
pute supersymmetric scattering amplitudes is available. Although its simplifying features
manifest themselves more vividly in explicit one- and two-loop computations [B,B,A,H,0] and
provide hopeﬂ for higher-loop extensions [[O[T[I], tree-level amplitudes [[J] also benefit
from the streamlined nature of the formalism. In particular, having results written in
terms of pure spinor superspace expressions [[J] sheds new light into finding supersym-
metric completions [[I§].

This paper simplifies the long (bosonic) RNS five-point computations of [['],[§] while
naturally extending them to the full supersymmetric multiplet using the pure spinor su-
perspace. In doing that we uncover the superstring origin of the Bern-Carrasco-Johansson
(BCJ) kinematic identities of [I9], proving that some of them come from an OPE iden-
tity and that they are supersymmetric. And in view of the string theory proof for the
four-point BCJ identity we will demonstrate that the remaining BCJ relations follow from
the different integration regions of the open string world-sheet. These integrations over
the various domain of integrations are related to the monodromies identities between the
string theory amplitudes which have been used in [B{] to prove that the number of partial
amplitudes is (N — 3)!, and is ultimately related to the BCJ identities of [I9].

In the following, the open string massless five-point amplitude at tree-level will be
shown to be A5 = > tr(A%. . A% )A(iq, . . ., i5), with

non—cyclic

L L L L L
A(1,2,3,4,5) _ 2131 Sl_ 2334 Sy — 2134 S 2331 S4— 3424 S5+L2431 K3(204/)2

(1.1)

G205 Q23051 ? (120034 ’ Q23045 (34051
where
S1 =T — (2/)°Ks(azsaus + agzarz), Sz =T — (2a/)°Ks(anaass + as(aus + azs))
Ss =T —(2¢/)? K3(asaous +ona(asi+asa)), Sy =T—(20)*Ks(o2023+ s (51 +ra3))

S5 =T — (20/)2K3(a10051 + anzaizy),

and T = 1+ O(k%) + ... and K3 = ¢(2) + O(k?) + ... have well-known expansions in
terms of a;; = (k" - k7) [[§]. In the field theory limit we set o’ — 0 and therefore S; — 1.

2 Useful knowledge can be obtained even without fully explicit higher-loop computations MB[-

3 For a review of scattering amplitudes in the pure spinor formalism, see 4.
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The kinematic factors L;j;; are given by simple pure spinor superspace expressions which

satisfy the supersymmetric BCJ relations,
Loss1 = Lsi21 — La1s1,  Lossa = Laaoa — Lausa. (1.2)

The paper is organized as follows. In section 2 we compute the five-point amplitude at
tree-level and express it in terms of simple pure spinor superspace expressions. In section
3 we prove an OPE identity which allow us to obtain supersymmetric generalizations for
some of the BCJ relations. Furthermore, using the analogy with the four-point amplitude
derivation of the BCJ identity we show how to obtain the remaining ones. The pure spinor
superspace computations are presented in Appendix A, together with the explicit proof of
(L.2) directly in superspace. Of particular importance is the simplified expression for the
OPE of two integrated vertices presented in (A.2). The Appendix B is devoted to writing
down an ansatz for a simplified expression of Apa(6), whose bosonic component expansion
agrees with the expression obtained in section 2. The Appendix C is a formal rewriting of
the ten-dimensional results using the four-dimensional spinor helicity formalism, and we
show agreement with the known expressions of [21,22,23,4,25). Finally, in the Appendix
D we present the relations obeyed by the integrals K; which were used in the derivations

of section 2.

2. The five point amplitude in pure spinor superspace

Following the tree-level prescription of [] the open superstring 5-point amplitude is
As= ) (A% A%s)A(iy, .., i5)
non—cyclic

where the partial amplitude A5(1,2,3,4,5) is given by

A5(1,2,3,4,5) = (AAY)(21) AAY) (22) (VAP (25) / AU (2) / dzU3(z3)).  (2.1)

The SL(2,R) symmetry of the disc requires the fixing of three positions, chosen as
(21, 24, 25) = (0,1, 00). Therefore the integrals are over the region 0 < z5 < 23 < 1.
Using the OPEs of the pure spinor formalism to integrate out the conformal weight-one

variables, (B.1]) assumes the following form

e [ L L L L L L L
A5:/d22dZ3H|Zij|2a k; kj[ 2131 4 2134 L2434 L2431 i 2331 2334+ 2314]

2
221231 221234 224234 R24%31 223231 223234 293
(2.2)

1<J



where the kinematic factors L;j; are given by the following pure spinor superspace ex-

pressions (from now on we set 20/ = 1),
Loiza = ([A, (M W?) + (AAY) (K - A%)] [A} (M W2) + (AAY) (k- A%)](AAP))
H((K" - E2) (AW (AA) (AA%)(AA%)) + (K% k) (ATW2) (AA%) (AAH) (AA%))
Lozt = +([An, (0" W?) + (AAN (K - A%) ] (AAT) (ML) (k' + &%) - A7)
+{[Ay, MW (k- A%) — AV ONYWAYFR L — (MWW (W) (AAT) (AAP))

H{[(k - B (AW (AA?) — (k- k%) (A°W2)(AAH)]| (AAT) (AA%))
H([(k - B (AW (AA®) + (k7 k%) (ATW?) (AA%) | (AAT) (AA%))

Logz1 = ([Ay, (M W?)(K® - A%) + i(m%mnwi”)A;f;n} (AAH(AA®))

+([(AAD) (K- A%) (K - A7) + %kin(AAl)(WzvmW?’)} (AA%)(AA?))
+([(K* - E*) (A'WP)(AA?) + (K" - k) (A*W3)(AAY) ] (AAT) (ML) — (2 < 3) (2.3)

while the other L;j;,; are obtained by exchanging labels appropriately. All the terms
containing factors of (k- k7)(A*W?!) are “total derivative” terms and will be shown to
cancel in the final result. Furthermore, the double pole in the OPE of U?(2)U3(23) gives

rise to the following expression for Loz
L2314 = (Oé23 + 1) < [(AQWB) + <A3W2) — (A2 As)] ()\Al)(AA4)<)\A5)> = (0623, + 1)L23. (24)

As will become clear later, the factor of (1+ as3) appearing in (R.4)) is essential to obtain a
simple answer for the amplitude. That this is possible can be traced back to the fact that
the pure spinor Lorentz currents have level —3 (see the computations of Appendix A).
With the notation of [[7] for the integrals appearingﬂ in (2.7), the amplitude can be written
as As = Lo131 K1 — Lo13a Ko — Loasa K| + Los31 K3 — Loss1 K5 — Lag3a K + Lo314KGe, or

As = Loyg1 K3 — Lo134 Ko + Lo131 Ky — L3goa Ky + Log3a KL — L3121 K5 + Lo314Ke, (2.5)
where we used K1 = Ky — K5, K| = K} — K| [1§] and

Lo3z31 = L3121 — Lo131,  Lozza = L3aos — Loasa, (2.6)

4 The RNS computations of [LALY] required the evaluation of more complicated integrals with

cubic terms in the denominators.



where (B.4) will be proved as an OPE identity in the next section. Plugging in the ex-
pressions for K in terms of T' and K3 derived in the Appendix D, the amplitude (2.9)
becomes

As5(1,2,3,4,5) =T Aym(0) + K3 Apa(9), (2.7)

where Ay j/(0) and Apa(6) are superfields,

Loi31 L3424 L334 L33y Loi3a Losg (o4 13
Aym(0) = - - - - — +—-1) (2.8
120145 34057 Q23051 (23045 12034 Q23 \ (51 (671
Apa(0) = L L L L Las
F4( ) = Lo431 — Lo331 — Lo33qs — Lo134 + a— (04130424 — (X120i34 — Q230034 — 04120423)
23
12 Q51 34 Q45 Q45 Q51
+Lo331 (— + —) + Lo334 <— + — | +Loiga | — + —
Q45 Q23 Q51 23 12 34
12 23 Q34 Q23 120013 34024
+ L3424 <— + —) — Lo131 <— + —> + Los < + ) . (2.9)
Q34 Q51 12 Q45 Q45 Q51

From (B.§) and (P.9) all the other partial amplitudes can be obtained by permutation.
Therefore (B.7) is the supersymmetric generalization of equation (4.13) of [[§]. In the field
theory limit the amplitude (B.7) reduces to Aym(6).

Using the superspace expressions (B.3) and (B.4) one sees that all terms containing
factors of (k' - k7)(A*W?) cancel out in (B§) and (B9). For example, the terms in (2.9)
containing (A3W?2) are given by

<Z—§j(0‘23 + aog + asy) — a34) (A2W2)(AAT)(AAH(AA%)) =0 (2.10)

because ao3 + o4 + 34 = a1. In fact they come from total derivative terms, as can be
seen in the explicit computations of Appendix A.

The expressions (B.§) and (B.9) can be further simplified by absorbing the “contact
terms” containing Loz conveniently, taking the relations (R.6) as a guide. Using the iden-
tities Lgoo4 = — L2334 and Loy = —Lag31, which follow trivially from the antisymmetry
of the simple pole of U?(25)U3(23) under 2 «++ 3, one can can rewrite Ay (1,2,3,4,5) and
Aym(1,3,2,4,5) as

Loz Liuoa Losaa Losa Loy

AYM(l, 2,3,4, 5) = — — — — (2.11)
120145 34051 23051 23045 12034

L L L L L
AYM(L 3.2.4, 5) _ 3121 2434 i 2334 i 2331 3124 (2.12)
13045 (24057 23051 23045 13024
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where we used a4 = a1 — o3 — @34 and a3 = a5 — a3 — a2 and the redefined L ;i

are given by
L2131 = Loi31 + aialog — auus Loz,  L3gos = L3gos — agalos, Lojza = Laizq — azqliog

Losss = Lossq — asqlos, Lossi = Lossi — analos + ausLos. (2.13)

The identities (R.6) continue to hold with these redefinitions, that is
Loss1 = Lz1o1 — Lo1s1,  Losss = Laaos — Loass. (2.14)

The use of (.13) also removes the contact terms appearing in (B.9), simplifying it. In fact,
using (B.13) the supersymmetric string theory partial amplitude (B.1]) becomes,

L
As5(1,2,3,4,5) = -0 (T — Kj(aza0us + arz(as + ass)))
12034
Loi31 L3404
+——— (T — Ks3(azsaus + aogaz)) — ———— (T — Ks(a12a51 + aogaizs)) + Lag1 K3
120045 Q34051
L33 L334
- (T — K3(a2003 + aus(as1 + ags))) — (T — K3(ovg0ies + asi(aas + aes))
23045 Q23051

The component expansions of (2.9) and (B.§) can be ComputedE using the methods of
B1,8,28. When all external states are bosonic the RNS results of [I7,L] are recovered,

1 1
A — __— ARNS o, — __—_ARNS 2.1
vm(0) NS 9880 YM OF () NS 2880 F (2.15)

The higher o’ expansion in (P.7) is determined solely by the expansions of 7" and K3, and
all the (supersymmetric) information about the external states is encoded in the superfield
expressions Ayy () and Apa(0), in accord with the observations of [29]. This is in fact a
generic feature of the amplitudes computed in the pure spinor formalism. The kinematic
factors of bosonic and fermionic states are always multiplied by the same “form factors”,

which come from the integrals over the world-sheet.

(]

5 This task can be implemented in a computer program [24q].
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3. Derivation of the BCJ kinematic identities

In reference [[[9], the massless four-point partial amplitudes at tree-level were written

as
A(1,2,3,4) = % n % A(1,3,4,2) = - —Is 0 4(1,4,2,3) = —% n ”—; (3.1)
and the identity n, = ns —n; was explicitly shown to be true. Furthermore, the five-point

amplitudes were written as

ni no ns ny ns
AYM(l, 2,3,4, 5) = + + +
12045 Q3051 Q34012 Q23045 Q510034

nis no nio Ty ni1
AYM(1,3,2,4,5) = — — — —
13045 Q23051 Q24(X13 (23045 510024

Ng ng ny ng N9
AYM(1,4,3, 2,5) = + + +
140025 34051 Q23014 Q25034 510032
g ns n1o ns nii1
AYM(l, 3,4, 2,5) = — + —
13025 34057 24013 Q250034 Q510024
ni2 nii ns n13 ns
Aym(1,2,4,3,5) = + — + —
12035 Q24051 34(X12 Q35024 Q51034
ni14 nii nr ni3 no
AYM(l, 4,2, 3, 5) = — — — — (3.2)

Q14035 Q4051 (2314 (35024 (510023
and by analogy with the Jacobi-like four-point kinematic relation, they were required to

satisfy
ng—ns+ng=0, n3—ni+n2=0 ng—nyi+ni5=0, ng—ns+ny=0,

ns —mng+ni1 =0, ny—mng+nyg=0, ng—ng+mng=0, nyg—ng+ny=0,
nio —ni1 +ni3 =0, mniz—ni2+nyy =0, (3.3)

which they explicitly verified to be true. Extending the same reasoning to higher points,
they argued that those kind of relations impose additional constraints which reduce the
number of independent N-point color-ordered amplitudes to (/N —3)!. This conclusion was
later demonstrated in [R0] using the field theory limit of string theory. We will now prove
the identity (2-6) and discuss its relationfl with the 5-point BCJ identities of [[9].

6 I thank Pierre Vanhove for several discussions about this.



To prove (B.G) it suffices to note that in the computation of
(V) VA (22) VO (25) U (22) U (23)),

a kinematic identity can be obtained by considering the different orders in which the OPE’s
are computed. By using first the OPE’s of U?(23) to “eliminate” zy followed by the OPE’s
of U3(z3) one gets,

Loy31 n Loi34 Loy3a Loys1 n L33y Los3a  Logia (3.4)
5 .
2217231 221734 224734 224231 223231 223234 253

while in reverse order,

L3121 L3124 L3sos L3aon L3291 L3zo4 L3214
+ - - + = + =52 (3.5)
231221  231%24  Z34%24  Z34%21  Z32%21  Z32%24 259

As the integrated vertex U is bosonic, (B-4) and (B.§) must be equal. Therefore we get

L — L L —L 1 1 1 1
(L2131 3121) B (L2434 3424) + Lo ( n ) — Logsa( B
221731 224234 223231  Z32221 223234  Z32%24
1
+ (L2134 + L3a21) — (L2431 + L3124) = 0, (3.6)
2342924 224231
where we used Lgoo1 = —Lo331 and Logi4 = L3oi4. To see this one notes that

([0 (22) U (23) ]V (21)VH(24) V2 (25)]) = ([[U*(23)U? (22) ]V (22)V*(22) V7 (25)])

implies
lim [L2331 n L2§14} ~ im [L3221 n L32214]
Z2—23 293231 253 23—/22 232291 239
and therefore Losz31 = —L3o91 and Loz1s = L3o14. That is, the simple and double poles

of the U?(22)U3(23) OPE are antisymmetric and symmetric under 2 < 3, respectively.

Finally, using Z231z31 - z321221 = Z211z31 in (B.G) leads to
Lo131 — L3121 + Logz1 = 0,  Loggs — L3aoa + Lozzs = 0, (3.7)
L2134 = —L3421, Losz1 = —L3i124. (3.8)

The identities (B.7) and (B.§) can be also verified from their explicit pure spinor superspace
expressions given in the Appendix A.

After absorbing the contact terms as in (B.I3), the field theory limit of string partial
amplitudes A(1,2,3,4,5) and A(1,3,2,4,5) are given by (2.I1]) and (B.I3), respectively.
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Note that there is an ambiguity (or freedom) on how to absorb the contact terms, as there

is no unique way in doing so. We chose to absorb them while preserving the kinematic

identities (B.7). This is in agreement with the discussions of [[J], where it is emphasized

that the BCJ identities would not be satisfied by any choice of absorbing contact terms.
Comparing (R.10]) and (R.12) with (B.3) allow us to identify

n1 = Lo131, 14 = —Los31, nis = L3121, N5 = —L3soa, no = —La3ay,

n11 = Losga = —Losa3, n3 = —Loiza, n1o = L3124 = —Lou31. (3.9)

where Logq3 = —Lagss follows from ([[U2(22)V*(24)]U3(23)]) = ([U3(23)[U?(22)V*(24)]).

So one can see that (B.14) is the supersymmetric generalization of the BCJ relations
ng—mni+ni5 =0, ns—ng+ny =0. (3.10)

As a side note, using U? and U* (or U? and U*) as integrated vertices whose positions run
between 0 and 1 would lead to the BCJ identities ni4+ni3—n12 = 0 and ns —ns+n1; =0
(or ng —ng +ng = 0 and n5 — ng +ny; = 0).

How can the remaining (supersymmetric) BCJ relations be obtained? We can use the
four-point computation to understand where they come fromfl. Using the results of [[i] and
the gamma function identity of I'(1 4+ x) = x['(x) one can obtain the open string partial
amplitudes from (V1(0) [U?V3(1)V*(00)), by explicitly computing the integral over the
three distinct regions 0 < 25 <1, —00 < 25 <0, and 1 < 29 < 00,

A(1,2,3,4) = (_Kzl N K23) I — (1 — s)

s t I'(1+u)

A = (1, ) P00 =

sU u I'(1+1)
A(1,3,2,4) = (—K;l + 85;23) at ;(?i(i)_ w) (3.11)

where
Koy = —([4,(00™W?) + AAY) (k! - A%)](AA%)(AAY))

7 I thank Pierre Vanhove for discussions on this point. In particular I acknowledge the fact
that he kindly shared some notes where he suggested the relevance of the different regions of

integrations for obtaining the remaining BCJ ids. Merci beaucoup, Pierre!
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Ko = +([A;, (MW" W) + (AA%) (K7 - A%)](AAT)(AAT))
and s = —2(k'-k?) = —2(k*-k*), u = —2(k* k%) = —2(k*-k*), t = —2(k'-k*) = —2(K*-K3).

Using s+t+u = 0 and taking the field theory limit one can easily derive the supersymmetric
generalization of the four-point BCJ relation n, = ns —n; by comparing (B.11) with (B.1).
That is, ng = —Ks1,n; = Koz and n, = —Ko1 — Kog.

Therefore, computing the integrals appearing in the five-point scattering amplitude for
each of the twelve regions of integration should provide the remaining five-point BCJ iden-
tities in a supersymmetric fashion. For example, the partial amplitude Ay (1,4,2,3,5) is
obtained by integrating (2.2) over 1 < z5 < 23 < 0o, and in this case the kinematic factors
for the different poles appearing in the last equation of (B.3) will be given by combinations
of the factors already present in (E:I7]), so that new identities will have to arise. In fact,

using the transformations y3 = (23 — 1)/23 and y2 = (22 — 1)/2z5 the integral

0.@] z3
/ d23/ dzozg (1 — 23)*34 2572 (1 — 29)*** (23 — 22)*** F(23, 22)
1 1

becomes

F'(y3,92)
(1 —y3)?(1 —y2)?

which will allow us to write them in terms of K; and L; of [[§], provided we also substitute

1 Y3
/ dy3/ dy2y5** (1 — y3) 2 ys* (1 — y2)*** (y3 — y2)***
0 0

13 — (34, Qg4 — Q35, Q12 — Qag, Qag — Q25, Q5] — G4, Q23 — az3  (3.12)

The only “new” integral which is not already computed in [[§] is the one associated to

F(z3,22) = (1 — 29)71(1 — 23) 7%, namely

1
Yoy3(1 —y3)(1 —y2)

1 Y3
/ dys / dyay2 (1 — 3) 5582 (1 — 2)225 (g — o) (3.13)
0 0

However, (B.13) is easily seen to be equal to K| + K3 + L3 = Lg. Finally, the amplitude
(B-9) integrated over 1 < z9 < 23 < 00 is given by

A(1,4,2,3,5) = Loi31 K{+Lo134 L} —LoszaLs—Loaz1 L — Logs1 K+ Lossa Ly +Las (1+a23) Ko

(3.14)
where the tildes mean that the substitution (B.12) must be performed. Using the explicit
results of [ for the integrals, the field theory limit of (B.14) is given by

Lotat + Lovsa — Loaga — L L Lossu — L
Ayni(1,4,2,3,5) = (L2131 + Loiga — Loaza — Loaz1)  Loasa n (L2334 — L2331)
14435 Q24051 Q14093




- + + Log [ — + -

(3.15)
Q24(X35 23051 14 14023 23051

(Loasa + Loys1) L334 ( 1 Qs Q34 )

With the same redefinitions given by (B.I3) the contact terms are completely absorbed,
and (B.19) becomes Ayy(1,4,2,3,5) =

(f/2131 + E2134 - L2434 - L2431) L2434 (f/2334 - E2331) (L2434 + L2431) + f/2334

14035 Q24051 14023 Q24(X35 23051

Finally, comparing it with (B.J) results in the identifications
n7 = Loss1 — Logsa, n13 = Loasa + Loaz1, 14 = Lois1 + Loiza — Lossa — Lous:
and therefore the following BCJ identities are obtained
N7 = —N4 + N2, N13="N11 —Nio, Ni4 = N1 — N3 — N1 + N0, (3.16)

where the first and the third follow from solving (B.3), as can be seen in equation (4.12) of
[M9]. More identities can be obtained by considering the other permutations. Therefore,
we have shown how to obtain the BCJ identities of [[J] from first principles. And by using
the pure spinor formalism and its pure spinor superspace, we have shown that the BCJ

relations are in fact supersymmetric.

Acknowledgements: I deeply thank Pierre Vanhove for reading an early draft and
for suggesting the connection between the identities (R.6) and the BCJ relations, and also
for several discussions. I thank the organizers of the workshop Hidden Structures in Field
Theory Amplitudes 2009, where I presented parts of this work. I also thank John Carrasco
and Henrik Johansson for conversations during the workshop and Stefan Theisen and
Nathan Berkovits for reading the draft. I acknowledge support by the Deutsch-Israelische
Projektkooperation (DIP H52).

Appendix A. Computation of the kinematic factors

In this section we compute the OPE’s appearing in the amplitude (B.1) to obtain the
explicit expression for the kinematic factors L;;x; in pure spinor superspace.
Using the OPE’s

do(2)V (w) — 2V gy ) — V) ) —

Z—w Z—w Z—w
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do(2)dg(w) — —Vgﬁiﬂg, ™ ()" (w) — —%, do(2)0° (w) — %
4o (2)00° (w) — % (e ) = — 2 N () - -5
N (2) Ny (1) =+ N 57 ﬁag)ag
and the equations of motion
DoAg+ DgAn =45 Am,  DaAm = (ymW)a + ki Aa,
DoFn = 2kim (Y W)a, DoW? = %(’ym”)aﬁfmn, (A.1)

a long computation leads to the OPE between two integrated vertices,

1
(z — w)

U%(2)U3(w) — (K2 - AHU? — (k3 - AU — (W2, W3 IO™

—00° Do AZWY — TI™ k2, AZWS + 90° Dy AAWY + I k3, AW

1 1
+Z(d7m”W2)ff§m - Z(dvm”W:)’)fﬁm = (kg + Ey ) (WP WPN™ + F2 Froo N m”]
1
+7(Z ) (14 (K% - k%)) [(A*W?) + (A°W?) — (4% - 47)]. (A.2)

where we dropped the total derivative terms with respect to zo which appear when Taylor
expanding the superfields in the double pole. The super-Yang-Mills equations of motion
(A-T]) have been used judiciously to arrive at the simple answer ([A-3). For example, the

terms which contribute to the double pole are given by,
—AZ[00%(2)ds (w)] W5 — W' [da(2)00° ()] AF + [IT™ (2)TT" (w)] A7, A3
g (w) A7, (2)] [T (2) W5 (w)] = [T (w) W' (2)][da(2) AS (w)]+[TT7 (2) A5 (w)] [T (w) A7, ()]
o ()W (2)][da ()W) ()] + [N () NP ()] 72, S
Using the OPE’s one obtains (omitting (2 — w)~?)

(A2W3) + (A3W?2) — (A2 A%) + k2 (D A2 )WE + k2, (D, A3 )W

1 3
_(k?’ ’ AQ)(kQ ’ A3) + 1_6tr(’ymn’ypq>f72nnf;§q + 5}'727171}';7171’ (A3)
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where the last term comes from the level —3 double pole of the pure spinor Lorentz currents.
One can now use Dy A,y = (Vi W)a + km Ao and the fact that &, (v W), = 0 to simplify

(B.3) to,
(1+ (B2 - ) [(APW?) + (A°W?)] — (A% A%) — (K- A%)(k* - A7) — %ffnnfef””
= (14 (K- k%) [(A2W?) + (A3W?) — (A% A%)] (A.4)

where we used tr(y™"ypq) = —3260" and —5 (F2-F3) = —(k?-k?)(A?-A%)+(k* A%) (k3. A?).

Using the same kind of manipulations as [] one can also prove the following OPE

identity as zo — 21

(AAY)(21)U*(22) M) = —i<[A3n(>\7mW2) +(AAN (k" - A% (z0) M + (ATW?) (21) QM)

221
(A.5)
where M(x, 0) is any superfield. Furthermore, if QM = 0 then the following holds true

1

(A () [5 (dy™ W) P, —

4

ma na

(Y™ W) Fon + FrnaFnaN™"] (23) M)

1 1
= +HG YW AT M+ Sk (AR A WHM) = (23)  (A6)
Also,

1

—(AAYY (B2, + B3 (W2, WHN™M) = -
2(2’3 - 21)

(W™ AN (K2, + Ky, ) (W2, WP ) M)
(A.7)

and

1
z3 — 21

((AAY) (1) (K? - APV (23)) = — (A (W"W2) + (A (B - A%)) (k* - A%))

—nglZl((AlWQ)((’€2 KD (AA®) + k5, (M WE))). (A.8)
One can also show by using gamma matrix identities, the pure spinor constraint and the
SYM equations of motion ([A7]]) that
2 (AT (T 2) B (A ) O ) 4 (AN ) (W, )
+HATWHES (MW — (ATW)EE (M W3) = 0. (A.9)

From (A-), (A7), (A1), (A.9) and the expression for the double pole ([A.4) we finally get

(AADAAT(AA)[U2U](23)) =

12



b (O ALER,, — 2Oy W) ALFS, | (A4S (A7)
H(AR (M W2) + (AAD (B - A7) (K - A%)(AAH)(AA7))
—((An W W) + (AA) (K- A7) (K - A2)(AAT)(AA))

H{ [k AAD (WP WE) + (B2 k) (ATW?) — (k2 - k%) (ATW?)| (AAT) (AA%))

+Z—;<(AA1)(/\A4)()\A5> [(AZW2) + (APW?) — (A% A7) (L + (K- K7))) — (1 = 4)

from which the following expressions can be read for Lass; and Lasig,

Logs1 = Ap, F2, (M"W3)(AA)(AAD) —

mY mn

O W (W27 (AAY) (A7)
+[Ay, AY"W?) + (AAY) (K- A%)] (B - A%)(AA)(AAP))
+(k2-E3) (A'W3) (ANAD) (AAY) (ANAP)) 4+ (B E2) (A2 (AAY) (AAY) (AAD)) — (2 « 3) (A.10)

and
Lagia = (14 (K - 1) (VAN AT A [(42°) + (4°T72) — (4% - %))
where we used that

[

1
(AP W) ALFS, — Z(M’”ym”W2>A;1fin + kL AAD (W2 W) (AAT) (AAP))

>~ =

= A Fan MW AAH)(AA®) = - My WH (W2 (AAT (AA%) — (2 < 3), (A1)

N[ —

which can be checked by writing k!, (AA!) = QAL — (Ay™W1) in the last term of the LHS
and integrating the BRST charge by parts.
The expression for Lo131 can be deduced from the OPE as zo — z; followed by z3 — 2.

Using ([A.5)) we obtain the singularity as zo — 21

1

o ([Ap ™ W2) + (k- A%)(AAD)] (21)U° (23) (AAH) (AA%))

1

221

((ATW2)(21)0(AA?)(23)(AAT) (AA?))
whose OPE computation for z3 — z; implies, after some manipulations in superspace, that
Loz = [A}n(mmw% + (AAY) (K- A2)} (AADNAY) (K + k?) - A3)

13



—(W"W2) My W) AAY) (AA%) + (AT - A%k, (WP ) (AAT)(AA)
+AL (AT (K AZ)(AAT)(AA®) — A7 (MWWP) (K2 - AT (AAT)(AA%)
+(k' - E2) (AW (NAZ)AATY(NAD) — (B - E2) (A2 3)(AAL) (AAY) (A AD)
+(kY - B3 (ATW2)(AA?) (AAY) (NAP) + (K2 - k) (ATW2)(AA?) (AAT) (AAP), (A.12)

while Lo434 and Lsjo1 are obtained by exchanging 1 <-4 and 2 < 3, respectively.

The kinematic factor Laq34 is given by the coefficient of the OPE
(AAN) (21)(AAY) (20) (AA®) (25) U (22) U (23))
as 29 — 21 followed by z3 — 24. Using ([A.5) the first limit becomes

1
—2—21<[A}n()\7mw2) + (AAY (K- A%)] (21) (AAT) (20) (AA%) (25) U (23))
L
Z21
and using ([A.5) again to evaluate as z3 — z4 we obtain

([An (™ W2) + AAN (K - A)] [A7 (™) + (AT (k- A7) (AA?))

((ATW2)(21) (AA") (24) (AA®) (25)D(AA%) (23))..

_|_
221234

L (R R (AW AA) AT AAT)) + (K - (AT (AT (1A (347
e (A.13)
where we used QU3 = 9(\A3) = (OXY)A2 + II™k3,(AA3) + 00°D,(AA3) and that
QAL (AY™W?2) + (AAY) (K - A%)] = —(k - k*)(AAY)(AA?). From (AT3) we get the ex-
pression for Loy3y,
Loza = ([An (™ W?) + (AN (k- A%)] [A, (W) + (AAY) (k* - A7) (AA%))
(kB (AW (AAD) AAZ)(AA®)) + (k7 - k(AT (AA%) (AAH)(AA%))

_|_

A. 1. Ea:plzczt proof Of L2331 = L3121 — L2131
From the expressions ([A.I0) and (AT2) (L3121 is obtained from La131 by exchanging

(2 <> 3)) one can immediately check the following pure spinor superspace identity
Lo331 = L3121 — Lois1- (A.14)

To see this first note that all terms containing (k* - k7) trivially match on both sides of
(AI4). Using that (My™W?2) (W37, W) + My W3)(Wy,,,W?2) = (MY W) (W2, W3)

we get, after some trivial cancellations,

La1o1 — Lotsy — Logz1 = —(AAD)(AAYH)(AAD) (KL - A%)(K! - A3)
+HAL (MW (R AT — (AT A%, (W) — AL (M "WE) L T (AAT) (AA%) — (2 < 3)
which after using F2, = k2, A2 — k2 A2, is equal to zero, as we wanted to show.
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Appendix B. A different pure spinor superspace expression for Aps

A different superfield expression for (B.9) may be suggested using the following ar-
gument. The one-loop amplitude of five massless states must factorize correctly in the
massless poles, which appear when the surface degenerates into a one-loop four-point am-
plitude connected to a three-point at tree-level. This same factorization of the five-point
one-loop amplitude probes the non-linear expansion (with five fields) of the one-loop inter-
action F*. But the kinematic factors of four-point amplitudes at one-loop and tree-level
are proportional, therefore the result of this factorization should also be captured by the
tree-level massless five-point amplitude at the correct o order. This is given by the Apa
superfield above. As discussed in [B], the factorization in the (12)-channel ((23)-channel)
is given by Lis/aqs (Ka23/aws), where

Lip = —40[AL(MPW?) + (AAN (K" - A2)] (M W) (M "W F e
+20(k* - k) (Al W (AAZ) (A" W) (A" W)
Kas = —40[(0 ™ W) (K - 4%) — 200 W] 00" W) (AAY 7,
+20(k? - k*) (A*Ymn W) (AA?) Ay WA (A" W) — (2 < 3)

Therefore it could be argued that Aps+ should be proportional to the linear combination
Lis/ayo + Kag/ags + Ksg/asy + Kas/ous + Lsi1/asi. One can check that the bosonic

components satisfy

1 (L K K K L
12, flos | a4 | M5 51)‘ (B.1)

Api(0) = ——
r(0) 40 (Oélz Qg3 Q34 Q45 Q51

Appendix C. The MHV amplitude

It is interesting to (formally) rewrite our component expansions in the language of
four-dimensional helicity formalism. If the helicities of the gluons are (— — + + +) we use

the following conventions,

—J
I<1 ST
el =v2raXa - r_q 9 el =V2 ¢§X§ . J=23,4,5
[ X] (x77)

where (X)) = V%0 = €Pgxa and [PY] = Y X° = edBEBYd are the spinor products
and (ij) [ij] = —2a;;. For the specific choice of reference momenta (2,1, 1,1, 1) they imply

) ) ) )



and one can check [] that L12 = L51 = L2131 = L2134 = L2314 = 0. With this gauge
choice the superfields (R.§) and (R.9) become

34051 Q23051 Q23045

Ay (6) = — L3sos  Lasza L33y

1 K K K
- orftes | Ma4 45}

Apa(f) = —
ri(0) 40[0423 Q34 Oys

where

V2 (12)* ([23]2[45] [25]2[34] [23][24][45])

B ]
(Lasa1, Laaza, Lasss) = =500 (14) (15)° (13) (14)"  (13) (14)

V212 [23][45)2 V2 o a
Ko =tpe™ 113y~ g oms (12)° [N(125?1>45) N N(122§43)}
O V2(12)" 25%[34) o o
Koo =45y ey~ 72 om0 (12)° [N(123§34) - N(12§43)}

O V2(12)"[23245) V2 34 o
Kis = r o —maypsy .~ g s 12)° [N(123345) - N(123§54)}’

where N (ijkim) = (ij) (jk) (kl) (Im) (mi). Using the results above it is straightforward to

obtain, in the NS sector,

B V2 (12)*
Ay = Mamy = 5555 (12) (23) (34) (45) (51)°

which agrees with the well-known MHV amplitude up to an overall coefficient. The super-

field expression for Aps becomes
A = M [ + amsans + cmang YOZI) - N(12345)
F4 = MuHV | 045051 23(¥34 25 35N(12534) 23 35N(12354) :
which can be rewritten as

Aps = Mynv [04450451 “+ Qio3r3g — [12] <23> [35] <51> }, (Cl)

agreeing with (5.45) of [BI] and (37) of [B3], apart from the overall coefficient.
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Appendix D. The integrals K;
In [I7][L§ the following identities were derived!
azs Ko = 13K + a3 Ky, K3 = oKy — a3 K5, Ky =Ky — Ks
a12Ks = agy K| + aas Ky, «a13K3 = ags K| — 3Ky, K] =K, — K;

(14 ag3)Ks = ags K — a13K5 = a1a Ky — agy KL, (D.1)
and their explicit expansions in terms of a;; were computed at length. However, as men-
tioned in [[[§], by defining

T = apa34 K + (12051 — a12034 + a34045) K3, (D.2)
all integrals K; and K7 can be written in terms of 7" and Kj3. For example, from (D.I)

one can check that (and similarly for K7)

Q34 24

Ky = —Ky+ —Kj,
Q45 Q45
K, = 2034 Ko + aozaza Ko — o34 K3 Ks— o034 K9 — 3o K3 — aiazas K3
23005 ’ (23005
which imply
T leY o
Ki = - <ﬁ + ﬁ) K (D.3)
(12045 Q12 Q45
1 1 T a a «
K4=( + ) —(£+—34—£)K3 (D-4)
Q23 Q12 ) O45 23 12 Q45
T
Ks = - <% e 1) Ks (D.5)
230045 Q45 23
« Q T K
(0423 + 1)K6 = (1 - —13)— + (06130424 — (12034 — (ip3(¥34 — 04120623)—3 (D-G)
Q51 Q45 Q23 Q93

where we used [[§],
13 = Oy — (x12 — (23, 14 = (a3 — Q51 — Oig5, Qg4 = Q51 — (Vg3 — (34
Qo5 = (i34 — Q112 — Qi51, (35 = Q112 — Q45 — (i34, (D.7)

It was shown in [[7] that under the twist ajo < aigq, 13 <« Qo4, oz < a3 the integrals
behave as
(T7 K17 K27 K37 K47 K57 K6) — (T7 Ki? K27 K37 Kz’l? Ké? KG)

which allows one to easily obtain K}, K} and K{ from (D.3), (D.4) and (D.5).

8 We use a different convention where 8,, = ky, instead of &y = ikm. Therefore one must
replace a;; — —ay; in the identities of [[[4]. The only place where it matters is the identity

involving K.
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