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1 Introduction

Since the discovery of the pure spinor formalism [1] a new method to efficiently compute
supersymmetric scattering amplitudes is available. Although its simplifying features man-
ifest themselves more vividly in explicit one- and two-loop computations [2-6] and provide
hope! for higher-loop extensions [10-12], tree-level amplitudes [13] also benefit from the
streamlined nature of the formalism.? In particular, having results written in terms of
pure spinor superspace expressions [6, 15] sheds new light into finding supersymmetric
completions [16].

This paper simplifies the long (bosonic) RNS five-point computations of [17, 18] while
naturally extending them to the full supersymmetric multiplet using the pure spinor su-
perspace. In doing that we uncover the superstring origin of the Bern-Carrasco-Johansson
(BCJ) kinematic identities of [19], proving that some of them come from an OPE identity
and that they are supersymmetric. And in view of the string theory proof for the four-
point BCJ identity we will demonstrate that the remaining BCJ relations follow from the
different integration regions of the open string world-sheet. These integrations over the
various domain of integrations are related to the monodromy identities [20, 21] between
the string theory amplitudes which have been used in [20] to prove that the number of
partial amplitudes is (N — 3)!, and is ultimately related to the BCJ identities of [19].

1 Useful knowledge can be obtained even without fully explicit higher-loop computations [7-9].
2For a review of scattering amplitudes in the pure spinor formalism, see [14].



In the following, the open string massless five-point amplitude at tree-level will be

shown to be A5 = >, o cyelic tT(A"1. 0 AY5) A(iy, . . ., d5), with
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and T = 1+ O(k%) + ... and K3 = ((2) + O(k?) + ... have well-known expansions in
terms of a;; = (k' - k7) [18]. In the field theory limit we set o/ — 0 and therefore S; — 1.
The kinematic factors f/ijkl are given by simple pure spinor superspace expressions which
satisfy the supersymmetric BCJ relations,

Lozs1 = La1a1 — Lowz1,  Losss = Laaoa — Lossa. (1.2)

The paper is organized as follows. In section 2 we compute the five-point amplitude at
tree-level and express it in terms of simple pure spinor superspace expressions. In section
3 we prove an OPE identity from which the supersymmetric generalizations for some of
the BCJ relations can be obtained. Furthermore, using the analogy with the four-point
amplitude derivation of the BCJ identity we show how to obtain the remaining ones.
The pure spinor superspace computations are presented in appendix A, together with the
explicit proof of (1.2) directly in superspace. Of particular importance is the simplified
expression for the OPE of two integrated vertices presented in (A.2). The appendix B is
devoted to writing down an ansatz for a simplified expression of Aps(6), whose bosonic
component expansion agrees with the expression obtained in section 2. The appendix C is
a formal rewriting of the ten-dimensional results using the four-dimensional spinor helicity
formalism, and we show agreement with the expressions of [22-25]. Finally, in appendix D
we derive the relations obeyed by the integrals K; which were used in section 2.

2 The five point amplitude in pure spinor superspace

Following the tree-level prescription of [1] the open superstring 5-point amplitude is

As = > tr(A". M) A(iy, ..., i)

non—cyclic

where the partial amplitude A5(1,2,3,4,5) is given by

A5(1,2,3,4,5) = (()\Al)(zl)()\A4)(z4)()\A5)(Z5)/dz2U2(z2)/dZ3U3(z3)>. (2.1)



The SL(2,R) symmetry of the disc requires the fixing of three positions, chosen as
(21,24, 25) = (0,1,00). Therefore the integrals are over the region 0 < z9 < 23 < 1.

Using the OPEs of the pure spinor formalism to integrate out the conformal weight-one
variables, (2.1) assumes the following form

L L L L L L L
2 2131 2134 2434 2431 2331 2334 2314
A5:/dz2dz3H|z |°"“’“[ + + +
i< Zy1231 | 201234 Z24734 204731 293731 223734 234
(2.2)
where the kinematic factors L;jx; are given by the following pure spinor superspace expres-
sions (from now on we set 2o/ = 1),

Lotza = ([AL,O0™W?2) + AAY) (K" - AD][ALOY"W3) + (AAY) (K - A%)](AA%)) (2.3)
H((k - B (AW (AAN) (AA?)(AA®)) + (k- k1) (ATW?)(AA) (AAT) (A7)
Loizi = +([AL MW" W?2) + (AAY)(E' - A%)](AAH (AAP) (k' + &?) - A?))

H([AL MW (B A%) = AT (YWY FR — (AR (W) [ (AA") (AA))
H([(E" - B2 (AW (AA?) — (k' - B2)(A2W3)(AAD ] (AAY (AAD))
+([(E" - E*) (AW (AA®) + (k? - B3) (A" W) (AA%)]| (AAY) (AAP))
Logsi = ([AL 00" WO - 42) | 0Py ™ W) ALF2, | (AAY)(AA%)

HOADE - A2)E - 42) 4 KL AA) "I (A4 (A7)

+([(B - ) (AW (AA?) + (k' - ) (APWP)(AAN)] (AAT)(AA®)) — (2 < 3)

while the other L;;j; are obtained by exchanging labels appropriately. All the terms con-
taining factors of (k' - k7)(A*W!) are “total derivative” terms and will be shown to cancel
in the final result. Furthermore, the double pole in the OPE of U?(29)U3(z3) gives rise to
the following expression for Lagi4

Losia = (a3 +1)([(A*W?) 4+ (A*W?) — (A% A% (ANAD) (AAY) (AA®)) = (a3 + 1) Log. (2.4)

As will become clear later, the factor of (14 «g3) appearing in (2.4) is essential to obtain a
simple answer for the amplitude. That this is possible can be traced back to the fact that
the pure spinor Lorentz currents have level —3 (see the computations of appendix A).
With the notation of [17] for the integrals appearing® in (2.2), the amplitude can be
written as As = L2131 K1 — L2134 K2 — Loa3a K| + Loag1 K3 — L331 K5 — Lozga K + Lo314 K, or

As = Loy31K3 — Lo134 Ko + Lo131 Ky — Lagoa K + Logza Kt — L3191 K5 + Loz14Kg, (2.5)
where we used K1 = K4 — K5, K| = K — K} [18] and

Lo331 = L3121 — L2131,  Lo3sa = L3aoa — Loasa, (2.6)

3The RNS computations of [17, 18] required the evaluation of more complicated integrals with cubic
terms in the denominators.



where (2.6) will be proved as an OPE identity in the next section. Plugging in the ex-
pressions for K in terms of 7" and K3 derived in the appendix D, the amplitude (2.5)
becomes

A5(1,2,3,4, 5) = TAYM(H) + K3 AF4(9), (27)
where Ayyi(0) and Apa(0) are superfields,

Ay (60) = Lyzr Lzapsa  Lossa Logn Loz Los <a24 13 _1> (2.8)

+
12045 340571 Q23051 Q23045 Q120034 Q23 \ (51 Q45

Los
Apa(0) = Loagi — Lasz1 — Logsa — Lojza + N (1304 — Q2034 — QR334 — (120023)

23
12 Q51 Q34 Q45 Q45 a5l
+ L2331 < + ) + L2334 < + ) + L2134 < + >
Q45 Q23 Q51 Q23 12 Q34
12 023 Q34 023 Q12013 Q3404
+ L3424 < + > — Loj3; < + > + Lo3 ( + ) . (2.9)
Q34 Q51 12 Oy5 Oy5 Q51

From (2.8) and (2.9) all the other partial amplitudes can be obtained by permutation.
Therefore (2.7) is the supersymmetric generalization of equation (4.13) of [18]. In the field
theory limit the amplitude (2.7) reduces to Ay (6).

Using the superspace expressions (2.3) and (2.4) one sees that all terms containing
factors of (k% - k7)(A¥W') cancel out in (2.8) and (2.9). For example, the terms in (2.9)
containing (A3W?2) are given by

(sz (23 + o4 + aa) — a34> (APW2)(AAH)(AAT)(AA%)) =0 (2.10)

because o3 + aog4 + a3y = as51. In fact they come from total derivative terms, as can be
seen in the explicit computations of appendix A.

The expressions (2.8) and (2.9) can be further simplified by absorbing the “contact
terms” containing Log conveniently, taking the relations (2.6) as a guide. Using the iden-
tities Lgo9q4 = —Log34 and Lggo1 = —Log31, which follow trivially from the antisymmetry
of the simple pole of U?(22)U?(z3) under 2 « 3, one can can rewrite Ayy(1,2,3,4,5) and
Avm(1,3,2,4,5) as

Ayni(1,2,3,4,5) — Lozt B Los B Lossa B Loss1 B Loisa (2.11)
Q2045 Q34051 (o351 Q13045 (120034

L L L L L
3121 _ 2434 + 2334 + 2331 _ 3124

Avni(1,3,2,4,5) = (2.12)

13045 Q24051 Q230571 Q23045 13024

where we used o4 = a5 — a3 — 34 and a3 = au5 — a3 — 12 and the redefined L;jp,
are given by

L2131 = Lo131 + a2 Loz — s Log, L3424 = L3gos — a3qLo3,
Lo134 = Lo134 — a3aLio3 (2.13)
Los3q = Los3q — azq o3, Los31 = Loz — gz Loz + aus Los.



The identities (2.6) continue to hold with these redefinitions, that is
Losst = Lsio1 — Lo1st,  Lasss = Lasos — Lousa. (2.14)

The use of (2.13) also removes the contact terms appearing in (2.9), simplifying it. In fact,
using (2.13) the supersymmetric string theory partial amplitude (2.1) becomes,

As(1,2,3,4,5) = — 5122”;"‘4 (T — K3(azacus + arz(az + azq)))
+ oiiiig, (T — K3(azacus + agzanz))
_ angi)ig, (T — K3(a1a03 + ags(as1 + ass)))
— aiz?;:’:l (T — K3(a12023 + as (cus + az3))

The component expansions of (2.9) and (2.8) can be computed* using the methods
of [3, 29, 30]. When all external states are bosonic the RNS results of [17, 18] are recovered,

A0} = _28180 AR Api(0) NS _28180A§§S' (2.15)
The higher o expansion in (2.7) is determined solely by the expansions of T' and K3, and
all the (supersymmetric) information about the external states is encoded in the superfield
expressions Ayy(0) and Apa(), in accord with the observations of [31]. This is in fact a
generic feature of the amplitudes computed in the pure spinor formalism. The kinematic
factors of bosonic and fermionic states are always multiplied by the same “form factors”,

which come from the integrals over the world-sheet.

3 Derivation of the BCJ kinematic identities

In reference [19], the massless four-point partial amplitudes at tree-level were represented
in terms of its poles as

A(1,2,3,4):28+Zt, A(1,3,4,2):—7Z‘_28, A(1,4,2,3):_Zt+2“, (3.1)

and the identity n, = ns — n; was explicitly shown to be true. Furthermore, the five-point

amplitudes were written as

n1 no ns ny ns
Aym(1,2,3,4,5) = (3.2)
Q12045 Q23051 Q3412 Q23045 Q510034
nis n2 ni1o Ty ni1
Aym(1,3,2,4,5) = — — — —
Q13045 Q23051 Q2413 Q23045 510024
ne ns ny ng n2
Avym(1,4,3,2,5) = + + + +
Q1425 34051 Q2314 Q25034 51032

4This task can be implemented in a computer program [26-28].



19 ns n10 ng ni
AYM(173747275) = — + — +
Q13025 Q34051 (2413 Q5034 (510024
n12 ni n3 n13 ns
Avym(1,2,4,3,5) = - -
Q2035 Q4051 (3412 Q35024 (510034
ni4 n11 ny n13 U
Avym(1,4,2,3,5) = — — — —
Q4035 Q4051 (34 Q35024 (51023
and by analogy with the Jacobi-like four-point kinematic relation, the numerators were

required to satisfy

ns —ns + ng = 0, ng —ni +nie =0,
ng —n1+ni5 =0, ng —ng +n7 =0, (3.3)
ns —ng +mni =0, nr —ng +niy = 0,
ng —ng +ng =0, nip — ng +nis = 0,
nio —ni1 +ni3 = 0, nig — niz +nig = 0,

which was explicitly verified to be true. Extending the same reasoning to higher points,
it was argued that those kind of relations impose additional constraints which reduce the
number of independent N-point color-ordered amplitudes to (N — 3)!. This conclusion was
later demonstrated in [20] using the field theory limit of string theory. We will now prove
the identity (2.6) and discuss its relation with the 5-point BCJ identities of [19].

To prove (2.6) it suffices to note that in the computation of

(V1) VH(24) VO (25) U (22) U (23)),

a kinematic identity can be obtained by considering the different orders in which the OPE’s
are evaluated. By computing first the OPE’s of U?(z3) followed by U?(z3) one gets,

Lo131 n Lowza Loasa  Loss n Loszr  Lossa | Losia

(3.4)
291231 221234 224734 224731  Z23%Z31 223734 224
while in reverse order,
L3121 Lsioa Lsaoa L3zazr L3zzer Lazea  Lisoia
+ - - + - . (3.5)

231221 231224 234224  Z34%21 232221 232224 23
As the integrated vertex U’ is bosonic, (3.4) and (3.5) must be equal. Therefore we get

(L2131 — Lg121) (L2434 — L3a24)

221231 224234
1 1 1 1
+Lo331 ( + > — Loz < + ) (3.6)
223231 2327221 223234 32224
1 1
+ (L2134 + L3ao1) — (L2az1 + L3124) = 0,
234224 224231
where we used L3991 = —Los3; and Log14 = L3214. To see this one notes that

([U*(22)UP(2)]V (21)VH(20) V2 (25)]) = ([[U (23)U° (22)]V '} (21)VH (22) V2 (25)])



implies

L L L L
lim [ 2831 2;14] ~ im [ 3221 3;14]
2223 | 293231 223 2322 | 23922921 232
and therefore Log31 = —Lgo01 and Logis4 = L3o14. That is, the simple and double poles
of the U?(29)U?(23) OPE are antisymmetric and symmetric under 2 « 3, respectively.
Finally, using Z231Z31 + z321221 = Z211Z31 in (3.6) leads to
Loi31 — L3121 + Las31 = 0, Los3s — L3aos + Lozzq = 0, (3.7)
Lo134 = —L3aa1, Loy31 = — L3124 (3.8)

The identities (3.7) and (3.8) can be also verified from their explicit pure spinor superspace
expressions given in the appendix A.

After absorbing the contact terms as in (2.13), the field theory limit of the string partial
amplitudes A(1,2,3,4,5) and A(1,3,2,4,5) are given by (2.11) and (2.12), respectively.
Note that there is an ambiguity (or freedom) on how to absorb the contact terms, as there
is no unique way in doing so. We chose to absorb them while preserving the kinematic
identities® (3.7). This is in agreement with the discussions of [19], where it is emphasized
that the BCJ identities would not be satisfied by any choice of absorbing contact terms.

Comparing (2.11) and (2.12) with (3.2) allow us to identify

n1 = L2131, ng = —Lo331, nis = L3121,
ns = — L3404, ng = —Lo33y, (3.9)
ni11 = Loyzqs = —Loyus, ng = —Lo134, ni1o = L3124 = —Loy31.

where Loz = —Layzs follows from ([[U?(22)V4(24)|U3(23)]) = ([U3(23)[U%(22)V*(24)]).
Therefore (2.14) is the supersymmetric generalization of the BCJ relations

ng—ni1+ni5 =0, ns—no+n; =0. (3.10)

Using U? and U* (or U? and U*) as integrated vertices whose positions run between 0
and 1 would lead to the BCJ identities n14 + n13 — n12 = 0 and ns — ns + ny; = 0 (or
ng — ng +ng = 0 and ny — ny +ny; = 0).

How can the remaining (supersymmetric) BCJ relations be obtained? The four-point
derivation of the BCJ identity provides the hint, as there are no two integrated vertices
to allow an OPE identity in this case. Using the results of [6] and the gamma function
identity of I'(1 + ) = aI'(x) one can obtain the open string partial amplitudes from
(V1(0) [ U?V3(1)V*%(c0)) by explicitly computing the integral over the three domains 0 <
20 <1, —o0 <29 <0,and 1 < 29 < o0,

A(1,2,3,4) = <_K21 K23> (1)1 - s)

s t I'(1+u) (3:11)

®The full string theory computation provides one extra layer of motivation for the redefinitions of (2.13),
as they also remove the contact terms from the stringy correction Apa(0).



where

Ky = —([A, (W W?) + (AAY (k- 4%)] (AA%)(AA"))
Koz = +([A5, (W W?) + (AA%) (k7 - 4%)] (AAT)(AA"))

and s = —2(k'-k?) = —2(k3-k*), u = —2(k'-k3) = —2(k%-k*), t = —2(k'-k*) = —2(K%-K3).
Using s+t+u = 0 and taking the field theory limit one can easily derive the supersymmetric
generalization of the four-point BCJ relation n, = ng — ny by comparing (3.11) with (3.1).
That iS, Ng = —K21,’I’Lt = K23 and Ny = —K21 — K23.

Therefore, computing the integrals appearing in the five-point scattering amplitude
for each of the twelve regions of integration should provide the remaining five-point BCJ
identities in a supersymmetric fashion. For example, the partial amplitude Ayy(1,4,2,3,5)
is obtained by integrating (2.2) over 1 < z9 < z3 < 00, and in this case the kinematic factors
for the different poles appearing in the last equation of (3.2) will be given by combinations
of the factors already present in (2.11), so that new identities will have to arise. In fact,
using the transformations y3 = (23 — 1)/z3 and y3 = (22 — 1)/2z2 the integrals

o0 23
/ ng/ dzoz5™ (1 — 23)31 25" (1 — 29)**4 (23 — 22)*** F'(23, 22)
1 1

become

F(y3,92)
(1 —y3)?(1 — y2)?

which allow them to be written in terms of K; and L; of [17], provided that

1 Y3
/ dys / dy2y5* (1 — y3) 30 y5** (1 — y2)**° (y3 — y2)**
0 0

Q13 — Q34, Q34 — O35, (2 — o4, Q24 — Q25, Q5] — (4, Q23 — Q23, G5 — a1 (3.12)

The only “new” integral which is not already computed in [17] is the one associated to
F(z3,22) = (1 = 22) 7' (1 — 23)~", namely

1

1 Y3
dys / dy2y5* (1 — y3)*30y5** (1 — y2)**° (y3 — y2)** -
/o 0 3 2 yoy3(1 —y3)(1 —y2)

(3.13)

However, (3.13) is easily seen to be equal to K+ K3+ L3 = Lg. Finally, the amplitude (2.2)
integrated over 1 < 29 < 23 < o0 is given by

A(1,4,2,3,5) = Loiz1 K| +Loia L — Logza Ls — Loaz1 Ly— Lozs1 Kb+ Lassa L7+ Loz (1 4 ao3) K

(3.14)
where the tildes mean that the substitution (3.12) must be performed. Using the explicit
results of [17] for the integrals, the field theory limit of (3.14) is given by

(L2131 + L2134 — Loaza — Loasy) ~ Loass n (La33a — Las31) (

Avym(1,4,2,3,5) = 3.15)
14035 (24051 1423
L + L L 1 « o
_( 2434 2431) n 2334 4 Lo < n 35 34 > '
24(x35 23051 14 (1403 (23051



With the redefinitions of (2.13), the contact terms are completely absorbed
and (3.15) becomes

Aym(1,4,2,3,5) =
(Lot + Loisa — Loasa — Loazt)  Loasa n (L2334 — Lasa)
14035 24051 14023
(Logsa + Logs1) | Lossa
Q24035 Q23051

From exchanging 2 < 3 in (3.15) and using (2.13) it follows that
Avni(1,4,3,2,5) = (3.16)
(Lsi21 + L3124 — Laaoa + Lo1sa)  Lsuos (Lassa — Losa)

Q14095 Q34051 14093
_ (L3424 — Lo134) Loz

Q3425 Q23051
Finally, comparing the above with (3.2) results in the new identifications
n7 = Logz1 — Lagaa, n13 = Loaza + Loa31,
n14 = L2131 + L2134 — Loaga — Loasi,

ng = L31o1 + L3124 — Laaoa + Lo, ng = —Laoa + L2134
and therefore the following BCJ identities are obtained
ne = n1s + nip + ns — N3, ng = —ngz + ns (3.17)
ny = —N4 + na, n13 = N11 — No, ni4 = N1 — N3 — N1 + nio-

Solving (3.17) and (3.10) in terms of ny,...,ng gives

ny = Ng — Ny, ng = —ng + ns,
nip = —N1 +n3g + ng — ns + Ng, ni = ng — ns,
n13 = N1+ ng — N3 — Ng — Ng, N4 = —Ng + N4 + Ng, N =n1 — Ny

and together with ng —ng+ng = 0 and ny14+n13 —n12 = 0, which follow as OPE identities
using U? and U* or U? and U* as integrated vertices, we get the same solution as (4.12)
of [19]. Therefore the BCJ identities of [19] were obtained from first principles. And by
using the pure spinor formalism and its pure spinor superspace, we have shown that the

BCJ relations are in fact supersymmetric.
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A Computation of the kinematic factors

In this section we compute the OPE’s appearing in the amplitude (2.1) to obtain the
explicit expression for the kinematic factors L;;;; in pure spinor superspace.

Using the OPE’s

D,V (w kM (w m90)
dal2)V () — PV ) - TV e - 07
a@stw) — = @) — - T @) — ‘igw)
w0
N () Npgw) =+ * N O g
z—w (z —w)
and the equations of motion
DoAp + DAy = 7 A, DoAm = (YmW)a + kmAq, (A.1)
DoFun = 2k (1) W )as D WH = i(vm”)aﬁfmn,
a long computation leads to the OPE between two integrated vertices,
U )~ ! y (8 4302 — (2 A2)U° — (W25, W) (A2)
— 90° Dy AZWY — T k2 AZWS + 00° Do ASWY + TI™ k3, AS WS
b WA ES, (W,
— (2, + K ) (W2 W) NT™ 4 F2, 3 N
+ (- _1w)2 (14 (K- &%) [(A2W3) + (APW?) — (4% - 4%)].

where we dropped the total derivative terms with respect to zo which appear when Taylor
expanding the superfields in the double pole. The super-Yang-Mills equations of mo-
tion (A.1) have been used judiciously to arrive at the simple answer (A.2). For example,
the terms which contribute to the double pole are given by,

— AZ[06%(2)ds ()] W4 — W3 [da(2)00° (w)] AF + [IT™ (2)IT" (w)] A7, A3
+ [d (w) AR, ()| (2) W4 (w)] — [ (w) W5 (2)][da (2) A3 (w)]
+ [ (2) A7 () [T () A7, (2)] = [ds(w) W3 (2)][da (2) V3 (w)]
1

+ 4[Nm“(z)Npq(w)]f3,mf§q.

Using the OPE’s one obtains (omitting (z — w)~?)

(A2W3) 4+ (AW2) — (A% A%) + k2 (D A2 )WE + k2, (Do A2 W3 (A.3)
1 3
= (K AR A% | (P FR Py P

,10,



where the last term comes from the level —3 double pole of the pure spinor Lorentz cur-
rents. One can now use DyAy, = (vmW)a + kmAq and the fact that ky,(v"W), = 0 to
simplify (A.3) to,

(14 (K- E*) [(A°W?) 4 (A°W?)] — (A% A%) — (K - A®)(k* - A%) — ;f;nfg"" (A.4)
= (L4 (B B) [(APW?) 4 (AW — (A7 - A7)]

where we used tr(y™"y,q) = —32,," and —2(F2F3) = —(K2-k%)(A% A%)+ (k% A3) (k3. A%).
Using the same kind of manipulations as [6] one can also prove the following OPE

identity as zo — 21

1

221

(AN (20)U? (22) M) = ([AL O W2) + (AAY (k! - A%)] (1) M + (ATW?) (21) QM)
(A.5)

where M(x, 0) is any superfield. Furthermore, if QM = 0 then the following holds true

1 1
<()‘A1)(21) 4(d’ymnw2)fr%m - 4(d7mnw3)fr2nn + f?rLafSaNmn (23)M> (Aﬁ)

1 1
= (O ALER, Mt R (AL o M) — (2 3)

1
zZ3 — 21

D AW () + k2 ),

23 — 21

(AAY) (1) (82 - AU (z3) = — (AL OW™W2) + AN (K' - A%)) (K - A%))

(A.8)

One can also show by using gamma matrix identities, the pure spinor constraint and the
SYM equations of motion (A.1) that

1 1
+ R (AW (W) — e (AT (A W) (A-9)

1
+, (M AY (K2, 4 k3 Y (W24, W3) 4+ (AWK Ay W) — (AAW)EE (M W3) = 0.

— 11 —



From (A.6), (A.7), (A.8), (A.9) and the expression for the double pole (A.4) we finally get
(AN AAH A [UPU?)(23)) =
o A, L owemi Al (o)
293231 | |4 4
+ (AL (0™W2) + AAN (K- A2) (K - A%)(AAT)(AA%))
— (A (A" + AAD (K - A%))(R? - A%)(AAT)(AA))
+ ([ AADY W2y W2) 4 (B2 - 1) (ATW?) — (B2 - B2) (A'W )] (AAT) (AA%))
+ é (AADAA(AA®)[(A2W3) + (APW?) — (A% - A%)] (1 + (K* - k%)) — (1 — 4)
223
from which the following expressions can be read for Log3q and Logi4,
Lagst = ALF2, 00" W)Y OA%) — | Qo W) (W) (AAN (A% (A10)
+ [AL (W) + (AAN) (kY- A%)] (K - A%)(AAT)(AAD))
+ (K2 B (ATW3)(AAT) (AAH) (AAP)) + (k' - E2)(A2W3)(AAD) (AAY)(AAP))
—(2+3)
and
Logia = (14 (k% - k) (AA) (AAT) (AA®) [(APW?) + (APW?) — (A% A%)])
where we used that

1 1
SOV AT = YW AL, + kg VAT (W2 2) | (AAT) (AA7))

pT mn Y mn
1
= ApFrn M WHAAH(AA) = Ay WH (W2 (AAH(AA) = (2 < 3),
(A.11)
which can be checked by writing kL (AA!) = QAL — (Ay™W?!) in the last term of the
Lh.s. and integrating the BRST charge by parts.

The expression for Lo131 can be deduced from the OPE as zo — 27 followed by z3 — 2.
Using (A.5) we obtain the singularity as zo — 21
1
-, ([AR (" W2) + (k' - A (AAY)] (21)UP (23) (AAT) (AA))
21

— AT (21)8(AA%) (25) A AT (A7)

221
whose OPE computation for z3 — z; implies, after some manipulations in superspace, that
Loigi = [AL(MY™W?) + (AAY (K" - A% (AAH(AAP) (B! + k?) - A?) (A.12)
— (WH"W2) (W) (AAT AA) + (A APk, (A2 (AAT) (A4
+ AL MW (B A (ANAY)(AAT) — A2 (W) (B2 - AN (AAT)(AAP
+ (KL - B2 (AW (ANAD) AAT(AAD) — (KL - B2)(A2W3)(AAL) (A AT (NA®)
+ (kB (AT (AAB) (ANAY(ANAD) + (K2 - k) (ATW2)(AA3) (AAY) (A4,

s —

ot

(
)
)

- 12 —



while Lo434 and L3101 are obtained by exchanging 1 «+» 4 and 2 < 3, respectively.
The kinematic factor Loj3s is given by the coefficient of the OPE

((AAD) (21) AAY) (24) (AA®) (25)UP (22) U (23))

as zo — 21 followed by z3 — z4. Using (A.5) the first limit becomes

= (AR + AN A%)] (1) AAY) () VA7) (25)0° ()
= (AT () A (20 %) ()0 AA°) )

and using (A.5) again to evaluate as z3 — z4 we obtain

b (AL O + QA - A2 AL 00 + A - 4B 047 (A1)
2217234
b AT (A (A (AAD) + (- (AT (AT (AN (1A%)
221234
where we used QU? = 0(\A3) = (ONY)A3 + TI™ED (AA3) + 00D, (AA3) and that
QAL (MW + (AAY) (k' - A?%)] = — (k' - k*)(AAT)(AA?). From (A.13) we get the expres-
sion for L2134,

Laiza = ([An (M W?) + (MAN (K - A)] [A5, (0™ W) + (AT (K - A%)] (AA))
+ (KL (AW (AAD (AAZ)(AA)) + (k7 - k(AT (AA%) (AAT) (AA%))

A.]_ EXpliCit pI‘OOf Of L2331 = L3121 — L2131

From the expressions (A.10) and (A.12) (Lsj2; is obtained from Lojz; by exchanging (2 <
3)) one can immediately check the following pure spinor superspace identity

Lagz1 = L3121 — Loz (A.14)

To see this first note that all terms containing (k?-k?) trivially match on both sides of (A.14).
Using that (Ay™W?2) (W35, W) + (M W3) (W, W2) = (MW (W2, W3) we get,
after some trivial cancellations,
L3io1 — Loiz1 — Lagz1 = — (AAN)(AAY)(AA%) (k' - A%) (K - A?)
+ [AR O W) (k2 - AT) — (AL Ak, (A" WP)
— A, (AW FL, ] (AAT(AAP) — (2 3)

which after using F2,, = k2,A2 — k2 A2, is equal to zero, as we wanted to show.

B A different pure spinor superspace expression for Apa

A different superfield expression for (2.9) may be suggested using the following argument.
The one-loop amplitude of five massless states must factorize correctly in the massless poles,
which appear when the surface degenerates into a one-loop four-point amplitude connected

,13,



to a three-point at tree-level. This same factorization of the five-point one-loop amplitude
probes the non-linear expansion (with five fields) of the one-loop interaction F*. But
the kinematic factors of four-point amplitudes at one-loop and tree-level are proportional,
therefore the result of this factorization should also be captured by the tree-level massless
five-point amplitude at the correct o/ order. This is given by the Apa superfield above. As
discussed in [32], the factorization in the (12)-channel ((23)-channel) is given by Lia/aq2
(Kgg/agg), where

L1 = —40[A)(MPW?) + (AAD)(K' - A2) [ (MN"W2) (A" W) Fr,
4+ 20(k! - BB (Alyn WH(AA2) (MY W) (MY IW3)
1
Ky = — 40| (M"W2)(k* - A%) — | (MW" W) FL | (" WHAAY Foy
+ 20(k% - k3) (A, W) AA3) Ay WA (MWL) — (2 < 3)

Therefore it could be argued that Apa should be proportional to the linear combination
L12/O£12 + K23/0423 + K34/O£34 + K45/Oé45 + L51/Oé51. One can check that the bosonic
components satisfy

Apa(0) =

1 (L K K K L
<12+ 23, Ha4 | Bas 51>' (B.1)

40 \a12 a3 34 aus Qs

C The MHYV amplitude

It is interesting to (formally) rewrite our component expansions in the language of four-
dimensional helicity formalism. If the helicities of the gluons are (— — 4+ + +) we use the
following conventions,

I V. vIxE I/ ngé
ely=v2oNe 119 el =2 . J =345
ad [T/JIXI] 66 <XJ¢J>

where () = 1o = €Ypxa and [x] = P x& = edﬁwﬁx‘j‘ are the spinor products and
(7) [ij] = —20y;. For the specific choice of reference momenta (2,1,1,1,1) they imply

-65):0
(K- ey =)= (k- e)=(k'-et) = (k') =0

and one can check [26] that L12 = L51 = L2131 = L2134 = L2314 = 0. With this gauge
choice the superfields (2.8) and (2.9) become

L L L
Ayut (9) _ _a 3424 L2334 Los3i

34051 Q23051 Q230045

1 | K K K
AF4(9) _ 23 n 34 i 45

40 | ao3 34 aus

- 14 -



where

V2(12)* [ [23]2[45] [25)%[34]  [23][24][45]
(Pasat, Loaos Lasaa) = = o5010,, ((14> (15) (13) (14)°  (13) (14) )

V2 (12)% [23][45) V2 [« ags ]
Ko =Fons gy T g omow (12)* _N(125;45) * N(122§43)_
Koo V202 20734 (12)4 [ as o]
7 Thr6 (13)(14) o OB | N(12534)  N(12543) |
V202" 2312145 [« azs |
Kis =Fons (ayas) = g B0 (12)* _N(123§45) N N(1§§54)_’

where N (ijklm) = (ij) (jk) (kl) (Im) (mi). Using the results above it is straightforward to
obtain, in the NS sector,

V2 (12)*

A= MY = o000 (1) (23) (34) (45) (51)

which agrees with the well-known MHV amplitude up to an overall coefficient. The super-
field expression for Aps becomes

N (12345) N(12345)

Apa = N
i = Munv |ousas) + agzasg + a25a35N(12534) (230135 N(12354) |

which can be rewritten as

Api = Munv [ousast + aozass — [12](23) [35] (51) ], (C.1)
agreeing with (5.45) of [25] and (37) of [23], apart from the overall coefficient.
D The integrals K;
In [17, 18] the following identities were derived®
aga Ko = a13 Ky + a3 Ky, aga K3 = a12 K1 — a3 K,
Ky =Ky — K;s
19Ky = aga K| + a3 K, a13K3 = az K| — a3 Ky,
K} = K} — Kj
(1 + 0423)[(6 = 0434K:1 — 0413K5 = a9 K4 — 0424Ké, (Dl)

and their explicit expansions in terms of «;; were computed at length. However, as men-
tioned in [18], by defining
T = arpaza K2 + (12051 — a12034 + 3405) K3, (D.2)

We use a different convention where 8,, = kn, instead of 8,, = ikm. Therefore one must replace
ai; — —ayj; in the identities of [17]. The only place where it matters is the identity involving K.

,15,



all integrals K; and KJ’ can be written in terms of 7" and K3. For example, from (D.1) one
can check that (and similarly for K7)

(0% 8]
K= YRy + 2K,
Q45 Q45
K, = 12034 K9 + a3z Ko — a3 K3 Ky — 2034 K9 — azoina K3 — aipzaina K3
Q23045 ’ Q23045
which imply
T o o
K — B ( 34 23> K (D.3)
Q120045 a2 Qs
1 1 T o « o
K4:< + ) _<51+ - 13>K3 (D.4)
o3 12 ) Qus o3 Qi ous
T o o
Q230045 Q45 Q23

agy a3\ T K3
(o3 + 1)Kg = <1 — — > + (13024 — 12034 — Q230034 — Q12023) (D.6)
as1 Q45 ) 23 Q23

where we used [18],

Q13 = Q45 — Q12 — (23, Q14 = Q23 — Q51 — Qy5, g = a5 — o3 —oagg (D7)
Q5 = (i34 — (12 — A5, Q35 = (\12 — Q45 — Q34.
It was shown in [17] that under the twist ao < a4, @13 < o4, Qog < o the integrals

behave as
(Ta KI,K25K3,K45K57K6) A (T7 K15K2yK35K4/1,Ké5K6)

which allows one to easily obtain K1, K} and K{ from (D.3), (D.4) and (D.5).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribution,
and reproduction in any medium, provided the original author(s) and source are credited.
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