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deren als die angegebenen Quellen und Hilfsmittel verwendet habe.

Göttingen, Juni 2012
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“Das Leben ist wert, gelebt zu wer-
den, sagt die Kunst, die schönste
Verführerin; das Leben ist wert,
erkannt zu werden, sagt die Wis-
senschaft.”

Friedrich Nietzsche

1
Introduction

The ability of cells to sense and respond to chemical changes from each side of
the plasma membrane is fundamental for all living organismns. Cells translate
these changes, termed signals, into chemical changes. These so called signal-
transduction processes are the basis for intra- and intercellular transfer of in-
formation and they enable cells to respond accordingly. Physiological signal-
transduction can be achieved in various ways. In multicellular organisms, cells
communicate by hormones and other chemical messengers, the concentration of
ions and other solutes in the intra- or extracellular environment. On a molecular
level, this means that mostly chemical changes activate or inactivate certain re-
ceptor proteins causing a signal cascade to be initiated, identified as the response
to the particular chemical change. Respective important receptors are frequently
located at the surface of the cell, namely the plasma membrane. More than 30 %
of the human genome encode for integrated and associated membrane proteins.
Their exposed position and role in the action and reaction of cells render mem-
brane proteins impotant targets for therapeutical treatments. This is reflected
by the fact that more than 50 % of all current drug targets are membrane pro-
teins [96]. The predominant family addressed by current drugs are G-protein
coupled receptors (GPCRs), a large family of eukaryotic transmembrane recep-
tors that react to signals from the extracellular environment [12]. In response
to extracellular changes, GPCRs generate intracellular responses mediated by
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2 Introduction

heterotrimeric guanine nucleotide-binding proteins (G-protein). Another class
of integrated membrane proteins are membrane channels which facilitate the
permeability of lipid membranes for certain solutes and water according to the
chemical gradient. They are important for countless processes in the human body
including neural conduction, the cardiac action potential and osmotic balance.
Alltogether, membrane channels are ideal drug targets with an enormous poten-
tial for future pharmaceutical treatment [96]. However, they are conceptually
different from other drug targets as enzymes or GPCRs. Evolutionary, the pores
of membrane channel proteins are not optimized for high-affinity ligand binding.
This might by the reason why only five per cent of all current drug targets are
membrane channels [12].
Structural biology enables the direct search and the modelling of functional mod-
ifiers which complement the structure and the chemistry of a particular receptor
[22]. A widely applied method in the field of drug discovery is molecular dock-
ing that relies on the three dimensional receptor and ligand structures in order
to predict the structure of receptor-ligand complexes [66]. A common applica-
tion of molecular docking in the field of drug design is the screening of virtual
compound databases for the identification of putatively active compounds (ac-
tives), compounds that activate or inactivate a biological target. Hereby, the the
affinity of the ligand, usually in terms of the standard binding free energy, is es-
timated by evaluating a so called scoring function (SF). This function quantifies
the interactions of receptor and ligand in the complex. The generation of scor-
ing functions generally includes fitting to experimental data including a broad
scope of receptor-ligand complexes to yield generality. Unfortunately, in the set
of available liganded protein structures membrane channels are in the minority.
Therefore they are rarely used for the training of scoring functions, rendering
molecular docking against membrane channels challenging.
In principle, molecular docking tries to assess the standard binding free energy
of complex formation. For the estimation of receptor-ligand interactions the
free energy is the most important thermodynamic characteristic [43, 44, 140].
In general, it describes the driving forces of basically all biological process as
e.g. the folding of proteins, osmotic forces and in particular the formation of
receptor-ligand complexes. Knowing the basic physics involved in these processes
theoretically enables to calculate the corresponding binding free energy. However,
the complexity of biological systems renders the exact calculation impossible
for typical biological systems. The equations that describe such systems are
analytically and computationally untractable. Despite that for many systems it is
possible to construct a discretized, virtual model system that reflects the relevant,
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inherent properties of the real target system [136]. Modern computer based
techniques use parameter based model systems and several computational and
mathematical “tricks” for the generation of structural ensembles corresponding
to time series of structures representing a dynamical processes. This time series is
in general referred to as simulation. Such simulations are expected to correspond
to the dynamics of the target system. When such a biological process can be
modeled and covered by the simulated timescales, simulations can be used to
approximate the binding free energy involved in these processes. Nevertheless,
the size of typical biologically systems and the timescales on which e.g. drug
binding takes place (timescales up to milliseconds) cause an enormous amount
of computational power rendering an application on thousands or millions of
compounds impossible.
In this work, I combine computational methods as molecular docking and all-
atom molecular dynamics simulations to explore the inhibition of membrane
channel proteins by non-covalent association of small chemical compounds. The
first chapter is focused on the optimization of molecular docking techniques tar-
geting the chimeric potassium channel KV1.1-(1.2)3 and shows how contempo-
rary molecular docking algorithms can be optimized for the efficient prediction of
potassium channel inhibitors. In the second chapter, I explore the inhibition of
the human water channel protein hAQP9 by combining various computational
methods as molecular docking and all-atom molecular dynamics simulations.
This study revealed the location of the interaction site of inhibitors. Furthermore,
the complete binding process of a known inhibitor was simulated. Chapters 5 and
6 describe the status quo of ongoing studies with perspectives for future engage-
ments. Chapter 5 covers the initial phase in a drug discovery endeavor starting
with a crystal structure and no knowledge about small molecule inhibitors. The
latter study is focused on the phase after the successful identification of active
compounds and covers the process of compound optimization.
In summary, membrane channel proteins hold an enormous potential for the de-
velopment of novel pharmaceutical treatments. Furthermore, selective inhibitors
of individual membrane channels are valuable for the study of the physiological
role of membrane channels including their involvement in (human) diseases. In
addition, little is known about the actual binding process of ligands to membrane
channel proteins in general.





2
Theory and Concepts

2.1 Concepts in Drug Discovery

Drug discovery can be defined as the process in which chemical compounds with
activity against a target or a function are identified. Desired effects could be the
suppression of gene products, inhibition of an enzymatic reaction, the interfer-
ence with a signaling cascade, inactivation of transport proteins or the blocking
of channel proteins. The initial identification of active compounds usually re-
quires a reliable functional assay and a collection of compounds for screening.
Then, compounds that show sufficient activity in this initial screen (hits) are
evaluated on the basis of potency, specificity, toxicity and efficacy in animal
models and other properties to select lead compounds [127], which will enter the
clinical phase. The phase between hit identification and lead selections is called
the hit-to-lead phase. Currently applied hit-identification strategies range from
knowledge-based approaches, which use literature-derived molecular enities, en-
dogenous ligands or biostructural information to quasi ’brute-force’ methods such
as combinatiorial chemistry or high-throughput screening (HTS). The dominant
and the most widely applicable technique for the idientification of lead com-
pounds is HTS [12, 115], an experimental screening technique based on roboting
where large numbers of different compounds are screened in a time as short as
possible and at reasonable costs. Per day, 1,000 – 100,000 individual assays can
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6 Theory and Concepts

be carried out in a typical HTS setup [75, 76, 126]. Usually, 50,000 – 1,000,000
compounds are tested in one single screen. The results obtained in HTS depend
significantly on the type of assay used in the screen. Sills et al. [116] showed
that different types of active compounds are identified by different assay types.

2.1.1 Sensitivity, Affinity, IC50 and Selectivity

The ability of an entity like a cell to respond to an external signal is called the
sensitivity. The higher its sensitivity is, the lower is the treshold of the signal
to cause a response. Hereby, the sensitivity can be increased by cooperative
effects or –in the case of receptor-ligand interactions– high affinities of the ligands
to the receptors. The affinity is quantified as the association constant Ka or
its reciprocal counterpart the dissociation constant Kd. For a receptor-ligand
complex reaction

R + L
konÐÐ⇀↽ÐÐ
koff

RL (2.1)

where R is the receptor, L the ligand and RL the complex, Ka and Kd are
determined by the equilibrium concentrations of the receptor C0

R, the ligand C0
L

and the complex C0
RL or by the on- and off-rates kon and koff :

Ka =
kon
koff

=
C0
RL

C0
RC

0
L

= 1
Kd

(2.2)

The effectiveness of a molecule that inhibits a certain biological target, function
or reaction, can be measured quantitatively by the half-maximal inhibitory con-
centration, the IC50. Regarding the binding of molecules to its receptors the IC50

is the ligand concentration where the concentration of liganded and unliganded
receptors is equal. Often, the IC50 is converted to the pIC50:

pIC50 = − log10(IC50) (2.3)

The IC50 is not a direct indicator of the binding affinity. However, for competetive
agonists (inhibitor) and antagonists (substrate) both can be related by the Chen-
Prusoff equation:

Ka = IC50 (1 + CS
CS,50

)
−1

(2.4)

where CS is the concentration of the substrate and CS,50 the substrate concen-
tration where the activity of the receptor is half-maximal when no inhibitor is
present. The selectivity of a ligand for a certain receptor measures how specific a
ligand binds a certain receptor with respect to other receptors or causes a certain
response. The selectivity for a certain receptor with respect to other receptors
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can be quantified by the fraction of the binding affinities. Sometimes, the level
of inhibition of different receptors or phenotypes at a fixed ligand concentration
is used to estimate affinity and/or the specificity.

2.1.2 Druglikeness - The Rule of Five

As the number of compounds in libraries of large pharmaceutical companies used
in HTS was approaching 1 million, logistic obstacles and cost issues made this
library size an upper limit for most companies [12]. After the realization that the
quality for reliable and information-rich biological readouts cannot be obtained
using ultra-high synthesis techniques, many research organizations subsequently
scaled back their large scale production rates and focused on smaller but struc-
turally diverse compound libraries. The content of present compound librarys in
pharmaceutical companies is more driven by the question of what is useful than
what is possible. Accordingly, the outcome of early combinatorial chemistry
approaches has been widely replaced by smaller contents that are structurally
focused to compounds which are considered to be drug-like or lead-like, mean-
ing molecules that structurally resemble marketed drugs or lead compounds. In
2001, Lipinski et al. [81] set a landmark for the estimation of the oral applica-
bility of compounds by the definition of the rule of 5. A set of properties that
nowadays, has widely been taken as the definition of drug-likeness. Based on a
distribution of calculated properties among several thousand drugs, the rule of
5 predicts poor adsorption or permeation properties when there are more than
10 H-bond acceptors, more than 5 H-bond donors, a molecular weight (MWT)
of more that 500 Dalton and a calculated LogP of more than 5. Lead-like com-
pounds, in contrast, have a lower MWT (around 300 Dalton) and have fewer H-
bond donors and acceptors. Notably, Lipinski suggested that compound classes
that are substrates for biological transporters are exceptions to the rule, because
these compounds are transported actively accross membranes. Therefore, the
general structural constrains that are necessary to in order arrive at its target
receptor e.g. diffuse through the lipid-bilayers, are not required for these class
of compounds. Also antibiotics, antifungals, vitamins and cardiac glycosides are
exceptions to the rule of 5 [81]. Therefore, the accordance with the rule of 5 is
not a guarantee for good metabolic properties and an exception not an absolute
exclusion criterion. In any case, the rule of 5 concentrates research at a property
space with reasonable possibility of oral activity and thus makes labor-intensive
studies of drug metabolisms more efficient.
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2.1.3 The Chemical Space

The growing number of different chemical entities in the databases that are used
in the drug development process raise the question about the relative number of
these compounds and how they compare to each other. The set of all possible
chemical compounds is frequently conceptualized as the chemical space or the
chemical universe, in analogy to the cosmic universe, and can be defined as the
set of all possible molecular structures. It is widely accepted that the chemical
space is huge, but the estimation of the absolute number of its elements varies
by several orders of magnitude. Bohacek et al. [13] estimated the number of
compounds with a maximum number of 30 carbon, nitrogen, oxygen and sul-
fur atoms to exceed 1060, whereas Ertl [35] considered the number of organic
molecules that can be synthesised with currently know methods and estimated it
to be between 1020 and 1024 . An extensive review about the different estimations
of the size of the chemical space was published by Medina-Franco et al. in 2008
[89]. However, for medicinal chemistry a much smaller fraction of compounds
will be relevant, since the majority of these structures will reveal a poor pharma-
cokinetic profile, i.e. poor adsorption, distribution, metabolic effects, excretion
and toxicity (ADMET) properities.

2.1.4 Ligand Similarity

Comparing molecules is a challenging task. A widely applied concept in chemical
informatics are chemical fingerprints. The fingerprint of a molecule is a sequence
of bits or boolean array that is generated with respect to structural features of
the molecule. The assessment of the ligand’s similarity then breaks down to the
comparison of bitstrings, assuming that the similarity of the bitstrings contains
information about the similarity of the underlying molecular structures. The
similarity of the fingerprints can then be assessed by appying the Tanimoto
metric [104], also called the Tanimoto coefficient, distance or similarity. The
Tanimoto similarity T (a, b) of two bit sequences is defined by

T (a, b) = Nc

Na +Nb −Nc

(2.5)

where Na and Nb are the total numbers of bits of each string and Nc the number
of bits that is present in both strings, refered to as the intersection of a and b.
When there is no overlap between a and b, T (a, b) becomes zero. When a and
b are identical T (a, b) becomes one. Two molecules are considered similar, when
the corresponding Tanimioto coefficent of the molecules fingerprints is larger than
0.7.
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2.1.5 The SMILES Notation

The simplified molecular-input line-entry system (SMILES) is a chemical struc-
ture specification that uses one dimensional ASCII strings to encode chemical
structures. Originally invented by Arthur and David Weininger in the 1980s,
it was further modified mainly by Daylight Chemical Information Systems Inc.
Typically, multiple valid SMILES-strings can be written for a molecule. For ex-
ample, CCO, OCC and C(O)C all specify the structure of ethanol. Atoms are
encoded by the standard chemical abbreviation in square brackets. For a subset
of organic molecules (N, O, P, S, F, Cl, Br, and I) the square brackets can be omit-
ted. Hydrogen atoms can explicitly be added, otherwise the canonical number
of hydrogen atoms is assumed. A specific protonation state can be provided by
adding an H, the number of hydrogen atoms, a number of +/- for atomic charges,
e.g.: [NH4+] for a ammonium ion and [Co+3] or [Co+++] for a cobalt 3+ ion.
Between aliphatic atoms single bonds are assumed unless other bond types are
specified. “=“ stands for a double bond and “#” for a triple bond. Aromaticity
is represented by lower case letters. The connectivtiy in ring systems is encoded
by digits, e.g. “c1ccccc1” for benzene. For systems with more than 9 rings the
“%” character has to be put before the ring label. Branches are represented
by parentheses e.g.: “C(C)(C)(C)C” for 2,2-dimethylpropane. Configuration
around double bonds is specified using the characters “/” and “/”: “F/C=C/F”
for the trans- and “F/C=C/F” for the cis-configuration. The stereochemistry
of molecules with stereo centers can be specified by “@”, for example L-alanine
can be written as “N[C@@H](C)C(=O)O” and D-alanine “N[C@H](C)C(=O)O”.
The specifier “@@” indicates that, when viewed from nitrogen along the bond
to the chiral center, the sequence of substituents hydrogen (H), methyl (C) and
carboxylate (C(=O)O) appear clockwise.

2.2 Introduction to Molecular Docking

A key method for the prediction of the structures of receptor-ligand complexes
in the lead and drug discovery process is molecular docking [93]. This technique
was first applied in late 1980s and is widely used as a virtual screening tool in
the early stage of the drug development process. Furthermore, it has been in-
valuable for the understanding of receptor-ligand interactions. In the following,
I will highlight important aspects of molecular docking with respect to the work
presented here. The docking process involves three phases. The first phase, the
sampling, covers the generation of ligand configurations and orientations of a
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Figure 2.1: Six different chemical structures and corresponding SMILES-
strings.

ligand relative to the target binding site. These are referred to as poses. When
receptor flexibility is taken into account, the sampling also involves the variation
of the receptor configuration. In the second phase, the scoring, a so called dock-
ing score is calculated as an estimate of the ligand binding affinity or activity
(Section 2.1.1). When docking is applied to screen virtual compound libraries,
the compounds are ranked according to the best scored poses. This process is
called ranking. The score is calculated by evaluating the scoring function, that
often represents the binding free energy of the complex. Hereby, the complexity
of the receptor ligand interaction is immensely reduced. Most of the contem-
porary scoring algorithms are focused on enthalpic terms, whereas molecular
associations are also driven by entropic effects. Often docking programs used
simplified structural representations and reduce if not neglect protein flexibility
as well as the participation of solvent molecules in binding. Additionally, most
docking programs assume a certain static protonation state and consider a fixed
distribution of charges among the atoms. The lengths and, except for the tor-
sions of rotatable bonds, angles between covalently bonded atoms are kept fixed
[121]. However, the benefit of molecular docking has been demonstrated in many
studies. In the following, the most important components of molecular docking
will be covered in more detail.
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2.2.1 Scoring Functions

The scoring function is one of the central concepts in molecular docking. This
function enables a docking algorithm to rapidly describe and quantify the in-
teractions between ligand and receptor. During the sampling phase the docking
algorithm produces different ligand configurations and orientations within the
target site and assigns a score by evaluating the scoring function. Hereby, an
ideal scoring function would provide the lowest scores for the energetically most
favorable receptor ligand configurations. Assuming that these configurations rep-
resent the interactions that mainly promote the ligand binding, they give direct
insight into the underlying molecular mechanisms. An excellent overview over
a broad spectrum of scoring functions is given in [94]. There are mainly three
different types of scoring functions used:
Force-field based scoring functions are designed based on underlying physical
interactions such as van der Waals (VDW) interactions, electrostatic interactions
as well as bond stretching, bending and torsional interactions. The force field
parameters are usually derived by both fitting to empirical data and ab initio
calculations. A typical force-field based scoring function is implemented in the
DOCK algorithm whose energy function is the sum of VDW and coulombic
energy contributions:

E = ∑
i,j/=i

(
Aij
r12
ij

−
Bij

r6
ij

+
qiqj
εrij

) (2.6)

where Aij and Bij are VDW parameters, qi and qj the charges and rij the dis-
tance between the particles i and j. ε is the dielectric constant [90]. Equation 2.6
does not include the energetic costs of desolvation which is a many body inter-
action term and depends on the chemical environment. In order to account for
the desolvation, further terms are usually added based on the solvent-accessible
surface area of the ligand and possibly the receptor [58]. When energy terms of
VDW and Coulomb interactions are used in a scoring function, they need to be
significantly empirically weighted, in part, to account for the difference between
energies and free energies [19, 43, 121], and in part, to account for the different
methods used to calculate the different terms.
Empirical scoring functions estimate the binding free energy ∆G of a receptor-
ligand complex by a sum of weighted energy terms:

∆G =∑
i

wi∆Gi (2.7)

The energy terms Gi can represent VDW and electrostatic interactions, hydro-
gen bonding strength, entropy changes, hydrophobic interactions or desolvation
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energies and other contributions. The weights wi are derived by fitting to known
experimental data of a training set. In 1994 Böhm developed an empirical scoring
function consisting of hydrogen bonds, polar interactions, the lipophilic contact
area between ligand and receptor and the number of rotatable bonds in the lig-
and. The weights were calibrated with a dataset of 45 protein-ligand complexes
[14]. This scoring function was further improved when Eldridge et al. [33] devel-
oped the ChemScore scoring function that includes terms for hydrogen bonds,
metal atoms, lipophilic contacts as well as the number of rotatable bonds in the
ligand. With the number of different terms in an empirical scoring function it
becomes more and more difficult to avoid the double counting of specific interac-
tions. The applicability of empirical scoring functions may depend on the data
used in the training set. Empirical scoring functions that are fitted to larger
training sets promise to be more generally applicable.
Knowledge based scoring functions use terms that weight the receptor-ligand
complexes by the occurrence fequencies of particle-particle pairs in a database of
known complexes [119]. The idea behind the knowledge based scoring function
is at follows: Supposing large numbers of different particles (e.g. amino acids or
atoms) were somehow to distribute themselves in a gas phase at temperature T
if the interactions are purely pairwise, the distributions can be described by the
equilibrium pairwise density ρij(r) between any two particle types i, j = 1,2, . . .
at distance r. In this case, the interaction free energy, wij(r), can be calculated
from the observed densities by the inverse Boltzmann relation:

w(r) = −kBT ln(
ρij(r)
ρij,0

) (2.8)

where ρij(r) is the pair density of a particle pair at distance r and ρij,0 the pair
density of a reference state where the interatomic interactions are zero [58, 119].
Since these potentials are extracted from the structures rather than from at-
tempting to reproduce known binding affinities by fitting, and because the train-
ing structural database can be large and diverse, the knowledge-based scoring
functions are quite robust and relatively insensitive to the training set [58]. Be-
cause of the pairwise interaction scheme the knowledge based scoring functions
can be as fast as the empirical scoring functions. However, atoms in protein-
ligand complexes are not particles in the gas phase and the pair frequencies are
not independent from each other. Therefore, the calculation of accurate reference
states ρij,0 is a challenging task in the development of knowledge based scoring
functions.
Hybrid scoring functions are implementations of mixtures of the different flavors
of scoring functions. They combine for example force field terms and empirical
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energy terms. This is done, for example, in the program eHiTS [146, 147] which
is described in more detail in section 3.5. Notably, all currently applied scoring
functions require a significant degree of empirical fitting. Therefore, scoring
functions are not necessarily generally applicable to all kinds of drug targets and
should be benchmarked and possibly optimized against special or rare forms of
receptors.

2.2.2 Sampling Algorithms

Molecular docking algorithms can be classified by their search algorithms, which
are applied to predict the complex structure. Search algorithms split up in global
optimization search algorithms that aim to sample systematically the complete
search space and guided progression search algorithms that focus their search
to promising parts of the search space. When treating ligand (and receptor)
flexibility, the global searches suffer from a combinatorial explosion, because even
for very small compounds with few rotatable bonds Nr the number of possible
conformation NC is extremely large:

NC =
Nr

∏
i=1

k

∏
j=1

360
Φi,j

(2.9)

Here k is the number of increments and Φi,j the size of the increments. Therefore,
most contemporary sampling techniques use guided progression searches, that
reject unfavorable conformations and therefore greatly reduce the number of
conformations [72].
Considering the treatment of flexibility of the ligand/receptor there are two
groups of search algorithms. The rigid body search algorithms do not take flex-
ibility into account. They basically solve a 6 dimensional (3 translations, 3
rotations) two body optimization problem. Because of the low dimensionality
they can work extremely fast. Rigid body docking algorithms usually rely on
fast shape matching algorithms that take into account the geometrical overlap
of receptor and ligand. The shape matching can be the only criterion for the
calculation of the docking score or combined with interaction and desolvation
terms as it is done in ZDOCK [100]. Fast shape matching algorithms are also
used by flexible docking algorithms, the second class of docking algorithms, which
take either ligand or receptor flexibility or both into account and thereby require
more computational power [30].
With respect to the degree of flexibility, the class of flexible docking algorithms
splits up in several subclasses. There are docking algorithms that take into ac-
count only the ligand flexibility and treat the receptor as rigid. Other algorithms
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also take receptor flexibility into account starting with alternative side chain ro-
tamers of the receptor amino acids and ending with the full flexibility of the
receptor.
In principle, the docking problem can be addressed by applying energy mini-
mization techniques that perform local optimizations, for example the steepest
decent algorithm. The problem with these techniques is that they do not explore
the configuration space exhaustively and the results depents highly on the initial
placement of the ligand[101]. Simulated annealing aims to avoid getting trapped
in local minima. This algorithm uses a stochastic optimization procedure that
allows phase space transitions contrary to the local energetic gradient with a
certain probability. Hereby, the acceptance rates are determined by a metropolis
criterion and a successively decreasing temperature parameter T is applied. The
acceptance probability for such an algorithm can be expressed as

Paccept = min(1, exp(−∆E
T

)) (2.10)

where ∆E is the change in potential energy and T a free parameter with the
same unit as ∆E. However, differences in results obtained using simulated an-
nealing on different starting position show that similar problems as with local
minimization techniques occur in practice. Another technique to avoid the trap-
ping in local minima is the systematic variation of the input parameters as done
in genetic algorithms. They perform several runs for the search and therefore
are computationally expensive. A systematic guided progression search with low
redundancy is the incremental fragmentation as used in FlexX. It is regularly
applied to target rigid receptors. Here the ligand is cut into fragments which are
successively docked into the target site. Thereby, the ligand is reconstructed.
Usually, the first fragment serves as starting point or “anchor” for the recon-
struction. Therefore, these algorithms are also referred to as anchor-and-grow
methods[30]. However, there are also different subtypes of this technique, that
pursue different strategies for both the fragmentation and the reconstruction, as
done in the program eHiTS (Section 3.5).
There are also exotic methods available such as the search in Fourier space or
the distance geometry method. The latter affords representations of the confor-
mational space of the ligand in form of a matrix that contains constrains for all
atom-atom distances. This matrix is a complete but highly redundant description
of the conformational space of the ligand. Furthermore, only a small subset of
distance matrices which are consistent with the constraints represent meaningful
conformations. The translation from the distance space to euclidian coordinates
is computationally expensive, but euclidian representations are required for the
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calculation of the interaction energy with the receptor. Therefore this method is
computationally very expensive [101]. Since in guided progression searches the
scoring function is sometimes evaluated during the sampling procedure, a sharp
separation of sampling and scoring is not always possible.

2.2.3 Molecular Docking Programs

In the following, two molecular docking approaches are presented in detail. I
focus on the programs Autodock-Vina (Vina) and FlexX (or LeadIT). These
programs are conceptually different and reflect the variety of molecular docking
approaches.

Autodock-Vina (Vina)

AutoDock Vina [121] (version 1.0.2) – hereafter termed Vina – is an open source
docking suite, using an iterative local search algorithm and several runs starting
from random conformations. For the local search, a quasi-Newton method is used
that does not calculate the Hessian matrix of the potential surface explicitly. A
succession of steps is performed that consist of mutations and local optimizations.
Each step is accepted according to a Metropolis criterion (Section 2.2.2). The
arguments of the function that is optimized are the location and orientation of
the ligand as well as the torsion angles for all rotatable bonds. Several runs
starting from random initial arguments are performed. The number of the runs
is varied with respect to the apparent complexity [121]. Significant minima are
then combined and used for structure refinement and clustering. The general
form of the scoring function used in Vina is

c =∑
i<j
fti,tj(rij) (2.11)

where summation goes over all pairs of atoms that can move relative to each
other. These are interactions between atoms that are separated by three cova-
lent bonds. Each atom is assigned a type ti. The interaction function fti,tj(rij)
between at interatomic distance rij is symmetric. Hereby, fti,tj is actually func-
tion of the atomic surface distance dij = rij −Rti −Rtj of the radii R: fti,tj(rij) =
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hti,tj(dij). The following energy terms are used in the scoring function of Vina:

EGauss1(d) = exp(−( d

0.5 Å
)

2
)

EGauss2(d) = exp
⎛
⎝
−(d − 3 Å

2 Å
)

2⎞
⎠

ERepulsion = { d2, if d < 0
0, if d ≤ 0

Ehydrophobic =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if d < 0.5Å
linear interpolation

0, if d > 1.5Å

EH−bond =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if d < −0.7Å
linear interpolation

0, if d > 0Å

The hydrophobic and the hydrogen-bond term have a pairwise linear form. All
interactions are cut off at a distance rij = 8 Å. c can be expressed as sum of
intra- and intermolecular interactions. Then the predicted binding free energy
G is calculated from the intermolecular interactions cinter by

G(cinter) =
cinter

1 +wrNr
(2.12)

Each energy term is associated with a weight. The energy function is not eval-
uated every time the ligand adopts a new pose. Instead, Vina calculates a grid
map for each atom type from the fixed part of the receptor.

FlexX/LeadIT

FlexX [101] uses an incremental approach for the flexible docking of ligands. At
first the algorithm selects a connected and rigid part of the ligand as the base.
The base is chosen automatically and placed into the defined target site. Next,
the ligands are incrementally reconstructed. During this reconstruction process,
fragments of the ligand are successively fit to the base fragment in all possible
conformations. The best of these placements (by the scoring function) are used
for the next reconstruction step. The scoring function implemented in FlexX has
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the form:

∆G = ∆G0 +∆GrotNrot

+ ∆Gcoul∑
coul

f(∆R,∆α)

+ ∆Ghbond ∑
hbond

f(∆R,∆α)

+ ∆Garom ∑
arom

f(∆R,∆α)

+ ∆Glipo∑
lipo

f ′(∆R)

The argument ∆R = R −Ri −Rj − 0.6 Å is the distance of the atoms minus the
radii of the individual atoms Ri and Rj and an additional offset of 0.6 Å. The
terms ∆Gi correspond to ideal geometries. The functions f(∆R,∆α) penalize
deviations from these geometries. During the reconstruction procedure the scor-
ing function is evaluated for the selection of the “best” solutions. Hereby, the
different interaction terms are weighted differently. Optionally, another set of
weights can be used for a final evaluation of the reconstructed ligands. Then,
the final scores are used to rank the set of docked ligands.

2.3 Evaluation of Virtual Screening Results
In this section the different evaluation methods of molecular docking or virtual
screening experiments are explained. Emphasis was placed on the analysis of the
enrichment of known active compounds in a subset of top scored compounds.
One essential measure for the performance of a molecular docking algorithm is
the reproduction of native binding modes defined by a threshold in the root
mean square deviation (RMSD). Although, the rating quality of the RMSD is
problematic for small and large molecules, it has been widely used as criterion
for the definition of success or failure of docking algorithms [58].
A second criterion for the performance of a molecular docking algorithm is its
ability to predict the binding affinity of different ligands. Because the scale
of docking scores is not always in the range of experimental data, often the
correlation between docking scores xi and experimental data yi in form of the
Pearson correlation coefficient CP is considered.

CP = ∑Nk=1(xk− < x >)(< yk− < y >)
√

(∑Nk=1(xk− < x >)2) (∑Nk=1(yk− < y >)2)
(2.13)

where N is the number of ligands or complexes, and xi and yi the corresponding
scores and experimental values. CP is useful to measure a linear correlation,
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but the correlation between scores and experimental values is not linear. In that
case, it is better to project both the scores and experimental values to ranks, and
calculate the correlation between the ranks. This is exactly what the Spearman
correlation coefficient CS stands for.

2.3.1 Enrichment

In structure based virtual screening (SBVS) molecular docking is used to screen
databases of compounds in order to identify active compounds. For this purpose,
the docking scores has to separate active compounds from inactive compounds.
In order to test a particular docking approach it is possible to dock a library of
compounds with known active and inactive compounds to the known binding site.
Then the success of the docking can be estimated by the enrichment, the fraction
of the active compounds in a subset of top scored compounds. Another approach
for the benchmark of docking algorithms is the similarity of the generated ligand
poses with the poses found in an experimentally derived structure When the
score represents the binding free energy, active compounds should be scored
lower than non binders. The tendency to score active compounds differently
leads to a shift in the relative probability distributions (Figure 2.2). A screen
of the top ranked compounds should then find preferentially actives. One can
estimate the quality of a molecular docking algorithm by preparing a test library
with active and inactives and monitor the number of active compounds with
respect to the docking score. This can be done in different ways as described in
the following.
The enrichment ε(x0) is defined as the accumulated rate of active compounds
within the top x0 per cent of a ranked list that contains both known active
compounds, and inactive compounds or decoys. It is bonded at the points (0,0)
and (1,1) –or (100,100) when interpreted as percentages. The most direct way to
plot the enrichment is realized by the accumulation curve ε(x) with x = {0,1}.
Herein, it is referred to the enrichment plot when ε(x) is plotted on a logarithmic
scale. The enrichment factor ξ(x0) is defined as the fraction of the enrichment of
a ranked list and the expected enrichment of a randomly sorted list at a certain
point x0:

ξ(x) = ε(x)
fax

(2.14)

where fa = Na
N is the fraction of active compounds Na in a total of N compounds.

The upper limit of ξ(x) depends on the absolute number of compounds and the
fraction of active compounds fa. The run of both curves depends strongly on the
threshold that defines active and inactive compounds as illustrated in figure 2.3.
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Figure 2.2: Schematical illustration of the separation of active and inactive
compounds with respect to the docking scores. The grey area referes to an
assumed distribution of random decoys. The black line corresponds to a
scoring function that does not shift active compounds with respect to the
decoys and therefore does not lead to any enrichment of positively identified
active compounds. The blue curve corresponds to a shift towards lower scores
and the red curve towards higher scores.

The enrichment factor is important for the estimation of the optimal fraction of
a docked and ranked library of compounds with unknown activity to be screened
experimentally.

2.3.2 The ROC-curve

Another way to monitor a virtual screening (VS) result is the receiver-operator-
characteristic (ROC) curve, which is widely applied in other fields [38]. In gen-
eral, ROC-curves are parameter curves that monitor the true-positive (tp) rate
on the Y-axis and the false-positive (fp) rate on the X-axis. These rates depend
on a discrete classifier. For each value of the classifier a pair (tp,fp) is gener-
ated corresponding to a single point in the ROC space. Here the classifier is the
threshold score/rank of a list of scored/ranked compounds. The rates tp and
fp correspond to the fraction of identified actives and identified inactives. The
points (0,1) and (1,0) correspond to identifiers that perfectly classify the com-
pounds. Hereby (0,1) means all actives are identified as actives and all inactives
are identified as inactives. (1,0) means that all actives are identified as inac-
tives and vice versa. In figure 2.3, the curves of ε(x), Fε(x) and the ROC-curve
are shown with respect to different thresholds that define active and inactive
compounds. Whereas ε(x) and Fε(x) vary significantly, the ROC-curves are rel-
atively robust. As indicated in figure 2.3 the ROC-curve of a perfect ranking
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Figure 2.3: ε(x), Fε(x) and the ROC-curve are shown with respect to differ-
ent thresholds that defines actives and inactives. The curves correspond to
distributions that are shown in figure 2.2. The same color coding has been
used. Each set of black, blue and red curves corresponds to the same list
of scored compounds. The dashed lines correspond to a perfect separation
(red) and an ideal random distribution (black).

(red dashed lines) looks always the same. This property suits the ROC-curve to
serve as a robust estimator for the quality of molecular docking algorithms.

2.3.3 Metrics for Quality Assessment

There are several metrics available for the measure of performance of VS results.
Truchon et al. [60] puplished a detailed discussion of contemporary metrics. One
frequently used metric is the area under the accumulation curve (AUAC).

AUAC = ∫
1

0
dx ε(x) (2.15)

The same can be done with the ROC-curve. The area under the ROC-curve
(AROC) has been frequently used to measure VS performance [60] and is widely
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applied in other fields. The AROC is relatively independent on the ratio of active
compounds. It is bonded by 0 and 1. Hereby, 1 corresponds to a perfect positive
enrichment, where all actives are scored lower than all the inactives. An ideal
random ranking would correspond to 0.5 and an absolute negative enrichment
where all inactives are scored lower than all the actives corresponds to 0. It can
be interpreted as a probability that an active compound is ranked before inactive
compound or decoy.

AROC = ∫
1

0
dx ROC(x) (2.16)

A problem with the AUAC and AROC is that these metrics do not distinguish
between early and late recognition of active compounds as illustrated in figure
2.4. A hypothetical VS result could rank half of the actives very low and the
other half very high. Then, both AUAC and AROC would give a value of 0.5
as in the case of a complete random ranking, although there is a meaningful
difference between these situations. In order to overcome this limitation it is
possible to weight the different contributions of the area under the curves with
respect to the argument x by a weighting function w(x).

wAUAC = ∫
1

0 dx w(x)AUAC(x)

∫
1

0 dx w(x)
(2.17)

wAROC = ∫
1

0 dx w(x)ROC(x)

∫
1

0 dx w(x)
(2.18)

The weighting function can be an exponential function w(x) = exp (−αx). This
form has the advantage that the extend of weighting can be controlled by a single
parameter α. Due to the weighting the wAUAC is not necessarily bonded by 0
and 1, causing that a perfect enrichment is associated with an arbitrary number
which depends on the weighting function. A useful modification of the wAUAC is
the so called boltzmann enhanced discrimination of the ROC-curve (BEDROC)
metric as introduced by Truchon et al. [60]:

BEDROC = wAUAC −min(wAUAC)
max(AUAC) −min(AUAC)

(2.19)

The BEDROC metric discriminates between early and late recognition of true
positives and is bond to 0 and 1. Figure 2.4 show how the values of the different
metrics depend on the threshold for active compounds. The BEDROC therefore
is particularly suitable to assess a scoring method’s ability to identify true actives
in a small selection of top ranked compounds.



22 Theory and Concepts

0 20 40 60 80 100
Inactive compounds [%]

0

20

40

60

80

100
Ac

tiv
e 

co
m

po
un

ds
 [%

]

P0
P1
P2
P3
P4
P5
P6

P0 P1 P2 P3 P4 P5 P6
ID of ROC-cuve

0.0

0.5

1.0

1.5

M
et

ric

BEDROC
AUAC
AROC
wAROC

Figure 2.4: Different hypothetical shaped ROC-courves (left) and the corre-
sponding values of different the metrics (right).

2.3.4 Consensus Scoring

A possible method for the enhancement of virtual screening (VS) results is
consensus scoring (CS) first applied in molecular docking by Charifson et al.
[20]. The main idea of CS is to combine different VS results in order to obtain
better agreement with the experimental results or higher hit-rates. Nowadays,
consensus scoring (CS) is widely applied for the enrichment of virtual libraries,
the prediction of binding poses or binding affinities. In my work, I used CS
solely for the enhancement of the enrichment of virtual screenings. The enhance-
ment of the enrichment using CS has been demonstrated in several publications
[20, 97, 137]. A comprehensive review about CS was published by Feher in 2006
[39].
The bandwidth of strategies and techniques used for CS is broad. With strat-
egy, I mean the way how different VS appraches are applied. For example, a
compound can be docked with two different programs or the pose of a ligand
generated in one program can be evaluated with the scoring function of another
program (rescoring). Instead of combining the values of SFs also the individ-
ual terms of SF can be combined [117]. In contrast, with technique, I mean
the mathematical way of combining different scores (averaging, minimum, max-
imum, weighting, etc.). Which strategy is followed and the technique which is
applied depends on the goal of the study (identifying the correct binding pose,
maximize the enrichment, find the most affine compound, etc.) and the specific
conditions (number of compounds to be evaluated, available computer power,
desired number of compounds in final set, etc.). Finally, with approach, I mean
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the combination of a particular strategy with a certain technique.
The first consensus approach used in a VS study was intersection based [20].
It involved scoring compounds with multiple scoring functions and taking the
intersection of the top N % scored compounds. Only compounds which occur
in the top N % of all applied scoring functions are selected. A feature of this
technique is that the intersection of top ranked compounds by definition is smaller
than the original list of compounds. Therefore, the number of compounds in
the final list becomes smaller the more SFs are applied. A modification of the
intersection technique overcomes this (sometimes) disadvantageous property by
assigning “votes” to the compounds. If a candidate is predicted to be on the
top N % by a certain SF, then it gets a “vote” from that scoring function. The
final score of a candidate compound is the number of votes gathered from all
the scoring functions, which may range from 0 to the total number of scoring
functions. This approach is widely known as rank-by-vote.
Another technique of CS is to build a linear combination of the individual SF
values. When this linear combination is simply the average of all scores I refer to
it as rank-by-num. Aternatively, the compounds can be ranked by the minimal
(rank-by-min) or maximal (rank-by-max) scores of the scoring functions [135]
what would be a special case of a weighting technique. These techniques are
useful when the scoring functions assign comparable numbers to the compounds,
e.g. when all scores reflect the absolute or relative binding free energy of the sys-
tem. Sometimes, the scores are on very different scales or even reflect different
entities, for example the potential of mean force (PMF), and the binding free
energy or an arbitrary number without physical meaning. In this case the con-
sensus can be build according to the ranks of the compounds. When the average
of the ranks is used for the consensus, I refer to it as rank-by-rank [135]. The
rank-by-rank technique may also be interpreted as a compromise between the
intersection based technique and rank-by-number. It is also possible to combine
different schemes in a VS approach. For example, it may be useful to screen
a compound library against different receptor structures using different scoring
functions and then apply the rank-to-min technique with respect to different
receptor structures first and than apply the rank-to-max technique in a second
step.
In order to explain why CS works, Wang and Wang [135] performed an idealized
computer experiment with a hyptothetical set of 5000 compounds, and analysed
the relationship between the hit-rates, the rate of correctly identified actives, and
the number of SFs used for the consensus. They assumed that the value of the SF
is the activity of the ligand plus a random number and observed that the number
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of false positives and false negatives decrease with increasing number of SFs.
The enrichment in the top 100 scored ligands also increased continuously with
the number of SFs, when using the rank-by-number or rank-by-rank technique.
When using the rank-by-vote, they observed a steadily decreasing number of hits
with increasing number of applied SFs, as stated by Carifson et al. [20]. Finally,
Wang and Wang [135] concluded that:

“[...] the consensus scoring outperforms any single scoring [function]
for a simple statistical reason: the mean value of repeated samplings
tends to be closer to the true value.”

Apart from this general mathematical reason there may be also structural reasons
involved that originate from the structural knowledge about receptor and the
compounds. At least for ligand based scoring techniques, it was observed that
scoring functions tend to provide more similar rankings for active compounds
than for inactives [4]. It is widely accepted that the most benefit from CS
can be obtained when the individual contributions (i.e. the factors which are
combined) perform well on the particular target and when the individual factors
are not correlated. The involvement of factors without predictive power, in
general, decreases the informative value of the consensus. Whereas the use of
correlated factors may lead to an overstimation of certain contributions e.g. the
hydrophobic contacts. Applying a certain SF to other docking programs can
lead to inaccuracies and errors, because distances between ligand and receptor
atoms can vary when using different docking programs and the applied SF can be
sensitive to these differences. Therefore, the consensus of results from different
docking experiments and the consensus of several scoring functions applied for a
single docking experiment (rescoring) are conceptually different [39].

Z-scores

When the scales of the individual factors (SFs values or SF terms) are too different
for the construction of a reasonable consensus score, it is possible to convert these
factors into z-scores and to build the consensus with the corresponding z-scores
[87].

zi =
xi − µ
σ

(2.20)

where µ is the mean value and σ the standard deviation of a population xi of
N values. Using an arbitrary input the z-scores project it to a distribution with
a mean value of zero and a standard deviation of one. Therefore, the z-scores
are of similar order of magnitude and can be used for a CS. In this work, I have
always used z-scores when applying a CS technique.
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2.4 Thermodynamics of Ligand Binding
This section provides the thermodynamic framework of ligand binding following
the works of Gilson and Zhou [44, 140]. Central concepts mentioned in section
2.1.1 as e.g. the IC50 and the standard binding free energy ∆Gb

0 are derived from
the basic laws of thermodynamic. The unfeasibility of the exact calculation of
∆Gb

0 is rationalized and prospects for its approximation are derived, namely in
terms of the potential of mean force (PMF).

2.4.1 Thermodynamic Potentials

The equilibrium state of a thermodynamic system is fully described by the fun-
damental thermodynamic relation

dU = TdS − pdV +∑
i

µidNi (2.21)

which describes the change of the internal energy U of a system as a function
of the entropy S, the volume V and the number of particles Ni. Here the tem-
perature T , the pressure p and the chemical potential µi of particle species i are
used. U can be denoted as:

U = TS − pV +∑
i

µiNi (2.22)

The partial derivatives of U(S,V,N) according to S,V and N are:

(BU
BS

)
V,Ni

= T (2.23)

(BU
BV

)
S,Ni

= −p (2.24)

( BU

BNi

)
V,S

= µi (2.25)

what demonstrates that the system is fully determined when U(S,V,N) is known.
Therefore, U is called a thermodynamic potential with the natural variables S,V
and N . In experiments, it is usually easier to control the temperature than the
entropy. Therefore, it is more convenient to describe the system as a function of
T instead of S. The differential of the free energy F = U − TS is

dF = −SdT − pdV +∑
i

µidNi (2.26)

Under conditions of constant temperature T , volume V and number of par-
ticles N , F (T,V,N) becomes a thermodynamic potential, that is minimized
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at the thermodynamic equilibrium. At experimental conditions of constant
temperature and constant pressure the Gibbs free energy (the free enthalpy)
G(T, p,N) = U + pV − TS = F − TS becomes a thermodynamic potential that is
minimized at the thermodynamic equilibrium. The differential of G(T, p,N) is:

dG = −SdT + V dp +∑
i

µiNi (2.27)

2.4.2 The Chemical Potential

The thermodynamic potentials U(S,V,N), F (T,V,N) and G(T, p,N) provide
measures of the stability of a system at a thermal equilibrium: the lower they
are, the higher the stability. In a microscopic system, high stability corresponds
to a high probability of occupancy, what corresponds to a high statistical weight
Q, that is known as the partition function. The free energy F and the partition
function are related by

F = −kBT ln(Q) = −kBT ln(Q), (2.28)

where β = (kBT )−1 is the inverse of the product of the absolute temperature T
and the Boltzmann constant kB = 1.3806 ⋅ 10−23 JK−1. When a system with the
energy function E(x⃗) can be described by a set of canonical coordinates x⃗, the
partition function Q of the system is given by the integral

Q = ξ ∫ dx⃗ e−βE(x⃗) (2.29)

Here the constant ξ is inserted to render Q unitless. It is convenient to integrate
over the external translations, that lead to a factor V , and rotations, that lead
a factor 8π2. Then eq. 2.29 becomes an integral over the interal coordinates x⃗′:

Q = 8π2V ξ ∫ dx⃗′ e−βE(x⃗′) (2.30)

In the following, I will omit the prime for the internal coordinates.
When the microstates separate into two non-overlapping macrostates A and B,
the corresponding partition functions QA and QB are of the form of eq. 2.30
with the integral going over the corresponding microstates. The probability of
occupancy pi for the state i is then proportional to the corresponding partition
function Qi:

pi =
Qi

Q
(2.31)

which is the reason why the partition function can be interpreted as a statistical
weight. Considering now a system with Ni non-interacting and identical particles
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i with single particle partition function Qi, the partition function of the total
system becomes:

Q =
QNi
i

Ni!
(2.32)

The factor Ni! accounts for the indistinguishability of the Ni particles. The
expression for the chemical potential in section 2.1.1 can now be derived by
inserting eq. 2.32 in eq. 2.28 and applying Stirling’s approximation lnN ! ≈
N ln(N) −N :

Fi = −kBT ln(Q) ≈ −kBTNi ln
Qie

Ni

, (2.33)

where e is Euler’s number. Now, the chemical potential of the particles i can be
derived by the partial derivative of F with respect to Ni:

µi = ( BF

BNi

)
T,V0,Ni′ /=i

= −kBT ln(Qi

Ni

) = −kBT ln(Qi/V
Ci

) (2.34)

where V is the volume and Ci the concentration of molecules i. The total chem-
ical potential of the solvated system becomes then:

µ = −kBT∑
i

ln(Qi/V
Ci

) , (2.35)

a quantity that is independent on the volume because each Qi contains the term
V (compare eq. 2.30). With this general expression of the chemical potential a
relation between the free energy of binding and the association constant Ka can
be derived as presented in the next section.

2.4.3 The Binding Free Energy

Considering the reaction from section 2.1.1 between the ligand L and the receptor
R:

R + L
konÐÐ⇀↽ÐÐ
koff

RL (2.36)

The concentrations of unbound ligand is [L], the concentration of the free recep-
tors is [R] and the concentration of the complex is [RL]. The equilibrium constant
Ka of these reaction is defined as:

Ka =
C0
RL

C0
RC

0
L

(2.37)

where C0
R and C0

L are the equilibrium concentrations of the unbound receptor and
the unbound ligand, C0

RL the equilibrium concentration of the bound complex.
Upon binding under constant pressure and constant temperature, the Gibbs free
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energy ∆G is the difference between the chemical potentials of the complex µRL
and the sum of chemical potentials of the recepor µR and the ligand µL:

∆G = µRL − µR − µL (2.38)

Inserting the expression for the chemical potential from eq. 2.35 results in:

∆G = −kBT ln(CRCL
CRL

(QRL/V )
(QR/V )(QL/V )

) (2.39)

When all species R, L, and RL are present at a certain standard concentration
C0 (usually 1 M) the relation for the standard binding free energy is obtained as

∆Gb
0 = −kBT ln(C0

(QRL/V )
(QR/V )(QL/V )

) (2.40)

It is worth noting that the value of ∆Gb
0 depends on the choice of the standard

concentration. When converting a given Ka to a standard binding free energy
∆G it is important to adjust the standard concentration accordingly [44, 140].
Recognizing that ∆G = 0 for the equilibrium establishes the identification of Ka

by

Ka =
C0
RL

C0
RC

0
L

= (QRL/V )
(QR/V )(QL/V )

(2.41)

multiplication with the standard concentration C0 and using eq. 2.40 results in:

∆Gb
0 = −kBT ln (C0Ka) (2.42)

and therefore
Ka = e−β∆G0

b (2.43)

Remembering that Ka is the ratio of the on-rate kon and the off-rate koff of the
binding reaction of eq. 2.1, the physical meaning of ∆Gb

0 becomes obvious:

kon
koff

= e−β∆G0
b (2.44)

When ∆G0
b = 0 then the on-rate and the off-rate are equal. The concentration will

stay constant and the system is in equilibrium with respect to the concentrations.
When ∆G0

b < 0, kon is larger than koff and the association of the ligands prevails
the dissociation. Therefore, the concentration of the complex CRL increases.
When ∆G0

b > 0, kon is smaller than koff and the dissociation of the ligands
prevails the association.



Chapter 2 29

2.4.4 Entropy-Enthalpy Decomposition

The binding free energy can be decomposed in an enthalpic term that describes
the interaction strenght of the receptor and the ligand, and an entropic term
that describes the relative degree of uncertainty of the bound and the unbound
state. Knowing ∆Gb

0, the entropy component of binding can be derived by

∆Sb = −(B∆Gb

BT
)
p,Ni

(2.45)

With eq. 2.42 we get

S = kB ln(CRCLKa

CRL
) + kBT (B ln(Ka)

BT
)
p

+ kBT ( B

BT
ln(CRCL

CRL
)) (2.46)

When the experiment is perfomed at constant pressure p and constant number
of particles Ni, the concentrations Ci may change due to changes in the volume
V and have to be considered as a function of V . The last term in eq. 2.45 can
be reduced to a single factor

kBT ( B

BT
ln(CRCL

CRL
)) = kBT ( B

BT
ln( 1

CV
)) = kBT

V
(BV
BT

)
p,Ni

= −kBTκ, (2.47)

where κ is the thermal expansion coefficient of the solution. Pure water has a
κ ≈ 2.6 × 10−4 K−1 at 25 0C, what would correspond to a value of −0.08 kB [140].
Therefore, the last term in eq. 2.45 can usually be neglected. Replacing the
concentrations by the standard concentration C0 yields the standard binding
entropy:

∆S0
b = kB ln(C0Ka) + kBT ln(B ln(Ka)

BT
)
p,Ni

(2.48)

The binding enthalpy can be obtained as

∆H0
b = ∆G0

b + T∆S0
b = kBT 2 (B ln(Ka)

BT
)
p,Ni

, (2.49)

which has no dependence on the standard concentration C0. Therefore, a change
of the standard concentration shifts the absolute values of ∆Gb

0 and ∆S0
b , but

not of ∆H0
b .

2.4.5 Potential of Mean Force

For a system consisting of solvent and solutes with continuous external “solvent”
coordinates X⃗ and internal “solute” coordinates x⃗ and energy function E(X⃗, x⃗),
the partition function eq. 2.29 can be written as

Q = ξ ∫ dX⃗dx⃗ J(X⃗, x⃗)e−βE(X⃗,x⃗) (2.50)
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The Jacobian factor J(X⃗, x⃗) depends on the choice of external and internal
coordinates. Considering a system that is symmetric with respect to the external
coordinates, the integration over the external degrees of freedom gives a factor
of V for the integration volume and 8π2 for the rotations:

Q = 8π2V ξ ∫ dx⃗ J(x⃗)e−βĒ(x⃗) (2.51)

Here Ē(x⃗) is regarded as the potential of mean force with the degrees of freedom
of the solvent averaged out. Considering now a system with a receptor and a
ligand. The partition function of both the receptor and the ligand have the form

Q = 8π2V ξ ∫ dx⃗i Ji(x⃗i)e−βĒi(x⃗i), (2.52)

with i = R,L for the receptor and the ligand. The energy function of the ligand
and the receptor can be written as the sum of the energies of the ligand EL and
the receptor ER and an interaction term w that depends on the distance r⃗ and
the relative orientation ω⃗ of the receptor and the ligand.

ĒRL(x⃗RL) = ĒR(x⃗R) + ĒL(x⃗L) +w(r⃗, ω⃗) (2.53)

Then by inserting the partition function into eq. 2.41 and using the notation
x⃗RL = (x⃗R, x⃗L, r⃗, ω⃗) the association constant can be calculated by

Ka =
(8π2)−1 ∫b d ⃗xRL JRL(x⃗RL)e−βĒRL(x⃗RL)

∫ dx⃗R JR(x⃗R)e−βĒR(x⃗R) ∫ dx⃗L JL(x⃗L)e−βĒL(x⃗L)
, (2.54)

where the integral over the partition function of the complex QRL has to be
restricted to the region in the configurational space where the complex is formed
denoted by b [140]. It is possible to define a potential of mean force W (r⃗, ω⃗) by

e−βW (r⃗,ω⃗) ∶= ∫ dx⃗Rdx⃗L JR(x⃗R)JL(x⃗L)e−βĒRL(x⃗R,x⃗L,r⃗,ω⃗)

∫ dx⃗R JR(x⃗R)e−βĒR(x⃗R) ∫ dx⃗L JL(x⃗L)e−βĒL(x⃗L)
(2.55)

Then the binding constant Ka can be obtained as:

Ka = (8π2)−1∫ dr⃗dω⃗ Jr(r⃗)Jω(ω⃗)e−βW (r⃗,ω⃗) (2.56)

By integration over the rotational degrees of freedom in ω⃗ a potential of mean
force W̄ (r⃗) can be defined that only depends on the distance vector r⃗:

e−βW̄ (r⃗) ∶= (8π2)−1∫ dω⃗ Jω(ω⃗)e−βW (r⃗,ω⃗) (2.57)

With W̄ (r⃗), the binding constant Ka can be obtained as:

Ka = ∫
b
dr⃗ e−βW̄ (r⃗) (2.58)
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The potential of mean force W̄ (r⃗) contains enthalpic and entropic contributions
of whole configuration space of the ligand and the receptor. Substituting Ka in
eq. 2.43 results in

e−β∆G0
b = ∫

b
dr⃗ e−βW̄ (r⃗) (2.59)

Therefore, when W̄ (r⃗) can be approximated, it allows the calculation of the
standard binding free energy ∆Gb

0 without calculating the partition functions Qi.
This fact is exploited in simulation techniques which integrate the approximated
potential of mean force (e.g. umbrella sampling [120]).

2.5 Molecular Dynamics Simulations
Biological systems are often complex many-particle systems for which, contrary
to crystalline or solid state systems, no straightforward reduction to a few de-
grees of freedom is possible. The temperature of interest for these systems typ-
ically lies close to 300 K. Therefore, entropic effects significantly contribute to
the thermodynamics of these systems, requiring the explicit consideration of
many degrees of freedom in order to adequately describe their state [125]. In
the last fifty years, structural biology has provided atomic-resolution models of
many molecules that are essential to life, including proteins, nucleic and ribonu-
cleic acids. The static molecular structures determined by X-ray crystallogra-
phy and other techniques are tremendously useful, but in reality, the molecules
they represent are highly flexible and their dynamics are often critical to their
function. Proteins, for example, undergo a number of conformational changes
during their lifetime. Important examples are the folding of their secondary,
tertiary and quaternary structures or functional conformational changes that en-
able proteins to e.g. catalyse reactions, transport molecules, transduce signals,
etc. The dynamics of such processes is sometimes crucial for the understanding
of a biomolecule. Experimental techniques that provide information about the
dynamics of biomolecules are generally limited in their spatial and temporal res-
olution and often provide information about the time and/or ensemble averages
of molecules instead of individual molecules. An alternative to experimental ob-
servation is modeling that uses the knowledge about the atomic structure and
the underlying physical laws to compute the dynamics of the molecule [32].
Usually, the electronic degrees of freedom are the highest level of theory that is
considered in the modeling of biological systems. The dynamics of such a system
is described by the time-dependent Schrödinger equation:

Hψ(R⃗, r⃗, t) = ih̵Bψ(R⃗, r⃗, t)
Bt

(2.60)
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where h̵ is the reduced Planck constant, i the imaginary unit, H denotes the
Hamilton operator of the system and ψ(R⃗, r⃗, t) the wave function of the system
as a function of the coordinates of the nuclei R⃗, the electrons r⃗ at the time t.
However, the system sizes of biological macromolecules and the timescales of
interest render the explicit solution of eq. 2.60 computationally unfeasible.
The standard method for the calculation of macromolecular dynamics is known
as all-atom molecular dynamics (MD) simulations, where a representation of the
biological system evolves in time according to the laws of classical mechanics.
The representation is based on position, velocities of and forces between particles
which represent one or more atoms. Sometimes more than one particle describe a
single atom. For example, the oxigen in the TIP4P water model [67] is described
by 2 virtual particles needed for the accurate description of the electrostatics. In
the following, I describe the major approximations applied in MD simulations
that allow simulation of the molecular dynamics of biological systems at atomic
resolution.

2.5.1 Approximations

The first approximation from an ab initio treatment is the separation of the
electronic and the nucleic degrees of freedom according to the Born-Oppenheimer
approximation. The fraction of the mass of an electron m and a nucleus M is
typically

m

M
≈ 10−3 − 10−5 (2.61)

Therefore, the electrons move much faster than the nuclei and it is possible to
approximate the potential of the nuceli as quasistatic. Assuming that the wave
function of the electrons changes adiabatically with the potential generated by
the nuclei the wave function of the system can be expressed as a product of an
electronic ψel and a nucleic wave function ψnuc:

ψ(R⃗, r⃗, t) = ψnuc(R⃗, t) ⋅ ψel,R⃗(r⃗) (2.62)

where the electronic wave function depends on the nucleic coordinates only pa-
rameterically. This approximation is known as the Born-Oppenheimer approxi-
mation. When H is the Hamilton operator of the complete system, and Tnuc the
kinetic energy contribution of the nuclei, the electronic Hamilton-Operator can
be defined as Hel ∶= H−Tnuc. For a given nucleic configuration R⃗, the application
of Hel on the electronic wave function gives the eigenvalue Eel(R⃗) or

Helψel(r⃗, R⃗) = Eel(R⃗) ⋅ ψel,R⃗(r⃗) (2.63)
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When the system of interest is treated in the electronic ground state the smallest
eigenvalue E0

el(R⃗) is used and the time dependent Schrödinger equation (eq.
2.60) can be rewritten as

[Tnuc −E0
el(R⃗)]ψnuc(R⃗, t) = ih̵

Bψnuc(R⃗, t)
Bt

(2.64)

Since the potential energy is now independent of time, the wave function of the
nuclei can be separated in a time dependent part

φ(t) = e−iEt/h̵ (2.65)

and a time independed part ψ(R⃗). Replacing ψnuc(R⃗, t) in equation 2.64 by the
product ψ(R⃗) ⋅ φ(t), applying the time derivative and multiplying by ψ∗ results
in an equation for the dynamics of the nuclei:

[Tnuc −E0
el(R⃗)]ψnuc(R⃗) = Eψnuc(R⃗) (2.66)

Here E is the total energy of the system. The potential E0
el(R⃗) also contains the

coulomb interaction energy between the nuclei.

Parameterization of the Electronic Potential

The calculation of the effective electronic potential E0
el(R⃗) requires the solving

of the time-dependent electronic part (Eq. 2.63). At present, it is not feasible
to solve this equation for more than a few atoms. Thus, the potential is approx-
imated by a classical molecular mechanics (MM) energy function U :

E ≈ U = ∑
bond,i

U i
b + ∑

angles,j
U j

a + ∑
dihedrals,k

Uk
d + ∑

imp,l
U l

i + ∑
pairs,m,n

(Um,n
vdw +Um,n

coul ) (2.67)

which is the second major approximation applied in MD simulations. As shown
by eq. 2.67, a typical MM energy function for bio-molecular applications con-
sists of individual bonded potential terms for bonds, bond-angles, dihedrals and
improper dihedrals describing the forces of the covalent bonds and non-bonded
potentials that describe London-dispersion, Pauli-repulsion and Coulomb inter-
actions. These functions are kept relatively simple, because of the need to eval-
uate these functions a large number of times during the simulation. The form
of U and the parameters used in U are referred to as the force field. Unfortu-
nately, the term force field is not homogenously used and can mean either the
system of potential energy functions or the set of force constants, i.e. the partial
derivatives of U according to the atomic coordinates. In general, the force field
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contains many adjustable parameters which are often obtained by fitting to data
from experiments or from ab initio calculations. The majority of contemporary
force fields keep the partial charge of the particles fixed, and therefore do not
explicitly account for electronic polarizability.

Newtonian Dynamics

The third major approximation is the assumption that the nuclei can be modelled
by a set of point masses which follow the newtonian equations of motion:

mi
d2R⃗i(t)
dt2

= ∇iU(R⃗1 . . . R⃗n) = F⃗i (2.68)

For numeric integration of these equations the leap-frog integrator,

v⃗(t + 1
2∆t) = v⃗(t − 1

2∆t) + ∆t
m
F⃗ (t) (2.69)

r⃗(t +∆t) = r⃗(t) +∆t ⋅ v⃗(t + 1
2∆t) (2.70)

implemented in Gromacs [53, 124] was used for all molecular dynamics simula-
tions. Here r⃗(t) are the atomic coordinates and v⃗(t) the velocities. To obtain a
ensemble of constant pressure the Parrinell-Rahman [98] barostat (Section 2.5.2)
was applied, and to obtain an ensemble of constant temperature the v-rescale
thermostat [18] (Section 2.5.2) was applied. In this framework, these equations
of motion are modified to couple the box size to the microscopic motion of the
particles.

2.5.2 General Simulation Conditions

All MD simulations presented herein were performed utilizing the Gromacs sim-
ulation package [53, 124]. Canonical isothermal-isobaric (NPT) ensembles were
generated by coupling the simulation box to a target temperature Tt and target
pressure pt, keeping the number of particles, the pressure and the temperature
constant. The coupling of the system is described in the following paragraphs,
as well as the force field that was used (Amber ff99SB-ILDN).

Constant Temperature

Controlling the temperature is an important issue in MD simulations. For the
simulations in chapter 4 the v-rescale thermostat [18] was used that is an exten-
sion to the Berendsen thermostat [8]. The v-rescale thermostat uses a stochastic
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term to generate a proper canonical ensemble. It was derived as a modifica-
tion of the standard velocity rescaling that, at a predefined frequency, scales all
velocities by factor α

α =
√

Et
k

Ek
, (2.71)

with the kinetic energy of the system Ek and the target kinetic energy Et
k that

corresponds to a target temperature Tt. In order to ensure a canonical ensemble,
Et
k is drawn from a canonical equilibrium distribution. This demonstrates the

principle of the v-rescale thermostat; the actual implementation is a bit different:

dEk = (Et
k −Ek)

dt

τ
+ 2

¿
ÁÁÀEt

kEk

Nf

dW√
τ

(2.72)

Here the applied change in the kinetic free energy dEk depends on the current
value of Ek. Nf is the number of degrees of freedom. This keeps the changes of
the velocities small and results in a relatively undisturbed system. The parameter
τ controls the strength of the coupling. The term dW generates noise that is
needed to generate a valid thermodynamic ensemble.

Constant Pressure

The Parrinello-Rahman [98] barostat implemented in Gromcas [53, 124] was used
to keep the pressure constant in the simulations reported in this work. The
general idea behind the barostat is to couple the microscopic motions of the
particles to the pressure. Here I will, briefly sketch the underlying mathematics.
Using the Clausius virial theorem the pressure tensor P can be obtained as:

P = 2
V

(Ek − Γ) , (2.73)

with the inner virial tensor

Γ = −1
2∑i<j

r⃗ij ⋅ F⃗ij (2.74)

The isotropic pressure p results from the trace of P

p = Tr(P)/3 (2.75)

Correcting the pressure (also anisotropically) in a simulation can be achieved
through a change in the inner virial Γ by scaling the inter particle distances.
The pressure is then kept constant by coupling the box size to the microscopic
motion of the atoms.
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The Amber99sb Force-Field

All simulations that are were reported in this work were performed with the
Amber ff99SB [57] and the Amber ff99SB-ILDN force fields. Some characteristic
features of these force fields are the use of fixed partial charges on atom cen-
ters, the explicit use of all hydrogen atoms and no specific functional forms for
hydrogen bonding. The protein φ/ψ dihedrals have specific rotational parame-
ters that affect the relative energies of alternate backbone conformations. These
parameters were fit to relative energies obtained from ab initio calculations of
alternate rotamers of small molecules. The partial atomic charges were derived
by fitting the electrostatic potential calculated with a Hartree-Fock method us-
ing the 6-31G* basis set in the gas phase. This approach was chosen because it
overpolarizes bond dipoles, such that the resulting charge distribution better ap-
proximates those occurring in aqueous phase. The calculated potential is used to
fit point charges at the center of each atom in a way that electrostatic potential of
the point charges mimics the calculated potential at the surface of the molecules.
The original force field Amber ff99 [132] (which was a modification of the Amber
ff94) was known to overestimate the α-helical phase. This overestimation was
resolved by a set of new φ/ψ parameters in the ff99SB extension[80]. The Amber
ff99SB-ILDN force field has slightly modified torsion parameters for Ile (I), Leu
(L), Asp (D) and Asn (N) side chains. The improvement was validated by com-
parison data from a microsecond-timescale MD simulation to nuclear magnetic
resonance (NMR) data that probed these torsions directly. The newest force field
of the Amber family is the ff99SB*-ILDN [11], that applies further modifications
to the φ/ψ-angles. This force field was not implemented in Gromacs by the time
of my studies and therefore was not used.

2.5.3 Limitations

Limitations of the MD simulations arise from the approximations described above
and from computational deficiencies which limit the scope of feasible timescales
and system sizes. At first, I will discuss the basic limitations, which arise from
the approximations mentioned above. Afterwards, I will focus on practical limi-
tations and cover the state of the art of contemporary MD simulations.

Only What the Code Allows

The most basic level limitations lie in the simulation algorithm itself. A simula-
tion can only generate results which lie in the space that can be covered by the
algorithm that is used. For example, a MD simulation that uses an integration
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time step of 1 fs can not generate vibrations with a frequency above 5 PHz. The
next basic limitations are caused by the approximations in the construction of
the model. Effects which are completely neglected in the model building will
not appear in the simulation. For example, a simulated 235

94Pl atom will not
undergo a nuclear reaction, since effects of the weak interaction are neglected
in the standard framework of MD simulations. A more critical restriction is the
conservation of covalent bonds that cannot break or be formed in a standard MD
simulation. Chemical reactions are currently not part of the parameterization
process and cannot be simulated with pure MD simulations.
However, there are phenomena which are not explicitly covered in the model
building step, whose effects are fed implicitly into the simulation. This holds,
for example, for hydrogen bonds or mutual polarization, effects which are based
on changes of electronic wave functions. An example is the overestimation of
the molecular partial charges as mentioned in the next paragraph. To some
extent, the effects of these phenomena are included in an MD simulation, since,
in general, force field parameters are fitted against ab initio and/or experimental
findings. The fitting process therefore partially compensates inadequacies of the
basic model.

Force-Fields are Fitted

The parameterization process determines which properties can be reliably de-
termined from an MD simulation. A particular force field that is trained to
reproduce correct thermodynamics can be inaccurate in the description of tran-
sition kinetics. One force field may be parameterized in order to obtain correct
diffusion constants and others in order to predict relative conformational ener-
gies. Therefore, the choice of which force field to use depends on the properties
of interest and the question that is addressed.
Also the timescales that were used in the parameterization process of the force
field play a role. On larger timescales inadequacies of the force field may become
critical, for example the overestimation of α-helical arrangements. In a recent
study, a number of force fields was evaluated at the microsecond timescale [79].
The results indicated that the examined force fields have consistently improved
over the last ten years. The force fields with the best agreement with the ex-
perimental data were Amber ff99SB*-ILDN [11] and CHARM22*. The most
recent versions provide an accurate description of many dynamic and structural
properties of the tested proteins. However, none of the force fields was able to
accurately capture the temperature dependency of the secondary structures. The
same most likely holds for larger system sizes.
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Maximal Scales

One of the largest biological systems described by MD simulations was the south-
ern bean mosaic virus with 4.5 million atoms [143, 144]. In practice MD simu-
lations were until recently generally limited to nanosecond timescales. However,
recent advances in hardware and algorithms have increased the timescales acces-
sible to MD simulations to the millisecond-scale, allowing MD to capture critical
biochemical processes that take place on these timescales such as protein fold-
ing [79], protein ligand binding [17, 32, 114], and major conformational changes
which are essential to protein function [63].

2.5.4 Calculation of the Binding Free Energy

As mentioned in section 2.4.3, for the condition of constant pressure, temperature
and number of particles, the Gibbs free energy G(T, p,N) is a thermodynamic
potential that describes the stability of a state corresponding to the natural
variables of G: the temperature T , the pressure p and the number of particles
N . The difference of the free energy ∆GA,B between two states A and B describes
the relative stability of the states. The gradient of the free energy ∇GA,B with
respect to the natural variables describes the driving forces of thermodynamic
system. In equilibrium, G is minimized and ∇GA,B becomes zero. Considering
the complexation of a ligand and a receptor, the knowledge about difference of
the Gibbs free energy ∆GA,B between the dissociated state A and the complexed
state B allows the deduction of essential properties relevant for ligand receptor
binding as e.g. the equilibrium constant Ka (Section 2.1.1 and 2.4.3), the IC50

as well as enthalpic and entropic contributions of binding (Section 2.4.4).
According to equations 2.41 and 2.29 it could be argued that the exact calcula-
tion of ∆G is in principle possible. However, the large number of conformational
states a macromolecule can sample renders an exact calculation of Eq. 2.29
practically unfeasible. Equation 2.9 gives an idea about this number. Therefore,
the calculation of the partition function Q is only possible for very simple sys-
tems, but in general impracticable for highly complex systems such as solvated
macromolecules. However, not all parts in phase space have the same impact on
the absolute values of Q. Therefore it is possible to take structural ensembles
generated with simulation techniques for the effectual approximation of Q, here
referred to as the effective partition function Q̄. This fact is used, for example,
in the methods that base on MD simulations.
∆G or differences of ∆Gs , denoted as ∆∆G, can be approximated from MD sim-
ulations. The absolute binding free energy is the free energy difference between
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the dissociated state and the complexed state of a ligand and a receptor. The
relative binding free energy ∆∆G is the difference between the absolute bind-
ing free energies of two complexes. This can be related to the thermodynamic
cycle in Fig. 2.5. ∆G2 and ∆G4 are the absolute binding free energies of the
ligands L2 and L1 which can be measured experimentally. The transitions along
the horizontal arrows correspond to modification of the ligands from L1 to L2

in solvent (∆G1) and in the complex (∆G3), which are impossible to measure
experimentally.
Different molecular dynamics (MD) or monte carlo based simulation techniques
can be used to calculate the transitions corresponding either to the horizontal or
the vertical arrows. The vertical arrows correspond to different regions in phase
space and are described by the same Hamilton operator. When the states A
and B can be separated into two non-overlapping regions in phase space it is, in
principle, possible to use standard MD simulations to obtain the relative weights
(QA and QB as described in section 2.4.2). The free energy between these states
is related to these weights by

∆G4 ≈ −kBT ln( Q̄A

Q̄B

) (2.76)

If an MD simulation samples transitions between the states A and B the weights
can be estimated by the probabilities to find the system in either state A or B.
Unfortunately, this very direct method has practical limitations. The transition
timescale has to be small enough to be crossed frequently by an MD simulation
in order to reach convergence. This requires both the free energy difference and
the barrier between both states to be small. Ligand-receptor associations can
easily last several microseconds and the dissociation can be even slower by orders
of magnitude [17, 32, 114]. This renders the calculation of ∆G2 and ∆G4 by free
MD simulations practically impossible for high affinity ligands.

Umbrella Sampling

This limitation can be overcome by applying enhanced sampling methods as,
for example, umbrella sampling (US). The basic idea behind the US is that the
relative probability to sample a point r⃗ in configuration space is not given by

p(r⃗) = e−βW̄ (r⃗) (2.77)

but
pr(r⃗) = w(r⃗)e−βW̄ (r⃗), (2.78)
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Figure 2.5: Thermodynamic cycle for the calculation of the relative binding
free energy of receptor-ligand complexes with ligands L1 and L2 ∆∆G (blue
cycle): A: Receptor and dissociated ligand L1 in solvent. B: Solvated com-
plex with ligand L1. C: Receptor and dissociated ligand L2 in solvent. D:
Solvated complex with ligand L2. By routing the system to different states
along the arrows the corresponding free energy differences are attained. The
binding free energies of complexation of a ligand with a receptor ∆G2 and
∆G4 (vertical arrows) can be measured experimentally or calculated with the
umbrella sampling method. The horizontal arrows represent the modification
of a ligand L1 to another structure L2. The corresponding free energy differ-
ences ∆G1 and ∆G3 can be calculated using thermodynamic integration or
free energy perturbation. If L2 consists of dummy atoms without physical
interactions with the environment ∆G2 becomes zero.
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where w(r⃗) is a weighting function and W̄ (r⃗) the potential of mean force (PMF).
This can be obtained by adding an umbrella potential [120] U(r⃗, r⃗0) to the Hamil-
ton operator that restrains the system to the point r⃗0. For example, a harmonic
potential:

U(r⃗, r⃗0) =
1
2κ (r⃗ − r⃗0)2

, (2.79)

where κ > 0 is the force constant. The unrestrained probability p(r⃗) for the point
r⃗ can be expressed in terms of the restrained probability pr(r⃗) and an ensemble
average ⟨. . .⟩r generated with the Hamilton operator Hr(r⃗):

p(r⃗) = pr(r⃗)e
βU(r⃗,r⃗0)

⟨eβU(r⃗,r⃗0)⟩r
, (2.80)

which is the desired probability. By routing the system with the umbrella po-
tential from state A to state B it is therefore possible to calculate ∆G2 (∆G4

analogously). In practice, p(r⃗) is calculated for many points r⃗i along a path that
combines the phase space regions of states A and B. Then the underlying PMF
is calculated using e.g. the weighted histogram analysis method (WHAM) [77].

Alchemical Methods

Alternatively, the free energy differences corresponding to the horizontal arrows
in Fig. 2.5 can be calculated by using the fundamental equation of free energy
perturbation known as the Zwanzig [148] equation:

∆GA,B = GB −GA = −kBT ln (⟨e−β(HB−HA)⟩A) (2.81)

Here Hi represents the Hamilton operator of the ith state and ⟨ ⟩i an ensemble
average of the system described with the Hamilton operator Hi. Here, the states
A and B are not different regions in configuration space, but systems with differ-
ent energy functions HA and HB. The idea behind Eq. 2.81 is that, when state
A and state B significantly overlap in phase space the free energy of state B can
be obtained from the ensemble generated with Hamiltonian HA from state A as:

GB ≈ ∫
A
dx⃗ e−βHB(x⃗), (2.82)

where x⃗ is a point in phase space that corresponds to state A.
Perturbation approaches generalize Eq. 2.81 to

∆GA,C =
n−1
∑
i=0

∆G(λi, λi+1) =
n−1
∑
i=0

−kBT ln (⟨e−β(Hλi+1−Hλi)⟩λi) , (2.83)

where states λ0 and λn correspond to state A and C in Fig. 2.5. The difference
between states λi and λi+1 is obtained by evaluating the ensemble generated with
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the Hamilton operator Hi corresponding to λi. In analogy to Eq. 2.83, ∆GC,A

is defined by

∆GC,A =
n−1
∑
i=0

∆G(λn−i, λn−i−1) (2.84)

∆GA,C is referred to as the forward perturbation and ∆GC,A to as the backward
perturbation. The convergence of ∆GA,C and −∆GC,A is necessary but not suffi-
cient for an accurate calculation of ∆G1, since the transitions can be performed
too fast for the system to equilibrate. Based on the works of Jarzynski [61] and
Crooks [23], in recent years, the non-equilibrium techniques in combination with
the Bennett’s acceptance ratio method (BAR) have become the state of the art,
as they have shown to be computationally more efficient than FEP [16].
A frequently reported technique for the calculation of free energy differences is
thermodynamic integration (TI) [71]. Here, the Hamilton operator describing
the system is routed from state A to state B, by a parameter λ. The Hamilton
operator

H(λ) = λHB + (1 − λ)HA (2.85)

and its derivative with respect to λ

H′(λ) = BH(λ)
Bλ

(2.86)

are introduced. The parameter λ is treated as a reaction coordinate that routes
the system from state A to state B by going from 0 to 1. The free energy
difference ∆GA,B is then calculated by performing the integration:

∆G =
λ=1

∫
λ=0

dλ ⟨H′(λ)⟩λ ≈
n

∑
i=1

∆λ⟨H′⟩n (2.87)

A similar approach, discrete TI, uses discrete steps of λ and to evaluate ∆GA,B

at intermediate states [74] as indicated by the inequality in Eq. 2.87. The
intermediate states λi with i = 1, . . . , n− 1 often correspond to unphysical states.
Therefore, these methods are called alchemical.

Summary

Both types of free energy calculations (enhanced conformational sampling and al-
chemical calculations) require converged ensemble averages for all intermediated
states ri or λi. Therefore, considerable computational effort is required to per-
form free energy calculations for the estimation of ligand-receptor binding free
energies [93]. Currently, this effort limits the application of such calculations
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practically to a few (1–100) compounds. Especially, the calculation of abso-
lute binding free energies is computationally costly, since a larger perturbation,
namely the complete (dis)appearance of a compound needs to be simulated.
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3
Optimization of Molecular Docking

The current chapter provides a case study for the design, optimization and appli-
cation of a combined virtual screening (VS) approach, that was experimentally
validated using an automated patch clamp technique. Initially, four different
molecular docking programs (Autodock-Vina, eHiTS, FlexX and Glide) were
benchmarked against a training set of 2576 compounds that were provided by
Xention (http://www.xention.com). Here, computations with Glide were per-
formed by Dr. Wiktor Jurkowski at the Department of Biochemistry and Bio-
physics of the Stockholm University (Sweden); and computations with eHiTS
were performed by Dr. Katie J. Simmons at the Chemistry Department of the
University of Leeds (United Kingdom). The reported automated patch clamp ex-
periments were performed by Dr. Jean-Francois Rolland at Xention (Cambridge,
United-Kingdom).

3.1 Introduction

Potassium channels are a diverse protein class with at least 78 different mem-
bers. They virtually appear in all living organisms and are necessary for many
physiological processes including cell excitability and secretion mechanisms. The
voltage-dependent potassium channels are the largest sub-group of potassium
channels with 12 families of phylogenetically related proteins (KV1-12). They

45



46 Optimization of Molecular Docking

Figure 3.1: Scheme of a typical neuron and illustration of the Nodes of Ranvier
and the internodal, juxtaparanodal and paranodal regions.

appear in virtually all living organisms and play a crucial role in many live-
sustaining functions including neural transduction and the regulation of the
heart beat frequency [69]. Accordingly, their dysfunction accounts for a wide
range of human pathologies as episodic ataxia, atrial fibrillation or the long QT
syndrome. Some of the KV1 members form heteromultimers, with the KV1.1
and KV1.2 combination being one of the most abundant in both the central
and peripheral nervous system (CNS and PNS, respectively) [21, 102, 131].
More importantly, this type of heteromers has been found to specifically co-
localize at myelin-protected juxtaparanodal regions of the nodes of Ranvier of
nerve axons (Figure 3.1) [3, 29, 103, 130], where they control axon excitability
and ensure saltatory conduction [109]. In demyelinating diseases such as multiple
sclerosis (MS), these channels are exposed and nerve conduction is impaired [69].
Recently, 4-aminopyridine (INN:Fampridine), a non-selective potassium channel
inhibitor, has been approved as the first medication to improve the ability to walk
in people suffering from multiple sclerosis (MS) [46, 47, 48], probably by blocking
the exposed KV1.1-1.2 heteromeric potassium channels. (A list of known KV1.1
or KV1.2 inhibitors and references is provided is supporting information Tab.
7.2). Unfortunately, its low potency and poor channel specificity raise issues,
particularly in regard to cardiac safety. Therefore, the search for more selective
blockers, and the development of proper strategies for the study of drug-channel
interactions, are highly desirable from a clinical perspective.
KV1.1 and KV1.2 are tetrameric potassium channels with a single pore in the
center that is selectively permeable for water and potassium (Fig. 3.2). Each
subunit contains a transmembrane domain that is composed of six membrane
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Figure 3.2: Ribbon representation of the voltage gated potassium channel
KV1.2. Lateral view (A) and view from the exoplasmic side (B). The struc-
ture is colored according to individual functional components: pore domain
(red), linker (green), voltage sensing domains (yellow) and the N-terminal
domain (blue) which was is not depicted in the top view.

spanning α-helices. Four of these helices form a separate voltage sensing domain
(the β-subunit) whereas the remaining two helices are part of the central pore
(α-subunit), whose sequence is almost conserved in this family of potassium
channels. Both sub-units are linked by a small α-helix, termed the linker. Per
sub-unit, this domain consists of two TM-α-helices connected by a loop. These
loops conecting the transmembrane helices of the α-sub-units contain the key
element for the ion selectivity decoded in a highly conserved motif of eight amino
acids (TXXTXGXG). This sequence serves as signature for the identification of
possible potassium channel coding genes [51, 108]. Five of these amino acids
(TVGYG in KV1.2) are situated on an elongated region of the pore loop near
the extracellular vestibule of the channel 3.3. This arrangement is also conserved
in other potassium channels [31, 64, 78, 85, 141] and is termed the selectivity filter
(Figure 3.3). The selectivity filter can adopt a conformation where it is able to
conduct potassium ions. In this conformation the amino acids which form the
selectivity filter are arranged in a way that the backbone peptide carbonyl groups
point towards the center of the tetramers. Here the carbonyl oxygen atoms
form a ring mimicking the coordination of the hydration shell oxygen atoms of
a potassium ion in water. Such an arrangement has been shown to allow the
dehydration of small cations, which are strongly bound to water molecules in
bulk solution, with a reduced free energy barrier [141].
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Figure 3.3: Structure of the α-subunits (left). For clarity, only two chains are
shown. The residues of the selectivity filter are shown in stick representation
(right). The purple spheres illustrate K+ ions in the filter.

Importantly, KV1.2 is among the few channels for which structural insight has
been gained through X-ray crystallography [84, 85]. This enables to perform
structure based virtual screening. However, most docking schemes have been
developed to work on well-defined binding pockets such as enzymatic active sites,
where docking poses can be compared with specific pharmacophores. How well
these programs enrich active compounds specifically on the putative binding sites
such as the inner cavity of a potassium channel remains unclear, since no VS
benchmark regarding potassium channels has been reported. In studies of KcsA
and KV1.5, the inner cavities were used successfully as target sites in structure
based virtual screening (SBVS) [82, 83]. Liu et al. [82] screened 200,000 molecules
from the Accelrys Available Chemicals Directory (http://accelrys.com) against
the extracellular pore entrance of the pH gated potassium channel KcsA. The
300 top scored molecules were then optimized in a molecular mechanics force
field and the interaction energies were calculated. According to the docking
scores, the calculated interaction energies and calculated solubility coefficients
(LogP values), 20 compounds were selected and assayed in vitro. Six compounds
were found to suppress the K+ conductance by more than 10 % at a compound
concentration of 100µM when applied from the extracellular site. Yang et al.
[138, 139] screened the Maybridge (http://www.maybridge.com) library against
a homology model of KV1.5. The top 1000 compounds were evaluated in a
consensus molecular docking approach. Then, 18 compounds were manually
selected and assayed. Five of the 18 compounds blocked KV1.5 mediated ion
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current by more than 50 % at a compound concentration of 10µM. Furthermore,
modeling and mutagenesis studies confirm that the inner cavity is a binding site
for small ionic molecules [2, 27, 86]. Eldstrom and Fedida [34] used Autodock4 to
model the high affinity binder Vernakalant into the cavity of a homology model
of KV1.5. The manual selection that was used in the virtual screening studies
renders the estimation of the hit rate of the VS approaches difficult.
In this collaborative study, four popular molecular docking approaches (eHiTS,
FlexX, Glide, and Autodock-Vina) were benchmarked for their ability to dis-
tinguish between compounds known to be active or inactive against the potas-
sium channel concatemer KV1.1-(1.2)3, consisting of one KV1.1 subunit and three
KV1.2 subunits. An effective virtual screening technique was established. For
that purpose, a commonly used strategy for the improvement of molecular dock-
ing predictions was applied, namely consensus scoring (CS) (Section 2.3.4). The
aim of the current study was to benchmark, optimize, and employ molecular
docking based techniques for a specific target (KV1.1-(1.2)3) in order to find
novel and potent inhibitors, thereby decreasing both experimental effort and
costs. Moreover, to eliminate any cardiac liability, all identified hits were assayed
against cardiac channels known to be involved in the cardiac action potential.

3.2 Results

The quality of four popular molecular docking approaches (eHiTS, FlexX, Glide,
and Autodock-Vina) was assessed by screening a library of compounds known to
be active or inactive on KV1.1-(1.2)3. Owing to the total lack of pharmacological
modulators of the KV1.1-(1.2)3, we mined an in-house compound library from
the pharmaceutical company Xention (http://www.xention.com). 2675 active
and inactive compounds were selected to set up a test-library. The fraction of
active compounds in this test-library was 32 %. After the initial screen, the
most predictive terms of the individual docking procedure were combined to a
consensus approach, that was applied in high-throughput virtual screen in order
to find novel KV1.1-(1.2)3 inhibitors. At first, possible binding sites for putative
ligands had to be detected.

3.2.1 Blind Docking – Detection of Possible Target Sites

In order to detect putative ligand binding sites of KV1.1-(1.2)3 the blind docking
setup as described in section 3.5 was used. The entire test-library from Xention
was docked using the program Vina. Taking the fourfold symmetry of the recep-
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Figure 3.4: ROC-curves according to the individual sites (left). Mean scores of
the Vina scores and standard deviations indicated by the error bars (right).

tor into account, blind docking established five distinct putative binding sites.
Two separate sites (MEM1 and MEM2) were found at the protein-lipid surface
of the TM region. Further binding sites were discovered at the intra- (Vint)
and extracellular (Vext) surfaces of the voltage sensing domains as well as the
inner cavity (CAV). The outer mouth of the selectivity filter was not occupied.
The test-library was then docked to each of these binding sites separately. Addi-
tionally, the extracellular site of the selectivity filter was defined as a target site
(SFext). Within the inner cavity, we used three different locations and sizes of
active sites in order to gain further insight into possible binding modes. First, the
whole cavity was defined as the receptor (CAV). Secondly, a narrow target site
was defined around the inner entrance of the selectivity filter (SFcav). Finally,
the region surrounding the intracellular pore entrance was defined as a binding
site (CAVext).

3.2.2 Targeted Docking – Verification of Target Sites

The sites defined in blind docking were used as individual target sites. All
compounds were docked into the individual binding sites, and the separation
between active and inactive compounds was determined using receiver-operator-
characteristic (ROC) curves. As in detail explained in section 2.3.2, the ROC
curves show the fraction of identified active compounds over the fraction of inac-
tive compounds in a ranked list ordered ascendingly. With the exception of the
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Table 3.1: AROC and BEDROC values with respect to docking scores and
individual scoring function terms as well as their Pearson correlation with
compound mass. [a] Pearson correlation coefficients of the compound mass
and docking sub-term. [b] Consensus scores of the sub-scores Vina Score,
FlexX Lipo, eHiTS Strain, and Glide Evdw.

Score PCC[a] AROC BEDROC
Rank-by-rank[b] – 0.76 0.7
Rank-by-number[b] – 0.75 0.69
Rank-by-max[b] – 0.73 0.69
Mass 1 0.74 0.52
Vina Score 0.82 0.7 0.51
FlexX Lipo −0.77 0.7 0.59
eHiTS Strain −0.73 0.73 0.58
Glide Evdw −0.67 0.74 0.68
Glide Emodel −0.61 0.71 0.58
eHiTS Energy −0.46 0.61 0.33

SFcav, the ranks for all target sites resulted in significant enrichment of active
compounds (Figure 3.4). The narrowness of site SFcav led to a systematic ex-
clusion of larger compounds, which explains the low enrichment observed. The
highest enrichment was observed for the extracellular pore entry (CAVext), fol-
lowed by CAV (Figure 3.4) and Vext. Among the binding sites CAV, CAVext,
and Vext, the mean scores were lowest for binding site CAV. Lower scores were
gained only at the transmembrane site MEM1 and for the blind docking in total
(Figure 3.5). However, under physiological conditions, the compounds at MEM1
would have to compete with lipid molecules at the protein-lipid interface. There-
fore, this binding site was discarded, focusing more on the binding site CAV for
the subsequent steps.
The compounds from the library were further docked to the inner cavity (CAV)
using eHiTS, FlexX, and Glide. Of 2675 total compounds, 2099 (including 473
active compounds) were successfully docked by all programs and were therefore
included in further analysis. None of these programs enriched active compounds
as significantly as Vina. The area under the ROC-curve (AROC) (Section 2.3.3)
was 0.7 for Vina and less than 0.55 for each of the other approaches, represented
by the FlexX-Total, eHiTS-Score, and Glide-Gscore (Table 3.1). However, as
demonstrated by Stahl et al. [117] it is also possible to combine scoring function
sub-terms, i.e. the hydrophobic term from the first algorithm and the polar in-
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Figure 3.5: ROC-curves according to the mean scores of Vina, eHiTS, Glide
and FlexX (left) and the best sub-terms of the four programs (right).

teraction term of the second algorithm. The analysis of the numerous individual
sub-terms of FlexX, eHiTS and Glide revealed that some sub-terms have more
predictive power than the corresponding total scores, as indicated by the ROC
and BEDROC values in table 3.1. After identifying the most predictive sub-
terms of the individual molecular docking algorithms, I then aimed to combine
these terms in a consensus score to maximize the enrichment in the first 5 % of
ranked compounds.

3.2.3 Consensus Scoring –
Optimization of Molecular Docking

In order to generate an optimized consensus approach, that is superior to the
individual molecular docking programs, we first standardized the total scores
and sub-terms using Z-scores (Section 2.3.4). Hereby, the individual scores are
projected to distributions with a standard deviation of one and a mean value of
zero. Three consensus scoring methods were then applied for the generation of
a ranked lists:

rank-by-num: Compounds were ranked according to the mean of scores from
the different scoring functions.

rank-by-rank: Compound ranks were calculated according to the individual
scoring functions, then ranked according to the mean of their ranks.
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rank-by-max: Compounds were ranked according to the maximum of all scores
from the different scoring functions.

First, the combination of the total scores into consensus scores did not provide
improved enrichment. The ROC-curves of all three CS techniques were between
the ROC-curves of the individual scores (Figure 3.5). The highest enrichment
from consensus scoring using the main scores of all approaches was 0.61 by rank-
to-rank. However, combining individual scoring function sub-terms from the
different programs, a broad range of enrichments was revealed (Supplementary
table 7.1). The sub-terms leading to the highest AROC values for the individual
programs were the Lipo term (0.58) for FlexX, the Evdw term (0.67) for Glide,
and the eHiTS term Strain (0.58) (Table 3.1). In the case of Vina, it was not
possible to check sub-terms as only the final score was provided. The use of
consensus scoring methods using the Vina score in combination with the sub-
terms Lipo (FlexX), Strain (eHiTS), and Evdw (Glide) led to a slightly enhanced
enrichment in terms of AROC, and a significant enhancement of the BEDROC
as described by Truchon et al.[60] (Table 3.1). The BEDROC metric is more
sensitive to changes in initial enrichment as defined in the methods section. The
corresponding ROC curves are shown in Figure 3.5. The consensus approaches
increased the AROC value by 2 to 5 % and the BEDROC value by 17 to 20 %,
with respect to the average AROC/BEDROC values of the individual terms
used for the consensus. As indicated by the increase in BEDROC values, all
three consensus approaches led to a significant enrichment in the top 8 % of a
ranked list of compounds. Notably, a strong dependence of the enrichment on
compound mass was found, indicating a higher activity on average for larger
compounds. The rankings according to the three shown consensus schemes were
superior to all individual scores and sub-terms. In order to assess the quality of
these consensus approach, we applied it in a high-throughput virtual screen and
assayed a sample of top scored compounds.

3.2.4 High-Throughput Virtual Screening –
Prediction of Novel Active Compounds

For the application of the consensus approach, introduced in the last section,
two slightly different versions of the scheme rank-by-max were implemented and
applied, resulting in two compound sets: A and B. The compounds in set A
are based on prediction of a consensus score that was generated using Vina,
FlexX, and Glide. The compounds in set B are additionally based on the
Strain term from eHiTS and additional filtering according to drug-like prop-
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erties. Initially, the clean-drug-like subset of drug-like compounds of the ZINC
(http://zinc.docking.org/) chemical molecule database from 2009-11-13, contain-
ing 9,497,542 entries, was screened against the the inner cavity of KV1.2 using
FlexX. The best 20,000 compounds, according to the Lipo term from FlexX,
were evaluated in the other programs as well (Glide, eHiTS, and Vina). These
compounds were conducted to two different treatments:

A) The top 20,000 structures, according to the Lipo-score from FlexX were
docked with Vina and Glide. The rank-to-max consensus method was
applied using FlexX’s Lipo-Score, the Evdw term from Glide, and the
predicted binding free energy from Vina. Only compounds commercially
available from Enamine Sales (http://www.enamine.net) were taken into
further consideration. The 200 top-ranked compounds, according to the
CS scheme rank-to-max, were selected.

B) The library of 20,000 compounds was prefiltered to remove compounds that
did not fit the drug-like filter of the OpenEye FILTER software. From
20,000 molecules, 1906 were retained and screened using eHiTS. Ligand
dockings were evaluated using SPROUT (version 6.3) and MAESTRO.
The rank-to-max consensus method was applied using the sub-score Strain
from eHiTS in addition to sub-scores from FlexX, Glide, and Vina, which
were also used for the previous implementation. The top 200 compounds,
according to the CS scheme rank-to-max and based on availability from
Enamine Sales, were selected.

A combined list of compounds from both A and B was generated. The list
was filtered to remove compounds with a logarithm of the calculated water-
octanol partition coefficients (logP values) greater than 4.0, in order to ensure
sufficient solubility. A total of 89 compounds were purchased from Enamine
Sales. The final library of purchased compounds contained 33 ligands predicted
by A and 74 compounds predicted by B; 18 compounds were common to both A
and B. The final criterion for the acquisition of the 89 compounds was commercial
availability.

3.2.5 Experimental Validation

In order to validate the developed consensus scoring approach, the sample of 89
top scored compounds was subjected to electrophysiological measurements, that
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Table 3.2: Number and fraction of active compounds (+80 % inhibition at
10µM) from implementations A and B.[a] Fraction of active compounds in
the screened subset.

Set A Set B Total
Total 16829 1285
Screened 33 74 89
Active 7 8 14
Fraction[% ][a] 21 11 17

were performed in the automated patch clamp setup. The cell preparation and
the experimental conditions are described in detail in [128]. The measurements
confirmed in total 14 compounds exhibiting > 80 % inhibition of KV1.1-(1.2)3

when tested at a concentration of 10µM. By applying this threshold we concen-
trated on compounds with affinities in the low micromolar range. The fractions
of the identified active compounds in set A and B are 21 % and 11 % (Tab. 3.2).
The original ranks for the 14 hits, as well as the ranks within the subset of
compounds available at Enamine, are provided in the appendix (Supplementary
tab. 7.3). One active compound (ID=7) was shared between both sets A and
B. Assuming a uniform distribution of active compounds within the first 200
compounds of each list, the number of active compounds can be estimated to be
between 11 and 39 % for set A and between 3.9 and 25 % for set B, with a confi-
dence interval of 95 % each. IC50 values for these 14 compounds lie between 0.58
and 6µM (Fig. 3.6). To estimate the specificity of the ligands with respect to
other targets, the 14 compounds were evaluated against three important cardiac
ion channels: Nav1.5, Cav1.2, and hERG. The experiments reveal a pronounced
selectivity for KV1.1-(1.2)3 over the cardiac channels (Table 3.3). Notably, com-
pounds 1 and 2 were at least 30-fold more active toward KV1.1-(1.2)3 over the
other channels.
Chemical structures of the 14 active substances are shown in Figure 3.7. Physi-
ological properties that are relevant for an estimation of their drug-like qualities
are listed in Table 3.3. The drug-like scores were calculated using the Molsoft
drug-likeness and molecular property estimator (http://www.molsoft.com/mprop).
The drug-likeness model score predicts drug-like properties using Molsoft’s chem-
ical fingerprints. Values between 0 and 2 indicate very drug-like molecules,
although values as low as −1 are frequently reached by drug-like molecules.
Non-drug-like molecules usually give values between −3 and −0.5. The dis-
tributions of drug-like and non-drug-like molecules are shown on the Molsoft
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Figure 3.6: IC50 values of the 14 novel active compounds according to the
different channels (KV1.1-(1.2)3, Nav1.5, Cav1.2 and hERG) calculated from
concentration-response curve titrations.

website (http://www.molsoft.com/mprop). All 14 compounds share a carboxyl
group close to their geometric center. Compounds 8, 9, and 12 share a Tani-
moto similarity (Section 2.1.4) greater than 0.8 and have a common 4-(1,2,3,4-
tetrahydroisoquinoline-2-sulfonyl)benzamide motif, which is also seen in com-
pound 11. The similarity of compound 11 to the former compounds is 0.7 at
maximum. These compounds can be regarded as one structural cluster. A
second cluster comprises compounds 4, 6, 10, and 13 which each contain a 3-
formylbenzene-1-sulfonamide group. Compounds 1 and 2, which are highly se-
lective for KV1.1-(1.2)3, are not represented by either of these clusters. Twelve
compounds contain a sulfur atom, and in 10 cases this takes the form of a sul-
fonyl group. The molecular weight of the 14 active compounds lies between 420
and 500 Da. The Tanimoto similarity between the 14 active compounds and the
known active compounds from the training set was 0.56 at maximum, indicating
pronounced structural diversity.

3.2.6 Receptor Flexibility

Since the value of the scoring function depends strongly on the relative placement
of the interacting groups, the conformation of the target structure plays a crucial
role for docking procedure and the ranking of the screened compounds. Unfa-
vorable conformations of the target structure can hinder the docking algorithm
to sample physiologically relevant poses by sterical hindrance or it can lead to
an underestimation of favorable interactions. Especially, for directed polar in-
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Figure 3.7: Structures of the 14 confirmed novel KV1.1-(1.2)3 active com-
pounds. Larger repeated motifs are highlighted.
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Figure 3.8: Enrichment according to different KV1.2 receptor conformations
using the Total score (left) and the Lipo score (middle). Docking with flexible
side chains using Vina removed the enrichment (right).

teractions as H-bonds, a proper receptor conformation is important for FlexX.
Therefore, other receptor conformations different from the crystal structure may
exist that enhance the enrichment of our test library. A set of 10 snapshots of dif-
ferent conformations of KV1.2 was taken from a 10 ns MD simulation trajectory.
The molecular docking calculations with FlexX were repeated with these confor-
mations serving as target structures. The ROC-curves according to the different
receptor conformations are shown in Figure 3.8. As indicated by the shape of
the ROC-curves, the enrichment according to the different conformations was
comparable to the enrichment gained by the crystal structure.
Another way to include receptor flexibility in molecular docking is the application
of approaches that allow alternative side chain (or even backbone) conformations
of the receptor structure. In Vina it is possible to define the rotation of individual
side chains. Therefore, the docking was repeated with Vina at the inner cavity
allowing the rotation of all side chains that point into the inner cavity. Although
the inclusion of side chain flexibility led to an increase of predicted binding free
energy by 10 kJ⋅mol−1, the enrichment was completely removed in the flexible
docking calculation as indicated by the ROC-curves (Figure 3.8).

3.3 Discussion

In this study, I sketched and validated a possible virtual screening protocol using
molecular docking as the main technique. Four widely used molecular docking
approaches have been tested for their ability to find known active inhibitors of
KV1.1-(1.2)3. In this study, Autodock-Vina led to the best enrichment. Further-
more, we found that using sub-scores from the scoring functions of the individ-
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ual molecular docking programs can lead to pronounced enrichments of inhibitor
identification, even if no enrichment is gained using the total scoring function.
Subsequent analysis indicated that the enrichment can be further enhanced by
combining these sub-scores into consensus scores. These results underpin the
importance of adjustment of the scoring and ranking procedures in a molecular
docking calculation for successful virtual screening calculations.
The combination of blind docking with conventional docking calculations, as well
as the experimental evaluation of our predictions, support the hypothesis that
inhibitors bind within the inner cavity of KV1.1-(1.2)3. Using an adjusted consen-
sus molecular docking approach, we identified several novel, potent, and selective
non-peptide KV1.1-(1.2)3 inhibitors. Compounds 1 and 2 represent potential lead
structures for the development of novel compounds that could selectively inhibit
the ion flux mediated by KV1.1-(1.2)3 in vivo. Electrophysiological measurements
confirmed a hit rate at or above 17 % when the relatively stringent hit criteria of
greater than 80 % channel inhibition at 10 µM was applied. Four compounds (1,
2, 8, and 9) bind in the sub-micromolar range (Fig. 3.7). Compounds 1 and 2
exhibit at least 30-fold greater inhibition potency toward KV1.1-(1.2)3 than they
show against a small panel of cardiac selectivity targets (Nav1.5, Cav1.2, and
hERG), therefore meeting some of the basic cardiac safety requirements.
Evaluation against other unrelated targets was beyond the scope of this research,
but further medicinal chemistry could produce a library of similar compounds
to aid in the development of a structure-activity relationship for the most active
molecules, 1 and 2. This library could be used to elucidate key binding features
from compounds 1 and 2 to guide the development of a novel series of KV1.1-
(1.2)3 inhibitors. Neither compound 1 nor 2 has previously been reported in the
literature to have any biological activity. Furthermore, there are no references
associated with either of these compounds in the databases of SciFinder and
Reaxys.
The high specificity, as well as the low similarity of these hit molecules to known
active compounds from the training set, indicates that this approach makes
proper use of the structural characteristics of KV1.1-(1.2)3 in the resulting selec-
tion process for the identification of novel structures. The drug-likeness model
scores between −0.7 and 1 indicate that the 14 active compounds bear greater
similarity to marketed drugs relative to non-drugs, in agreement with the fact
that all compounds originate from the ZINC (http://zinc.docking.org) clean-
drug-like subset. Both implementations A and B identified a similar number
of inhibitors with greater than 80 % inhibition at 10µM concentration. How-
ever, set B (74 compounds) was approximately double the size of set A (33
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compounds). The fraction of active compounds was therefore nearly twice as
high in A than in B. This suggests that the enrichment of active compounds
is higher when the consensus scoring is applied in parallel rather than sequen-
tially, corresponding to a situation wherein each molecular docking algorithm
is applied to each compound. Although such an extensive screen would require
substantially more computational time, this may prove to be the most efficient
approach. Though the influence of successive filtering according to size and sol-
ubility applied after the consensus scoring procedure only in case B must be
considered. Nevertheless, we show here that when the whole library was tested
with only one docking program and subsequent consensus scoring was applied
to a smaller library of top-ranked compounds, an improvement in enrichment
of two to three orders of magnitude was achieved over a random selection of
compounds [5, 115, 116, 145]. Because the consensus approach that we used in
this study was trained on a library of known active and inactive compounds,
this approach cannot be immediately transferred to other targets. However, it
may be a reasonable starting point for ion channels that have structural and
functional similarity to KV1.2. Our optimization only targets the scoring and
the ranking stages of molecular docking and does not affect the sampling stage.
Further improvement might be possible when all three stages are included in the
training process.
Notably, the inclusion of receptor flexibility did not lead to an improved predic-
tion. The enrichment regarding alternative receptor structures in combination
with FlexX resulted in comparable ROC-curves. The calculation with Vina using
flexible side chains completely removed the enrichment (Figure ??). A possible
explanation for these observations could be the fact that the flexibility of the
side chains in the case of FlexX changed the overall conformation only slightly,
while, in the case of Vina, the flexibility led to receptor conformations that were
not observed in the simulation. For example, the side chains of threonine 375
were turned by 180 degrees (data not shown). In this conformation the carbonyl
groups of the threonine side chains pointed to the center of the pore. Under
physiological conditions one or two potassium ions are expected in the selectiv-
ity filter. These ions were not included in the molecular docking calculations.
The interactions with the ions and the solvent molecules are thought to stabilize
the conformation seen in the crystal structure by polar interactions. Since the
ions and solvent atoms were absent in the molecular docking calculation the se-
lectivity filter was not stabilized by these groups, allowing the docking algorithm
to relax the structure to an unphysiological conformation. In contrast, ions and
solvent were present in the MD simulation. Accordingly, the enrichment by the
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calculated scores was significantly reduced in the case of Vina but not in the case
of FlexX, were flexibilitiy was introduced by docking to conformations that were
generated by free all-atom MD simulations.

3.4 Summary
In this collaborative study I established novel inhibitors of the potassium channel
KV1.1-(1.2)3. The combined use of four virtual screening (VS) programs (eHiTS,
FlexX, Glide, and Autodock-Vina) lead to the identification of several compounds
as potential inhibitors of the KV1.1-(1.2)3 channel. From 89 electrophysiologi-
cally evaluated compounds, 14 novel compounds were found to inhibit the current
carried by KV1.1-(1.2)3 channels by more than 80 % at 10µM. Accordingly, the
IC50 values calculated from concentration-response curve titrations ranged from
0.6 to 6µM. Two of these compounds exhibited at least 30-fold higher potency
in inhibition of KV1.1-(1.2)3 over a set of cardiac ion channels (hERG, Nav1.5,
and Cav1.2), resulting in a profile of selectivity and cardiac safety. Notably, the
assayed compounds were purely selected on the basis of computational results,
driving this approach fully automatable. Therefore, the results presented herein
provide a promising basis for the development of novel selective ion channel in-
hibitors, with a dramatically lower demand in terms of experimental time, effort,
and cost than a sole high-throughput screening approach of large compound
libraries.
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3.5 Methods

Tanimoto-coefficients section were calculated using cheminformatics and machine
learning software RDkit (http://www.rdkit.org) and default 2048 bit hash Day-
light topological fingerprints (Section 2.1.4). The minimum path size was 1 bond,
the maximum 7 bonds. The quality of the predictions was evaluated by com-
paring the predictions of the individual programs with the experimental data
in the benchmark library. The predictions were illustrated using ROC-curves
and were quantified using the boltzmann enhanced discrimination of the ROC-
curve (BEDROC) as well as the area under the ROC-curve (AROC) (Section
2.3.3). A weighting factor of α = 20 was used for all evaluations, correspond-
ing to 80 % of the score from the top 8 % of the list. Both the AROC and
the BEDROC metric provide values between 0 and 1. The curves in figure 3.5
correspond to the same set of compounds.
The receptor input files for FlexX [101] (version 3.1.4) were generated using an
in-house Python (http://www.python.org) script defining all atoms of the inner
cavity within a cylinder of 10.5 Å around the fourfold symmetry axis as the
active site. High-throughput screening was performed using FlexX. Standard
parameters were used for weights of the scoring function and the number of
intermediate solutions for each fragment. Autodock-Vina is in detail described
in section 2.2.3. Input files were generated using the AutoDock plug-in [113]
for PyMOL [28]. For blind docking, a cubic box containing the complete KV1.2
transmembrane domain was used. Ligand clusters were defined manually by
visual inspection. For targeted docking, rectangular boxes with edge lengths
between 1.2 and 3.4 nm around the center of the individual ligand clusters were
used. High-throughput docking was performed using 20,000 compounds from
the FlexX calculation with the inner cavity as the target site.
The Electronic High-Throughput Screening programme (eHiTS) [146, 147] cal-
culates a score for each structure according to the poses of the ligand and the
complementarities of surface points on the ligand and the receptor. In the first
instance, the binding pocket is defined by a steric grid which divides regions
into separate pockets and all possible interaction sites are identified. In the next
step, the ligand is divided into rigid fragments and connecting flexible chains.
Then, each fragment is docked to every possible place in the binding site. Ring
systems are considered rigid and their conformation is preserved as given at the
input, usually the lowest energy conformer. For the recognition of interesting
poses a simple and fast chemical flag based statistical scoring function is used.
Afterwards, an exhaustive matching of compatible rigid fragment pose sets is
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performed to yield complete structures. Typically, the program evaluates several
million mappings of the rigid fragments to the target site. The reconstructed
solutions define a rough binding pose which is then refined by a local energy
minimization. The resulting poses are then evaluated by a third, more time
consuming scoring function that combines both statistical and empirical com-
ponents, plus additional grid based geometrical terms as well as entropy loss
estimation. Additional terms are used in the final scoring function to further
reflect all factors involved in binding, such as steric clashes, depth of the cavity,
solvation, conformational strain energy of the ligand, intramolecular interactions
in the ligand, and entropy loss due to hindered rotatable bonds. This final scor-
ing function attempts to estimate the free energy of binding. The result of the
final elaborated scoring function is used to rank the generated solutions.
Glide 5.5 [41, 50] performs a gradual guided progression solution space search by
an initial rough estimate of the ligand conformation and a subsequent torsionally
flexible energy optimization on a non-bonded potential grid based on the OPLS-
AA force field [68]. The best candidates, as defined by the scoring function,
are further refined by Monte Carlo sampling of the ligand pose. Glide’s scoring
function is a combination of empirical and force-field-based terms. Intermolecular
interactions were pre-calculated on a grid representing the extracellular half of
the receptor and were centered on selected residues in the binding site in such a
way as to enable access to total available space in the inner cavity and include
long range interactions up to 20 Å. Receptor flexibility was derived by in place
temporary alanine mutations and van der Waals (vdW) radii scaling. The 20,000
ligands selected with FlexX screening were docked with full flexibility on the grid.
For each ligand, ten poses were generated and subsequently clustered (RMSD <
0.5 Å).
Sequence and flexibility in MD simulation. The crystal structure of KV1.2 (PDB
code: 2A79) from rat served as template for modeling of the target structure
[85]. The part of the sequence that was part of the model is shown in figure
3.9. Loops that were not present in the crystal structure were added using the
MODELLER software [37]. For Glide, the protein structure was optimized with
MacroModel (OPLS2005 force field), and the Protein Preparation Wizard was
used to optimize hydrogen bonding networks of the protein. For FlexX the
structure was energy mimimized in the Amber ff99SB forcefield [57].
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Figure 3.9: Cutout of the sequences of the rat and human KV1.2 and of model
that was used for the molecular docking computations.





4
Inhibition of human Aquaporin 9

In this chapter, I present a collaborative study of small molecule interactions
with the human water channel protein Aquaporin 9 (hAQP9). This protein is
a member of the Aquaglyceroporin family. The computational approaches that
I used here, range from homology modeling to molecular docking to molecular
dynamics simulations and map a complete pathway from an unknown protein
structure to a detailed structural model of receptor-ligand interactions. An essen-
tial element of this study lies in the cross-fertilizing character of computational
and experimental findings that guided and supported each other. All reported
binding assays and the generation of the protein mutants were performed by Dr.
Michael Rützler at Aarhus University (Denmark).

4.1 Introduction

In all living cells, regulation of solute and water movement across cell membranes
is of critical importance for osmotic balance. Aquaporins are membrane chan-
nel proteins which facilitate the permeation of water and small neutral solutes
across biological lipid membranes. Several high-resolution X-ray structures of
AQPs revealed a conserved homo-tetrameric structure where each subunit pro-
vides an independent pore for water and other solutes [6, 45]. In contrast to
tetrameric potassium channels, each monomer constitutes an independent pore.

67
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Figure 4.1: Ribbon representation of AQP1 tetramere (left) and a single sub-
unit (right). Transmembrane domain TM3 is transparent to allow the view
to the single file water layer in the pore. The conformation was taken from
a equilibrium all-atom molecular dynamics simulation.

Each monomer consists of six transmembrane (TM) domains (TM1–6) connected
by five loops (A–E) with intracellular N- and C-termini. The loops and the trans-
membrane domains form a two-fold repeated tandem structure that is referred
to as hourglass structure (Figure 4.1). The first and second part of the protein
share considerable sequence homology resulting in this quasi two-fold structural
symmetry in the plane of the membrane [129]. Loops B and E fold into the
bilayer from opposite sides flanked by the TM domains. Both loops touch each
other in the middle of the pore. They contain a helical part and the Asn-Pro-Ala
(NPA) signature motifs, which are highly conserved among the AQP family [1].

Both Asn residues from the NPA motifs are the capping amino acids at the
end of the α-helices and form a constriction site, called the NPA-region. Close
to the NPA-region at the exoplasmic side, aquaporins have a highly conserved
region that consists of a ring of aromatic side chains and a highly conserved
Arg residue. This so called aromatic/arginine (ar/R) region forms the narrowest
part of the pore and serves as a selectivity filter for neutral solutes [6]. It has
been demonstrated for AQP1 that mutation of the corresponding Arg residue
(Arg195) to Val conveys proton leakage [6].
Human Aquaporin 9 (hAQP9) is a member of the Aquaglyceroporin family and
has a broad solute permeability including glycerol, polyols, carbamides, purines,
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Figure 4.2: Homology model of human AQP9. Ribbon graphical illustration of
the homology model of hAQP9. Only one subunit is highlighted for clarity
(A). The RMSD trace in two independent MD simulations of hAQP9 indi-
cates structural stability of the model in the simulated time scale (tens of
nanoseconds) (B).

pyrimidines, nucleosides, and monocarboxylates and urea [122]. It is expressed
in the plasma membrane of hepatocytes in the liver, which is a major site of
production and elimination of metabolites such as urea, nucleotides, and ketone
bodies. Substantial amounts of these solutes must rapidly cross the hepato-
cyte plasma membrane with minimal osmotic perturbation. Recently, Jelen et
al. [62] reported the identification of novel murine AQP9 inhibitors by a small
molecule screen, using an fluorescence intensity assay [40, 73, 95]. In this as-
say, fluorescence intensity of the calcein fluorophore is affected by cell volume
changes. Consequently, with knowledge about the relation between extracellu-
lar osmolarity, fluorescence intensity and cell volume, cell volume changes can
be monitored as changes in fluorescence intensity [40]. hAQP9 and the bacte-
rial glycerol facilitators (GlpF) share a sequence identity of 33 % enabling the
construction of a homology model of hAQP9 using the high resolution structure
of Glpf (PDB:1FX8) as template [42]. Using this structural model, I aimed to
identify novel inhibitors that can serve as selective hAQP9 inhibitors in vivo or
even as lead compounds.
In this study, a homology model of the human form of AQP9 was constructed and
used for a structure based virtual screening (SBVS). Novel inhibitors of hAQP9
were identified whose inhibition activity was confirmed in the described fluo-
rescence intensity biological assay system. Furthermore, the putative molecular
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interaction site in AQP9 was identified using a combination of in silico screening,
mutagenesis and molecular dynamics simulations. The results of this study are
presented and discussed in the following paragraphs.

4.2 Results

4.2.1 Homology Model of human Aquaporin 9

Since the structure of AQP9 has not yet been resolved, I built a homology model
based on the crystal structure of the bacterial glycerol facilitator GlpF (Pro-
tein Data Bank code 1FX8) as described in [62]. This model was subjected to
two 100 ns atomistic molecular dynamics simulations. The simulation setup is
described in detail in the Methods section 4.5 of this work. During the first
10 ns the protein atoms were position restrained, allowing both lipid and solvent
molecules to equilibrate. Afterwards, the system was simulated without position
restraints. During the unrestrained simulation, the root mean square deviation
(RMSD) of the hAQP9 backbone with respect to the initial structure converged
to a value of 0.3 nm (Figure 4.2).

4.2.2 Single Pore Water Permeability Coefficients

The mouse and human variants of AQP9 protein share a sequence identity of
75.6 %. Therefore, I hypothesized that binding sites for some previously identi-
fied murine (m)AQP9 inhibitors [62] can be detected on hAQP9 as well. Putative
binding sites were identified by screening the whole hAQP9 homology model in
a blind molecular docking calculation. This screen revealed several distinct pu-
tative binding sites (Figure 4.3). All four pores of the tetramer were occupied
by compounds from both the extra- and the intracellular side. Compounds were
also placed into the inner cavity in the center of the tetramer as well as at the
protein-membrane interface. I considered the pore entries as most plausible ac-
tive sites for inhibitors and used the docking poses as starting configurations
in MD simulations. Since the assay probes activity (water permeability) rather
than affinity, I calculated the single channel osmotic water permeability coef-
ficients (pf) to quantify the inhibitory effect of the compounds. Simulations
were carried out under physiological temperature and pressure conditions and
with a KCl concentration of 124µM. The protein was embedded in a dimyris-
toylphosphatidylcholine (DMPC) lipid bilayer mimicing the natural environment
of hAQP9. I performed two individual sets of simulations with compounds lo-
cated either at the extracellular or the intracellular pore vestibule and calculated
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Figure 4.3: Illustration of the blind docking results. Lipid molecules (orange)
were docked to the surface of the protein and revealed several possible binding
pockets.

the pf values by the mobility of the water molecules in the pore. I found that
the majority of compounds led to a significant reduction of computed pf values
when placed at the extracellular AQP9 site (Figure 4.4). Compounds located at
the extracellular site suppressed water permeability more (average pf= 0.96 +/-
0.55 × 10−14 cm3s−1) than binding to the intracellular site (average pf= 1.5 +/-
0.85 × 10−14 cm3s−1).
However, the computed pf values of the individual molecules did not correlate
with measured activities on mAQP9 (data not shown). Therefore, I decided to
utilize the simulation trajectories to identify the residues in AQP9 putativly in-
volved in the binding of the compounds. For this purpose, I monitored contacts
between individual amino acids and the bound-ligand every 50 ps and summed
up the counts of all simulations. The analysis revealed 6 extracellular and 4 in-
tracellular residues which were significantly more frequently involved in contacts
with the ligands than other residues (Figure 4.5). Based on this analysis we
concluded that Ile60, Tyr151 and Leu209 might be involved in AQP9-inhibitor
binding at the extracellular side of the channel. Furthermore, His82, Met91 and
Phe180 might be involved in AQP9-inhibitor binding at an intracellular site. All
numbers relate to the human AQP9 primary protein sequence.

Experimental Validation

In order to distinguish between these two alternative sites, I suggested Ile60,
Tyr151 and Leu209 at the extracellular site and His82, Met91 and Phe180 at
the intracullular site for mutagenesis. According to this suggestion, conservative
changes were introduced, based on homologous AQP sequences, into hAQP9
by site-directed mutagenesis. The changes made are summarized in Tab. 4.1.
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Figure 4.4: Computed pf values from MD simulations with the hAQP9 ho-
mology model in complex with mAQP9 inhibitors. Compounds were ranked
according to their inhibitory effect of mAQP9. The values represent the mean
from four individual subunits of the tetramer and the error bars indicate the
standard deviation. As a reference, the pf computed from two separate MD
simulations without inhibitors is depicted with a dashed line (average) and
the standard deviation indicated by the grey background.
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Figure 4.5: Frequency distribution of simulated contacts between inhibitors
and hAQP9 amino acid residues. Contacts within the 150 ns time window of
simulation between inhibitors and hAQP9 were analyzed and are displayed
along the primary amino acid sequence as contacts per 1000 total contacts
made (left). The illustration of the putative inhibitor interacting amino
acids in the homology model viewed from the extracellular side (top) and the
intracellular side (bottom). Residues in the illustrations are colored according
to the observed number of contacts from blue (no contacts) to red (highly
frequented).
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Table 4.1: Conservative amino acid changes introduced into hAQP9 by site-
directed mutagenesis.

Mutant Site Seq. in hAQP9 Template AQP Homologous seq.
I60V extracellular VITINV mouse AQP7 YLGVNL
H82A intracellular SGGHIN yeast AQPY1/2 SGGALN
M91N intracellular SLAMCL mouse AQP7 TFTNCA
Y151F extracellular FATYPA no template
F180V intracellular FAIFDS mouse AQP3 LAIVDP
L209M extracellular SLGLNS mouse AQP7 SLGMNS

Subsequently, three individual stable chinese hamster overy (CHO) cell lines
were established for each construct. In a first set of experiments the function-
ality of these constructs in osmotic water permeability assays was determined.
These experiments indicated that 5 out of 6 hAQP9 mutant genes encoded fully
functional proteins in this assay. Cell lines expressing hAQP9 F180V displayed
reduced water permeability, compared to hAQP9 expressing cells, when expres-
sion was fully induced (by tetracycline). This suggested that hAQP9 F180V
might be affected in single channel water permeability, protein stability or pro-
tein trafficking. Therefore, these cell line was excluded from further analysis. In
a next step it was tested if any of the mutations alter the inhibitory effect of the
studied ligands. It was found that the two amino acid exchanges made at the
intracellular side altered the inhibition, whereas the exchanges made at the ex-
tracellular side did not (Figure 4.6). I therefore concluded that several identified
AQP9 inhibitors, including phloretin, CD05595, RF03176 and HTS13772 likely
interact with AQP9 in close proximity to His82 and Met91, both located at the
intracellular side.

4.2.3 High-Throughput Virtual Screening

The mutational analysis indicated that the binding site for the studied ligands
is located at the intracellular entrance of the pore of hAQP9. I therefore con-
centrated on the intracellular binding site for subsequent docking studies. To
probe if this site can be used to predict the experimental observations when used
as target site in a molecular docking calculation, I generated a test-library of
compounds with 11 true hAQP9 active compounds and around 2400 random de-
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Figure 4.6: Effects of hAQP9 single amino acid mutations on inhibitor potency
in CHO-hAQP9 cell shrinking assays. Induction of hAQP9 was titrated with
tetracycline to achieve similar baseline cell water permeabilities in all cell
lines, except for CHO-hAQP9 F180V, where this was not possible. The
lowest x-axis values in each dose-response curve are 0, and have been altered
for presentation on a log-transformed graph.
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Figure 4.7: Benchmark results ROC-curves for Vina using rankings according
to multiple receptor configurations (left) and for LeadIT using two different
conformations of the WT and single structures of the mutants H82A and
M91N (right). The steps indicate the ranking of the 11 active compounds in
the test library.

coys. The content of this test-library was docked using the program Vina against
each of the receptor configurations. The ROC-curves generated from the rank-
ings according to the individual calculations lie in the random regime without
exception (Fig. 4.7). Therefore, no enrichment of active ligands was observed.
Next, I changed the molecular docking algorithm and used the program LeadIT.
Due to a restricted number of licenses that would allow the parallel calculation
against multiple targets, I only used two different configurations of the hAQP9
homology model. The first was the energy minimized homology model (WT1)
and the second a configuration from a MD simulation (WT2). The compound
rankings according to the docking calculations were analysed by generating the
respective ROC-curves (compare section 2.3.2). Both curves significantly sam-
ple the non-random region. Therefore, LeadIT achieved significant enrichment
for both of the receptor configurations of the wild-type hAQP9. The molecular
docking calculation was repeated with the mutants H82A and M91N. The en-
richment according to the mutant structures was comparable to the enrichment
on the hAQP9 wildtype models (WT1, WT2). Accordingly, I decided to use the
program LeadIT in a high-throughput virtual screen for novel hAQP9 inhibitors.
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Figure 4.8: Obtained shrinking half-times (n=3) of the 105 tested compounds,
and standard deviations (error bars). The red line indicates the value ac-
cording to pure DMSO. Higher shrinking times indicate higher inhibitory
efficiency.

4.2.4 Identification of Novel Inhibitors

According to the results of the benchmark presented in the previous section, I
used LeadIT and the model of the hAQP9 wild type to screen around 1 mil-
lion compounds in silico. The 105 top ranked compounds of this screen were
purchased and activities were measured in the cell based assay. The effects of
these compounds were tested on CHO-hAQP9 cell water permeability. We found
that 30 out of 105 tested substances conferred significantly reduced water per-
meability in CHO-hAQP9 cells, compared to DMSO treatment (Fig. 4.8 and
supplementary Table 7.6). Furthermore, by performing dose-response analyses
for the top 18 ranked (by activity) compounds, we found that the most potent
inhibitors affected CHO-hAQP9 cells at an apparent half-maximal (IC50) con-
centration between 4 to 10µM (Supplementary Table 7.8). To further validate
the predictive AQP9-inhibitor interaction model, dose response analyses were
performed for the 6 best (by IC50) compounds. Here we found that 5 out of
6 substances are affected by at least one of the amino acid exchanges H82A
or M91N, suggesting inhibitor-hAQP9 binding near these amino acid residues
(Figure 4.9), and therefore the target binding site.

Computational Analysis

The predicted binding poses of the top 6 active compounds are complemen-
tary to the chemical environment in the pore and span the NPA region (Figure
4.10). Some compounds range to the extracellular site and show interactions
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Figure 4.9: Effects of hAQP9 single point mutations on CHO-hAQP9 cell
water permeability. Induction of hAQP9 was titrated with tetracycline to
normalize the cell water permeabilities in the cell lines. Intracellular amino
acid exchanges resulted in enhanced or reduced inhibitor potency for 5 out
of 6 tested substances, corresponding to the 6 substances with the lowest
apparent IC50 (see supplementary spreadsheet 2). Of these, compound (1)
was a very moderate inhibitor of CHO-hAQP9 cell water permeability.
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Figure 4.10: Putative positions of the top 6 tested substances (ID1–6) (in
ball-and-stick representation) docked to the intracellular side of the pore of
the hAQP9 homology model represented as ball-and-sticks as well as surface.
The colors decode the chemical elements, oxigen (red), nitrogen (blue), sul-
fur (yellow). For clarity, the carbon atoms of the ligands are colored green,
whereas the carbon atoms of the receptor are colored grey. The ID’s corre-
spond to the ID’s in figure 4.9. The compounds are ranked according to the
calculated IC50 values.



80 Inhibition of human Aquaporin 9

Figure 4.11: Calculated pf values from MD simulations using the docking poses
as initial configurations for the substances (ID1–6) from Fig. 4.9 and 4.10.
The values represent the mean from four individual subunits of the tetramer
and the error bars indicate the standard deviation. As a reference, the pf

computed from two separate MD simulations without inhibitors is depicted
with a dashed line (average) and the standard deviation indicated by the
grey area.

with Arg219 from the ar/R region. These six compounds are predicted to be in
very similar poses in contact with the side chains of His82 and Met91. An urea
group, which is a regular motif of these compounds, was observed interacting
with the backbone carbonyl groups of Gly81 or His82. Furthermore, all poses
predict the presence of an aromatic group between the NPA motifs. Moreover,
the bound molecules show a hydrogen acceptor in close vicinity to Asn84 of the
intracellular NPA motif as well as a donating group in vicinity of Gly81 or His82.
I simulated each of these compounds for 30 ns and used the last 20 ns to calcu-
late pf values. Notably, in all the cases where the compounds were present, the
calculated pf values were significantly smaller than the reference value without
compounds (Figure 4.11) as well as the pf values from the previously simulated
set (Figure 4.4), therefore confirming significant inhibition.

4.2.5 Simulated Ligand Association

Although AQP9 is a member of the aquaglyceroporin sub-family, whose members
have wider pores than the pure water channels, it was questionable whether the
pore is wide enough to allow the entry of drug-sized compounds. In contrast
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Figure 4.12: Simulation box with the solvated model of AQP9 (cartoon repre-
sentation) embedded in a DMPC lipid bilayer (green and yellow). Potassium
and cloride ions are represented as spheres (green, cyan). The molecules
CMP1 are covered by black boxes.

to the docking approach described in section 4.2.2, where the compounds were
docked rather superficially to the protein surface (data not shown), the current
compounds are predicted to bind deeply into the water pore. To address the
question of accessibility of the predicted poses, I set up a set of MD simulations.
The goal of these simulations was also to simulate the spontaneous occupation
of the intracellular pore entrance and to identify possible binding pathways as
well as possible other modes of binding.
From all compounds in our library that were affected by AQP9 single amino
acid exchanges, we selected a compound with a relatively low half maximal in-
hibitor concentration (IC50=0.39µM) and a relatively high maximal inhibition
rate (90 %) for human AQP9. I refer to this compound as CMP1. Due to a cur-
rently ongoing patent application, the structure can not be shown in this work.
The simulation box was set up containing 4 ligand molecules that were placed in
the bulk solution at least 1.5 nm away from the hAQP9 tetramer (Figure 4.12).
40 simulations were carried out with different initial velocity distributions. In 30
simulations one or more inhibitor molecules diffused into the membrane bilayer.
In two cases, a spontaneous binding at the intracellular site was observed. The
configuration generated by the MD simulation resembles the predicted pose from
the molecular docking calculation within 0.5 Å RMSD. In these simulations, a
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Figure 4.13: Minimal distance of compound CMP1 to the intracellular NPA
motif. Two trajectories (black and red) spntaneously converge to the pose
predicted by molecular docking.

single compound entered the pore of the hAQP9 homology model at the intracel-
lular site approaching the Arg219 of the ar/R region by less than 5 Å. Notably,
CMP1 reached a configuration and orientation close to the predicted poses of
the 6 hits (ID1–6) presented in the last section, and spanned the NPA region of
hAQP9. During the process of binding the molecules entered multiple metastable
transition states (4.13). The entering demonstrated that the pore is large enough
to allow the entering of drug-sized molecules. In both simulations where a bind-
ing was observed, the actual entering of the pore, from the outer mouth to the
bining site, happened within less then 10 ns simulation time (4.13). Also ligand
configurations were observed which were significantly different from the molecu-
lar docking prediction. Notably, also alternative binding modes were generated
by the simulations. In addition, also extracellular associations of CMP1 to the
hAQP9 homology model were observed. In two cases, one compound occupied
the center of the tetramer from the extracellular site. However, the association
of single CMP1 molecules at the extracellular site (neither at the pore entry nor
at the central cavity) did not lead to a complete inhibition of water flux through
the pore, within the time of the simulation. The binding at the intracellular site
completely interrupted the water flux.

4.3 Discussion

In the current study, I have modeled the human isoform of the Aquaglycero-
porin (AQP9). Repeated all-atom MD simulations indicated a structurally stable
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model at the simulated timescale of 100 ns. By performing a series of simulations
with the model of hAQP9 together with a set of recently identified specific and
relatively potent inhibitors of mAQP9 [62], I found residues which were regularly
contacted by the ligands. These residues were suggested for a mutational study.
Point mutations of three (H82A, M91N and F180V) of the six suggested residues
resulted in changes of binding affinity of already validated ligands. According to
the homology model, these point mutation sites are located at the intracellular
entrance of the water pore of hAQP9. Intracellular binding of an AQP inhibitor
was also suggested by Migliati et al. [91].
Utilizing this information, I was able to identify a molecular docking approach
for the identification of novel potent inhibitors. The application of this approach
led to the identification of novel hAQP9 inhibitors from a chemical compound
collection containing 1 million different structures. From 105 active compounds,
30 compound showed a significant inhibitory effect at 100µM. From these, the
top 18 (by activity) compounds were evaluated by titration response measure-
ments. From these, the top 6 (by IC50) compounds exhibit a half maximal
inhibitory concentration of IC50 = 3.6 to 18µM. These identified inhibitors (ID1–
6) were structurally divergent from the originally identified substances [62] and
therefore, provide additional starting points for future inhibitor optimizations.
Efficacy studies with these inhibitors (ID1–6) on cells expressing the mutated
hAQP9 isoforms provided additional evidence for the interaction of the identi-
fied inhibitors in close vicinity of the predicted interaction site. Computational
support was provided by the significant reduction of the calculated pf values of
the hits. According to the poses of the hits at the target site, the hits penetrate
the pore and span the NPA region, allowing contacts with Arg219 from the ar/R
region, which is located at the most narrow region of the pore. Furthermore, free
all-atom MD simulations with a validated inhibitor supported that the pore of
hAQP9 is wide enough to allow the entering of drug-sized compounds. Notably,
in 30 out of 40 simulations the partition of at least one compound into the lipid
bilayer was observed. In order to bind at the intracellular site a ligand has to
overcome the lipid bilayer. This suggests, that a sufficient lipophilicity is favor-
able for hAQP9 inhibitors. However, much longer time scales can be involved in
drug binding than covered with this set of MD simulations as recently reported
[17, 32, 114]. Therefore, effects that take place on the micro- and millisecond
timescales may be considered in future studies.
A recently reported blind experimental screening against hAQP9 yield a hit rate
of 3 % [62]. In contrast the hit rate yield by the in silico supported screen
reported here was 21 %. Therefore, the hit rate was increased by 700 % due to
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the virtual screening. I note however, that the most potent substance identified
with the described model was less effective than the best inhibitor identified in
the blind small molecule screen (by 4–5 fold). It therefore remains to be clarified
whether the in silico approach can be refined in order to identify more potent
AQP9 inhibitors. So far, the optimization of the VS approach was only targeted
to yield a large number of active compounds. In future studies, the proposed
model of hAQP9 can be used to identify unsatisfied interaction sites between
AQP9 and the know inhibitors or more favorable derivates of the inhibitors.
The pharmaceutical potential of AQP inhibitors has been emphasized in several
review articles, most recently by Huber et al. [59], but relatively few organic AQP
inhibitors have been described so far [15, 62, 88, 91, 95]. Specific and potent
inhibitors are valuable for the study of AQP function, since they complement
knockout and knockdown experiments, also when the compounds, as reported
here, are not in perfect agreement with pharmacological requirements that are
needed for an Investigational New Drug (IND) application. The general strategy
outlined in this study is applicable to other members of the AQP family and
related proteins.

4.4 Summary

Involvement of the AQP9 membrane channel has been suggested to be involved in
the etiology of several diseases including hyperglycemia and type-2 diabetes [105].
By now, much of the knowledge about function of aquaporins has been explored
using non-pharmacological methods as mRNA and protein expression studies and
mutational studies. Also the association of mutations of genes encoding AQPs
with human diseases has aided understanding of AQP function. However, a faster
and more direct way to inhibit specific members of the AQP protein family would
pave the way for a rigorous understanding of the function of aquaporins and
their role in human pathologies. For that purpose, inhibitors that specifically
inhibit certain members of the aquaporin family are invaluable tools for such
investigations.
In the current study, novel potent inhibitors were identified. Furthermore, an
atomic model of a the interaction site of human AQP9 for small compounds
was established. The investigations presented herein, base on a composition
of numerous experimental and computational methods as homology modeling,
the combination of various molecular docking based strategies (blind docking,
molecular docking with know compounds and virtual screening) as well as MD
based methods (free all-atom MD simulations, pf calculation). The putative



Chapter 4 85

inhibitor binding site identified through this procedure was modified by site-
directed mutagenesis and validated by flourescence intensity assays. Using this
model, it was possible to identify novel inhibitors of hAQP9 by a high-throughput
virtual screening of 1 million compounds. The proposed model has been further
supported by free MD simulations, in which the same ligand pose was generated
that was suggested by molecular docking.
I greatly thank Dr. Michael Rützler who established the three independent cell
lines for each mutated AQP9 isoform, performed the flourescence assays and
provided information about first inhibitors. In summary, we have successfully
established a strategy for identification of small molecule inhibitors for hAQP9
that includes a 3D structural model of the putative binding site. In the future,
the proposed molecules can be used in functional studies of AQP9 or serve as a
basis for development of specific, sub-micromolar inhibitors. This computational
approach can also be applied to other aquaporins and related proteins.
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4.5 Methods

Molecular dynamics simulations were carried out using the Gromacs simulation
software [53, 124]. The simulations box contained the protein tetramer embedded
in a lipid bilayer of DMPC lipids and around 18.000 SCPE [7] water molecules.
78 potassium ions and 86 chloride ions were placed randomly in the simula-
tion box corresponding to an ion concentration of 124µM. Ion parameters were
taken from Dang [24]. Lipid parameters were taken from [9]. The whole system
was simulated using the Amber ff99SB-ILDN [80] force field. Ligand parame-
ters were calculated using the generalized amber force field (GAFF)[134]. ESP
partial charges were calculated in a Hartree-Fock method at the 6-31G* level
in agreement with the Amber ff99SB-ILDN force field. Restrained electrostatic
potential (RESP) fitting was perfomed using Antechamber [133]. Long-range
electrostatic interactions were calculated with the particle-mesh Ewald method
[25, 36]. Short-range attractive van-der-Waals and repulsive Pauli interactions
were described by a Lennard-Jones potential, which was cut off at 1 nm. The
pressure was kept constant by coupling to a semi-isotropic Parrinello-Rahman
barostat [98, 99] at 1 bar with a coupling constant of 5 ps. The Lincs algorithm
[52] was used to constrain protein and lipid bond lengths and the Settle algorithm
[92] was used to constrain all other bond lengths, allowing a time step of 2 fs.
The temperature was kept constant by coupling the system to a velocity rescal-
ing thermostat [8, 18] at 300 K with a coupling constant of 0.01 ps. The solvent
and lipid molecules in simulation system were equilibrated for 10 ns before pro-
duction. During this equilibration the atoms of the receptor were harmonically
restrained with harmonic force constants of 1000 kJ⋅mol−1nm−2. The simulation
length of the production runs varied between 30 and 400 ns.
The calculation of the single channel osmotic water permeability coefficients pf

was done according to the collective diffusion model described by Zhu et al. [142].
The first 10 ns of the unrestrained simulations were removed for equilibration.
The pf values were computed individually for each subunit from the slope of the
mean-square displacement (MSD) of the collective water coordinates. The slope
of the MSD was approximated by the slope of a linear fitted line between 20
and 200 ps displacement time. According to 90 ns simulation time used in this
analysis, the fit was carried out 450 times. For the analysis water molecules were
used within a cylinder of length 1 nm and radius of 0.5 nm around the NPA motif.
To exclude influence of the bulk, the z-position of the cylinder was adjusted to
minimize the resulting pf values. The reported values are mean values of the four
computed pf values from the individual subunits. The error bars correspond to
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the respective standard deviation.
All structures targeted with molecular docking were energy minimized in the
Amber ff99SB-ILDN [80] force field, applying 250 steps of the steepest decent
algorithm implemented in Gromacs [53, 124]. Target structures for individual
molecular docking algorithms used in this study were prepared as follows: The
first molecular docking calculations were performed with Autodock-Vina [121]
(here referred to as Vina; version 1.0.2). Input files of the target sites were gen-
erated using the Autodock-Vina plugin [113] for the PyMOL Molecular Graph-
ics System (Version 1.3 from Schrödinger LCC). A standard grid spacing of
0.375 Å was used. The blind docking calculations where performed as described
by Hetényi et al. [54, 55, 56] with Autodock-Vina (Vina), using whole hAQP9
tetramer as target site. Putative binding pockets were identified by visual in-
spection of the docking results. Conventional docking calculations were also
performed with Vina. All atoms in a box of 21x21x28 Å3 around the intracellu-
lar pore entry were used as active site. An energy minimized homology model of
hAQP9 and 39 representative structural clusters of the protein as well as 4 struc-
tures from equilibrated MD simulation containing reference ligands were used as
target structures. Molecular docking with LeadIT [101] (version 2.0) (formerly
FlexX) was done using the standard configuration. All atoms within a sphere of
10 Å around the intracellular pore entrance of hAQP9 served as target site. The
high-throughput screen was performed using an energy minimized structure of
the homology model of the hAQP9 wild type. A snapshot taken from an equi-
librated MD simulation was utilized. The energy minimization was done in the
Amber ff99SB-ILDN force field [80].
3D structures were prepared and hydrogenated with the program Conrina [107]
(version 3.48). A structural screening database, containing 972307 drug-like com-
pounds, was kindly provided by Enamine (http://www.enamine.net). Tanimoto-
coefficients section were calculated using cheminformatics and machine learning
software RDkit (http://www.rdkit.org) and default 2048 bit hash Daylight topo-
logical fingerprints (Section 2.1.4). The minimum path size was 1 bond, the
maximum 7 bonds.





5
Identification of First Active Compounds

A question that has been raised regularly during the time of my studies was:
“What should I do when no prior information of inhibitor molecules is available?”.
In such cases it is not possible to benchmark and train virtual screening (VS)
approaches beforehand as done in the former studies (Chapters 3 and 4). On the
basis of the glutamine high-affinity transport system GlnPQ from Lacotococcus
lactis (L. lactis), the following study demonstrates a possible strategy for the
identification of novel inhibitor molecules by molecular docking without prior
optimization.
In the previous studies it was observed that a VS approach that performs well
on one target does not necessarily perform well on other targets (compare FlexX
and Vina in chapters 3 and 4). Therefore, I combined the prediction of putative
novel inhibitors from different VS methods in order to increase the probability
of identifying a successful screening approach. Accordingly, the primary goal
of this study was the identification of a successful virtual screening approach
rather than the identification of active compounds. This study resulted from
a collaboration with Faizah Fulyani and Dr. Bert Poolman from the Groningen
Biomolecular Science and Biotechnology Institute at the University of Groningen,
who performed growth assays to test the suggested compounds for inhibitory
activity.

89
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5.1 Introduction

ATP-binding cassette (ABC) systems comprise a large super-family of membrane
proteins which appear in archaea, eubacteria and eukarya [65]. The most promi-
nent characteristic of these proteins is that they share a highly conserved ATPase
domain, the ABC, which has been demonstrated to bind and hydrolyze adenosine
triphosphate (ATP), thereby providing energy for a large number of biological
processes [26]. There are three main classes of ABC-proteins: importers, ex-
porters and a third class which does not involve transport but rather processes
such as DNA repair and the translation or the regulation of gene expression.
ABC-transporters (importers and exporters) use ATP to translocate a broad
number of substrates across the membrane including lipids, amino acids, pep-
tides, proteins, metal ions, salt and hydrophobic compounds which also encom-
pass drugs. A prominent member of the ABC-exporter family is the multidrug-
resistance-protein (MDR1) that is known to cause resistance of tumors against
a broad range of drugs [96].
The core structure of ABC-transporters consists of an assembly of two trans-
membrane (TM) subunits which build a pore and two intracellular ATP-binding
subunits, together referred to as the translocator. Prokaryotic ABC transport
systems involved in solute uptake (importers) employ an additional protein that
captures the ligand and delivers it to the translocator. These so-called substrate-
binding proteins (SBPs) are present in the periplasm of Gram-negative bacteria
or they can be tethered to the membrane via a lipid or protein anchor (Gram-
positive bacteria, archaea).
In 2002, it was discovered that members within the ABC class have the SBPs
fused to the translocator domains [123], most notably the OTCN family involved
in the uptake of osmoprotectants, taurine (alkyl sulfonates), cyanate and nitrate,
and the PAO family which is specific for polar amino acids and opines (see
ref. [26] for details on these families). In this case, it is referred to it as the
substrate-binding domain (SBD). Within the PAO family, one or two domains
are linked to the amino-terminal end of the TM subunit, and these are preceded
by a signal sequence. Two of these chimeric substrate-binding/transmembrane
proteins together with two ATP-binding cassettes form the functional unit for
transport, and these systems thus have two or four substrate-binding domains
[111].
ABC-transporters with SBDs attached to the transmembrane domain are present
in (most prevalently) Gram-negative bacteria and Gram-positive bacteria includ-
ing Gram-positive pathogens such as Listeria monocytogenes, Staphylococcus au-
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reus, Streptococcus pneumoniae, Enterococcus faecalis, Streptococcus pyogenes.
Many Gram-positive pathogens are multiple amino acid auxotrophs and require
uptake of glutamine or glutamate via the Gln high affinity ABC-transport system
GlnPQ that is predominantly expressed in Gram-positive bacteria [111]. Group
B streptococci, for example, are the leading cause of neonatal sepsis and menin-
gitis. In this pathogen, the GlnPQ transporter is implicated in the regulation
of expression of fibronectin adhesins that are necessary for bacterial adhesion to
other cells and therefore important for its virulence [118]. In Lactococcus lactis
(L. lactis) GlnPQ is the only transporter for the uptake of glutamine (Gln) and
glutamic acid (Glu) [111]. It has been shown that the disruption of the glnPQ
gene leads to a loss of glutamine and glutamic acid uptake and cells do not longer
grow on a medium with Gln or Glu as the sole source. However, the cells grow
normally when Glu in the form of the dipeptide Ala-Gln was added and trans-
ported by a dipeptide transport system of L. lactis. Importantly, this class of
ABC-transporters is not present in humans or other mammals, thus rendering
GlnPQ a possible target for pharmaceutical treatment. Therefore, the interrup-
tion of Gln and Glu uptake by GlnPQ may be a possible route towards in the
treatment against bacterial pathogens. However, no small molecule inhibitors of
GlnPQ are currently known.
Recently, the structures of the substrate-binding domains (SBD1 and SBD2)
from GlnPQ were resolved by X-ray crystallography [112]. Liganded structures
were resolved to resolutions of 1.4 Å for SBD1 and 0.9 Å for SBD2. Furthermore,
SBD2 was resolved in an unliganded open conformation at 1.5 Å resolution (Fig.
5.1) and one crystal structure was obtained from a tandem structure containing
both SBD1 and SBD2 at 2.8 Å resolution. Although the two SBDs have a similar
fold and similar binding pockets, the ligand affinity and specificity of SBD1
and SBD2 differ. For instance, the dissociation constant Kd (Section 2.1.1) for
Gln is 91µM on SBD1 and 0.9µM on SBD2. At the primary structure level,
SBD1 and SBD2 share 46 % sequence identity. These structures enabled me
to perform a structure based virtual screening (SBVS) for putative inhibitors
of GlnPQ on the individual subunits. In order to identify a predictive virtual
screening (VS) approach I combined a selection of compounds suggested from
different VS programs Autodock-Vina [121] and FlexX [101] section targeting
both SBD1 and SBD2. Afterwards, the predicted top compounds were purchased
and evaluated in a functional assay bases on the growth rates of L. lactis in the
presence of SBD1, SDBD2 or both. Adjacently, the most efficient VS approaches
were deduced with the confirmed hits.
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Figure 5.1: Obtained crystal structures. SBD1 liganded open (A), tandem
SBD1/SBD2 open (B), SBD2 liganded closed (C) and unliganded open (D)
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Figure 5.2: Crystal structures and docked poses (grey) of SBD1 (A) and SBD2
(B) using FlexX. The poses of glutamine as resolved in the crystal structure
are shown in line representation. In the case of SBD2, the docking pose
overlaps almost completely with the crystal structure.

5.2 Results

5.2.1 Reproduction of the Crystal Structure

No inhibitors of GlnPQ are currently available in the literature. Therefore, it
was not possible to test and train a VS technique with respect to the enrichment
of active compounds in advance. However, the crystal structures were available
in the liganded forms (Fig. 5.1). This allowed a comparison of the docking
poses of Gln with the conformations observed in the crystal structure as a first
validation. The molecular docking program FlexX was used to dock the natural
substrates of GlnPQ, namely glutamine and glutamic acid, against SBD1 and
SBD2. The crystal structures of SBD1 and SBD2 with the highest resolutions
were taken for the molecular docking calculation. All amino acids within a
sphere of 6.5 Å radius around the substrate served as target sites. The molecular
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Table 5.1: FlexX docking scores [kJ⋅mol−1] of glutamine, rank and RMSD [Å] of
the top poses to the substrate resolved in the crystal structure (by score and
by RMDS) and corresponding experimentally obtained standard binding free
energy ∆Gb

0 [kJ⋅mol−1] derived from the Kd values [µM] at a temperature of
298K.

Gln Glu
Criterion Score Rank RMSD Exp. ∆Gb

0 Exp. Kd Score
Lowest score SBD1 −29.7 1 2.4 −33 91 −18
Lowest score SBD2 −54.8 1 0.7 −45 0.9 −35
Lowest RMSD SBD1 −20.9 128 1.0 −33 91 n.e.
Lowest RMSD SBD2 −50.5 6 0.4 −45 0.9 n.e.

Table 5.2: Successfully screened compounds and intersections η, using the pro-
grams FlexX and Vina.

SBD1 SBD2 η

FlexX 8,742 12,780 8,253
Vina 792,867 764,437 616,017
η 6,284 8,463 6,291

docking algorithm was able to generate the poses as found in the crystal structure
(Figure 5.2). In the case of SBD2, the pose with the best overlap with the crystal
structure was within the six top ranked poses. In the case of SBD1 the lowest
docking scores for Gln were −29.7 kJ⋅mol−1 for SBD1 and −54.8 kJ⋅mol−1for SBD2,
and for Glu −20.9 kJ⋅mol−1 for SBD1 and −50.5 kJ⋅mol−1 for SBD2. For Gln,
the tendendency of these numbers agrees with the experiment (−33 kJ⋅mol−1 for
SBD1 and −45 kJ⋅mol−1 for SBD2) [112](in preparation). However, the predicted
scores deviate from the experimentally obtained values by 4–19 kJ⋅mol−1 (Tab.
5.1).

5.2.2 Structure Based Virtual Screening

In order to identify a VS approach for the identification of active compounds,
I combined the prediction of four different methodically diverse VS approaches.
Two different compound libraries were screened with FlexX and Vina. Library
LA contained 972,307 commercially available drug-like structures. Due to limita-
tions of computational capacities a smaller but structurally more diverse Library
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Table 5.3: Overview of the different strains of L. lactis involved in this study.

Strain-ID Strain-Name Available SBDs
S0 L. lactis ∆glnPQ —
S12 L. lactis ∆glnPQ/pNZglnPQ SBD1 and SBD2
S2 L. lactis ∆glnPQ/pNZglnPQ∆SBD1 SBD2
S1 L. lactis ∆glnPQ/pNZglnPQ∆SBD2 SBD1

LB of drug-like compounds was used for FlexX. LB contained 20,160 compounds.
Library LA was screened with Vina and Library LB was screened with FlexX.
The numbers of successfully screened compounds and the intersections are listed
in Tab. 5.2. In order to screen for a proper VS approach, we applied 4 different
methods (M1–M4) to select a set of around 100 compounds. These methods
were:

M1 16 compounds were selected from the overlap of the best
SBD1 or SBD2 compounds according the docking scores
from FlexX and Vina

M2 20 compounds were selected by a consensus-score from
the FlexX scores according to SBD1 and SBD2

M3 50 compounds were selected by a consensus-score of
FlexX and Vina docking scores according to SBD1 and
SBD2

M4 26 compounds were selected by best Vina scores accord-
ing to SBD1 or SBD2

This selection resulted in a list of 104 compounds. These compounds (plus 2
predicted inactive compounds as negative controls) were purchased and evaluated
in a functional assay to identify compounds that specifically inhibit GlnPQ as
described in the following paragraph.

5.2.3 Experimental Validation

The GlnPQ transporter expressed in L. lactis was used to validate the in silico
screening of transport inhibitors. L. lactis requires Glu (transported in the form
of glutamic acid) or Gln for growth. A L. lactis ∆glnPQ strain (S0) was con-
structed that could be complemented in trans with wildtype glnPQ (S12) or used
for testing of mutants in which either of the two SBDs were mutated or com-
pletely deleted. In addition, strains with cleaved SBD1 (S2) and cleaved SBD2
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(S1) were constructed. For clarity, a summary of the reported strains herein is
given in table 5.3.

Figure 5.3: Growth of L. lactis strains S0 (A), S1 (B), S2 (C) in chemically
defined medium (CDM) without Gln or Na-Glu (○), with 3 mM Na-Glu (●),
30 mM Gln (), or 3 mM Ala-Glu (�). The cells were grown at 300 K in a
96 well plate format with a total cultivation volume of 300µl for at least 18
hours. The growth was followed by measuring the optical density at 600 nm
at 30 minutes intervals.

Strain S12 (L. lactis ∆glnPQ/pNZglnPQ) did not grow in chemically-defined
medium (CDM) lacking Gln or Glu (Fig. 5.3), neither strain S0 grew in CDM
with Gln, showing that GlnPQ is essential for Gln transport and required for high
rates of Gln uptake. Strain S12 grows at maximal rate provided 3 mM Na-Glu,
30 mM Gln or 3 mM alanyl-Gln present in the CDM (Fig. 5.3). Figure 5.4 shows
that 0.1 mM of compound C1 does not inhibit growth of L. lactis strain S12 in
the presence of Ala-Gln (panel A), whereas it does inhibit growth in the presence
of Na-Glu (panel B) or Gln (panel C). At a concentration of 0.25 mM or higher,
C2 is less specific and also affects growth in the presence of Ala-Gln. We note
that growth inhibition can be manifested as a longer lag-phase, lower growth rate
and/or lower cell yield (biomass formation), which may be due to adaptation of
the cells to the stress imposed by the tested compounds. Although this complex
behavior complicates the analysis of the inhibitors in terms of dose-response or
IC50 values, the data allows rapid screening of compounds that specifically inhibit
GlnPQ. The dipeptide alanyl-Gln (Ala-Gln) was taken up by the dipeptide and
tripeptide transport protein (DtpT) [49]. The growth in the presence of Ala-Gln
was used to discriminate between general inhibition by the tested compounds
and GlnPQ-specific inhibition. The VS revealed at least 4 compounds (C1–C4)
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Figure 5.4: Panel A: Effect of compound C1 on the growth of L. lactis strain
S12 in CDM in the presence of 3 mM Ala-Glu; no inhibitor (◽), 0.1 mM
compound C1 (), and 0.25 mM compound C1 (⊠). Panel B, the same as
panel A but with 3 mM Na-Glu instead of Ala-Glu. Panel C, the same as
panel A but with 30 mM Gln instead of Ala-Glu. Symbols: strain S12 (◻,),
strain S1 (▵,�), and strain S2 (○,●). Panel D: Comparison of the effect of
compound C1 on strain S12, S1 and S2. The inhibitors were dissolved in
100 % (w/v) DMSO and diluted into the growth medium to the indicated
concentrations and a final DMSO concentration of 2 %.
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Figure 5.5: Comparison of related inhibitor compounds on the growth of Lacto-
coccus lactis in the presence of 3 mM Na-Gln (left panel) and 3 mM Ala-Gln
(right panel). Inhibition by C1 is shown in panels A and B at 0 and 0.1 mM
for strains S12 (◻, ), S1 (△,▲), and S2 (○,●). The data for compound C2
at 0 and 0.25 mM are shown in panels C and D; data for compound C3 at
0 and 1 mM in panels E and F; and data for compound C4 at 0 and 1 mM
in panels G and H. The chemical structures of the compounds are shown on
the right of the panels.
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Figure 5.6: Distribution of the predicted binding free energies from the inter-
sections in table 5.2 according to SBD1 (6,284 compounds) and SBD2 (8,463
compounds). Only compounds with scores below zero were considered.

that selectively inhibit GlnPQ. To determine whether compound C1 inhibits
GlnPQ-mediated transport by interacting with SBD1 or SBD2, the inhibition
of the wildtype GlnPQ (strain S12) was compared with that of strains S1 and
S2. The effects of the compounds were exerted primarily on strain S2 which
solely contained the SBD2 (Fig. 5.4, Panel D). Next, analogs of compound C1
were tested that have a five-ring (C2) or methyl group (C3) instead of six-ring
structure linked to the core molecule. Figure 5.5 shows that the inhibition of
growth and thus GlnPQ diminishes with decreasing size of this functionality.
Specific inhibition was also observed for the unrelated structure C4, albeit at a
relatively high concentration (Fig. 5.5).

5.2.4 Identification of First Inhibitors

The experimental assay confirmed at least four hits (C1–C4) that selectively in-
hibit GlnPQ. Three compounds (C1–C3) were identified using method M3 that is
based on the diverse compound library LB. Compounds C1–C3 share a common
structure (2-methyl-4H,5H,6H-cyclopenta[b]thiophene-3-carboxylic acid). The
comparison of the docking scores with the average values of all compounds which
were evaluated with method M3 (including 6,291 compounds) (Tab. 5.4) and the
distributions of the docking scores (Figure 5.6) reveals, that these compounds are
scored lower than the average with FlexX on both SBD1 (−19.3+/−4.3 kJ⋅mol−1)
and SBD2 (−7.7+ /− 3.9 kJ⋅mol−1), whereas the scores from Vina were moderate
compared to the average value of −29.9+ /− 3.6 kJ⋅mol−1 for SBD1. The average



100 Identification of First Active Compounds

Table 5.4: Predicted negative binding free energy ∆G by FlexX and Vina of
the four hits according to SBD1 and SBD2 in units of kJ⋅mol−1. Average
and standard deviations (STD) where calculated with respect to compounds
from the intersections (Table 5.2).

SBD1 SBD2
ID Enamine-ID FlexX Vina FlexX Vina Method
C1 T5289708 −29.9 −30.5 −23.2 7.1 M3
C2 Z99597134 −29.2 −31.0 −23.0 −14.2 M3
C3 T5233657 −32.0 −26.8 −23.4 −10.5 M3
C4 T6456644 n.e. −23.8 n.e. −28.5 M4

Average −19.3 −29.9 −7.7 n.e.

STD 4.3 3.6 3.9 n.e.

and standard deviation of the Vina scores according to SBD2 were not evaluated,
since the distribution deviated from a normal distribution. However, the distri-
bution of the Vina scores according to SBD2 shows a peak at −17 kJ⋅mol−1. On
the basis of an approximated standard deviation of 4 kJ⋅mol−1, as observed for the
other distributions, C4 is scored significantly lower than this reference value at
SBD2. For compounds C1–C3, both FlexX and Vina predict higher binding free
energies at SBD1 compared to SBD2. Notably, only for C4, a higher predicted
binding free energy at SBD2 was predicted. Considering the poses generated
by Vina according to SBD2, Figure 5.7 illustrates that compounds C3 and C4
were placed inside the cavity showing significant overlap with the reference pose
of the substrate. Compounds C1 and C2 were placed at the surface of SBD2
similar to the poses that were generated by FlexX (Fig. 5.8). The FlexX poses
of C1–C3 are very similar. The aromatic ring systems of C1–C3 are placed in
a small hydrophobic pocket. Furthermore, all three molecules show interaction
with an Arg residue. Both Vina and FlexX on average suggest higher affinities
with respect to SBD1 than to SBD2. However, a comparison of the scores that
were obtaind by the hits with the average values shows, that all four hits C1–C4
were selected on the basis of the scores of SBD2.

5.3 Discussion

The glutamine high-affinity ABC-transport system GlnPQ is predominantly ex-
pressed in Gram-positive bacteria [111] and provide the main route for fast im-
port of Gln and Glu. Several gram-positive pathogens are amino acid auxotrophs
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(a) Gln (b) C3 (c) C4

Figure 5.7: Reference pose of glutamine in the crystal structure and the docking
poses of compounds C3 and C4 generated by Vina which overlapped with
the Gln resolved in the crystal structure of SBD2.

(a) C1 (b) C1

(c) C2 (d) C3

Figure 5.8: Reference pose of glutamine in the crystal structure (A) and the
docking poses of C1(B), C3(C) and C2(D) generated with FlexX.
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and require uptake of Gln or Glu via GlnPQ for growth. Therefore, they need
GlnPQ for growth. Importantly, this class of ABC-transporters with two sub-
strate binding domains (SBD1 and SBD2) is not present in humans or other
mammals, rendering GlnPQ a possible target for pharmaceutical treatment.
This study presents the identification of the first selective inhibitors of GlnPQ by
subsequent virtual screening (VS) and functional assaying. The combined pre-
diction according to four methodically diverse VS approaches (M1–M4) led to
the identification of at least 4 selective inhibitors of GlnPQ. Growth experiments
with four different strains (S0,S12,S1,S2) of L. lactis indicate that the effects
of the most thoroughly analyzed compounds (C1–C4) originate from interac-
tions with SBD2. The inhibition could be due to competition with glutamate
or glutamine binding or the transfer of these ligands from the SBD2 to the TM
domain.
The sampling of the crystallographic pose of the substrate Gln with FlexX sup-
ported a successful screening approach. The predicted standard binding free en-
ergy of −54.8 kJ⋅mol−1 for Gln at SBD2 is in the range of the experimental value
of −45 kJ⋅mol−1 obtained from the dissociation constant Kd=0.9µM at 298 K. At
SBD1 the docking score at SBD1 (−29.7 kJ⋅mol−1) is closer to the experimen-
tally obtained value of −33 kJ⋅mol−1 (Kd=91µM at 298 K). The predicted values
for Glu are at least 10 kJ⋅mol−1 smaller compared to Gln. Generally, molecular
docking cannot be expected to yield a quantitative agreement to experimentally
determined affinities due to the severe underlying assumptions.
The identification of first hits was an important achievement that makes it possi-
ble to analyse the predictive power of the individual VS approaches. Within a set
of 106 compounds at least 4 specifically inhibit GlnPQ. Compounds C1–C3 were
predicted by method M3 that is a consensus of four docking scores according to
SBD1 and SBD2 and the programs FlexX and Vina. Therefore, the method is
designed to predict compounds which are predicted to interact with both SBD1
and SBD2 with both programs. However, the experimental results show that
the compounds perform their inhibitory effect by interacting with SBD2. This is
also reflected in the docking scores of the individual programs, since the scores
on SBD2 for C1–C3 are significantly lower than the average of the FlexX scores
on SBD1. The Vina scores of compounds C1-C3 are rather moderate, on both
SBD1 and SBD2 and therefore the FlexX scores accounted for the selection of
these compounds. However, method M2 did not identify active compounds even
thought this method consists of a consensus of FlexX scores according to SBD1
and SBD2. An analysis of the consensus scores of C1–C3 according to method
M2 revealed that these compounds appeared in the first 50 ranks of M2 (data
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not shown). Therefore, the extension to the top 50 compounds in M2 would have
led to an identification of these compounds, too.
Compound C4 was selected by method M4, that is purely based on Vina scores.
Here, no consensus method was applied, since compounds were selected which
were top scored either on SBD1 or SBD2 or on both sides. The docking scores
of C4 show that this compound was selected due to the low score on SBD2.
On SBD2, a significant amount of compounds was too large to fit into the small
binding pocket and therefore Vina assigned positives scores to these compounds.
However, on average both programs predicted a higher affinity to SBD1 compared
to SBD2, what was not directly in agreement with the experimental results. This
may be due to the selected conformation of SBD2. With around 35 kJ⋅mol−1

the highest predicted binding free energies were around 20 kJ⋅mol−1 above the
value for the natural substrate Gln. It is important to stress that we used the
crystal structure of the liganded closed conformation of SBD2 for the docking.
Therefore, all side chains were in an optimal conformation for Gln, but not for
other compounds explaining the low score of Gln. Further analysis should clarify
whether conformational changes in SBD2 increase the average predicted binding
free energy. The next step could be to target the crystal structure of the liganded
or unliganded open conformation of SBD2 in a VS.
The low number of active compounds makes an analysis with respect to the most
powerful screening technique difficult. To clarify this, a post-screening with the
hits and some decoys could be used to identify the method with the best en-
richment. The coupling of the individual scoring functions by the consensus in
methods M1-M4 complicates the deduction of the predictive factors. For future
studies it may be more useful to select compounds based on individual molecu-
lar docking calculations and the subsequent construction of a proper consensus
approach. Alternatively, method M1 could be modified to take the union of the
best compounds instead of than the intersection. In general, it seems that both
FlexX and Vina have predictive power on SBD2.
After this test, a high-throughput virtual screening (HTVS) using both FlexX
and Vina will be applied in order to identify more inhibitors. In parallel, com-
pounds C1–C4 will be evaluated on GlnPQ homologues from other (pathogenic)
species and the inhibition characterized in terms of IC50 in order to estimate
their binding affinity.



104 Identification of First Active Compounds

5.4 Methods
The taget sites of GlnPQ were generated with the graphical user interface of
FlexX (LeadIT version 2.0) using the liganded crystal structures of SBD1 and
SBD2 with the highest resolution. All residues within a sphere of 6.5 Å around
the substrate were defined as target site. Standard parameters were used for
weights of the scoring function and the number of intermediate solutions for
each fragment. Input files were generated using the AutoDock plug-in [113] for
the program PyMOL [28] using the liganded crystal structures of SBD1 and
SBD2 with the lowest resolution. A cubic box of 7x7x7 Å3 centered around the
substrate defined the target sites.
Two structural screening databases of commercially available compounds, were
kindly provided by Enamine (http://www.enamine.net). Library LA contained
a broad set of 972,307 drug-like compounds, whereas library LB contained a
diverse set of 20,160 drug-like compounds. 3D structures were prepared and
protonated with the program Conrina [106] (version 3.48). Tanimoto-coefficients
section were calculated using cheminformatics and machine learning software
RDkit (http://www.rdkit.org) and default 2048 bit hash Daylight topological
fingerprints (Section 2.1.4). The minimum path size was 1 bond, the maximum
7 bonds.

Experimental Setup

Growth experiments were performed in the 96-well format, using a total cultiva-
tion volume of 300µl. Exponentially growing pre-cultures were used to inoculate
the 300µl chemically defined medium (CDM), supplemented with a 10,000-fold
dilution of L. lactis NZ9700 spent medium (containing the inducer, nisin A),
5µg/ml chloramphenicol, and 1 % (w/v) glucose [10]. In total 106 putative in-
hibitors (purchased from Enamine Ltd, Ukraine) were screened; the inhibitors
were dissolved in 100 % (w/v) DMSO and diluted into the growth medium to
a final DMSO concentration of 2 %. At 2 % DMSO, growth of L. lactis 9000,
carrying plasmids with wildtype or mutant derivatives of glnPQ, is not yet af-
fected. Cell growth was followed for at least 18 hours at 30 minutes interval
by measuring the optical density at 600 nm, using an automated microtiterplate
reader (Biotek).



6
Outlook: Hit-Optimization based on

Molecular Docking

Once a list of predicted compounds has been compiled with supporting data
and hit compounds are confirmed, the selection process to prioritize chemical
series for the hit-to-lead follow up begins. A commonly used technique at this
stage is hit evolution where hit derivatives are generated in order to find more
active and selective compounds [70]. This chapter reports on the generation
of a molecular docking based algorithm for the structure based optimization of
active compounds and discusses the first results obtained during the development
process. The findings presented herein provide an outlook for future studies.

6.1 Introduction

Compared to the estimated number of drug-like compounds in the drug-like
chemical space (1060)[13], the scope of compounds in a typical drug-like virtual
screening library is vanishingly small (105 to 107). Therefore, the probability to
find compounds with more favorable physiochemical properties is higher when
the chemical space outside the boundaries of the library is taken into account. A
virtual screening (VS) approach that was trained on a particular target and that
already has successfully identified novel active compounds provides evidence of

105
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Figure 6.1: A typical drug-like compound library used for virtual screening is
significantly small compared to the druglike chemical space. Using known
active structures in combination with a validated virtual screening approach
it possibly even more favorable compounds can be identified.

predictive power concerning the experimental activities. Hence, the development
of an optimization algorithm for the generation of promising derivatives based
on FlexX was performed. Therefore, such a VS approach may also be promising
with respect to the directed optimization of active compounds towards higher
activity and selectivity. Chapter (4) provided a successful VS study where ac-
tive compounds in the low micromolar range were identified. The compound
ID1 with the an IC50 of = 3.1µM (Fig. 4.10) was subjected to an iterative opti-
mization procedure aiming to identify more efficient and more active derivatives.
According to the results in chapter 4, the optimization was perfomed based on
the FlexX total score.

6.2 Implementation and Results

6.2.1 Compound Modification

The first of the three essential modules for the optimization is the modification
of the input structure or the structures, if multiple input structures are provided.
The modification algorithm can either be used to freely explore the surrounding
in the chemical space of a parent structure or be implemented in a way that
only child structures are generated that fall into certain constraints. The former
option would allow the exploration of undesired but potentially fruitful chemical
space, since e.g. the inconsistency with the rule of five does not necessarily mean
undesired biochemical properties. The latter option focuses on a chemical sub-
space with a higher probability for success and therefore may save computational
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Figure 6.2: Scheme of the optimiza-
tion algorithm: input structures are
the initial seed for the modification
module. The generated derivates
are docked to one or more receptor
structures. The efficiency is evalu-
ated based on the docking results
and structure of the derivatives. The
top N scored compounds serve as
seed for the next iteration until the
efficiency is converged. Finally, all
top scored compounds are reevalu-
ated by a second (more accurate)
scoring procedure.

time and experimental effort. The generated set of 3D molecular structures is
then processed to the next module to estimation their affinities.

6.2.2 The Docking Module

The second module reflects the affinity estimation of the modified structures
on the target receptor. Here it is referred to as “docking” since the molecular
docking algorithm that was employed to predict the hits identified in chapter
4 is applied. The docking part is the same as described in section ?? since it
has been validated against a set of known active compounds and it successfully
predicted novel active compounds. Multiple receptor structures can be targeted
either as target or anti-target. After docking the molecule to each structure a
consensus-score is calculated. Here, the average of the target structures is taken
as final docking score.
Initially, the optimization was performed on the basis of the pure docking score.
As a first test, compound ID1 (Fig. 6.3) was subjected to the optimization
algorithm. The top 20 compounds of each iteration served as seed for the next
iteration. As illustrated in Fig. 6.3 the docking score decreased during the
iterations to a value of approximately −50 kJ⋅mol−1. Also structural convergence
was observed as indicated by the similarity of the generated structures (Fig. 6.3,
Panel C). The optimized structures of this first generation optimization algorithm
were enriched with hydrogen acceptors and donors forming favorable interactions
with the receptor and achieving low scores (data not shown). In the following,
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Figure 6.3: Optimization of compound ID1 (A) (Chapter 3). The FlexX total
score (B) used for optimization converged to a value of −50 kJ⋅mol−1. The
similarity of the generated structures indicates structural convergence (C).
The optimized structures were endowed with several hydrogen donators (D).

the optimization according to an efficiency function that takes the structure of
the ligand into account is discussed.

6.2.3 Final Scoring

A final evaluation was inserted to increase the number of true-positives. All
compounds which were used as seeds during the optimization procedure were
reevaluated. Technically, this was done by rescoring poses with a second scoring
function, namely the Hyde module that is implemented in the LeadIT/FlexX
software suite [101] and which is designed for reduction of false positives. Hereby,
the poses which were generated with FlexX were optimized in the Hyde force
field. The relaxed pose is than scored with the Hyde scoring function which is
supposed to describe hydrogen bonding and desolvation effects more accurately
than the FlexX scoring function [110].

6.2.4 Compound Efficiency

The pure docking score optimizes for high receptor-ligand interactions and there-
fore may leave the drug-like chemical space. Therefore, an efficiency E was intro-
duced, that based on both the docking score and properties of the ligand. The
efficiency penalized deviations from certain reference values in order to guide the
process to both active and preferential drug-like properties. The most efficient
structures then serve as seed in the next iteration. A first approach to ensure
drug-like structure was to penalize deviations from a target compound mass of
m0 =400 Da and a target fraction carbon atoms f0 =57 %. These values were
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Figure 6.4: Results obtained by using the efficiency E for the optimization
of ligand ID1 from chapter 4. Both docking score (A) and efficiency (B)
converge very fast. The similarity of the top scored compounds (C) indicates
structural convergence. The final structure reevaluated with Hyde (D).
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taken to calculate the ligand efficiency:

E = S ⋅ e−
(m−m0)

2

σm ⋅ e−
(f−f0)

2

σf (6.1)

where S is the FlexX total score, m the mass, f the fraction of carbon atoms
and the respective target values m0 and f0. For σm and σf define the strength of
the restraining and were set to 300 Da and 30 % respectively to allow deviations
from the target value. The restrained mass restricts the size of the ligands.
Without mass restrictions the size of the ligands is only limited by the size of the
target site. The restricted fraction of carbon atoms implicitly penalizes inefficient
interactions. The optimization run was repeated using E for the optimization.
In this case only the top 10 compounds of each docking run served as seed for
the next iteration. The algorithm converged in only 11 iterations to a FlexX
score of −47 kJ⋅mol−1 (Fig. 6.4). The optimized structure had less hydrogen
bond acceptors and donors than the optimized structure using the pure FlexX
total score (Fig. 6.4). Notably, both compounds were similar in size. The
current implementation of the optimization algorithm only allows additions and
replacements of atoms but basically no deletions. Therefore, the compounds
can only grow upon a particular core structure. In order to achieve even more
efficient structures it would be necessary to allow deletions.

6.2.5 Quasi-de novo Design

The current implementation only allows growth of the compounds upon a cer-
tain core structure. This limits the chemical space that can be covered by the
optimization algorithm. One possibility to overcome this restriction could be to
allow atomic deletions and therefore shrinking and regrowth of the compounds.
Alternatively to deletions, it is possible to use smaller fragments of the initial
compound. A first attempt to explore this possibility was done using the urea
motif that was observed to be present in various hAQP9 inhibitors (Fig. 4.10)
and also present in compound ID1. Using the urea motif as input, the dock-
ing score converged to a value of −50 kJ⋅mol−1 (Fig. 6.5). The resulting top
scored structure was structurally different compared to the previous top scored
compounds. This attempt revealed the possibility to use this approach for the
generation of completely new scaffolds by using very small initial structures,
therefore providing a smooth transition to the de novo design of novel inhibitors.
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Figure 6.5: Results obtained from the urea motif. Both the docking score (A)
and the efficiency (B) reach comparable level as in the previous cases (6.3
and 6.4). The similarity of the top scored compounds (C) indicates structural
convergence. The final structure reevaluated with Hyde (D).
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6.3 Outlook
First outcomes for the future optimization of active compounds were obtained
using a molecular docking based iterative algorithm: The optimization with re-
spect to the FlexX total score leads to molecules with non-drug-like properties
(e.g. mass, number of hydrogen bond donors and acceptors). The weighting
of the total score by exponential weighting functions can partially compensate
for this deficiency. Larger molecules are restricted to a chemical subspace which
is defined by the core structure of the compound and the modification module.
Smaller fragments which serve as initial seed structure generate more diverse
structures which are unrelated to the original active compound, except for the
common scaffold. The use of very small fragments or even single atoms for the
initial seed may be useful for the de novo design of compounds. However, the
predictive power of these approach remains to be tested. Physiological experi-
ments have to clarify the extend of dimension of structural changes that is most
effective for the optimization towards or the design of novel high-affinity ligands.
Furthermore, the generation of modified structures needs to be biased towards
the synthesizable chemical space. At the current state, this algorithm is in an
experimental and preliminary state and is not technically matured. In order
keep the optimization algorithm well-arranged and flexible it was concepted and
implemented in modules which can independently be developed or exchanged by
more sophisticated algorithms in future studies. For example, the scoring can
be replaced by other methods with (preferentially) enhanced predictive power
as e.g. consensus scoring. The same holds for the final evaluation which could
be replaced by relative or absolute binding free energy calculations based on
simulation techniques.
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6.4 Methods
Tanimoto-coefficients section were calculated using the cheminformatics and ma-
chine learning software RDkit (http://www.rdkit.org) and default 2048 bit hash
Daylight topological fingerprints (Section 2.1.4). The minimum path size was 1
bond, the maximum 7 bonds. The target value for the fraction of carbon atoms
was obtained from the screening library from the Maybridge catalogue of drug-
like compounds (http://www.maybridge.com) containing 56,213 structures. The
fraction of carbon atoms of the compounds in this library was 57.3+ /− 10.36 %.
Molecular docking with LeadIT [101] (version 2.0) (formerly FlexX) was done
using a non standard configuration. The maximum number of solutions per
iteration and the maximum number of solutions per fragmentations were set to
2000. All atoms within a sphere of 10 Å around the intracellular pore entrance
of hAQP9 served as target site for the molecular docking. The high-throughput
screen was performed using an energy minimized structure of the homology model
of the hAQP9 wild type. A snapshot taken from an equilibrated MD simulation
was utilized. The energy minimization was done in the Amber ff99SB-ILDN
force field [80].
The structural modification was implemented in five steps:

• Conversion to SMILES strings

• Modification of SMILES strings

• Filter with respect to solubility

• Sorting and removal of redundant and unphysical/unstable structures

• Generation of 3D structures

The conversion to SMILES strings was done with the program Open Babel
(http://openbabel.org). The generated strings where modified by adding and
replacing groups. For that purpose a set of chemical groups was defined that
was added to carbon atoms “C” and “c” (aromatic carbons) or the end of a
chemical rest groups. These groups were in particular:
C, =C, =O, O, N, F, Cl, =F,
c1cccc1,
NC(=O),
C1=CC=CC=C1,
C1C=CC=C2CCCc12,
C1C=CC2=C1C=CC=C2,
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C1=CC2=C(C1)C=CC=C2,
C1=CC2=C(C=CC2)C=C1,
C1=CC2=C(CC=C2)C=C1,
C1=CC=CC2=C1CC=C2,
C1=CC=CC2=C1C=CC2,
c1ccc2cc[nH]c2c1,
c1c[nH]c2ccccc12,
c1ccc2CCCc2c1,
c1ccc2[nH]ccc2c1,
c1cccc2[nH]ccc12,
c1cccc2cc[nH]c12,
C1CCCC1,
C1CCCCC1,
=C1C=Cc2ccccc12,
C1=CC2=C(C1)C=CC=C2, C1=CC2=C(N1)C=CC=C2,
c1cc2ccccc2[nH]1, c1cc2ccccc2c1
Furthermore, a set of sites for atomic exchanges was defined (Tab. 6.1).

Table 6.1: Atoms as defined in the “exchange site” column were replaced by
alternative atoms (including bond types). For each exchange site a set of
alternative atoms defined.

Exchange site Alternative groups
C O, N, S
F N, O, C, Cl
CC C(C)
O C, N, S, Cl
N O, C
c c(C), n, o, s
Cl F, O, N, C
o n, c
n o, c(N), c
s c, o
=O H , O, N, =N, =C, =S



7
Conclusions

In this thesis I explored the potential of molecular docking and molecular dy-
namics simulations for the development of small molecule inhibitors of membrane
channel proteins. The four studies presented herein cover the identification of
a reliable virtual screening approach solely on the basis of a crystal structure
(Chapter 5), the optimization of a virtual screening approach (Chapter 3) and
the modeling of the binding process (Chapter 4). Finally the optimization of
inhibitors by molecular docking (Chapter 6) is addressed. Hereby, the choice
of the computational methods used in these studies was oriented towards the
experiments which were performed in parallel by collaborators. The two major
findings are that conventional molecular docking can gain considerable hit rates
when optimized for membrane channel proteins and that the binding of inhibitors
of hAQP9 takes place at the intracellular site.
The optimization of molecular docking was addressed in chapter 3. Based on an
optimized consensus approach that combined the predictions of four molecular
docking programs, I established 14 novel inhibitors of KV1.1-(1.2)3 with affinities
down to the sub-micromolar range. These compounds were found to inhibit the
current carried by KV1.1-(1.2)3 channels by more than 80 % at 10µM. Compared
to blind experimental screenings this is an improvement in enrichment of two to
three orders of magnitude. Furthermore, two of these compounds exhibited at
least 30-fold higher potency in inhibition of KV1.1-(1.2)3 over a set of cardiac
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ion channels (hERG, Nav1.5, and Cav1.2), indicating a pronounced selectivity
for KV1.1-(1.2)3 and therefore meet a first set of cardiac safety constants. It
is important to note that the final selection of compounds was purely based
on computationally obtained values. Therefore, these results represent the pure
predictive power of the algorithm. The consensus approach developed herein can
be applied to other targets in particular other potassium channels.
The inhibition of the human water channel protein Aquaporin 9 (hAQP9) was
addressed in chapter 4. On the basis of a sequence homology to the glycerol
facilitator (GlpF) a structural model of hAQP9 was established. Simulations
with known murine AQP9 inhibitors suggested residues putatively involved in
ligand binding. Residues at the intracellular site of hAQP9 were confirmed to
be involved in the binding process by mutagenesis and subsequent fluorecence
assays performed by collaborators. The intracellular site was then targeted by
a molecular docking based virtual screening for the identification of putative in-
hibitors. The rate of active compounds was increased by a factor 7 compared
to a small blind srceening. The activities of the most thoroughly analysed com-
pounds lie in the low micromolar rage. When docked to the intracellular site
the calculated pf values were significantly decreased compared to simulations
without ligands. Importantly, both the simulations of spontaneous binding of
a known active compound in a free all-atom MD simulation and experimental
data supported intracellular binding and confirm the binding pose identified by
molecular docking.
Comparing the studies in chapters 3 and 4, the results show that the predic-
tive power of an individual molecular docking program strongly depends on the
target structure, since the performance of both Vina and FlexX was opposite
on both targets KV1.1-(1.2)3 and hAQP9. Furthermore, the results obtained in
the KV1.1-(1.2)3 study indicate that the virtual screening approach used in the
hAQP9 study can be optimized further with respect to the identification of more
active inhibitors.
Chapters 5 and 6 report on ongoing studies and cover the initial phase for the
identification of a successful virtual screening approach and the hit optimization
phase when active compounds are known. The identification of the first active
compounds of GlnPQ allows to optimize a virtual screening approach for this
particular target in the future. The active compounds were selected on the basis
of substrate binding domain SBD2 in agreement with the experiment. How-
ever, on average higher affinities were predicted on SBD1 indicating the need for
structural refinement of the target structure SBD2.
The approach presented in chapter 6 was designed in order to optimize known



Chapter 7 117

inhibitors based on validated scores from molecular docking with validated pre-
dictive power. The use of the pure docking score of FlexX however led to non-
drug-like molecules. Therefore, the balancing of the scoring with respect to the
docking scores and molecular properties (solubility, weight, etc.) or structural
features (e.g. the fraction of carbon atoms) in order to obtain drug-like struc-
tures is currently studied. So far, no predictions of optimized compounds have
been tested experimentally. This approach may also be applied for the de novo
design of active compounds.





Bibliography

[1] P. Agre, L. S. King, M. Yasui, W. B. Guggino, O. P. Ottersen, Y. Fujiyoshi,
A. Engel, and S. Nielsen. Aquaporin water channels–from atomic structure
to clinical medicine. J Physiol, 542(Pt 1):3–16, Jul 2002.

[2] M. Andér, V. B. Luzhkov, and J. Aqvist. Ligand binding to the voltage-
gated Kv1.5 potassium channel in the open state–docking and computer
simulations of a homology model. Biophys J, 94(3):820–831, Feb 2008.

[3] E. J. Arroyo, Y. T. Xu, L. Zhou, A. Messing, E. Peles, S. Y. Chiu, and S. S.
Scherer. Myelinating schwann cells determine the internodal localization
of Kv1.1, Kv1.2, Kvbeta2, and Caspr. J Neurocytol, 28(4-5):333–347, 1999.

[4] J. C. Baber, W. A. Shirley, Y. Gao, and M. Feher. The use of consensus
scoring in ligand-based virtual screening. J Chem Inf Model, 46(1):277–288,
2006.

[5] J. Baldwin, C. H. Michnoff, N. A. Malmquist, J. White, M. G. Roth, P. K.
Rathod, and M. A. Phillips. High-throughput screening for potent and se-
lective inhibitors of plasmodium falciparum dihydroorotate dehydrogenase.
J Biol Chem, 280(23):21847–21853, Jun 2005.

[6] E. Beitz, B. Wu, L. M. Holm, J. E. Schultz, and T. Zeuthen. Point muta-
tions in the aromatic/arginine region in aquaporin 1 allow passage of urea,
glycerol, ammonia, and protons. Proc Natl Acad Sci U S A, 103(2):269–74,
2006.

[7] H. J. C. Berendsen, J. Grigera, and T. Straatsma. The missing term in
effective pair potentials. J Phys Chem, 91(24):6269–6271, 1987.

[8] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola,
and J. R. Haak. Molecular dynamics with coupling to an external bath. J
Chem Phys, 81:3684–3690, 1984.

119



120 Bibliography
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[54] C. Hetényi and D. van der Spoel. Efficient docking of peptides to proteins
without prior knowledge of the binding site. Protein Science, 11(7):1729–
1737, 2002.

[55] C. Hetényi and D. van der Spoel. Blind docking of drug-sized compounds
to proteins with up to a thousand residues. FEBS Lett, 580(5):1447–1450,
Feb 2006.

[56] C. Hetényi and D. van der Spoel. Toward prediction of functional protein
pockets using blind docking and pocket search algorithms. Protein Sci,
20(5):880–893, May 2011.

[57] V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Sim-
merling. Comparison of multiple Amber force fields and development of
improved protein backbone parameters. Proteins, 65(3):712–725, Nov 2006.

[58] S.-Y. Huang, S. Z. Grinter, and X. Zou. Scoring functions and their eval-
uation methods for protein-ligand docking: recent advances and future
directions. Phys Chem Chem Phys, 12(40):12899–12908, Oct 2010.

[59] V. J. Huber, M. Tsujita, and T. Nakada. Aquaporins in drug discovery
and pharmacotherapy. Mol Aspects Med, online:–, 2012.

[60] T. J-F and B. C. I. Evaluating virtual screening methods: good and bad
metrics for the ”early recognition” problem. J Chem Inf Model, 47(2):488–
508, 2007.



Bibliography 125

[61] C. Jarzynski. Nonequilibrium equality for free energy differences. Phys
Rev Lett, 78:2690–2693, 1997.

[62] S. Jelen, S. Wacker, C. Aponte-Santamaria, M. Skott, A. Rojek, U. Johan-
son, P. Kjellbom, S. Nielsen, B. L. de Groot, and M. Rutzler. Aquaporin-9
protein is the primary route of hepatocyte glycerol uptake for glycerol glu-
coneogenesis in mice. J Biol Chem, 286(52):44319–25, 2011.

[63] M. O. Jensen, D. W. Borhani, K. Lindorff-Larsen, P. Maragakis, V. Jogini,
M. P. Eastwood, R. O. Dror, and D. E. Shaw. Principles of conduc-
tion and hydrophobic gating in K+ channels. Proc Natl Acad Sci U S
A, 107(13):5833–5838, Mar 2010.

[64] Y. Jiang, A. Lee, J. Chen, M. Cadene, B. T. Chait, and R. MacKinnon.
Crystal structure and mechanism of a calcium-gated potassium channel.
Nature, 417(6888):515–522, May 2002.

[65] P. Jones and A. George. The ABC transporter structure and mechanism:
perspectives on recent research. Cellular and Molecular Life Sciences,
61(6):682–699, 2004.

[66] W. L. Jorgensen. The many roles of computation in drug discovery. Science,
303(5665):1813–1818, Mar 2004.

[67] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L.
Klein. Comparison of simple potential functions for simulating liquid water.
J Chem Phys 79, 79:926, 1983.

[68] W. L. Jorgensen, D. Maxwell, and J. Tirado-Rives. Development and
testing of the OPLS all-atom force field on conformational energetics and
properties of organic liquids. J Am Chem Soc, 118(45):11225–11236, 1996.

[69] S. I. V. Judge and C. T. Bever. Potassium channel blockers in multi-
ple sclerosis: neuronal Kv channels and effects of symptomatic treatment.
Pharmacol Ther, 111(1):224–259, Jul 2006.

[70] G. M. Keseru and G. M. Makara. Hit discovery and hit-to-lead approaches.
Drug Discov Today, 11(15-16):741–748, Aug 2006.

[71] J. G. Kirkwood. Statistical mechanics of fluid mixtures. J Chem Phys,
3:300, 1935.



126 Bibliography

[72] D. B. Kitchen, H. Decornez, J. R. Furr, and J. Bajorath. Docking and
scoring in virtual screening for drug discovery: methods and applications.
Nat Rev Drug Discov, 3(11):935–949, Nov 2004.

[73] J. Klokkers, P. Langehanenberg, B. Kemper, S. Kosmeier, G. von Bally,
C. Riethmuller, F. Wunder, A. Sindic, H. Pavenstadt, E. Schlatter, and
B. Edemir. Atrial natriuretic peptide and nitric oxide signaling antagonizes
vasopressin-mediated water permeability in inner medullary collecting duct
cells. Am J Physiol Renal Physiol, 297(3):F693–703, 2009.

[74] P. Kollman. Free energy calculations: Applications to chemical and bio-
chemical phenomena. Chem Rev, 93(7):2395–2417, 1993.

[75] H. Kubinyi. From narcosis to hyperspace: The history of QSAR. Quanti-
tative Structure-Activity Relationships, 21(4):348–356, 2002.

[76] H. Kubinyi. High throughput in drug discovery. Drug Discov Today,
7(13):707–709, Jul 2002.

[77] S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Koll-
man. The weighted histogram analysis method for free-energy calculations
on biomolecules. I. The method. J of Comput Chem, 13:1011–1021, 1992.

[78] A. Kuo, J. M. Gulbis, J. F. Antcliff, T. Rahman, E. D. Lowe, J. Zim-
mer, J. Cuthbertson, F. M. Ashcroft, T. Ezaki, and D. A. Doyle. Crystal
structure of the potassium channel KirBac1.1 in the closed state. Science,
300(5627):1922–1926, Jun 2003.

[79] K. Lindorff-Larsen, P. Maragakis, S. Piana, M. P. Eastwood, R. O. Dror,
and D. E. Shaw. Systematic validation of protein force fields against ex-
perimental data. PLoS One, 7(2):e32131, 2012.

[80] K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O.
Dror, and D. E. Shaw. Improved side-chain torsion potentials for the Amber
ff99SB protein force field. Proteins, 78(8):1950–8, 2010.

[81] C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney. Experimen-
tal and computational approaches to estimate solubility and permeability
in drug discovery and development settings. Adv Drug Deliv Rev, 46(1-
3):3–26, Mar 2001.

[82] H. Liu, Z.-B. Gao, Z. Yao, S. Zheng, Y. Li, W. Zhu, X. Tan, X. Luo,
J. Shen, K. Chen, G.-Y. Hu, and H. Jiang. Discovering potassium channel



Bibliography 127

blockers from synthetic compound database by using structure-based vir-
tual screening in conjunction with electrophysiological assay. J Med Chem,
50(1):83–93, Jan 2007.

[83] H. Liu, Y. Li, M. Song, X. Tan, F. Cheng, S. Zheng, J. Shen, X. Luo,
R. Ji, J. Yue, G. Hu, H. Jiang, and K. Chen. Structure-based discovery of
potassium channel blockers from natural products: virtual screening and
electrophysiological assay testing. Chem Biol, 10(11):1103–1113, Nov 2003.

[84] S. B. Long, E. B. Campbell, and R. Mackinnon. Crystal structure of
a mammalian voltage-dependent Shaker family K+ channel. Science,
309(5736):897–903, Aug 2005.

[85] S. B. Long, X. Tao, E. B. Campbell, and R. MacKinnon. Atomic structure
of a voltage-dependent K+ channel in a lipid membrane-like environment.
Nature, 450(7168):376–382, Nov 2007.

[86] V. B. Luzhkov and J. Aqvist. Mechanisms of tetraethylammonium ion
block in the KcsA potassium channel. FEBS Lett, 495(3):191–196, Apr
2001.

[87] P. D. Lyne, P. W. Kenny, D. A. Cosgrove, C. Deng, S. Zabludoff, J. J.
Wendoloski, and S. Ashwell. Identification of compounds with nanomo-
lar binding affinity for checkpoint kinase-1 using knowledge-based virtual
screening. J Med Chem, 47(8):1962–1968, Apr 2004.

[88] B. Ma, Y. Xiang, S. M. Mu, T. Li, H. M. Yu, and X. J. Li. Effects of
acetazolamide and anordiol on osmotic water permeability in AQP1-cRNA
injected Xenopus oocyte. Acta Pharmacol Sin, 25(1):90–7, 2004.

[89] J. L. Medina-Franco, K. Martinez-Mayorga, M. A. Giulianotti, R. A.
Houghten, and C. Pinilla. Visualization of the chemical space in drug
discovery. Current Computer - Aided Drug Design, 4(4):322–333, 2008.

[90] E. C. Meng, B. K. Shoichet, and I. D. Kuntz. Automated docking with grid-
based energy evaluation. Journal of Computational Chemistry, 13(4):505–
524, 1992.

[91] E. Migliati, N. Meurice, P. DuBois, J. S. Fang, S. Somasekharan, E. Beck-
ett, G. Flynn, and A. J. Yool. Inhibition of aquaporin-1 and aquaporin-4
water permeability by a derivative of the loop diuretic bumetanide acting
at an internal pore-occluding binding site. Mol Pharmacol, 76(1):105–12,
2009.



128 Bibliography

[92] S. Miyamoto and P. A. Kollman. Settle: An analytical version of the
SHAKE and RATTLE algorithm for rigid water models. J Comp. Chem.,
13:952–962, 1992.

[93] D. L. Mobley and K. A. Dill. Binding of small-molecule ligands to proteins:
”what you see” is not always ”what you get”. Structure, 17(4):489–498, Apr
2009.

[94] N. Moitessier, P. Englebienne, D. Lee, J. Lawandi, and C. R. Corbeil.
Towards the development of universal, fast and highly accurate dock-
ing/scoring methods: a long way to go. Br J Pharmacol, 153 Suppl 1:S7–26,
Mar 2008.

[95] M. G. Mola, G. P. Nicchia, M. Svelto, D. C. Spray, and A. Frigeri. Auto-
mated cell-based assay for screening of aquaporin inhibitors. Anal Chem,
81:8219–8229, 2009.

[96] D. Nelson and M. Cox. Lehninger Biochemie. Springer, 4. edition, 2009.

[97] A. Oda, K. Tsuchida, T. Takakura, N. Yamaotsu, and S. Hirono. Compar-
ison of consensus scoring strategies for evaluating computational models of
protein-ligand complexes. J Chem Inf Model, 46(1):380–391, 2006.

[98] M. Parrinello and A. Rahman. Crystal structure and pair potentials: A
molecular-dynamics study. Phys Rev Lett, 45:1196–1199, 1980.

[99] M. Parrinello and A. Rahman. Polymorphic transitions in single crystals:
A new molecular dynamics method. J Appl Phys, 52:7182–7191, 1981.

[100] B. G. Pierce, Y. Hourai, and Z. Weng. Accelerating protein docking in
ZDOCK using an advanced 3D convolution library. PLoS One, 6(9):e24657,
2011. zdock.

[101] M. Rarey, B. Kramer, T. Lengauer, and G. Klebe. A fast flexible dock-
ing method using an incremental construction algorithm. J Mol Biol,
261(3):470–489, 1996.

[102] M. N. Rasband, J. S. Trimmer, E. Peles, S. R. Levinson, and P. Shrager.
K+ channel distribution and clustering in developing and hypomyelinated
axons of the optic nerve. J Neurocytol, 28(4-5):319–331, 1999.

[103] K. J. Rhodes, B. W. Strassle, M. M. Monaghan, Z. Bekele-Arcuri, M. F.
Matos, and J. S. Trimmer. Association and colocalization of the Kvbeta1



Bibliography 129

and Kvbeta2 beta-subunits with Kv1 alpha-subunits in mammalian brain
K+ channel complexes. J Neurosci, 17(21):8246–8258, Nov 1997.

[104] D. J. Rogers and T. T. Tanimoto. A computer program for classifying
plants. Science, 132:1115–1118, 1960.

[105] A. M. Rojek, M. T. Skowronski, E. M. Fuchtbauer, A. C. Fuchtbauer,
R. A. Fenton, P. Agre, J. Frokiaer, and S. Nielsen. Defective glycerol
metabolism in aquaporin 9 (aqp9) knockout mice. Proc Natl Acad Sci U S
A, 104(9):3609–14, 2007.

[106] J. Sadowski, J. Gasteiger, and G. Klebe. Comparison of automatic three-
dimensional model builders using 639 X-ray structures. Journal of Chem-
ical Information and Computer Sciences, 34(4):1000–1008, 1994.

[107] J. K. G. Sadowski, J.; Gasteiger. Comparison of automatic three-
dimensional model builders using 639 X-ray structures. J Chem Inf Comput
Sci, 34:1000–1008, 1994.

[108] M. S. P. Sansom, I. H. Shrivastava, J. N. Bright, J. Tate, C. E. Capener,
and P. C. Biggin. Potassium channels: structures, models, simulations.
Biochim Biophys Acta, 1565(2):294–307, Oct 2002.

[109] S. S. Scherer and E. J. Arroyo. Recent progress on the molecular organi-
zation of myelinated axons. J Peripher Nerv Syst, 7(1):1–12, Mar 2002.

[110] N. Schneider, G. Lange, R. Klein, C. Lemmen, and M. Rarey. HYDEing
the false positives-scoring for lead optimization. J Cheminformatics, 3:29,
2010.

[111] G. K. Schuurman-Wolters and B. Poolman. Substrate specificity and ionic
regulation of GlnPQ from Lactococcus lactis. An ATP-binding cassette
transporter with four extracytoplasmic substrate-binding domains. J Biol
Chem, 280(25):23785–23790, Jun 2005.

[112] G. K. Schuurman-Wolters, A. Vujic̆ić-Z̆agar, D.-J. Slotboom, and B. Pool-
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seiner Abteilung bedanken. Ebenso danke ich den Professoren meines Prüfungs-
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Table 7.1: BEDROC and AROC values according to scores and subscores of
Vina, Glide, eHiTS and FlexX.

Score/Sub-Score BEDROC AROC
Autodock-Vina 0.519 0.706
FlexX-Ambig-Score 0.236 0.559
FlexX-AnzMatch 0.107 0.409
FlexX-AvgVolume 0.133 0.5
FlexX-Clash-Score 0.042 0.392
FlexX-Lipo-Score 0.59 0.703
FlexX-Match-Score 0.023 0.372
FlexX-MaxVolume 0.09 0.449
FlexX-Rot-Score 0.187 0.431
FlexX-Total-Score 0.109 0.439
ChemScore-Clash-Score 0.105 0.464
ChemScore-FragNo 0.239 0.355
ChemScore-Lipo-Score 0.549 0.731
ChemScore-Match-Score 0.011 0.327
ChemScore-MaxVolume 0.107 0.492
ChemScore-Rot-Score 0.219 0.466
ChemScore-Total-Score 0.336 0.632
Glide-XP-Electro 0.026 0.379
Glide-XP-HBond 0.022 0.38
Glide-XP-LipophilicEvdW 0.606 0.725
Glide-XP-Penalties 0.174 0.405
Glide-XP-PhobicPenal 0.206 0.51
Glide-XP-RotPenal 0.07 0.502
Glide-XP-Sitemap 0.358 0.6
Glide-ecoul 0.026 0.385
Glide-einternal 0.11 0.392
Glide-emodel 0.561 0.707
Glide-energy 0.539 0.695
Glide-evdw 0.67 0.741
Glide-gscore 0.315 0.548
eHiTS-Energy 0.336 0.614
eHiTS-Score 0.165 0.504
eHiTS-Term-Coulomb 0.163 0.542
eHiTS-Term-H-bond 0.089 0.432
eHiTS-Term-Lcover 0.131 0.48
eHiTS-Term-Lipophil 0.124 0.454
eHiTS-Term-LlogD 0.086 0.387
eHiTS-Term-Rcharge 0.053 0.372
eHiTS-Term-Rcover 0.23 0.475
eHiTS-Term-RlogD 0.245 0.536
eHiTS-Term-Rshape 0.298 0.563
eHiTS-Term-depth 0.44 0.693
eHiTS-Term-entropy 0.051 0.34
eHiTS-Term-family 0.446 0.703
eHiTS-Term-other 0.212 0.541
eHiTS-Term-pi-stack 0.241 0.533
eHiTS-Term-solvent 0.252 0.606
eHiTS-Term-steric 0.303 0.55
eHiTS-Term-strain 0.582 0.735



Appendix 139

Table 7.2: Other known KV1.1 and KV1.2 inhibitors and references.
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Table 7.3: Original ranks of the 14 hits according to the implementations A and
B and the three used consensus scoring methods, rank2max, rank2number
and rank2rank.
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Table 7.4: Measured inhibition of the Maybridge compounds at a given con-
centration.

Maybridge ID % Inhibition [%] At conc. [µM]
CD05595 30 100
DFP00270 30 100
HTS03850 100 100
HTS06008 50 100
HTS07176 50 100
HTS13286 100 25
phloretin 80 100
RF03176 100 25
XBX00246 50 25
HTS13772 100 100
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Table 7.5: Compounds inactive on murine AQP9 included in the set of random
decoys.

W00328 inactive on mAQP9
BTB06069 inactive on mAQP9
BTB08755 inactive on mAQP9
GK01664 inactive on mAQP9
GK02411 inactive on mAQP9
HTS01865 inactive on mAQP9
HTS03989 inactive on mAQP9
HTS04489 inactive on mAQP9
HTS05750 inactive on mAQP9
HTS06687 inactive on mAQP9
HTS12517 inactive on mAQP9
KM02905 inactive on mAQP9
KM03611 inactive on mAQP9
KM04183 inactive on mAQP9
KM06426 inactive on mAQP9
KM08508 inactive on mAQP9
KM09574 inactive on mAQP9
KM10521 inactive on mAQP9
ML00240 inactive on mAQP9
RDR03718 inactive on mAQP9
S12781 inactive on mAQP9
S07440 inactive on mAQP9
S07673 inactive on mAQP9
S12781 inactive on mAQP9
SEW00445 inactive on mAQP9
SEW03679 inactive on mAQP9
SP01460 inactive on mAQP9
SPB06953 inactive on mAQP9
SPB08436 inactive on mAQP9
TB00031 inactive on mAQP9
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Table 7.6: Screening results at 100µM concentration (part I).
Enamine ID Half Life 1 Half Life 2 Half Life 3 ANOVA and Dunnet’s test Average Rank
T6963384 13.1 9.164 10.12 *** 10.795 1
T6666911 8.031 9.061 8.432 *** 8.508 2
T6616714 7.43 6.059 10.49 *** 7.993 3
T6473159 6.61 6.827 7.948 *** 7.128 4
T6945453 6.783 5.367 6.97 *** 6.373 5
T6406844 5.781 5.139 6.182 *** 5.701 6
T6442514 4.838 4.301 5.2 *** 4.78 7
T6655310 4.476 3.506 6.067 *** 4.683 8
T6753522 4.683 4.975 3.445 *** 4.368 9
T6674497 4.635 2.868 4.165 *** 3.889 10
T6374888 3.578 3.337 3.338 *** 3.418 11
T6617912 3.215 2.606 4.16 *** 3.327 12
T6912201 3.727 2.969 3.015 *** 3.237 13
T6837949 3.703 2.537 3.44 *** 3.227 14
T6090579 3.151 3.008 2.519 *** 2.893 15
T6878499 3.03 2.318 3.268 ** 2.872 16
T6662346 2.637 3.395 1.777 *** 2.603 17
T6836856 3.301 1.904 2.464 *** 2.556 18
T6797755 3.367 2.564 1.498 * 2.476 19
T6792287 2.527 2.016 2.351 ns 2.298 20
T6782182 2.382 2.65 1.796 ns 2.276 21
T6669107 2.234 2.17 2.183 ** 2.196 22
T6237899 1.9 1.845 1.82 *** 1.855 23
T6929930 2.309 1.622 1.623 ** 1.851 24
T6453621 1.89 2.033 1.55 *** 1.824 25
T6344977 1.521 2.067 1.785 *** 1.791 26
T6470899 2.415 1.447 1.498 ** 1.787 27
T6424708 1.599 1.717 1.942 *** 1.753 28
T6280980 2.009 1.424 1.659 ns 1.697 29
T5925407 1.853 1.369 1.86 ns 1.694 30
T5819367 2.262 1.208 1.597 * 1.689 31
T6229572 1.67 1.23 2.003 ns 1.634 32
T6848089 1.734 0.985 1.573 *** 1.431 33
T6770322 1.301 1.322 1.361 ** 1.328 34
T6217877 1.467 1.045 1.397 ** 1.303 35
T6593327 1.276 1.177 1.261 ns 1.238 36
T6130871 1.377 1.005 1.208 ns 1.197 37
T6208562 1.215 0.954 1.373 ns 1.181 38
T6643668 1.114 0.852 1.309 ns 1.092 39
T6661714 1.103 0.87 1.251 ns 1.075 40
T6706567 1.143 0.883 1.172 ns 1.066 41
T6778132 1.062 0.837 1.218 ns 1.039 42
T6591224 1.322 0.981 0.803 ns 1.035 43
T6602468 1.267 0.873 0.92 ns 1.02 44
T6299997 1.196 0.787 1.033 ns 1.005 45
T6063556 1.094 0.885 0.984 ns 0.987 46
T6604432 1.131 0.823 0.991 ns 0.981 47
T6389731 1.387 0.74 0.813 ns 0.98 48
T6718086 0.803 1.294 0.791 ns 0.963 49
T6496774 1.02 0.659 1.156 ns 0.945 50
T6648591 1.011 0.717 1.066 ns 0.931 51
T6244162 1.001 0.882 0.907 ns 0.93 52
T5290442 0.889 1.055 0.826 ns 0.923 53
T6792868 1.126 0.773 0.852 ns 0.917 54
T6506095 0.922 0.775 1.045 ns 0.914 55
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Table 7.7: Screening results at 100µM concentration (part II).
Enamine ID Half Life 1 Half Life 2 Half Life 3 ANOVA and Dunnet’s test Average Rank
T6963384 13.1 9.164 10.12 *** 10.795 1
T6169898 0.928 0.767 1.01 ns 0.902 56
T6045127 1.17 0.758 0.756 ns 0.895 57
T5625571 1.099 0.655 0.92 ns 0.892 58
T5564209 0.913 0.798 0.962 ns 0.891 59
T6899185 1.062 0.757 0.802 ns 0.874 60
T5925215 1.061 0.607 0.947 ns 0.872 61
T6551048 0.843 0.876 0.865 ns 0.862 62
T6869847 0.978 0.605 0.932 ns 0.838 63
T6348177 0.901 0.725 0.887 ns 0.838 64
T5935261 1.13 0.569 0.806 ns 0.835 65
T6472369 0.947 0.631 0.921 ns 0.833 66
T6260743 0.917 0.733 0.779 ns 0.81 67
T6400536 0.919 0.69 0.805 ns 0.805 68
T5838470 1.048 0.576 0.78 ns 0.801 69
T5976868 0.838 0.554 1.009 ns 0.8 70
T6389727 0.953 0.667 0.754 ns 0.791 71
T6762259 0.811 0.773 0.745 ns 0.776 72
T6324174 0.807 0.512 0.965 ns 0.761 73
T5273571 0.869 0.527 0.884 ns 0.76 74
T5283260 0.932 0.468 0.869 ns 0.756 75
T6700376 0.786 0.556 0.921 ns 0.754 76
T6718742 0.821 0.73 0.679 ns 0.743 77
T6467923 0.899 0.728 0.601 ns 0.742 78
T6487759 0.867 0.627 0.724 ns 0.739 79
T6655300 0.782 0.575 0.841 ns 0.732 80
T6821126 0.904 0.59 0.685 ns 0.726 81
T6798120 0.885 0.505 0.769 ns 0.72 82
T6502363 0.695 0.491 0.94 ns 0.709 83
T6941479 0.821 0.52 0.756 ns 0.699 84
T5728907 0.843 0.641 0.612 ns 0.698 85
T6696797 0.686 0.676 0.723 ns 0.695 86
T6805975 0.749 0.476 0.852 ns 0.692 87
DMSO 0.715 0.61 0.744 0.69 88
T6446477 0.87 0.428 0.771 ns 0.69 89
T6204618 0.978 0.472 0.61 ns 0.687 90
T5618514 0.636 0.641 0.754 ns 0.677 91
T6926933 0.779 0.583 0.662 ns 0.675 92
T6604321 0.661 0.566 0.793 ns 0.673 93
T6435541 0.621 0.512 0.856 ns 0.663 94
T6619299 0.534 0.877 0.569 ns 0.66 95
T6309181 0.645 0.48 0.849 ns 0.658 96
T6660708 0.675 0.594 0.659 ns 0.643 97
T6278016 0.666 0.569 0.673 ns 0.636 98
T5765412 0.679 0.519 0.705 ns 0.634 99
T6795119 0.695 0.551 0.657 ns 0.634 100
T6666617 0.735 0.501 0.652 ns 0.63 101
T6421733 0.576 0.545 0.689 ns 0.603 102
T6797784 0.761 0.448 0.569 ns 0.593 103
T5275225 0.577 0.429 0.72 ns 0.575 104
T5392604 0.645 0.513 0.541 ns 0.566 105
T6769024 0.512 0.539 0.527 ns 0.526 106
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Table 7.8: Dose response results between 0 and 100µM concentration.

Enamine ID IC50

T6090579 3.1 ⋅ 10−06

T6674497 3.93 ⋅ 10−06

T6666911 7.67 ⋅ 10−06

T6963384 1.01 ⋅ 10−05

T6616714 1.44 ⋅ 10−05

T6473159 1.77 ⋅ 10−05

T6374888 2.43 ⋅ 10−05

T6878499 3.83 ⋅ 10−05

T6837949 4.01 ⋅ 10−05

T6753522 5.50 ⋅ 10−05

T6617912 7.37 ⋅ 10−05

T6406844 0.0001499
T6655310 0.0002472
T6836856 0.0007398
T6797755 0.001433
T6912201 0.05073
T6442514 0.05777
T6945453 1.332





Lebenslauf von Sören Wacker
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