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Abstract. In Regge calculus, space–time is usually approximated by a tri-
angulation with flat simplices. We present a formulation using simplices with
constant sectional curvature adjusted to the presence of a cosmological constant.
As we will show, such a formulation allows us to replace the length variables by
three- or four-dimensional dihedral angles as basic variables. Moreover, we will
introduce a first-order formulation, which, in contrast to using flat simplices,
does not require any constraints. These considerations could be useful for the
construction of quantum gravity models with a cosmological constant.
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1. Introduction

Regge calculus [1] is an elegant discrete formulation of general relativity, where space–time
is approximated by a piecewise flat (simplicial) manifold. Besides applications in numerical
relativity, it has been used in quantum gravity as a starting point for a non-perturbative
definition for path integral formulations [2, 3]. Whereas originally Regge calculus was based
on length variables, newer developments suggest that for four-dimensional (4D) gravity, other
variables might be preferable, for instance in order to define path integral quantization or
canonical formulations [4]. In particular, spin foam models are rather first-order formulations
and additionally use areas (and 3D angles) instead of length variables. Attempts to base Regge
calculus on exclusively area variables [2], [7]–[10] have to face the difficulty that the constraints
that ensure that a piecewise geometry can be uniquely defined, are very non-local and not known
explicitly. As has been recently shown [6], this can be circumvented by introducing additional
variables, namely the 3D dihedral angles in the tetrahedra of the triangulation.

Barrett [11] introduced a first-order formulation for Regge calculus using length and 4D
dihedral angles as variables. In order to ensure that the 4D dihedral angles are consistent with
the geometry defined by the length variables, one constraint per 4-simplex had to be added to
the action. By combining [6] and [11], one can obtain a formulation with areas, 3D angles and
4D angles.

Another development [12] concerns an improvement of the Regge action for vacuum
gravity with a cosmological constant. Usually the cosmological constant is accommodated by
adding a volume term to the action and by still using a piecewise flat triangulation, i.e. simplices
that have flat geometry. In this way, even the simplest solution corresponding to homogeneously
(maximally symmetric) curved space is only approximate compared to the continuum solution.
The reason for this is that one uses flat simplices to approximate (homogeneously) curved
space. Here the idea is to use simplices with homogeneous curvature, i.e. constant sectional
curvature, instead, so that the discrete solution with homogeneous curvature is also an exact
solution of the continuum. It has been shown in [12] that this allows a better representation of
the (diffeomorphism) symmetries of general relativity and therefore could simplify quantization.
Indeed in 3D, the Tuarev–Viro model [13] gives a partition function for homogeneously curved
simplices [14], whereas a similar quantization based on flat simplices and with a cosmological
constant is not available yet. In general, using a (positive) cosmological constant has the
advantage that it can serve as a regulator in the path integral, as for instance the translation
symmetries, which for flat simplices would lead to divergencies, are now compactified to the
(4-) sphere.

The geometry of simplices with and without (homogeneous) curvature differs in one
important way: for flat simplices, any set of angles can specify at most the conformal geometry
of the simplex (i.e. all the lengths modulo one factor). Moreover, the dihedral angles of a flat
simplex have to satisfy one constraint, namely that the determinant of the so-called Gram matrix
vanishes. This is the constraint that is added in [11] to obtain a first-order formulation. For
homogeneously curved simplices, however, the set of dihedral angles specifies the full geometry
of the simplex. Moreover, they do not have to specify any constraints4. As we will see, this will

4 Except for certain inequalities that can be understood to replace the generalized triangle inequalities for the
length variables. For a spherical simplex, the angle Gram matrix, defined in appendix, has to be positive definite.
For a hyperbolic D-simplex, the determinant of the angle Gram matrix has to be negative, and all principal D × D
sub-matrices have to be positive definite and the cofactors positive, see for instance [15].
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allow us to obtain formulations where the basic variables are only angles, that is, either the
3D dihedral angles or the 4D dihedral angles. Hence, in a path integral, the integration over
length variables can be replaced by an integration over angles, which opens up new ways for
quantization, for instance for constructing the path integral measure. In spin foam models, one
usually integrates out the metric variable and is just left with a connection variable, which would
correspond to using only the 4D dihedral angles.

In section 2, we will present a first-order formulation. Here, we will see that the formulation
with curved simplices is far less complicated compared to working with flat simplices. In
section 3, we will introduce a formulation based on 3D dihedral angles. These have to be
constrained, and we will see that these constraints are again relations between angles, this time
2D angles. Finally, we discuss in section 4 a formulation with 4D dihedral angles, which have
also to be constrained; this time the constraints are relations between 3D angles. We give the
conclusion in section 5 and summarize the necessary background on geometric relations in
simplices, in particular the relations between dihedral angles, in the appendix.

2. A first-order formulation

We begin by describing a first-order formulation. We see that in contrast to using flat
simplices [11], we do not need to add any constraints to the action and to obtain the equations
is extremely straightforward. The use of simplices with constant curvature for a first-order
formulation was suggested in [11], but neither an action nor any other details have been given.

The Regge action5 in four dimensions with simplices of constant curvature and
cosmological constant 3 = 3κ (and without boundary terms) is given by [12]

S[le] =

∑
t

at(l)εt(l) + 3κ
∑

σ

Vσ (l). (1)

Here, we use lengths le associated with edges as basic variables. The sub-index t denotes
triangles, at is the area of the triangle t and εt := 2π −

∑
σ⊃t θ

σ
t is the deficit angle associated

with the triangle t . Moreover, θσ
t is the 4D dihedral angle in the simplex σ between the two

tetrahedra that share the triangle t . The deficit angles specify the (corrected) curvature, which
has distributional support on the triangles. The full curvature is given by these deficit angles and
a homogeneous contribution. The latter leads to a plus sign in front of the volume term in the
action (1) as compared to the continuum expression

∫√
g(R − 23)d4x for the Einstein–Hilbert

action, where R is the (full) Ricci curvature scalar.
The variation with respect to the edge length le of the action (1) gives the equations of

motion ∑
t⊃e

∂at

∂le
εt = 0. (2)

The variation of the deficit angles and the volume cancel out due to the Schläfli identity

3κδVσ =

∑
t⊂σ

atδθ
σ
t , (3)

which holds for any variation δ of the geometry of the 4-simplex σ .

5 We will work with Euclidean signature.
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In a 3 + 1 formulation, the 4D dihedral angles θσ
t would specify the extrinsic curvature and

can therefore be taken as first-order variables. Indeed this has also been done in [11] for flat
simplices. As already mentioned in contrast to the dihedral angles in a flat simplex, the dihedral
angles in a simplex with constant curvature do not need to satisfy any constraints. Indeed, it
turns out that we do obtain the correct equations of motion if we express the volume term (and
the deficit angles) in (1) in terms of the dihedral angles:

S[le, θ
σ
t ] =

∑
t

at(l)εt(θ) + 3κ
∑

σ

Vσ (θσ ). (4)

Now varying with respect to le gives the same equation as before (2)∑
t⊃e

∂at

∂le
εt = 0, (5)

whereas the variation with respect to θσ
t gives

−at(le) + at(θ
σ ) = 0, (6)

where we use the Schläfli identity (3) to find the variation of the volume term. Note that the
equation of motion (6) accomplishes two tasks at once: firstly, it ensures that the dihedral angles
define consistently a simplicial geometry (that is, the 4-simplices glue properly together) and,
secondly, that this geometry coincides with the one defined by the length variables6.

3. A formulation with three-dimensional dihedral angles

As mentioned in the introduction, spin foam models suggest the use of areas and 3D dihedral
angles instead of length variables as basic variables. These variables can be easily constructed
out of gauge formulations for gravity, such as the Plebanski formulation [16] on which spin
foams are based, see also [4]. Such a formulation was developed in [6] for flat simplices. The
basic idea is to start with the geometry of the tetrahedra. The geometry of one tetrahedron is
described by six lengths or equivalently by the four areas and six 3D dihedral angles satisfying
four Gauss constraints. These constraints allow us to express four of the six dihedral angles
as a function of the four areas and the remaining two angles (which have to be non-opposite).
We take the same starting point for the curved simplices. Here, the difference with the flat
case is that we can express the four areas as a function of the six 3D dihedral angles (see
appendix A.1). Hence, one can either decide to keep the areas and to add these expressions
as constraints or to just work with the six dihedral angles per tetrahedron. Following the latter
route, we have furthermore to ensure that the tetrahedra in one simplex properly glue together.
That is, the geometry of the triangle shared by two tetrahedra has to coincide if defined by the
two sets of dihedral angles associated with the two tetrahedra. Again since the three angles in a
triangle determine the geometry, it is sufficient to ensure that these three 2D angles coincide if
calculated from the two sets of 3D dihedral angles. Consider a 4-simplex and label the vertices
by p = 1, . . . , 5. As shown in the appendix, the relation between 3D dihedral angles and 2D
dihedral angles in a 4-simplex σ is

cos αlm,kp(φ) =
cos φlm,p + cos φkl,p cos φkm,p

sin φkl,p sin φkm,p
. (7)

6 As discussed in [11] one has to take the possibility into account that the ten areas of a 4-simplex might allow
several length assignments. This is, however, only a discrete ambiguity.
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Here φlm,p is the dihedral angle in a tetrahedron σ( p̂) opposite the vertex p and at the edge
opposite the edge (lm). The αlm,kp is the 2D dihedral angle in the triangles σ(k̂ p̂) opposite the
edge (kp) and at the vertex opposite the edge (lm). The constraints that have to hold between
the 3D angles φ are as follows: the angles α in the triangle σ(k̂ p̂) have to coincide if computed
from either the 3D angles in the tetrahedron σ(k̂) or the 3D angles in the tetrahedron σ( p̂),
that is,

Clm,kp := cos αlm,kp(φ··,p) − cos αlm,pk(φ··,k) . (8)

As we started with the geometry of the tetrahedra and ensured that these glue properly to
4-simplices, we also enforced that the 4-simplices properly glue together: for this, the geometry
of every tetrahedron shared by two simplices has to coincide. This is satisfied by construction, as
we took the geometry of the tetrahedra as independent variables (and constrained it afterwards
to ensure gluing to 4-simplices).

Finally, the action for 4D Regge calculus with curved simplices based on 3D dihedral
angles φ and with Lagrange multipliers λσ

e,e′ is

S =

∑
t

at(φ)εt(φ) + 3κ
∑

σ

Vσ (φ) +
∑

σ

∑
e,e′⊂σ

λσ
e,e′Cσ

e,e′(φ), (9)

where Cσ
e,e′ is zero if the edges e, e′ do not share a triangle and coincides with Clm,kp for if the

edges e, e′ are opposite the triangles (lmk) and (lmp), respectively. In appendix A.1, we will
give formulae for the definition of the areas and 4D dihedral angles as a function of the 3D
dihedral angles. Note that a priori one has to specify how to calculate these quantities from the
3D dihedral angles, e.g. for an area at one has to define the tetrahedron, whose set of 3D angles
is used to calculate the area from. (Alternatively take the average over all adjacent tetrahedra.)
The same holds for the volumes Vσ , that is, one can first specify how to calculate lengths from
the 3D dihedral angles, which can then, in principle, be used to find the volume. (Again one
possibility is to take as these lengths the average of the length variables calculated from the
dihedral angles of the adjacent tetrahedra in the simplex σ .) Different choices lead to the same
result if the constraints are satisfied.

The constraints ensure that one can calculate consistently length variables from the 3D
angles. The inverse solutions φ(l) can be used in the action to re-obtain the action (1). Hence
these two actions lead to the same equations of motions. For the same reason, if we introduce
the (first-order) variables θσ

t and express the deficit angles εt and the volumes Vσ as functions
of these variables, we obtain a first-order formulation equivalent to (4), which uses only angles
as variables.

4. A formulation with four-dimensional dihedral angles

Similarly, one can obtain a formulation involving only 4D dihedral angles (and Lagrange
multipliers enforcing constraints).

The ten dihedral angles of a 4-simplex determine uniquely its geometry, and for a single
4-simplex, we can take these 4D dihedral angles as free variables. If we glue the simplices
together, we have to ensure that this can be consistently done. Two neighboring 4-simplices
might induce a priori different geometries for the common tetrahedron. We have to introduce
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constraints that ensure that this geometry coincides. To this end, we use the formula expressing
the 3D dihedral angles as a function of the 4D dihedral angles

cos φlm,p(θ) =
cos θlm + cos θpl cos θpm

sin θpl sin θpm
. (10)

Here φlm,p is the dihedral angle in a tetrahedron σ( p̂) opposite the vertex p and at the edge
opposite the edge (lm). The 4D dihedral angle θpm is the one at the triangle σ( p̂m̂) opposite the
edge (pm).

The geometry of the common tetrahedron is fixed by the six 3D dihedral angles; hence we
introduce one constraint per tetrahedron and edge in this tetrahedron, ensuring that these 3D
dihedral angles coincide if calculated from either of the two adjacent 4-simplices σ and σ ′:

C τ
e (θσ, θσ ′

) = cos φτ
e (θσ ) − cos φτ

e (θσ ′

), (11)

where φτ
e is the 3D dihedral angle at the edge e. The Regge action is now

S =

∑
t

∑
σ⊃t

aσ
t (θσ )

(
2π

Nt
− θσ

t

)
+ 3κ

∑
σ

Vσ (θσ ) +
∑

τ

∑
e⊂τ

λτ
e C τ

e (θσ , θσ ′

). (12)

Here Nt is the number of simplices adjacent to the triangle t so that the first term in (12)
gives the average of the areas aσ

t attached to the same triangle but computed from the dihedral
angles of the 4-simplices σ adjacent to the triangle (see appendix A.1). Again the constraints
allow us to determine consistently the set of edge lengths so that the functions θσ

t (l) can be
reinserted into the action and one would obtain the same equation of motions as for the original
action (1). We can, however, also vary (12) directly with respect to the 4D dihedral angles θσ ′

t ′ .
Here, we can again use the Schläfli identity and obtain∑

t⊂σ ′

∂at(θ
σ ′

)

∂θσ ′

t ′

(
2π

Nt
− θσ ′

t

)
+

∑
τ⊂σ ′

∑
e∈τ

λτ
e

∂C τ
e

∂θσ ′

t ′
= 0 . (13)

Now we multiply this equation (13) by ∂θσ ′

t ′ /∂lσ ′

e′ , i.e. the inverse to ∂lσ ′

e′ /∂θσ ′

e′ , where lσ ′

e′ is the
edge length of e′ as computed from the dihedral angles in σ ′, and sum over t ′

⊂ σ ′:∑
t⊂σ ′

∂at(θ
σ ′

)

∂lσ ′

e′

(
2π

Nt
− θσ ′

t

)
+

∑
τ⊂σ ′

∑
e∈τ

λτ
e

∂C τ
e

∂lσ ′

e′

= 0 . (14)

Finally, summing over all σ ′
⊃ e′ the contribution with the derivatives of the constraints

cancel if the constraints are satisfied. (The sum over the simplices gives two contributions
per tetrahedron and edge with opposite sign. If the constraints are satisfied these contributions
cancel.) On the constraint hypersurface (where lengths and areas as computed from different
simplices agree), we recover the equations of motion (2)∑

t⊃e

∂at

∂le
εt = 0. (15)

5. Conclusion

We presented different formulations for Regge calculus with cosmological constant and with
simplices of constant sectional curvature. Using simplices with constant curvature leads not
only to a better approximation of the continuum, but leads often to a more elegant formulations,
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for instance in the case of the first-order formulation. One interesting feature in particular is that
one can take as basic variables angles either the 3D dihedral angles or the 4D dihedral angles.
These variables have to be constrained by some gluing conditions. Again curved simplices have
the advantage that angles are sufficient to determine the geometry. In this way, all the gluing
constraints can be expressed by the universal relations between dihedral angles in n-simplices
and its (n − 1)-sub-simplices, derived in appendix A.1.

These considerations could be useful for the construction of quantum gravity models. The
Tuarev–Viro model defines a partition function for 3D gravity with a cosmological constant
and its semi-classical limit gives the Regge action for simplices with constant curvature [14].
In the quantum model, the cosmological constant is accommodated by deforming the SU(2)
gauge group of the underlying gauge formulation to the quantum group SU(2)q . An open issue
is whether a similar construction is possible in 4D, for some steps in this direction, see for
instance [17, 18].

To this end, a gauge formulation corresponding to the discretized formulations presented
here would be useful. One possibility is to consider discretizations of actions using the
Einstein–Cartan geometries [19], as the connection used there leads to the same corrected
curvature as for simplices with constant curvature. In particular, a formulation similar to the
Plebanski action [16]—corresponding to using 4D and 3D dihedral angles and areas—could be
useful to obtain spin foam quantizations for 4D gravity with cosmological constant. This is not
only necessary to match physical reality but could also provide a regularization for the quantum
gravity models (i.e. an IR cut-off for positive cosmological constant).

Acknowledgment

We thank John Barrett, Valentin Bonzom, Daniele Oriti and Simone Speziale for discussions
and Freddy Cachazo for inspiring the title.

Appendix. Geometric relations in simplices

Consider a D-dimensional simplex in a D-dimensional manifold of constant sectional curvature
κ 6= 0 (i.e. the sphere SD for positive κ and hyperbolic space H D for negative κ) consisting
of D + 1 vertices v1, . . . , vD+1. Denote this simplex by (123 . . . D + 1). Any sub-simplex is
determined by the subset vi1, . . . , vin of the vertices that span this sub-simplex, and will
therefore be denoted as (i1i2, . . . , in). The sub-simplices in curved space are defined to be
the hypersurfaces with zero extrinsic curvature as embeddings in the geometry of the higher
dimensional simplex. These are, in fact, also simplices of curvature κ . An edge (i j) is then just
given by the geodesic connecting vi and v j . Denote the geodesic lengths of the edges (i j) by li j .
Then the (D + 1) × (D + 1) matrix G with entries

G i j = cκ(li j), (A.1)

where the function cκ(x) is defined by

cκ(x) :=

{
cos (

√
κx), κ > 0,

cosh (
√

−κx), κ < 0,
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is called the length Gram matrix of the simplex. We denote by ci j the i j th cofactor of G, i.e. the
determinant of the matrix obtained by removing the i th row and the j th column of G multiplied
by (−1)i+ j . Then the interior dihedral angle θi j opposite the edge (i j) is given by [20]

cos θi j = −
ci j

√
ci i

√
c j j

. (A.2)

As the cofactor of an invertible matrix is the inverse multiplied by the determinant of the matrix,
this formula also holds if we replace the cofactor by the inverse. The length Gram matrix is
invertible for non-degenerate simplices [14]. For a triangle, say with positive curvature, this
reduces to

cos αi j =
cos

√
κli j − cos

√
κlik cos

√
κl jk

sin
√

κlik sin
√

κl jk
, (A.3)

a relation that we will encounter again between dihedral angles of different dimensions.
The angle Gram matrix is defined by G̃ i j := − cos θi j for i 6= j and G̃ i i = 1. This angle

Gram matrix and the length Gram matrix (A.1) are in a certain sense dual to each other.
Precisely, we have [20]

G i j =
c̃i j

√
c̃i i

√
c̃ j j

, (A.4)

where c̃i j is the i j th cofactor of G̃. In this way, we can express the lengths as a function of the
dihedral angles. For the triangle with κ > 0, we obtain

cos
√

κli j =
cos αi j + cos αik cos α jk

sin αik sin α jk
. (A.5)

Denote the volume of the sub-simplex spanned by all vertices except vi and v j by V(î ĵ).
For variations δ of the geometry of a simplex, the Schläfli identity [21]∑

i< j

V(î ĵ)δθi j = (D − 1) κ δV(12...D+1) (A.6)

holds. There is no general explicit formula (not involving integration) for the volume of a
simplex with constant curvature available for D > 3 [22]. For the variation of the volume term
in the action, one can, however, use the Schläfli identity (A.6), which re-expresses this variation
as a variation of the dihedral angles.

A.1. Relations between dihedral angles

We want to relate the dihedral angles θi j in a simplex σ to the dihedral angles φmn,p in the sub-
simplex σ( p̂) not containing the vertex p and opposite the edge (mn). To this end, we consider
the Gram matrix Hi j(p) of the sub-simplex σ( p̂) whose entries coincide with those of G i j for
i, j 6= p. It is straightforward to express the inverse H kl(p) of Hi j(p) using the inverse Gkl of
G i j :

H kl(p) = Gkl
−

G pkGlp

G pp
. (A.7)

Inserting the definition of dihedral angles (A.2), we obtain

cos φlm,p =

√
Gll Gmm

√
H ll H mm

(
cos θlm + cos θpl cos θpm

)
. (A.8)
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From (A.7), we calculate

H ll(p) = Gll
−

G pl Glp

G pp
= Gll (1 − cos2 θlp). (A.9)

Hence, equation (A.8) turns into

cos φlm,p =
cos θlm + cos θpl cos θpm

sin θpl sin θpm
. (A.10)

The same relation holds for flat simplices [6]. The inversion of formula (A.10) yields

cos θlm =
cos φlm,p − cos φlp,m cos φmp,l

sin φlp,m sin φlm,p
. (A.11)

This allows us to express the 4D deficit angles as a function of the 3D dihedral angles (if one
specifies the sub-simplex σ( p̂) for every dihedral angle θlm).

Note that we derived the relations (A.10) for simplices of arbitrary dimension. Hence, it
holds also between the 3D dihedral angles φlm,p in a tetrahedron σ( p̂) and the 2D dihedral
angles αlm,kp in the triangles σ(k̂ p̂) in a 4-simplex σ :

cos αlm,kp =
cos φlm,p + cos φkl,p cos φkm,p

sin φkl,p sin φkm,p
. (A.12)

To calculate the areas as a function of the dihedral angles φ we can invoke the formula

κat = α12 + α23 + α31 − π (A.13)

that expresses the area as a function of the three 2D dihedral angles αi j , which in turn can
be expressed as a function of the 3D angles φ with (A.12). Again these φ can be expressed
as functions of the 4D dihedral angles θ , see equation (A.10), so that one can express at as a
function of the 3D angles in a tetrahedron or the 4D angles in a 4-simplex. Similarly, the volume
of a 4-simplex can (in principle) either be expressed as a function of the ten 4D angles θ or the
ten lengths of the simplex. The 4D angles and the lengths can in turn be expressed as functions
of the φ and consistency of this procedure is guaranteed by the constraints (8).
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