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Abstract
Electron impact ionization (EI) is the most common form of ionization for GC-MS analysis of
small molecules. This ionization method results in a mass spectrum not necessarily containing
the molecular ion peak. The fragmentation of small compounds during EI is well understood, but
manual interpretation of mass spectra is tedious and time-consuming. Methods for automated
analysis are highly sought, but currently limited to database searching and rule-based approaches.
With the computation of hypothetical fragmentation trees from high mass GC-MS data the high-
throughput interpretation of such spectra may become feasible. We compare these trees with
annotated fragmentation pathways. We find that fragmentation trees explain the origin of the
ions found in the mass spectra in accordance to the literature. No peak is annotated with an
incorrect fragment formula and 78.7% of the fragmentation processes are correctly reconstructed.
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1 Introduction

Metabolomics, also called “metabonomics” or “metabolic profiling”, is a rapidly developing
field of ‘omics’ research, dealing with the detection, identification and quantification of low
molecular-weight compounds (typically below 1000Da) in cells, organs or organisms. The
analysis and identification of small molecules is important in many areas of biology and
medicine such as biomarker discovery, diagnostics, pharmaceutical chemistry and functional
genomics [2, 9, 36]. The metabolome consists of various compounds that belong to a wide
array of compound classes, including sugars, acids, bases, lipids, hormonal steroids, and
many others [5, 18]. The structural diversity of metabolites is extraordinarily large despite
of their small size [21]. Unlike biopolymers such as proteins and glycans, metabolites are
not made up of repeated building blocks. The genome sequence does not reveal information
about metabolite structure, as it does for protein structure. The number of metabolites in
any higher eukaryote is estimated between 4000 and 20 000 [7]. Unfortunately, an astounding
number of these metabolites remain uncharacterized with respect to their structure and
function [26].

At the moment there is no single instrumental platform that can analyze all metabol-
ites [5, 21]. Mass spectrometry (MS), typically coupled with a chromatographic separation
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technology, is one of the key technologies for the identification of small molecules. It has
excellent compound specificity and high sensitivity. In particular, MS sensitivity is orders of
magnitude higher than that of nuclear magnetic resonance (NMR) [21,29]. Several kinds of
analytical apparatus have been developed and most of these combine chromatography with a
fragmentation technique to increase compound specificity. Gas chromatography coupled to
mass spectrometry (GC-MS) is one of the most frequent tools for profiling metabolites and
it was in existence decades before liquid chromatography MS (LC-MS) [8, 14]. The amount
of data produced during metabolomic analysis is hard to process and analyze manually [18].

The most common ionization technique in GC-MS is electron impact ionization (EI).
The resulting fragment-rich mass spectra are in general consistent and specific for each
molecule [20,21] and fragmentation mechanisms are already well described [23]. Reference
spectra were collected over many years, allowing for automated interpretation via database
search [24]. Where the compound is unknown, comparing the spectrum obtained to a spectral
library will result in imprecise or incorrect hits, or no hits at all [8, 18, 20]. To cover a
wider range of compounds in silico fragmentation is used to predict spectra of compounds
with known structure [11,12,19,37]. A first step towards the structural elucidation of fully
unknown compounds is feature-based identification of the compound class [17, 19, 34, 35].
See Kind and Fiehn [20] for a comprehensive review of computational techniques for small
molecule mass spectrometry.

Böcker and Rasche [3] introduced fragmentation trees for the de novo interpretation
of metabolite fragmentation data. The fragmentation tree concept helps to identify the
molecular formulas of the compound and to interpret the fragmentation process. Nodes are
annotated with the molecular formulas of the fragments, and edges represent fragmentation
events, that is, neutral or radical losses. Computing fragmentation trees does not require
databases of compound structures or mass spectra or expert knowledge of fragmentation.
The trees can be compared to each other to identify compound classes of unknowns [28].
Expert evaluation suggests that the fragmentation trees from LC-MS2 data are of very good
quality [29]. Fragmentation trees can also be computed from LC-MSn data [31]. Recently,
Hufsky et al. [16] presented a computational method for the de novo interpretation of
EI fragmentation data, based on fragmentation tree construction, and applied it to real
world data. Besides a list of common losses, this method does not use any chemical expert
knowledge, but does require high mass accuracy of the measurements [16].

In this study, we evaluate the quality of fragmentation trees computed from EI fragmenta-
tion data [16]. To evaluate the potential of fragmentation trees to reconstruct fragmentation
processes we compare them to annotated fragmentation pathways of 22 compounds from
the literature. The constructed fragmentation trees were not supposed to depict the actual
fragmentation reactions. They however agree well with the annotated pathways explaining
the origin of the respective ions found in the mass spectra. No peak was annotated with an
incorrect fragment formula and 78.7% of the fragmentation processes were correctly recon-
structed. For the annotation of the fragmentation processes in the literature the molecular
structures of the compounds were used. In contrast, the computation of fragmentation trees
works without this knowledge. The assignment of molecular formulas to all fragments and
explanation of relevant fragmentation reactions independent of existing library knowledge,
supports the structural elucidation of unknown compounds. Combined with a method for the
automated comparison of fragmentation trees [15,28] it will enable the automated analysis
of metabolites that are not included in common libraries.
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14 Comparing EI Fragmentation Trees with Annotated Fragmentation Pathways

2 Methods

For the interpretation of the GC-MS spectra we use fragmentation trees as introduced
by Böcker and Rasche [3] for LC-MS2 spectra. A hypothetical fragmentation tree models
fragmentation cascades by annotating nodes with the molecular formulas of fragments,
and edges with fragmentation events, that is, neutral or radical losses. The root of the
fragmentation tree is labeled with the molecular formula of the unfragmented ion. For
LC-MS2 data the molecular ion mass is known. EI results in a mass spectrum not necessarily
containing the molecular ion peak. Hufsky et al. [16] proposed a method for computing
fragmentation trees from such data.

To compute a fragmentation tree from an EI fragmentation spectrum a fragmentation
graph is constructed. All candidate molecular formulas within the mass accuracy of the
instrument are computed for each peak. The fragmentation graph contains a node for each
decomposition. The nodes are colored, such that all explanations of the same peak receive the
same color. Nodes are weighted using mass deviation and peak intensity [3]. Two nodes are
connected by an edge (corresponding to a loss) if the second molecular formula is a subformula
of the first. Edges are weighted according to their plausibility as real fragmentation steps
considering the mass of the loss, the ratio between carbon and hetero atoms, and common
losses for EI fragmentation (see Table 1). See [16] for a detailed description of the scoring.

The colorful subtree with maximum sum of edge weights is the explanation of the observed
fragments, that fits best with the given conditions. Considering trees every fragment is
explained by a unique fragmentation pathway, see [29]. Considering only colorful trees every
peak is explained by a single fragment. Several fragments resulting in a single peak is an
extremely rare event in practice.

By demanding that each fragment in the fragmentation spectrum is generated by a single
fragmentation pathway we slightly oversimplify the problem. Our optimization algorithm
will choose the mainly occurring pathway to compute a fragmentation tree. There are
two exceptions to this reasoning: (1) In the resulting fragmentation tree, assume that
some fragment f3 is cleaved from f2, which is in turn cleaved from f1. Solely from the EI
fragmentation pattern and without additional structural information, it cannot be ruled out
that fragment f3 is in truth cleaved directly from f1. Both interpretations are implicitly
encoded in the fragmentation tree: the fragmentation may occur from the fragment’s
direct parent in the tree or from any of its parents (see Figure 1(a)). (2) In the resulting
fragmentation tree, assume that some fragment f2 is cleaved from a fragment f1 by loosing
l1 and another fragment f3 is cleaved from f1 by loosing l2. Further, another fragment f4 is
cleaved from f2 by loosing l2. Solely from the data, it cannot be ruled out that fragment f4
is in truth cleaved from f3 by loosing l1. Again, both interpretations are implicitly encoded

Table 1 List of common losses over the alphabet used throughout this study (CHNOPSCl) for
scoring EI fragmentation reactions [13]. The losses are sorted by integer mass and their probability
of occurrence in a GC-MS spectrum [16]. Losses in the first row (dark green) are very common
and thus score high, while losses in the last row (orange) are not-that-common and thus score
comparatively low.
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Figure 1 Comparing fragmentation trees (solid edges) with annotated pathways from the literature
(dashed edges). (a) In the fragmentation tree, fragment f3 is cleaved from f2, which is in turn
cleaved from f1. It cannot be ruled out that fragment f3 is in truth cleaved directly from f1 (dotted
edge). Both interpretations are implicitly encoded in the fragmentation tree. We evaluate these
edges as correct. (b) In the fragmentation tree, fragment f3 is cleaved directly from f1, while in
truth it is cleaved from f2 (dotted edge), which is in turn cleaved from f1. We evaluate these edges
as inserted to high. (c) Parallelogram: Fragment f4 is cleaved from f2 by loosing l2, which is in turn
cleaved from f1 by loosing l1. In truth fragment f4 is cleaved by loosing l2 first and l1 afterwards
(dotted edge). Both interpretations are implicitly encoded in the fragmentation tree. We evaluate
these edges as correct.

in the fragmentation tree: the fragmentation may occur by loosing l1 first and l2 afterwards,
or the other way (see Figure 1(c)). In the following, we call this constellation parallelogram.

EI is a hard ionization technique often resulting in missing or low intensity molecular ion
peaks [20,21]. Different from LC-MS2 analysis the mass of the molecular ion is not known.
All nodes in the graph are possible roots of the fragmentation tree. Molecular formulas
explaining each peak cannot be restricted to sub-molecular formulas as proposed in [29].
Therefore the identification of the molecular ion and formula and the computation of the
complete fragmentation tree is done in two separate steps.

We first identify the molecular ion and molecular formula using only a set of peaks that
appear to be most relevant for the compound. These peaks are selected using three different
criteria. We choose the k1 most intense peaks, the k2 peaks with highest score, and the k3
peaks with highest score in the upper m/z range. The score is a combination of m/z value
and relative intensity m/z · ln(100 · intrel) and the upper m/z range is the m/z region from
0.9M̃ to M̃ where M̃ is the highest m/z of a peak detected in the spectrum. In this step
fragmentation trees are computed using Dynamic Programming [3]. Afterwards we compute
a fragmentation tree for the complete spectrum assuming that we know the correct molecular
ion and molecular formula of the compound. The resulting fragmentation tree is rooted in
this molecular formula. In this step, fragmentation trees are computed using Integer Linear
Programming [30].

3 Data

The EI induced fragmentation of small molecules is well described in the literature. To
evaluate the potential of fragmentation trees to reconstruct fragmentation processes we
extract annotated fragmentation pathways for 22 compounds from different compound classes
(see Table 2). In [1] Acheson et al. describe the fragmentation of alkyl acridines. We choose
two simple alkylacridines and two reduced acridines containing chlorine. Further, we choose
seven compounds from a study on alkyl isocyanides and methyl branched alkyl cyanides [10].
From [25] we select four dihydro-1,4-oxathiines with fragmentation paths additionally invest-
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16 Comparing EI Fragmentation Trees with Annotated Fragmentation Pathways

Table 2 Overview of the 22 reference compounds with fragmentation pathways annotated in the
literature. If more than one compound of the same class is used, we denote the class name and give
the mass range and average mass.

mass
compound (class) # range average
alkyl acridines [1] 4 207.1 - 399.2Da 276.1Da
alkyl isocyanides & α-branched alkyl cyanides [10] 7 41.0 - 83.1Da 69.1Da
dihydro-1,4-oxathiines [25] 4 146.0 - 235.1Da 178.8Da
gossypol [27] 1 518.2Da
ephedrine [33] 1 165.1Da
2,1-benzisothiazoline 2,2-dioxide nitro derivatives [4] 5 214.0 - 242.0Da 228.0Da
all 22 41.0 - 518.2Da 187.6Da

igated with qualitative collisionally induced dissociation (CID) measurements. From [27]
we extract the fragmentation pathway of gossypol and from [33] the one from ephedrine.
Further, we choose five 2,1-benzisothiazoline 2,2-dioxide nitro derivatives from [4].

As the measured spectra are not available to us, we simulate spectra from the pathways.
From the molecular formulas in the fragmentation pathway, we compute exact peak masses,
and simulate “measured” spectra by adding a normal distributed error of 10 ppm on the mass
of the fragment formula (without considering ionization). Peak intensities of the fragment
peaks are taken from the literature. They are either given as actual number or estimated
from the plotted spectrum. In addition, we add 70% noise peaks with uniformly distributed
masses smaller than the parent mass, and pareto distributed intensities.

4 Results

4.1 Molecular Ion Peak and Formula Identification
Fragmentation trees enable the identification of the molecular ion and the molecular formula
of a metabolite if the molecular ion is present in the spectrum. EI is a hard ionization
technique resulting in missing molecular ion peaks in about 30% of the spectra [22]. For
two compounds in our dataset, namely gossypol and ephedrine, the relative intensity of the
molecular ion peak given in the literature was 0%. We test the identification of the molecular
ion and the molecular formula on the remaining 20 spectra containing a molecular ion peak.

To identify the molecular ion peak and its formula an alphabet of potential elements must
be provided to the method. For all compounds, we use the six elements most abundant in
metabolites, namely carbon (C), hydrogen (H), nitrogen (N), oxygen (O), phosphorus (P), and
sulfur (S) [18]. When analyzing the two compounds in our dataset containing chlorine (Cl),
we also add this element to the alphabet. Information on whether a compound contains
chlorine can be usually obtained from isotope pattern analysis.

Computing the molecular ion peak and molecular formula requires an average of 4.6 s for
each compound. This time includes peak decomposition and graph construction. We discard
peaks with no decomposition. We then choose the subset of peaks that appear to be most
relevant for the compound as described above. We choose k1 = 10 and k2 = k3 = 5, resulting
in at most 20 peaks if the sets are not overlapping.

For all compounds, the method correctly detect the molecular ion peak. This is not
surprising, since the molecular ion peaks have the highest m/z values in all spectra, based
on the generation of noise peaks as described above. For 17 of the 20 compounds (85%),
the highest scoring suggestion for both the molecular ion peak and its molecular formula is
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Table 3 Results of the tree evaluation. (a) Peak explanations in the annotated pathways
compared to the computed fragmentation trees. 1Percent of the explanations in the annotated
pathways. 2Percent of the explanations in the computed fragmentation trees. (b) Evaluation of
the fragmentation events annotated in the fragmentation trees. For 5 of the 277 correct peak
explanations, the fragmentation process leading to this fragment is not given in the literature.
(c) Evaluation of the frequency of parallelograms in the annotated pathways. A parallelogram is
closed if both fragmentation ways are annotated, and “open” otherwise. 3Percent of the “open”
parallelograms.

(a) fragments pathway tree
total total correct missing additional

peak explanations 296 284 277 19 7
precentage 93.6%1 6.4%1 2.5%2

(b) losses total correct correct, but to high wrong
to deep reverse order

losses 272 214 31 8 19 39
percentage 78.7% 11.4% 2.9% 7.0% 14.3%

(c) parallelograms total closed “open” different in tree
parallelograms 99 29 70 8
percentage 29.3% 70.7% 11.4%3

correct. For the remaining three compounds, the correct molecular formula is the second
suggestion.

4.2 Fragmentation Tree Quality

We compute a hypothetical fragmentation for every compound, assuming that we know the
correct molecular ion and molecular formula of the compound. In this step, all peaks of
the spectrum are used for computation. Computation, including decomposition and graph
construction, requires 1.5 s on average and a maximum of 18.5 s for the largest compound,
namely gossypol. For this compound with mass of 518.2Da, decomposition of all peaks
requires 17.9 s (97% of the total running time).

We compare the computed fragmentation trees with annotated fragmentation patterns
from the literature. The fragmentation trees annotate 284 peaks in total (see Table 3(a)).
Only seven of this explanations (2.5%) are false positives, that is explanations of noise
peaks as fragments. The remaining 277 peaks are annotated with the correct fragment
formula. From all 296 fragments described in the pathways from literature 19 (6.4%) could
not be explained. There are different reasonings for a peak not being explained in the
tree. For some peaks, the mass deviation of the measured peak mass to the exact mass is
to high. This effect is getting stronger for smaller peaks, since mass deviation penalty is
dependent of the peak intensity [16]. For other peaks, the fragmentation step resulting in
this fragment gets a bad score. For example, the loss C2H2N that was annotated in the
literature as a first fragmentation step for three of the alkyl isocyanides is not included in
the list of common losses for EI fragmentation and is not even a combination of these (see
Table 1 and [16]). Therefore the fragments resulting from this step could not be identified.
Nevertheless, the method is capable of identifying losses that are very specific for a single
compound or compound class and therefore not listed as a common loss (see [16]).
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Figure 2 Computed fragmentation tree (solid edges) of 5,6-hydro-3-hyroxymethyl-2-methyl-1,4-
oxathiine (left) compared to the annotated pathways [25] from the literature (right). This compound
is a worst-case example to visualize all the things that can go wrong. All fragments are annotated
with the correct molecular formula. Dashed edges in the tree are losses from the annotated pathways.
Black edges in the fragmentation tree agree with the annotated pathways. Grey dashed edges are
additional pathways that could not be computed since the tree property would have been violated.
The blue fragment was actually cleaved in reverse order from the molecular ion. The green fragments
were inserted to deep, and the orange fragment was inserted to high in the fragmentation tree. The
red fragment was inserted into a completely different pathway. Note that mass errors of more than
10 ppm occur as we added the simulated mass error on the mass of the fragment formula (without
considering ionization).

Individual edges from the fragmentation tree were compared to those in the annotated
pathways, and matching losses were assigned as correct. In some cases, consecutive edges of
the fragmentation tree can be combined to give the molecular formula of a single fragmentation
step in the annotated fragmentation pathways (see Figure 1(a)). In some other cases two
consecutive losses in the fragmentation tree are described in reverse order in the annotated
fragmentation pathways (see Figure 1(c)). We evaluate those fragments that were inserted to
deep or in reverse order in the fragmentation trees as correct, since without a given structural
formula and solely from the EI fragmentation data, the correct case cannot be distinguished
from our method’s suggestion. If the fragmentation step in the resulting fragmentation tree
is explained by several consecutive steps in the annotated pathway, the fragment was inserted
to high (see Figure 1(b)). If the fragment was inserted into a completely different pathway
the edge is assigned as wrong.

For 5,6-hydro-3-hyroxymethyl-2-methyl-1,4-oxathiine [25], we now describe in more detail
how we evaluate the edges of the fragmentation tree (see Figure 2). We choose this compound
as worst-case example to visualize all the things that can go wrong. The loss of ethene from
the molecular ion (146-118) followed by a loss of C2H3O (118-75) as well as a loss of C2H4O2
(118-58) are annotated as correct, as they can be found in the annotated pathways. The water
loss from the molecular ion (146-128) is also annotated in the literature. In the fragmentation
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Figure 3 Fragmentation trees compared to annotated pathways from the literature. (a) Fragment-
ation tree (left) and annotated pathway (right) of a 2,1-benzisothiazoline 2,2-dioxide nitro derivative
(compound 6 from [4]). The grey fragment is not explained in the fragmentation tree as it has very
low intensity and results from a rather uncommon loss (see Table 1). Dashed edges in the tree are
additional losses from the annotated pathways that cannot be explained by our method since the tree
property would be violated. In the literature the edge (150-92) combines two fragmentation steps
(150-120-92), since the 120Da peak is very small. In truth, it is very likely, that this fragmentation
always proceeds in two steps, but that the lifetime of the intermediate ions is too short [4]. The same
applies to edge (150-95) combining the two fragmentation steps (150-122-95). (b) The fragmentation
tree (left) and the annotated pathway (right) of 6,9-dichloro-2-methoxyacridine [1] match completely.
Note that mass errors of more than 10 ppm occur as we added the simulated mass error on the mass
of the fragment formula (without considering ionization).

tree ethene gets lost first and water afterwards (146-118-100), while in the annotated pathway
these losses are cleaved in reverse order. Edges between nodes 118-75-43 can be combined
to the expected loss of C2H3OS so the loss of sulfur is considered as correct. Pulling up
the edges between nodes 146-118-87 results in a total loss of C3H7O, so the CH3O loss was
inserted to deep and is considered as correct by pull-up. Cleaving fragment 45 directly from
118 is considered as to high. Fragment 72 was cleaved by loosing ethene from fragment 100
in the annotated pathway. Therefore the methyl loss (87-72) in the fragmentation tree is
annotated as wrong.

We use similar reasoning processes to evaluate all hypothetical fragmentation trees (see
Figure 3 for two examples and Table 3(b) for an overview). For 5 of the 277 correct peak
explanations, the fragmentation process leading to this fragment is not given in the literature.
From the remaining 272 losses in our data set, 214 losses (78.7%) are assigned as correct.
From these, 31 fragments (11.4%) are inserted to deep and 8 fragments (2.9%) are actually
cleaved in reverse order. Further, we find that 19 fragments (7.0%) are inserted to high
and 39 edges (14.3%) are annotated as wrong. We stress that, unlike for the annotation
of the fragmentation processes in the literature, our method has no information about the
molecular structure of the compounds.
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20 Comparing EI Fragmentation Trees with Annotated Fragmentation Pathways

4.3 Parallelograms
We evaluate the frequency of parallelograms in the annotated pathways from the literature
(see Table 3(c)). As mentioned above, these are constellations where it cannot be decided
solely from the data, whether a fragment results from cleaving loss l1 first and l2 afterwards
or the other way round (see Figure 1), since both intermediate fragment ions are present in
the spectrum. In total, we find 99 parallelograms in all but three compounds. 29 of these
are closed, that is both fragmentation ways are annotated. This is possible since pathways
from the literature not necessarily have to be trees. In contrast, our method has to choose
one of these fragmentation pathways. For the remaining 70 parallelograms, either the one
or the other way is annotated. From these 70 parallelograms, our method selects the other
(possibly wrong) pathway in only 8 (11.4%) cases.

5 Conclusion

We show that hypothetical fragmentation trees agree in their general information very well
with annotated EI fragmentation patterns. We stress that for the computation of the trees
no information about the molecular structure of the compounds is used. It is important
to note that fragmentation trees are not a tool to reflect the specific mechanisms of EI
fragmentation. We find that often the combination or inversion of edges results in pathways
that correspond to the true fragmentation. This is not a major set-back since the relevant
fragmentation can be constructed based on the trees. Fragmentation trees are a basis for
the further interpretation of EI mass spectra. The information obtained, such as fragment
formulas, can be used within other methods, for example to simplify in silico fragmentation
and presumably improve its results.

Many available methods for analyzing fragmentation spectra of metabolites are rule-
based. Mass spectral features are used for classifying compounds [35], Scott [32] uses rules for
different classes to estimate the molecular mass of the compound, and rules are used to predict
the fragmentation pattern of compounds not included in spectral libraries [19]. Completely
unknown compounds may not necessarily follow these known rules for classification or
fragmentation. In contrast, the computation and alignment of fragmentation trees is a fully
automated and “rule-free” approach that is not limited to known compound classes [28]. It
allows to find similar, not necessarily identical, compounds in a library search and unlike
other methods it can report the significance of these hits using a decoy database. Consensus
substructures of these hits may be key structural elements of the unknown compound and can
be used within molecular isomer generators to enumerate all structural isomers containing
these substructures [6]. This pipeline will suggest only a few molecular structures and thus
can greatly reduce manual analysis time.

Fragmentation tree alignment already accounts for the combination of two consecutive
edges [15]. In addition, we find that for some consecutive fragmentation steps the respective
ions do not allow to determine the correct fragmentation order solely from the EI data.
These constellations occur in 86% of the compounds. Our method cannot discern the correct
fragmentation order solely from the data and will select, based on the scoring properties,
the more common and smaller loss twice. In the future, both fragmentation ways should be
considered in the fragmentation tree alignment.
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