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Abstract

In this short note we clarify a link between anisotropic-scaling scenarios and Finsler spacetimes.

Generalizing earlier analysis it is shown that the kinematics of propagating particles (in the sense

of geometrical optics) can be described in terms of (pseudo-)Finsler structures.

In recent years, the possibility of a UV-completion of the standard model encoding some
form of Lorentz violation [1] has been discussed in different frameworks and from different
points of view. In fact, it turns out that rather diverse quantum/emergent gravity scenarios
are providing some hints that such an option deserves some exploration [2, 3] (see also [4]).
In parallel, an increasing number of data coming from (astro-)particle physics experiments
have made possible to provide constraints for some of these frameworks encoding Lorentz
symmetry violation. For reviews and complete lists of references see for instance [5, 6].

More recently, it has been proposed that scenarios based on anisotropic scaling [7] could
be helpful in providing a coherent setting for a renormalizable quantum theory of gravity,
in an appropriate sense. In this setting, four dimensional spacetime is described in terms of
a preferred foliation, M = R × Σ, with respect to which the notion of anisotropic scaling is
introduced. For the general presentation and more details see [7, 8].

One of the most important aspects to be understood is the way in which the kinematics
of particle physics is changed in such a scenario. This problem is just a generalization of
the issue of (Lorentz-violating) Modified Dispersion Relations (MDR) considered in the past
for the standard model alone, with gravity being switched off [9] (see also [10] for an earlier
proposal).

In Hořava–Lifshitz scenarios, the geometry of spacetime where the various fields are
propagating is no more a flat, non-dynamical structure, but rather it satisfies some equations
of motion, which should reduce to the familiar Einstein equations for a four dimensional
metric gµν on large distances. Besides the ongoing analysis of the viability of such a scenario
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[11], it is interesting to see what are the consequences for matter fields, and, in particular,
the way in which the propagation of signals is altered with respect to local Lorentz invariant
models [12].

The aim of this note is to put in relation this new direction of research with past work
on Lorentz-violating extensions of the standard model, in particular in giving to the MDR
appearing in this new framework a four dimensional geometrical interpretation. We will
follow closely [13], and we refer to this paper for a careful discussion of all the technical
details.

As an illustrative model, we will use the case of a single scalar field. We will comment
later on the case of higher spins. Following [12], we can write the most general action for a
scalar field as

S0 =
1

2

∫

d4x
√

hN
{

1

N 2

(

∂tφ −N i∂iφ
)2 −

∑

J≥0

OJ ⋆ φJ

}

, (1)

where hij(t, x) is the metric on each spatial slice and N ,N i, i = 1, 2, 3, are the lapse and
shift functions. We are using the notation

OJ =

nJ
∑

n=0

(−1)n λJ,n

Λ4−2n−J
UV

∆n, (2)

with ∆ the Laplacian defined with h,

∆ = hij∇(h)
i ∇(h)

j , (3)

and ΛUV a high energy scale which is left unspecified. It is implicit that ∆0 = 1. The ⋆
encodes in a condensed notation the action of the various operators on J copies of the field.
In particular, it is intended that for each J one has to include all the operators obtained
by all the possible independent combinations of ∆ and φ. For instance (taking the same
example of [12]),

∆3 ⋆ φ3 = c1(∆φ)3 + c2φ(∆φ)(∆2φ) + c3(∆
3φ)φ,

where c1, c2, c3 are additional arbitrary constants.
In the expression for each OJ , given in (2), the sum includes at most nJ terms. The

integers nJ are fixed by renormalizability conditions. In fact, it turns out that, in order to
have power counting renormalizability, it is required that:

nJ = max

{

n ∈ N |n ≤ z + d

2
+

z − d

4
J

}

, (4)

where z is the dynamical critical exponent encoding the anisotropic scaling and d is the
number of spatial dimensions (and hence in our case d = 3). Notice that n2 is just the
integer part of z, whatever is the number of spatial dimensions.

Without entering into many details, it is clear that, in perturbation theory around φ = 0,
the properties of propagation are encoded in the kinetic term alone, i.e. in the part of the
Lagrangian quadratic in the field, involving therefore the terms corresponding to J = 2.
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In doing this, we are discarding the terms corresponding to J = 0 and J = 1. The J = 0
term is just a constant shift of the Lagrangian, irrelevant for the equations of motion of the
matter fields (but contributing to the gravitational equations), while J = 1 contains only
two possible kind of terms, namely βφ and γn∆

nφ. While the latter are irrelevant boundary
terms, the former would have the effect of shifting the minimum energy state from φ = 0 to
φ = φ∗. For simplicity we assume that φ = 0 is a local minimum of the potential and hence
β = 0.

Of course, if the potential is minimized by non-vanishing constant values of φ, the propa-
gation of perturbations will receive contributions also from terms with J > 2. Nevertheless,
this would not change the outcome of the discussion, while the restriction we are considering
is just making the algebra more transparent. Therefore, the non-quadratic terms, at this
level, can be seen as mere (derivative) interactions, and we will neglect them.

By fixing the gauge to be N = 1,N i = 0, we can reduce the analysis to the following
Lagrangian

L0 =
1

2

(

(∂tφ)2 − hij∂iφ∂jφ −
n2
∑

n=2

αn

Λ2n−2
UV

φ∆nφ − m2φ2

)

, (5)

and the consequent wave equation. Here we have used αn instead of (−1)nλ2,n to simplify
the notation. Furthermore, without loss of generality, we have fixed λ2,1 = 1, and we have
defined:

m2 = λ2,0Λ
2
UV . (6)

Of course, for z = 1 we recover the familiar relativistic dispersion relation. In the following,
then, we will assume z ≥ 2 (and, correspondingly, n2 ≥ 2).

The eikonal approximation is the key technical tool needed to grasp the geometrical
meaning of the wave equation. The analysis can be found, for instance, in [14, 15]. First,
the field is represented as

φ(t, x) = A(t, x)e−iS(t,x), (7)

where it is implicit that one has to take just the real or imaginary part, in the case of real
scalar field φ.

In the limit of very short wavelengths, i.e. the geometric optics limit, the wave equation
reduces to the so-called eikonal equation, effectively describing the propagation of wave-
fronts, encoded into the (rapidly varying) eikonal function S. In this case, it is given by

(

∂S

∂t

)2

−
(

hij ∂S

∂xi

∂S

∂xj

)

−
n2
∑

n=2

αn

Λ2n−2
UV

(

−hij ∂S

∂xi

∂S

∂xj

)n

− m2 = 0. (8)

The geometrical interpretation is easily given once it is recognized that the eikonal equa-
tion is the Hamilton–Jacobi equation for a (fictitious) point particle (moving along the ray,
in geometrical optics) whose action (in the Hamiltonian formalism) is:

I =

∫

{

ẋµpµ − λ(τ)
(

G2(p0, pi) − m2
)}

dτ, (9)
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with

G2(p0, pi) = p2
0 − hijpipj −

n2
∑

n=2

αn

Λ2n−2
UV

(hijpipj)
n, (10)

and λ a Lagrange multiplier used to enforce the mass-shell constraint.
From its form, it is manifest that the propagation of the ray involves the properties of

the 3−geometry of each slice Σ. However, as we shall see, it is possible to introduce a notion
of four dimensional geometry, i.e. it is possible to show that the rays are just geodesics of
a suitably defined four dimensional geometrical structure. This has been done in the “flat”
case in [13]. There the outcome was that the particles were moving along the geodesics of
(flat pseudo-)Finsler metrics.

Finsler spaces are a class of spaces where the metric properties are encoded into a norm,
i.e. the length of an arc of a curve γAB is given by:

ℓ(γAB) =

∫ b

a

dτF (x, ẋ), (11)

where F (x, ẋ) is such that, at each point m with coordinates x, the function F (x,−) :
TmM → R, defined over the tangent space TmM at a given point m, does obey the axioms
defining a norm (see, for instance, [16] for a comprehensive exposition, while for a very basic
discussion, see [13], section II). Clearly, Riemannian geometry is a particular case of Finsler
geometry, where the norm is induced by the metric tensor

FRiem(x, ẋ) =
√

gij(x)ẋiẋj . (12)

To show that the rays in Hořava–Lifshitz scenarios are just geodesics of some Finsler
spacetime, technically, one should proceed with a Legendre transform of the action (9). Of
course, this will be possible if and only if the relationship between “velocities” and momenta,

ẋµ = λ
∂G2

∂pµ

, (13)

is an invertible map. When it is possible to go to the Lagrangian formalism, after the
elimination of the Lagrange multiplier λ, it is immediate to realize that the action has the
form:

I = m

∫

dτFm(x, ẋ, {α}, ΛUV ), (14)

where Fm is a norm.
This conclusion can be inferred immediately from the symmetries of the action (9). As

one can show, this action is reparametrization invariant (provided that λ → (dτ/dτ ′)λ).
Hence, since this property is never touched in the process of Legendre-transforming, it must
be present also in the Lagrangian formalism. However, this is possible if and only if the
Lagrangian is a homogeneous function of the velocity,

F (x, sẋ) = sF (x, ẋ), s ≥ 0. (15)
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This of course is not enough to prove that F is a norm: one should check that all the axioms
are satisfied. However, given that this structure would describe spacetime, and not just
space, one should provide a definition of norms for Lorentzian signature. This is still an
open problem. A rather conservative approach is to define a pseudo-Finsler structure a pair
(M, F ) if F is a homogeneous function of the vector argument and if the tensor:

gFinsler
µν (x, v) =

1

2

∂F 2

∂vµ∂vν
, (16)

called the Finsler metric tensor1 is non-degenerate with signature (− + ++) (or (+ −−−),
according to the conventions) [17]. Again, for the technical details and comments see [13].

This routine can be applied without major changes also in the case of Horǎva–Lifshitz
scenarios. The difference will be that now the geometrical structure defined by the given
dispersion relation will be curved, in general. The main outcome, however, is unchanged:
particles obeying mass-shell relations like the one in (9) are propagating on geodesics of
suitably defined Finsler structures. Alternatively, in the geometric-optic limit of the wave
equations in Hořava–Lifshitz scenarios, the rays are geodesics of suitably defined (four di-
mensional) pseudo-Finsler structures.

Some specifications are in order. As in the case of MDR discussed in [13], the norm
depends on the mass of the particle. This is somehow unavoidable, even in the case in which
the coefficients αn are particle-independent. See also [18] for a discussion of some related
aspects for spontaneously broken gauge symmetries. This means that we cannot globally
replace the 3 + 1 formalism with a single Finslerian framework, at least at this stage.

Furthermore, there is another source of difficulties for such a perspective. In the case
of higher spins a more involved normal modes analysis can be done, along the same lines
briefly sketched for the case of the scalar field. For a detailed discussion see [19]. In the
most general case, one should expect multi-refringence, i.e. each polarization of the field
does propagate on a different geometrical structure. The emerging geometrical structures
are still non-Riemannian, and Finsler geometry is still playing an important role. However,
for a critical discussion about the possibility of describing multi-refringence by means of a
single Finsler structure, see, for instance, [20].

Despite these issues, which require further investigations, the main lesson is clear: in
Hořava–Lifshitz scenarios, the description of the propagation of waves can be given in terms
of curved four-dimensional pseudo-Finsler structures. This is just the generalization of what
has been discussed in [13] in the case of flat spacetime geometries. Concretely, one should
expect that the higher is the energy of the particle, the larger will be the deviation from the
geodesic motion determined by the low-energy four dimensional metric gµν [15]. Nonetheless,
the motion of particles, dual to the propagation of waves, is still geodesic, once it is realized
that the metric structure is (pseudo-)Finslerian, rather than (pseudo-)Riemannian.

Acknowledgments I want to thank F. Girelli and S. Liberati for useful comments.

1Notice that in the case of Riemannian geometry, F 2(x, v) = aµνvµvν , whence gFinsler

µν
(v) = aµν .
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