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Abstract

We review the structure of local Lagrangians and field equations for free bosonic and

fermionic gauge fields of mixed symmetry in flat space. These are first presented in a

constrained setting extending the metric formulation of linearized gravity, and then the

(γ-)trace constraints on fields and gauge parameters are eliminated via the introduction

of auxiliary fields. We also display the emergence of Weyl-like symmetries in particular

classes of models in low space-time dimensions.
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1 Introduction

When combined with General Relativity, the Standard Model of elementary particles

provides a description of the fundamental forces of Nature that is in astonishing agreement

with the experimental data available up to now. However, these theories rely upon two

completely different frameworks, since General Relativity describes classical gravitational

interactions, while the Standard Model describes the other three fundamental forces at the

quantum level. On the other hand, some of the most spectacular advances in the history

of physics originated from the search for a unified description of previously separated

phenomena. Trying to overcome this distinction could thus provide a deep insight on

both subjects and even on the very notions of space and time. Moreover, gravity couples

to matter and, from a fundamental point of view, it is impossible to forego the need for

a quantum description of the gravitational interaction, even if it is supposed to play a

relevant role in regimes that lie far away from experimental possibilities. In fact, quantum-

gravity effects are expected to occur at energies akin to the Plank scale G
−1/2
N ≃ 10 19

GeV, to be compared, for instance, with the Fermi scale G
−1/2
F ≃ 10 2 GeV that is still

under investigation in current accelerator experiments. At any rate, even without direct

experimental inputs, one can try to delineate the key features of a consistent quantum

theory of gravity that reduces to General Relativity at low energies.

Various approaches were developed over the years to deal with this problem, but up

to now String Theory appears most promising. This may sound surprising looking at

the origin of the subject, since string models were introduced at the end of the sixties

to describe strong interactions [1]. Their most evident signature is indeed a spectrum

with infinitely many massive excitations, of increasing mass and spin. These states are

in some sense related to “vibrational modes” of the strings, and they immediately recall

the trend observed starting from the fifties for hadronic resonances. In the seventies,

however, deep inelastic scattering experiments robustly supported the QCD description

of strong interactions, where hadronic resonances appear as composite objects. At the

same time, Yoneya [2] and independently Scherk and Schwarz [3] pointed out that one

can identify the single massless spin 2 particle contained in all closed string spectra with

the graviton. Furthermore, with a proper tuning of the string tension, the energy needed

to excite massive string states becomes so big to justify the lack of their experimental

observation. The ubiquitous presence of a spin 2 mode in closed string spectra and the

UV softness displayed by string models, to be compared with the UV divergent behavior

of Einstein gravity [4], shortly led to consider String Theory as a paradigm for quantum

gravity. This gave rise to an enormous effort aimed at clarifying the properties of this

complicated framework1.

Despite the understanding thus attained of some particular aspects of String Theory,

it is worth stressing that a number of fundamental problems are still open. For instance,

1For a non-technical review of the present status of String Theory, that contains many references to

books and technical reviews on the subject, see for instance [5]. Some books on String Theory are also

signaled in [6].
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from the space-time viewpoint String Theory nowadays is still formulated in a background-

dependent manner, without any analogue of the powerful geometric background-independent

presentation of Einstein gravity. Aside from a handful of examples, all solvable string mod-

els describe infinitely many fields of increasing mass and spin interacting in a Minkowski

background. This view was made more precise starting from the eighties, with the de-

velopment of the second quantized reformulation of String Theory, called String Field

Theory2. This framework connects somehow the string proposal to Quantum Field The-

ory on a flat background, despite the presence of rather unconventional unbounded mass

spectra and of higher-derivative interactions. Einstein gravity is thus recovered via the

self-interactions of massless spin 2 quanta in a Minkowski background, while the pure-

gravity UV divergences [4] are cured via the exchange of infinite towers of massive modes

with spin s > 2.

In conclusion, String Theory somehow restates the old idea that the framework of

Quantum Field Theory could also account for gravitational phenomena, but at the price

of considering also higher-spin excitations. The new states that appear at the string scale

weaken the gravitational potential and restore the high-energy predictivity that is lost in

the non-renormalizable spin 2 model. This path qualitatively resembles that leading from

the Fermi theory of weak interactions to the Standard Model. It is thus natural to ask

whether the string picture is compelling in order to obtain a UV completion of Einstein

gravity, or whether the key is rather to be found in the coupling with higher spins3.

Moreover, a careful analysis of the properties of these complicated systems of interacting

higher-spin fields could also unveil the path toward a potential background-independent

framework. The quest for possible generalizations of the string setup and for a deeper

understanding of its peculiar features is indeed one of the strongest motivations for the

work reviewed here, as well as for much of the current literature on higher spins4.

The study of higher-spin field theories has nevertheless a long history: Majorana pro-

posed Lorentz covariant wave equations for arbitrary spin particles already in 1932 [14],

and some years later Dirac independently reexamined the problem [15]. At the end of

the thirties Wigner put the subject on a more solid basis, and clearly pointed out that

elementary particles can be classified by the unitary irreducible representations of the

isometry group of space-time [16]. In the four-dimensional Minkowski case this is the

2While at the free level the second quantized formulation of all string models was completed in the

eighties [7], the situation is slightly different at the interacting level. In fact, a Chern-Simons-like action

proposed by Witten [8] nicely describes interacting bosonic open strings, while for closed strings a long

term research activity culminated in a proposal by Zwiebach [9], that presents some unusual features

with respect to ordinary Quantum Field Theory.
3Actually, the answer could be even simpler, since the recent improvement of the computational

techniques for loop amplitudes provides some encouraging evidence to the effect that at least N = 8

supergravity [10] might be finite in D = 4. Recent results on this subject are reported in [11], that also

contains a wide list of references to the previous literature. The possible finiteness of N = 8 supergravity

could drastically simplify the present understanding of the features requested by a quantum theory of

gravity, but the string UV completion could continue to play an important role in view of its possible

phenomenological applications, related to lower values of N .
4For reviews on the current status of higher-spin field theories see [12, 13] and references therein.
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Poincaré group ISO(1, 3), whose irreducible representations are labeled by mass squared

and spin. These values are not restricted a priori, and the analysis of all corresponding

linear covariant wave equations was completed at the end of the forties [17]. In the mean-

time the first Lagrangians for spin 2 and spin 3/2 particles were obtained by Fierz and

Pauli [18, 19] and by Rarita and Schwinger [20]. However, even for the free theory, the

search for a Lagrangian formulation for arbitrary higher-spin fields was not completed in

this first stage. The problem was reconsidered only starting from the fifties, and it was

then solved for spin 5
2
≤ s ≤ 4 in [21, 22].

Finally, in the mid seventies Singh and Hagen proposed Lagrangians for free massive

particles of arbitrary spin in [23, 24]. In a four-dimensional Minkowski background the

Lagrangian description of the free dynamics was then completed in 1978 by Fronsdal

and Fang [25, 26], who considered the massless limit of the Singh-Hagen construction

and showed the expected emergence of a gauge symmetry. Shortly thereafter the Fang-

Fronsdal results were actually recovered conjecturing the presence of an abelian gauge

symmetry [27, 28] and analyzing the consequences of this request. The resulting massless

free theory follows the lines of the metric formalism for gravity, and involves the smallest

field content giving a covariant description. The basic fields are fully symmetric tensors

ϕµ1... µs
and spinor-tensors ψ α

µ1... µs
, that generalize the vector potential Aµ, the linearized

metric fluctuation hµν and the gravitino field ψ α
µ. Their gauge transformations read

δ ϕµ1... µs
= ∂ (µ1

Λµ2... µs ) , δ ψ α
µ1... µs

= ∂ (µ1
ǫαµ2... µs ) , (1.1)

where here and in the following a couple of parentheses denotes a complete symmetrization

of the indices it encloses, with the minimum possible number of terms and with unit

overall normalization. However, differently from the “low-spin” examples with s ≤ 2, in

the general case the fields are subjected to algebraic (γ-)trace constraints inherited from

the massive free theory,

ϕµ1... µs−4 λρ
λρ = 0 , 6ψ µ1... µs−3 λ

λ = 0 . (1.2)

Similar constraints also appear for the gauge parameters,

Λµ1... µs−3 λ
λ = 0 , 6ǫµ1...µs−2 = 0 . (1.3)

The role played by these constraints will be discussed in great detail in the following. To

conclude this first overview of the subject, let us recall that a frame-like formulation of

the free theory [29] was also developed by Vasiliev and others starting from the beginning

of the eighties. While the Fang-Fronsdal setup extends to higher-spin fields the linearized

Einstein-Hilbert presentation of gravity, the Vasiliev setup extends somehow its Cartan-

Weyl form in the McDowell-Mansouri presentation [30].

Looking at this brief summary of the evolution of the free theory, the large time span

separating Majorana’s paper and Fronsdal’s work could appear surprising. Aside from

technical issues and from the changing fortunes of field theory, this can be reasonably

related to the difficulties that were soon encountered when trying to introduce interactions
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for higher-spin particles. But before commenting further on interactions, let us continue

for a while to focus on the free theory, in order to better delineate the content of this

review.

In fact, the Singh-Hagen [23, 24] and the Fang-Fronsdal results [25, 26] can be improved

in two directions. On one hand one can look for alternative formulations of the free

dynamics that are more likely to lead to an interacting theory. The already recalled

frame-like formulation of [29] is the first example. One the other hand one can follow the

old idea of Kaluza and Klein [31], and consider a space-time with additional dimensions.

This is possible if the extra dimensions are compact and have a characteristic scale so

small to explain why they have not been detected so far in experiments. Let us start

considering this latter possibility.

Models with extra dimensions were originally developed to unify Einstein gravity with

electromagnetism, but this idea is crucial in String Theory. Indeed, string models can be

quantized without breaking the Lorentz symmetry only in D = 26 for bosonic strings and

only in D = 10 for superstrings5. If the dimension of space-time is greater than five the

recalled results do not suffice to depict all representations of the isometry group of a flat

background. Further steps are thus needed in order to covariantly describe the propaga-

tion of arbitrary free modes. For instance, in the massless case the irreducible representa-

tions of the Poincaré group ISO(1, D−1) are built upon the irreducible representations of

the little group SO(D− 2). These are no longer labeled by a single half-integer, the spin,

but rather by Young tableaux with N ≤ D−2
2

rows. The Fang-Fronsdal results only ap-

ply to single-row tableaux in arbitrary dimensions, corresponding to fully symmetric fields

ϕµ1... µs
or ψ α

µ1... µs
. The other “mixed-symmetry” cases, corresponding to arbitrary Young

tableaux, are covariantly described by more general (spinor-)tensors ϕµ1... µs1 , ν1... νs2 , ...
and

ψ α
µ1... µs1 , ν1... νs2 , ...

, that possess several families of fully (anti)symmetric space-time indices

and that require a dedicated treatment.

The development of String Field Theory stimulated the study of mixed-symmetry

fields in the mid eighties, even if some discussions date back to previous years [32]. In

fact, all string spectra contain fields of mixed symmetry, that are associated to products of

different types of bosonic or fermionic oscillators. Free String Field Theory thus provides

a covariant description of arbitrary massive modes, at least in D = 10 or in D = 26. A

number of authors then worked on how to extend this result also to the massless case.

This should not only be considered as an “academic problem”, since the dependence of

couplings and masses on the same parameter α ′ has long suggested the idea that String

Theory could be a broken phase of a higher-spin gauge theory. However, the breaking

mechanism at work still lacks a precise formulation, and a proper analysis of this problem

requires a full control of mixed-symmetry gauge fields.

After some partial results regarding particular classes of mixed-symmetry fields [33],

several covariant formulations for arbitrary massless modes were proposed. In [34, 35]

gauge invariant actions for Bose fields were derived using BRST techniques. These co-

5For a clear explanation of this statement see for instance [6], where detailed references to the papers

where the existence of critical dimensions was first noticed can be also found.
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variant formulations are related to the α ′ → ∞ limit of Free String Field Theory, and

thus involve a number of auxiliary fields. Furthermore, they naturally describe reducible

representations of the Poincaré group. Another approach was then developed for both

Bose and Fermi fields via an extension of the light-cone representations of the Poincaré

algebra [36].

Finally, Labastida proposed a set of covariant field equations for arbitrary massless

Bose and Fermi fields of mixed symmetry exploiting an abelian gauge symmetry [37, 38].

His formulation extends the Fang-Fronsdal setting of [25, 26]: it involves multi-symmetric

tensors ϕµ1... µs1 , ν1... νs2 , ...
and (spinor-)tensors ψ α

µ1... µs1 , ν1... νs2 , ...
, possessing several fami-

lies of symmetrized space-time indices. It thus relies on the minimal field content required

by a covariant description6. On the other hand, the gauge transformations take a more

complicated form in the mixed-symmetry case, since they involve one independent gauge

parameter for each index family,

δ ϕµ1... µs1 , ν1... νs2 , ...
= ∂ (µ1 Λ(1)

µ2... µs ) , ν1... νs2 , ...
+ ∂ ( ν1 |Λ

(2)
µ1... µs , | ν2... νs2 ) , ... + . . . ,

δ ψ α
µ1... µs1 , ν1... νs2 , ...

= ∂ (µ1
ǫ (1)α

µ2... µs ) , ν1... νs2 , ...
+ . . . . (1.4)

Qualitative features of the fully symmetric case still persist, and fields and gauge param-

eters satisfy some (γ-)trace constraints. However, in this case it is possible to consider

different (γ-)traces, related to different index families, and only some of their linear com-

binations are forced to vanish.

The field equations of [37, 38] are non-Lagrangian7, but in [39] Labastida also built

Lagrangians leading to equivalent equations of motion for Bose fields8. On the other hand,

for Fermi fields the search for a Lagrangian formulation initiated long ago by Fierz and

Pauli [19] was completed only seventy years later in [41]. While [39] and [41] contain only

Lagrangians for massless fields of mixed symmetry, the corresponding massive theories

can be obtained by a standard Kaluza-Klein reduction.

The structure of the Lagrangians for mixed-symmetry fields is rather involved, since

they contain a number of higher (γ-)traces of the fields that grows proportionally to the

number of index families. This is a consequence of the more complicated form of the

(γ-)trace constraints. The procedure to build the Lagrangians and their structure will be

discussed in detail in Section 2, while Section 4 will show how this involved form leads

to the emergence of Weyl-like symmetries in low enough space-time dimensions. This

review is in fact mainly based on the content of [41] and of its companion paper [40],

where the Labastida formulation for Bose fields was reconsidered in order to embed it in

an unconstrained framework.

6Actually, without any symmetry relating the various index families these fields only describe reducible

representations of the Lorentz group. At any rate, as we shall see more in detail in the following,

performing standard Young projections they can be easily adapted to describe irreducible representations.
7In this review the term denotes a set of field equations that were originally obtained not starting

from an action principle, but may or may not be eventually connected to a less conventional one.
8In some low-dimensional cases the equivalence between the two setups actually involves some sub-

tleties that were discussed in [40] and that will be analyzed in Section 4.
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In fact, the Fang-Fronsdal [25, 26] and Labastida [39, 41] descriptions of the free dy-

namics are compact and elegant, but they present at least an undesirable feature. It is the

unusual presence of off-shell constraints, needed to ensure the propagation of the correct

number of degrees of freedom. These constraints are algebraic and thus in principle should

not obstruct a non-linear deformation of the theory, but in the tensionless limit α ′ → ∞
string spectra do not quite result in sums of fields subject to the Labastida constraints.

For instance, in this limit the fully symmetric modes of the first Regge trajectory of the

open bosonic string are described by interesting systems of fields usually called “bosonic

triplets” [35, 42, 43], that propagate reducible representations including, together with a

given set of spin-s modes, lower spin chains as well and do not rest on Fronsdal-like trace

constraints. In a similar fashion, the fermionic counterparts of these triplets, defined in

[42, 43], play a role in orientifolds [44] of the 0B theory [45], although not in superstrings

as a result of their GSO projections [46]. In general, it is thus natural to ask how one

can eliminate the constraints and, as the string example suggests, whether their removal

could be of help when attempting to switch on interactions. The first concrete step in this

direction was performed by Pashnev, Tsulaia, Buchbinder and collaborators [47] starting

from the late nineties. These authors developed further the BRST techniques adopted in

[34, 35], in order to describe the propagation of a single massless spin s mode. They also

treated fermions and extended these results to constant curvature backgrounds, but for a

spin-s field in their construction the constraints are removed at the price of introducing

O(s) auxiliary fields.

An alternative solution to the problem was proposed in 2002 by Francia and Sagnotti

for fully symmetric fields [48]. They eliminated the Fang-Fronsdal constraints without

introducing any additional fields, via Lagrangians and field equations that are non local.

On the other hand, the non-localities can be eliminated by a partial gauge fixing involving

the (γ-)trace of the gauge parameters, that recovers the Fang-Fronsdal presentation. The

non-local terms are thus harmless, and their introduction also gives an additional benefit:

in fact, the resulting field equations and Lagrangians find a role for the higher-spin cur-

vatures introduced by de Wit and Freedman [28, 49]. These objects are gauge invariant

under unconstrained gauge transformations, and sit at the top of a recursive chain of

generalized connections that are characterized by simple gauge variations. Higher-spin

connections and curvatures thus naturally extend the linearized Christoffel symbols and

the Riemann tensor of General Relativity. Even if at the free level one can only display

these algebraic similarities, they provide hints on a possible geometrical non-linear realiza-

tion of higher-spin models. Further details and comments on this interesting alternative

can be found in [42, 50]. This formulation of the free theory for symmetric fields reached

its final form in [51], with the identification of non-local Lagrangians leading to the cor-

rect current-current exchanges. Shortly after [48] appeared, the Francia-Sagnotti results

were instead extended to arbitrary mixed-symmetry massless Bose fields in [52], and more

recently also to the case of massive fully symmetric Bose and Fermi fields [53]. Similarly,

unconstrained Lagrangians for both massless and massive mixed-symmetry fields were

proposed in the context of the already mentioned BRST approach [54].

The two presentations recalled here eliminate the constraints, but present again some
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unusual features: in the fully symmetric case, for instance, one has to face field equations

containing either O(s) auxiliary fields or O(s) derivatives of the basic spin s field. A

simpler solution was developed for fully symmetric fields by Francia and Sagnotti in [42],

observing that the Fang-Fronsdal field equations

Fµ1... µs
≡ 2ϕµ1... µs

− ∂ (µ1 ∂ · ϕµ2... µs ) + ∂ (µ1 ∂ µ2 ϕµ3... µs )λ
λ = 0 ,

S α
µ1... µs

≡ i
{
6∂ ψ α

µ1... µs
− ∂ (µ1 6ψ

α
µ2... µs )

}
= 0 , (1.5)

vary under the unconstrained gauge transformations (1.1) as

δFµ1... µs
= 3 ∂ (µ1 ∂ µ2 ∂ µ3 Λµ4... µs )λ

λ ,

δ S α
µ1... µs

= − 2 i ∂ (µ1 ∂ µ2 6ǫ
α
µ3... µs ) . (1.6)

For both Bose and Fermi fields, introducing a single auxiliary field one can thus consider

the equivalent field equations9

Aµ1... µs
≡ Fµ1... µs

− 3 ∂ (µ1
∂ µ2

∂ µ3
αµ4... µs ) = 0 ,

W α
µ1... µs

≡ S α
µ1... µs

+ 2 i ∂ (µ1 ∂ µ2 ξ
α
µ3... µs ) = 0 , (1.7)

that display the unconstrained gauge symmetry

{
δ ϕµ1... µs

= ∂ (µ1
Λµ2... µs ) ,

δ αµ1... µs−3 = Λµ1... µs−3 λ
λ ,

{
δ ψ α

µ1... µs
= ∂ (µ1

ǫα µ2... µs ) ,

δ ξ αµ1... µs−2 = 6ǫ αµ1... µs−2 .
(1.8)

Eqs. (1.7) reduce to the Fang-Fronsdal field equations after a partial gauge-fixing that does

not spoil the original constrained gauge symmetry, since it involves the (γ-)trace of the

gauge parameter. As those in eq. (1.5), the equations of motion (1.7) are non-Lagrangian,

but in [56] Lagrangians leading to equivalent field equations were also presented (for

reviews see [57, 51]). For Bose fields they involve a further single additional Lagrange

multiplier transforming as the triple divergence of the gauge parameter,

δ βµ1... µs−4 = ∂ · ∂ · ∂ · Λµ1... µs−4 , (1.9)

while for Fermi fields they involve a single additional Lagrange multiplier transforming

as

δ λαµ1... µs−3 = ∂ · ∂ · ǫαµ1... µs−3 . (1.10)

In this context current-current exchanges were also considered in both Minkowski [51]

and constant curvature backgrounds [58].

In conclusion, in the fully symmetric case an unconstrained metric-like formulation can

be obtained at the modest price of introducing two auxiliary fields, for both Bose and

Fermi fields. With the same logic it is also possible to obtain a “minimal” unconstrained

9For a spin 3 field an equation of motion of the form (1.7) was actually proposed long ago by Schwinger

in [55].
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formulation for arbitrary fields of mixed symmetry, introducing at most one compensator

for each Labastida constraint on the gauge parameters and at most one Lagrange multi-

plier for each Labastida constraint on the field. This program was completed in [40, 41],

and the first part of Section 3 will be devoted to this issue. To conclude, let us stress that

from an orthodox point of view the field equations (1.7) also contain higher-derivative

terms, and the same is true for the corresponding Lagrangian field equations. However,

all higher derivative terms involve the compensators and as such are manifestly pure gauge

contributions. They are thus not expected to create any problems, but for fully symmetric

Bose fields a really “orthodox solution” to the problem, with only unconstrained fields, a

fixed number of auxiliary fields and a two-derivative Lagrangian was proposed in [59]. It

was obtained via an elegant off-shell truncation of the triplets of String Field Theory [35],

and was followed by another proposal [53] that is more akin to the spirit of the minimal

unconstrained formulation. Although these solutions rely upon a wider field content, they

represent an interesting alternative to the minimal setup. Such an alternative formula-

tion was also presented for Bose and Fermi fields of mixed symmetry in [40, 41]. It was

obtained via a proper reformulation of the approach of [53], and will be discussed in the

second part of Section 3.

Aside from its simplicity, the minimal formulation of [56, 57, 51, 40, 41] has the ad-

vantage of leading easily to the non-local formulation via the elimination of the auxiliary

fields in terms of the basic field. On the other hand, it was linked to the triplets systems

emerging from the α ′ → ∞ limit of String Field Theory in [43, 56], and so also to the

related BRST-like constructions. It thus somehow bridges the gap between the algebraic

“string inspired” framework and the geometrical non-local setup.

We can now conclude this overview of the present status of the free theory recalling that

Lagrangians and field equations for mixed-symmetry fields were also recently obtained in a

frame-like approach [60] and in its unfolded reformulation [61], both in flat and in constant

curvature spaces. In general, higher-spin interactions present technical (and conceptual)

difficulties related to the presence of higher derivatives, and the term “unfolding” denotes

a systematic procedure aimed at eliminating them via the introduction of additional fields

[62, 63, 13]. While this happens also in String Field Theory, at present there is a crucial

difference, since in the resulting unfolded higher-spin systems the field equations are of

first order. For fully symmetric fields this line of development led to the Vasiliev equations,

that describe non-linear interactions in an (Anti-)de Sitter background [62, 63, 13], and

one natural goal is clearly to understand how a similar result can be also attained for

mixed-symmetry fields. On the other hand, some steps toward the extension of the

Labastida results to constant curvature spaces were made in [64], while these efforts have

been accompanied during the years by a world-line first-quantized formulation of the

dynamics of higher-spin fields [65]. Finally, mixed-symmetry fields have also been treated

in a light-cone formalism [66]. Although not covariant, this approach can in fact efficiently

deal with some interaction issues.

This excursus on higher spins was mainly driven by analogies with String Theory.

They strongly motivated the study of mixed-symmetry representations of the higher-
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dimensional Lorentz groups, and also the analysis of the possible unconstrained realiza-

tions of the free theory. On the other hand, independent motivations for the development

of new tools for higher spins come from the difficulties encountered when dealing with

their interactions. Even if this review focuses on some aspects of the free theory, let us

conclude this introduction by briefly recalling the present constraints on the features of a

would be systematic development of the non-linear theory.

Amusingly, some rough intuitions of possible difficulties appeared about eighty years

ago in the first, but almost ignored10, paper on the subject [14]. The Majorana equations

indeed rely on an infinite chain of higher-spin fields, and the author noticed that switching

on interactions may forbid the decoupling of a single spin s mode from the infinite chain!

Clearer hints on the differences between interacting systems of higher-spin fields and their

s ≤ 2 counterparts came from the work of Fierz and Pauli [19]. Actually, they looked

for an action principle in order to overcome the problems displayed by the field equations

proposed by Fierz [18] for spin s field,

(
2 + m 2

)
ϕµ1... µs

= 0 ,

∂ · ϕµ1... µs−1 = 0 ,

ϕµ1... µs−2 λ
λ = 0 , (1.11)

that are no longer compatible when one tries to couple them to an electromagnetic field

via the minimal coupling ∂µ → ∂µ − eAµ. Similar complications also emerged in the

work of Dirac [15].

As we have already seen in the previous pages, the activity on higher spins was then

frozen for some years, probably also due to the lack of clearcut phenomenological moti-

vations. The situation drastically changed with the discovery of higher-spin resonances,

and the problem was then reconsidered in more modern terms. At any rate, rather than

surpassing the old difficulties the new techniques signaled even more severe drawbacks.

For instance, in [68] it was pointed out that the minimal coupling with an external electro-

magnetic field leads to noncausalities or to the propagation of spurious degrees of freedom

even for spin 3/2 and spin 2 particles11. Similar problems were identified in the minimal

coupling of spin 2 particles with gravity [71]. Moreover, in the same decade Weinberg

realized that, under reasonable assumptions essentially related to analogies with gravity,

massless higher-spin particles cannot give rise to long-range interactions in an S-matrix

scheme [72]. Coleman and Mandula then proved a famous theorem [73] stating that, again

under reasonable assumptions, a Quantum Field Theory leading to a non-trivial S-matrix

can only admit a symmetry algebra given by the direct sum of the Poincaré algebra and

of an internal algebra, whose generators commute with the Poincaré ones. This rules out

conventional gauge theories with a finite number of gauge fields of spin s ≥ 3, that would

be associated to forbidden symmetry generators.

10A notable exception was given by Wigner, who referred to the Majorana paper in his time-honored

1939 paper [16]. The Majorana approach was also recently reconsidered in [67].
11Actually, more recently it was shown that, at least for spin 2 [69] and spin 3/2 particles [70], one can

overcome these problems via a judicious choice of non-minimal interactions.
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More vigorous attempts followed the discovery of supergravity [74], that displayed a

new mechanism enabling the coupling of gravity with spin 3/2 particles. On the other

hand, it was soon realized that the supergravity “miracle” cannot be extended to higher-

spin particles [75, 76]. Schematically, the main difference is that, after the minimal

coupling with gravity, the gauge variation of the Rarita-Schwinger action is proportional

to the Ricci tensor, and as such can be compensated by the variation of the gravitational

action. On the other hand, starting from spin 5/2 this is no longer true [75], and the whole

Riemann tensor appears in the gauge variation of the higher-spin action. The variation of

the gravitational action cannot cancel the Weyl tensor, while the loss of gauge invariance

would lead at least to the propagation of spurious degrees of freedom. For spin 2 the

situation is slightly more subtle, but the conclusions remain the same [76]. Moreover, up

to now no consistent modifications of the couplings or of the transformation laws were

found, so that a proper generalization of the known gauge symmetry could be recovered.

This fact is at the origin of the common lore about the impossibility of consistently

coupling higher-spin fields with gravity12, and all these results were then summarized in

the extension of the Coleman-Mandula theorem due to Haag, Lopuszanski and Sohniuns

[77]. These authors essentially confirmed the conclusions of [73], barring the inclusion of

supersymmetry, that can be taken into account considering graded algebras rather than

only ordinary ones. Other no-go arguments that confirm and extend the classical results

recalled here were also presented more recently in [78].

In spite of these apparently discouraging no-go results, the problem was reconsidered

at the beginning of the eighties by the Göteborg group, that identified surprising cubic

vertices for self-interacting massless particles of any spin in a light-cone formalism [79].

This result and the advent of String Field Theory gave a new mighty input to the field,

and various cubic vertices were found in flat-space in a light-cone formalism [80, 66], in a

covariant approach [81, 82, 83] or resorting to BRST techniques [84]. On the other hand,

the severe problems encountered at the quartic level led to the realization that consistent

interactions for spin s > 2 particles should involve infinitely many higher-spin fields at

the same time [82, 85]. This observation perfectly agrees with the most evident signature

of string spectra, and also bypasses the Coleman-Mandula theorem, since it contrasts one

of its basic assumptions.

After these positive results, also supported and completed by more recent analyses

[86], Fradkin and Vasiliev discovered a cubic vertex for higher-spin fields in interaction

with gravity [87]. They forewent the problems identified by Aragone and Deser [71, 75]

introducing a cosmological constant Λ, which allows the introduction of higher-derivative

couplings depending on inverse powers of Λ. Notice that the presence of higher-derivative

interactions suffices to bypass the available no-go results, and indeed non-minimal cubic

vertices describing the interactions of massless higher-spin fields with gravity were recently

singled out even in a Minkowski background [88]. A non-vanishing cosmological constant Λ

simply leads to them in a natural way, without the need of introducing a new dimensionful

12It is also the origin of the upper limit of 32 supercharges considered in supergravity theories. Crossing

the border of N = 8 the graviton multiplet would indeed contain also higher-spin helicities.
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coupling constant. At any rate, the Fradkin-Vasiliev result is a milestone for the modern

view of higher-spin theories. In fact, in the following years Vasiliev built consistent non-

linear field equations for an infinite set of fully symmetric higher-spin fields interacting

on an (Anti-)de Sitter background of arbitrary dimension [62, 63]. To reach this goal he

essentially gauged an infinite-dimensional extension of the Lorentz algebra [89] within an

unfolded formulation of the dynamics (for a review of the Vasiliev setup see, for instance,

[13], while interesting related contributions are due to Sezgin and Sundell [90]). The

properties of the resulting non-linear equations have been under active investigation in

recent years and, for instance, the first exact solutions were displayed by various groups

[91]. On the other hand, up to now the Vasiliev equations still lack an action principle,

and they exploit a formalism that is rather remote from that usually adopted to describe

low-spin systems. Furthermore, a similar set of non-linear field equations until now was

not obtained for mixed-symmetry fields, for which only no-go results are available in

literature [92] if one looks for non-abelian deformations of the gauge algebra. Alternative

approaches to the problem, as those presented in this review, could thus be of help in

overcoming these difficulties. At the same time, it is quite natural to compare the frame-

like path followed by Vasiliev and collaborators in studying higher-spin interactions to a

metric-like description. While the first approach somehow extends the algebraic Yang-

Mills setup, the second could shed light on the geometry underlying these interactions, as

the metric formulation does in the spin 2 case.

In conclusion, one might say that higher-spin interactions have presently two vastly

different realizations. In the first, provided by the Vasiliev setting, their gauge symmetry

is unbroken, while in the second, provided by String Theory, it is somehow spontaneously

broken. Unfortunately, as anticipated, we do not understand precisely how to bridge the

gap between the two, or even how to attach a precise meaning to the breaking mechanism

at work in String Theory. The higher-spin gauge symmetries should be restored in a

proper high-energy regime of String Theory, but nowadays this remains a rather obscure

corner of this framework. Some important steps forward came from the study of the

high-energy limits of the string scattering amplitudes [93], but a detailed characterization

of this regime is still missing13. At any rate, String Theory and the Vasiliev model share

some neat signatures, to wit spectra containing infinitely many higher-spin modes and

higher-derivative interactions. Clearly, these features restate the old border between the

s ≤ 2 and the higher-spin physics, but these two examples at least show that systems

of interacting higher-spin fields coupled to gravity exist. Still, the present understanding

of their properties is far from being fully satisfactory, and its improvement provides a

fascinating task for the future.

13The AdS/CFT correspondence [94] could also provide a natural arena for investigating these relations

[95]. A proper tensionless limit in the bulk should correspond to a weak limit on the boundary, and some

investigations of this regime were pursued analyzing the higher-spin conserved currents of free super

Yang-Mills models on the boundary [96, 97].
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Structure of this review

For the reader’s benefit let us outline the structure of this review, summarizing the recent

results that it elaborates upon.

• In Section 2 the constrained formulation of the free dynamics for arbitrary mixed-

symmetry fields will be discussed in detail. First of all, the identification of the

non-Lagrangian Labastida equations will be reviewed with the aid of the compact

notation proposed in [40, 41]. Furthermore, it will be shown that they indeed single

out the correct physical polarizations, thus filling a gap of their first presentation

in [37, 38]. Then, the Labastida Lagrangians for Bose fields [39] will be constructed

in an original way, exploiting the consequences of the Bianchi identities satisfied

by the constrained fields [40]. The Lagrangians for mixed-symmetry Fermi fields of

[41] will be built with the same technique. Section 2 closes with some comments

on the Lagrangian field equations, and on their reduction to the Labastida form.

Finally, we shall also describe how to adapt the whole construction to irreducible

fields propagating the degrees of freedom of an irreducible representation of the

Lorentz group.

• In Section 3 the constrained Lagrangian free theory will be reformulated in various

unconstrained settings, following [40, 41] and introducing suitable sets of auxiliary

fields. We shall begin by considering a minimal setup, introducing at most one

compensator for each Labastida constraint on the gauge parameters and at most

one Lagrange multiplier for each Labastida constraint on the field. Then, at the

price of slightly enlarging the field content, we shall also present a formulation that

is free of higher-derivative terms, but still contains a number of auxiliary fields only

depending on the number of index families carried by the basic fields and not on

their Lorentz labels.

• In Section 4 the Lagrangians for mixed-symmetry fields will be reconsidered, in order

to show the emergence of Weyl-like symmetries in backgrounds with low-enough

dimensions. Their presence was first recognized in [40, 41], even if a complete

classification is still lacking when more than two index families are present. In the

bosonic case we shall also identify here some Weyl-invariant models in D > 4 that

were not discussed in [40].

• Section 5 closes this review with a brief summary and a discussion of some possible

developments of the work detailed here.

This work mainly reviews the original results obtained by the author in collaboration

with Dario Francia, Jihad Mourad and Augusto Sagnotti. They were presented in [40, 41]

and they were also concisely reviewed in [98].
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2 Constrained theory

In the mid eighties Labastida proposed a set of covariant field equations describing the

propagation of the free massless modes associated to generic representations of the Lorentz

group in arbitrary space-time dimensions [37, 38]. As anticipated in the Introduction, in

order to achieve this result he considered multi-symmetric gauge fields ϕµ1... µs1 , ν1... νs2 , ...

and ψ α
µ1... µs1 , ν1... νs2 , ...

, so that his “metric-like” formulation generalizes that obtained by

Fronsdal and Fang for fully symmetric fields at the end of the seventies [25, 26]. As in the

fully symmetric case, in the Labastida approach fields and gauge parameters are subjected

to algebraic (γ-)trace constraints.

In the Fang-Fronsdal works the constraints are inherited from the description of mas-

sive fields proposed by Singh and Hagen [23, 24]. In fact, Fronsdal and Fang identified

the massless Lagrangians considering the limit of the massive ones. On the other hand,

Labastida derived his results conjecturing a set of gauge transformations and then look-

ing for gauge invariant field equations, following the reexamination of the Fang-Fronsdal

construction proposed by Curtright [27]. He selected his equations of motion without

referring to an action principle, but in a successive paper he also derived Lagrangians

leading to equivalent field equations for Bose fields [39]. Nevertheless, even at the free

level, for Fermi fields the construction of quadratic Lagrangians initiated long ago by Fierz

and Pauli [19] was left incomplete until recently. In fact, Lagrangians for Fermi fields of

mixed symmetry were presented only in [41].

In this section we shall review the identification of the gauge transformations, the con-

straints and the field equations forcing multi-symmetric fields to propagate free massless

modes [37, 38]. Following a simple argument presented in [41], we shall also verify that

these conditions describe indeed the correct physical polarizations. Furthermore, we shall

present an original derivation of the Labastida bosonic Lagrangians [39, 40], based on

the Bianchi identities satisfied by the gauge fields. This technique will also prove useful

in the construction of the fermionic Lagrangians [41] that follows, and that represents

one of the main original results of the project that led to [40, 41]. Then we shall make

some comments on the related Lagrangian field equations, and on their link with the

non-Lagrangian ones proposed by Labastida. Since in the following we are going to deal

mainly with reducible fields, this section closes with a description of how the theory adapts

to irreducible fields subjected to suitable Young projections.

While the results presented here refer only to massless fields, we would like to call to

the reader’s attention that a Stueckelberg-like description of the corresponding massive

fields can be obtained via a standard Kaluza-Klein circle reduction [99].

2.1 Non-Lagrangian field equations and constraints

The non-Lagrangian field equations for Bose and Fermi fields of mixed-symmetry can be

derived following similar logical steps. The choice of describing them separately is aimed
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at simplifying the presentation, but the reader is invited to notice the similarities between

the two setups.

2.1.1 Bose fields

The well-known example of linearized gravity already exhibits the structure of the covari-

ant field equations for arbitrary free higher-spin fields. In fact, the equation of motion for

the linearized metric fluctuation hµν reads

Rµν ≡ 2hµν − ∂µ ∂ · h ν − ∂ ν ∂ · hµ + ∂µ ∂ ν hλ
λ = 0 . (2.1)

It enforces the vanishing of the linearized Ricci tensor, that provides a gauge invariant

completion of 2hµν under the linearized diffeomorphisms δhµν = ∂µ ξ ν + ∂ ν ξµ. The

latter observation can be taken as a guiding principle in order to look for the equations

of motion for arbitrary massless fields. For instance, the non-Lagrangian form of the

Fronsdal equations [25] for fully symmetric Bose fields reads

Fµ1... µs
≡ 2ϕµ1... µs

− ∂ (µ1 ∂ · ϕµ2... µs ) + ∂ (µ1 ∂ µ2 ϕµ3... µs )λ
λ = 0 , (2.2)

where we would like to stress again that here and in the following a couple of parentheses

denotes a complete symmetrization of the indices it encloses, with the minimum possible

number of terms and with unit overall normalization. Eq. (2.2) is invariant under the

transformations

δ ϕµ1... µs
= ∂ (µ1

Λµ2... µs ) (2.3)

with traceless gauge parameters. As pointed out by Curtright [27], one can actually

identify the field equations (2.2) and the constraints

Λµ1... µs−3 λ
λ = 0 (2.4)

looking for a second order kinetic tensor that contains 2ϕµ1... µs
and that is invariant

under the gauge transformations (2.3). In fact, they provide the natural generalization

of the abelian linearized diffeomorphisms δhµν = ∂ (µ ξ ν ). The only possibility to achieve

such goal is to constrain the gauge parameters according to (2.4), and the result is unique

if one avoids to introduce traces of 2ϕµ1... µs
. This latter hypothesis is dictated by the

quest for the simplest solution, and leads to eq. (2.2). On the other hand, it hampers the

construction of Lagrangian field equations, so that it will be relaxed in Section 2.2.1. At

any rate, the correctness of the resulting field equations can then be checked a posteriori,

via a counting of the degrees of freedom propagated by their solutions. For the Fronsdal

equations (2.2) this check was performed by a number of authors with different techniques

[27, 28].

For multi-symmetric Bose fields one can follow a similar path. In particular, when

dealing with unprojected tensors of rank (s1, . . . , sN), one can generalize eq. (2.3) intro-

ducing an independent gauge parameter for each index family. These carry (si−1) vector

indices in the i-th index family, so that

δ ϕµ1... µs1 , ν1... νs2 , ...
= ∂ (µ1

Λ(1)
µ2... µs1 ) , ν1... νs2 , ...

+ ∂ ( ν1 |Λ
(2)
µ1... µs1 , | ν2... νs2 ) , ... + . . . , (2.5)
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where here and in the following a vertical bar signals that the symmetrization also en-

compasses the indices lying between the next bar and the closing parenthesis. Looking

at eq. (2.5), the need for an efficient and compact notation to deal with mixed-symmetry

fields becomes evident, and in the following we shall resort to that introduced in [40, 41].

It is based on the removal of all space-time indices, but “family” indices are needed in

order to select the groups of space-time indices where the operators are acting upon. For

instance, in the following a gradient which carries an index symmetrized with those in

the i-th family will be denoted by

∂ i ϕ ≡ ∂ (µi
1|
ϕ ... , |µi

2 ... µ
i
si+1) , ... , (2.6)

while a divergence contracting an index in the i-th family will be denoted by

∂ i ϕ ≡ ∂ λ ϕ ... , λ µi
1 ... µ

i
si−1 , ...

. (2.7)

The position of the family indices respects a useful convention of [40, 41], according to

which lower family indices are associated to operators removing Lorentz indices, while

upper family indices are associated to operators adding Lorentz indices, to be symmetrized

with all other indices belonging to the group identified by the family label. Consistently

with this rule, the gauge parameter lacking one space-time index in the i-th family will

be denoted by Λ i. In conclusion, one can rewrite eq. (2.5) in the synthetic form

δ ϕ = ∂ i Λ i . (2.8)

This compact notation makes also manifest the existence of gauge for gauge transfor-

mations for mixed-symmetry fields. Differential forms already display this behavior, and

being fully antisymmetric objects they are but a particular class of mixed-symmetry fields.

At any rate, for arbitrary mixed-symmetry fields one can easily recognize that

δΛ i = ∂ j Λ [ ij ] (2.9)

leaves ϕ invariant provided the Λ [ ij ] are antisymmetric in their family indices. In general

the chain would continue, since transformations of the Λ [ ij ] leaving invariant the Λ i could

also exist. One can proceed in this fashion for a number of steps equal to the number of

index families carried by ϕ.

Having fixed the notation, we can now look for equations of motion that are invariant

under the gauge transformations (2.8). Eqs. (2.1) and (2.2) suggest that it is necessary to

consider also traces of the gauge fields in order to obtain them. In the mixed-symmetry

case it is thus convenient to introduce the Tij operators acting as

Tij ϕ ≡ ϕ λ
... , µi

1 ... µ
i
si−1 , ... , λ µ

j
1... µ

j
sj−1 , ...

. (2.10)

One can then verify that the Fronsdal-Labastida kinetic tensor [37]

F ≡ 2ϕ − ∂ i ∂ i ϕ +
1

2
∂ i∂ j Tij ϕ (2.11)

17



is invariant under the transformations (2.8), provided the gauge parameters satisfy the

constraints

T( ij Λ k ) = 0 . (2.12)

All needed computational rules follow from the algebra of the operators Tij , ∂ i and ∂ i, that

is presented in Appendix A. Moreover, this is the unique two-derivative gauge-invariant

completion of 2ϕ that does not contain its traces14. This led Labastida to propose in

[37] the field equation

F = 0 (2.13)

to describe the dynamics of massless mixed-symmetry Bose fields. In [39] he also verified

the correctness of eq. (2.13) in a number of simple examples, performing the counting of

the propagated degrees of freedom. The first proof of the Labastida conjecture was then

provided much later in the third reference of [52], while we shall now show that eqs. (2.8),

(2.12) and (2.13) lead to the propagations of the correct polarizations for generic mixed-

symmetry bosons reviewing the simple argument presented in [41].

In order to proceed, it is convenient to resort momentarily to an explicit oscillator

realization of the index-free notation. This is attained folding a generic multi-symmetric

gauge field ϕµ1... µs1 , ν1... νs2 , ...
with commuting vectors u i µ according to

ϕ ≡
1

s1 ! . . . sN !
u 1µ1 . . . u 1µs1 u 2 ν1 . . . u 2 νs2 . . . ϕµ1... µs1 , ν1... νs2 , ...

. (2.14)

The form taken by the various operators introduced until now is described in detail in

Appendix A and, for instance, divergences and gradients can be cast in the form

∂ i ≡ ∂ µ
∂

∂ u i µ
, ∂ i ≡ ∂µ u

i µ . (2.15)

In studying the plane-wave solutions of the Labastida equation (2.13), that in momen-

tum space takes the form

p 2 ϕ − (p · ui)

(
p ·

∂

∂ ui

)
ϕ +

1

2
(p · ui) (p · uj)Tij ϕ = 0 , (2.16)

it is then convenient to decompose ϕ according to

ϕ = (p · ui) ζ i + ϕ̂ , (2.17)

sorting out its portion ϕ̂ that is independent of (p · ui),

∂

∂ (p · ui)
ϕ̂ = 0 . (2.18)

14As recalled in the Introduction, relaxing the upper bound on the number of derivatives and accepting

the presence of non-local terms, one can actually obtain a gauge-invariant completion of 2ϕ without any

need for constraints [48, 42, 51, 52].

18



Substituting in (2.16) then gives

p 2 ϕ̂ − (p · ui)

(
p ·

∂

∂ ui

)
ϕ̂ +

1

2
(p · ui) (p · uj)Tij ϕ̂

+
1

6
(p · ui) (p · uj) (p · uk)T( ij ζ k ) = 0 . (2.19)

The four terms appearing in this sum must vanish independently, since they carry different

powers of (p · ui). Therefore, eq. (2.19) is equivalent to the four conditions

p 2 ϕ̂ = 0 , (2.20)
(
p ·

∂

∂ ui

)
ϕ̂ = 0 , (2.21)

Tij ϕ̂ = 0 , (2.22)

T( ij ζ k ) = 0 . (2.23)

Eq. (2.23) now implies that one can gauge away the ζ i, since they are subject to the

Labastida constraints, and eq. (2.20) then leads to the mass-shell condition p 2 = 0. One

can thus let p = p+ and the conditions (2.18) and (2.21) imply respectively

∂

∂ ui−
ϕ̂ = 0 ,

∂

∂ ui+
ϕ̂ = 0 . (2.24)

All components of ϕ̂ along the two light-cone directions are thus absent on account of

eqs. (2.24), while eq. (2.22) forces the remaining transverse components to be traceless.

In conclusion, the Labastida equation (2.13) propagates the degrees of freedom of repre-

sentations of the little group O(D− 2), as expected on account of its uniqueness. At this

stage these are reducible representations, since we did not enforce any projection on ϕ,

but in Section 2.4 we shall see how the theory can be easily adapted to describe irreducible

representations.

Let us stress that in order to reach this result one does not have to impose any condition

on the gauge field ϕ, but eventually all its traces vanish on-shell. On the other hand,

Labastida verified the correctness of eq. (2.13) in a number of examples adopting the off-

shell techniques introduced in [100]. In order to match the correct number of degrees of

freedom, he thus also identified a set of double trace constraints on the fields, generalizing

the one identified by Fronsdal for a given spin s field,

ϕµ1... µs−4 λρ
λρ = 0 . (2.25)

The origin of the constraints can be better understood recalling that in the fully symmetric

case one must impose the constraint (2.25) in order to obtain a gauge invariant Lagrangian

leading to a field equation equivalent to (2.2). This was first pointed out in [27, 28], and

indeed the double trace of the field appears on the right-hand side of the Bianchi identity

∂ · Fµ1... µs−1 −
1

2
∂ (µ1 Fµ2... µs−1 )λ

λ = −
3

2
∂ (µ1 ∂ µ2 ∂ µ3 ϕµ4... µs−1 )λρ

λρ , (2.26)
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that generalizes the contracted Bianchi identity of linearized gravity,

∂ · Rµ −
1

2
∂µRλ

λ = 0 . (2.27)

As we shall see in Section 2.2.1, eq. (2.26) indeed plays a crucial role in the construction

of the Lagrangian for a spin s field, as eq. (2.27) does in the spin 2 case. In a similar

fashion the Labastida constraints on the field ϕ can be identified looking at the Bianchi

identities

∂ iF −
1

2
∂ j Tij F = −

1

12
∂ j∂ k∂ l T( ij Tkl ) ϕ , (2.28)

that provide a neat rationale for the Labastida Lagrangians of [39], as showed in [40]. In

fact, in the present notation the constraints on the field introduced in [37] read

T( ij Tkl ) ϕ = 0 , (2.29)

so that they cancel the right-hand side of eq. (2.28), precisely as the constraint (2.25)

does in the fully symmetric setting.

Notice that, quite differently from what Fronsdal’s case could naively suggest, not all

traces of the gauge parameters and not all double traces of the field vanish. Only the linear

combinations appearing in eqs. (2.12) and (2.29) do, and this simple observation is at the

origin of the main differences in the structure of the Lagrangians for fully symmetric and

for mixed-symmetry fields that we are about to exhibit. Notice also that, as in Fronsdal’s

case, those in eq. (2.29) are the strongest gauge invariant constraints available since

T( ij Tkl ) δ ϕ = ∂ ( i Tjk Λ l ) + ∂m
{
T( ij Tkl Λm ) − Tm ( i Tjk Λ l )

}
. (2.30)

The last terms can be cast in this form manifestly related to the constraints (2.12) via

the rewriting

T( ij Tkl ) Λm = T( ij Tkl Λm ) − Tm ( i Tjk Λ l ) . (2.31)

The Labastida constraints (2.12) and (2.29) are nicely “covariant” in the family index

language, but they are not independent. For instance, considering a further trace of

T( ij Tkl ) ϕ one obtains

Y{5,1} Tmn T( ij Tkl ) ϕ = 0 (2.32)

without any need of enforcing the Labastida constraints. In this expression Y{5,1} denotes

the Young projector onto the irreducible {5, 1} representation of the permutation group

acting on the family indices15. Eq. (2.32) reflects a special property of products of identical

tensors, that in the two-index Tij case can only build Young diagrams in family-index space

with even numbers of boxes in each row. This fact will have important consequences in

Section 3, where we shall describe how one can remove the Labastida constraints adding a

suitable set of auxiliary fields. Roughly speaking, one would like to associate an auxiliary

field to each constraint, but their linear dependence gives rise to a number of subtleties.

15The conventions for the permutation group and related tools are spelled out at the end of Appendix

A. Further details on these matters can be found, for instance, in [101].
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2.1.2 Fermi fields

As anticipated, when dealing with Fermi fields one can follow a similar path. To begin

with, let us stress that here and in the following all spinor indices are hidden for simplicity.

Then, notice that even for Fermi fields a well-know paradigmatic example already dis-

plays some key features of the arbitrary-spin construction. In fact, the Rarita-Schwinger

equation for a massless field of spin 3/2, that is usually presented in the form

γ µνρ ∂ ν ψ ρ = 0 , (2.33)

is manifestly invariant under the gauge transformation

δ ψµ = ∂µ ǫ , (2.34)

simply because two derivatives commute. Moreover, in general it can be combined with

its γ-trace in order to obtain the equation

6∂ ψµ − ∂µ 6ψ = 0 , (2.35)

that provides a gauge invariant completion of∂/ ψµ. In complete analogy with the bosonic

construction of the previous section, one can thus recover the field equations for arbitrary

higher-spin fermions postulating a proper set of gauge transformations and looking for a

gauge invariant completion of the “naive” generalization of the Dirac equation. In the

fully symmetric setting the natural gauge transformation for a spin s+ 1
2

field is

δ ψµ1... µs
= ∂ (µ1 ǫµ2... µs ) . (2.36)

The corresponding Fang-Fronsdal field equation [26] is

Sµ1... µs
≡ i

{
6∂ ψµ1... µs

− ∂ (µ1 6ψ µ2... µs )

}
= 0 , (2.37)

that is invariant under (2.36) provided the parameter satisfies

6ǫµ1...µs−2 = 0 . (2.38)

Again, the result is unique up to possible combinations with its γ-traces, that are anyway

needed to obtain Lagrangian field equations.

In the mixed-symmetry case it is natural to extend eq. (2.36) considering, for unpro-

jected spinor-tensors, an independent gauge parameter for each index family. It is clearly

convenient to abide by the notation presented in the previous section, that permits to

cast the gauge transformations in the form

δ ψ = ∂ i ǫ i . (2.39)

Notice that this expression has the same form as that considered for Bose fields, so that

gauge for gauge transformations are generically present also in this setup. However, an
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ingredient is still missing in the family-index notation: one would also like to compute

γ-traces, and this can be done introducing

γ i ψ ≡ γ λ ψ ... , λ µi
1 ... µ

i
si−1, ...

. (2.40)

The Fang-Fronsdal-Labastida kinetic tensor [38]

S ≡ i
{
6∂ ψ − ∂ i γ i ψ

}
(2.41)

thus gives a gauge invariant completion of 6∂ ψ, provided one enforces the constraints

γ ( i ǫ j ) = 0 . (2.42)

Again, this statement can be verified looking at the algebra of the operators introduced

until now, that is presented in Appendix A. The answer is unique if one considers only

first order differential operators16 and avoids to introduce γ-traces of 6∂ ψ.

This led Labastida to propose in [38] the field equation

S = 0 (2.43)

in order to describe the dynamics of massless mixed-symmetry Fermi fields. Performing

the counting of the propagated degrees of freedom, in [39] he also verified the correctness

of eq. (2.43) in a number of simple examples. For generic mixed-symmetry fermions this

issue was finally clarified in [41], following the lines already depicted for Bose fields in

Section 2.1.1.

Let us thus review how the argument adapts to Fermi fields. Even in this setup it

is convenient to resort to an oscillator realization of the index-free notation, introduc-

ing a commuting vector ui µ for each index family. Eqs. (2.15) then enable to cast the

momentum-space Labastida equation in the form

6p ψ − (p · ui) γ i ψ = 0 . (2.44)

As in the bosonic case, one can then decompose the gauge field ψ according to

ψ = (p · ui)χ i + ψ̂ , (2.45)

with
∂

∂ (p · ui)
ψ̂ = 0 . (2.46)

Substituting in eq. (2.44) then gives

6p ψ̂ − (p · ui) γ i ψ̂ −
1

2
(p · ui) (p · uj) γ ( i χ j ) = 0 , (2.47)

16Even for Fermi fields, relaxing the upper bound on the number of derivatives one can actually obtain

gauge invariant completions of 6∂ ψ without any need for constraints [48, 42, 51, 52].
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and one is led to the three independent conditions

6p ψ̂ = 0 , (2.48)

γ i ψ̂ = 0 , (2.49)

γ ( i χ j ) = 0 , (2.50)

since the terms in the sum carry different powers of (p · ui). The condition (2.50) then

ensures the possibility of gauging away altogether the χ i, and one is left with the Dirac

equation (2.48). It leads again to the mass-shell condition p 2 = 0, so that one can consider

a momentum p with a single non-vanishing light-cone component as, for instance, p+.

Therefore, the lack of dependence of ψ̂ on (p · ui) translates into the condition

∂

∂ u i−
ψ̂ = 0 , (2.51)

while the Dirac equation (2.48) turns into the standard projection

γ+ ψ̂ = 0 , (2.52)

that halves the on-shell components of ψ̂. Finally, eq. (2.49) becomes
(
γ+ ∂

∂ u i+
+ γm

∂

∂ u im

)
ψ̂ = 0 , (2.53)

where we have used m to denote the transverse Lorentz index in order to distinguish it

from the family indices. Multiplying eq. (2.53) by γ+ and making use of eq. (2.52) one is

finally led to the conditions

∂

∂ u i+
ψ̂ = 0 , (2.54)

γm
∂

∂ u im
ψ̂ = 0 . (2.55)

All components of ψ̂ along the two light-cone directions thus are absent on account

of eqs. (2.51) and (2.54), while eq. (2.55) forces the remaining transverse components

to be γ-traceless. In conclusion, the Labastida equation (2.43) propagates in general

representations of the little group O(D − 2), as expected on account of its uniqueness.

As already stressed when dealing with the same issue for bosons, at this stage these are

reducible representations, since we did not enforce any projection on ψ. On the other

hand, it is possible to describe irreducible representations following the path outlined in

Section 2.4.

In order to reach this result one does not have to impose any additional condition on

the gauge field ψ. However, in order to match the correct number of degrees of freedom

via the techniques of [100] Labastida also identified a set of triple γ-trace constraints on

the fields. These generalize the one identified by Fang and Fronsdal for a given spin s+ 1
2

field,

6ψ µ1... µs−4 λ
λ = 0 , (2.56)
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that, as in the bosonic case, is needed in order to obtain a gauge invariant Lagrangian

leading to a field equation equivalent to (2.37). In fact, the triple γ-trace of the field

appears on the right-hand side of the Bianchi identity

∂ · Sµ1... µs−1 −
1

2
6∂ 6 S µ1... µs−1 −

1

2
∂ (µ1

Sµ2... µs−1 ) λ
λ = i ∂ (µ1

∂ µ2
6ψ µ3... µs−1 )λ

λ . (2.57)

In a similar fashion the Labastida constraints on mixed-symmetry fields can be identified

looking at the Bianchi identities

∂ i S −
1

2
6∂ γ i S −

1

2
∂ j Tij S −

1

6
∂ j γ ij S =

i

6
∂ j∂ k T( ij γ k ) ψ , (2.58)

that in Section 2.2.2 will play a crucial role in the construction of the Lagrangians of [41].

Indeed, in the present notation the constraints on the fields of [38] read

T( ij γ k ) ψ = 0 , (2.59)

and thus cancel the right-hand side of eq. (2.58), precisely as the constraint (2.56) does

in the fully symmetric setting. The new symbol appearing in eq. (2.58) simply denotes

an antisymmetric combination of two “family” γ-matrices,

γ ij =
1

2
( γ i γ j − γ j γ i ) . (2.60)

The idea underlying this choice is to extend to operators carrying family indices the

common convention of working with an antisymmetric basis for γ-matrices.

Notice that, again in sharp contrast with the fully symmetric setting, not all γ-traces

of the gauge parameters and not all triple γ-traces of the fields vanish. Only the linear

combinations appearing in eqs. (2.42) and (2.59) do, and even for fermions this simple

observation is at the origin of the main differences in the structure of the Lagrangians for

fully symmetric and for mixed-symmetry fields. Notice also that, as in the Fang-Fronsdal

case, those in eq. (2.59) are the strongest gauge invariant constraints available since

T( ij γ k ) δ ψ = 6∂ T( ij ǫ k ) + ∂ ( i γ j ǫ k )

+ ∂ l
{
T( ij γ k ǫ l ) − Tl ( i γj ǫ k ) − γ l T( ij ǫ k )

}
. (2.61)

The last terms can be cast in this form manifestly related to the constraints (2.42) via

the rewriting

T( ij γ k ) ǫ l = T( ij γ k ǫ l ) − Tl ( i γj ǫ k ) − γ l T( ij ǫ k ) . (2.62)

As in the bosonic case, the Labastida constraints (2.42) and (2.59) are nicely “covari-

ant” in the family index language, but they are not independent. In the fermionic case

the simplest example of this fact is slightly more involved, but it can be again identified

resorting to the permutation group acting on family indices. In this respect, the Labastida

constraints (2.59) carry a {3} representation, since they are fully symmetric in the family
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indices. On the other hand, a trace Tij carries a {2} representation while an antisym-

metrized γ-trace γ ij carries a {1, 1} representation. Thus, the combination Tlm T( ij γ k )

admits the decomposition

{3} ⊗ {2} = {5} ⊕ {4, 1} ⊕ {3, 2} , (2.63)

while the combination γ lm T( ij γ k ) admits the decomposition

{3} ⊗ {1, 1} = {4, 1} ⊕ {3, 1, 1} . (2.64)

It is thus natural to expect the existence of an identically vanishing combination of {4, 1}-
projected traces and antisymmetrized γ-traces of T( ij γ k ) ψ. This is indeed the case, since

(
γmi T( jk γ l ) + γmj T( ik γ l )

)
ψ − 15 Y{4,1} Tij T( kl γm ) ψ

+ [ ( i, j ) ↔ ( k, l ) ] = 0 (2.65)

without any need of imposing the constraints. The first term is automatically {4, 1}-
projected on account of the interchange between the couples of indices ( i, j ) and ( k, l )

indicated in the last line. Even in this setting, the lack of linear dependence for the

constraints will give rise to some subtleties when we shall proceed to an unconstrained

description of the dynamics in Section 3.

2.2 Lagrangians

Moving toward a Lagrangian formulation, Bose and Fermi fields begin to follow different

paths. As we shall see, the request for gauge invariance and the Bianchi identities satisfied

by the fields provide a clearcut rationale for the construction of the Lagrangians for both

types of fields. However, the structure of the results is rather different, and for Fermi

fields a number of subtleties related to the presence of γ-matrices emerge.

2.2.1 Bose fields

Even when dealing with the Lagrangians, the example of linearized gravity already dis-

plays the logic that will drive the treatment of the arbitrary case. The equation of motion

(2.1) is indeed non-Lagrangian, but in general it is equivalent to the one following from

the linearized Einstein-Hilbert Lagrangian

L =
1

2
hµν

(
Rµν −

1

2
ηµν Rλ

λ

)
, (2.66)

that contains the linearized Ricci tensor appearing in eq. (2.1) and its only available

trace. Furthermore, the relative coefficient entering eq. (2.66) is fixed uniquely by the

requirement of gauge invariance. In fact, up to total derivatives, the gauge variation of

(2.66) under the linearized diffeomorphisms δ hµν = ∂ (µ ξ ν ) is

δL = − ξ µ
(
∂ · Rµ −

1

2
∂µRλ

λ

)
, (2.67)
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and vanishes on account of the Bianchi identity (2.27).

The Lagrangians for fully symmetric bosons take a very similar form, since the Fronsdal

constraints (2.25) on the fields induce similar constraints on the kinetic tensors,

Fµ1... µs−4 λρ
λρ = 0 . (2.68)

Thus, the Lagrangians can only contain Fµ1... µs
and its trace. The structure of the

Bianchi identities (2.26) eventually fixes the relative coefficient to be the same entering

the Einstein-Hilbert Lagrangian. The final result,

L =
1

2
ϕµ1... µs

(
Fµ1... µs

−
1

2
η (µ1µ2 Fµ3... µs )λ

λ

)
, (2.69)

is indeed gauge invariant since

δ L = −
s

2
Λµ1... µs−1

(
∂ · Fµ1... µs−1 −

1

2
∂ (µ1 Fµ2... µs−1 )λ

λ

)

+
3

4

(
s

3

)
Λµ1... µs−3 λ

λ ∂ · Fµ1... µs−3 λ
λ . (2.70)

The first line builds the Bianchi identity (2.26), whose right-hand side vanishes in the

constrained theory, while the second one is proportional to the Fronsdal constraint (2.4)

on the gauge parameter. Notice that, even ignoring the condition (2.68), the cancelation

of the first two terms in the gauge variation of an ansatz of the form

L =
1

2
ϕµ1... µs

(
Fµ1... µs

+ a1 η (µ1µ2
Fµ3... µs )λ

λ

+ a2 η (µ1µ2
ηµ3µ4 Fµ5... µs )λρ

λρ + . . .
)

(2.71)

would require a Bianchi identity free of the “classical anomaly” appearing in the right-

hand side of eq. (2.26). This leads to the Fronsdal constraint and eventually to eq. (2.68).

In the mixed-symmetry case the structure of the Lagrangians drastically changes, since

not all double traces of the kinetic tensor F are forced to vanish. Hence, the Lagrangians

can and indeed do contain additional contributions with multiple traces of F . On the other

hand, the correspondence between constraints on the fields and on the kinetic tensors is

still true. In fact, the Labastida constraints on the fields (2.29) induce the conditions

T( ij Tkl ) F = 0 , (2.72)

so that only particular linear combinations of traces of F can enter the Lagrangians. Be-

fore identifying the relevant ones, let us briefly comment on eq. (2.72). The commutation

rules of Appendix A lead to

T( ij Tkl ) F = 3 2T( ij Tkl ) ϕ − ∂m∂m T( ij Tkl ) ϕ + ∂m∂ ( i Tjk Tl )m ϕ

+
1

2
∂m∂ n Tmn T( ij Tkl ) ϕ . (2.73)
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All terms barring the last one in the first line are manifestly annihilated by the Labastida

constraints (2.29). However, the remaining one can be also related to the constraints

on ϕ noticing that for a couple of traces a symmetrization over three indices induces a

symmetrization over the whole four indices. This is again a consequence of the presence

of two identical Tij tensors.

In order to select the non-vanishing contributions that enter the Lagrangians we can

now rely upon the permutation group acting on family indices. One can indeed classify

the multiple traces of F of the form

Ti1j1 . . . Tipjp F (2.74)

according to its irreducible representations. The final result is that only a particular class

of representations does not vanish on account of eq. (2.72). To reach this conclusion,

let us begin by noticing that a product of identical Tij tensors admits only components

labeled by Young tableaux with an even number of boxes in each row. This follows from

an already mentioned theorem discussed, for instance, in [102]. Then, those associated to

a tableau with at least four boxes in the first row are built upon a sum of contributions

containing at least a symmetrization over four indices. These terms can be divided into

three sets, according to the different displacements of the four symmetrized indices over

the Tij tensors. They can indeed contain a combination of the form T( ij Tkl ), or of the

form T( ij Tk |m T| l )n or, finally, of the form Tm ( i Tj |n Tp | k Tl ) q. Since they act on F , the

first two terms are manifestly annihilated by the conditions (2.72), either directly or via

the enlargement of the symmetrizations guaranteed by the presence of identical tensors.

The remaining one, with the symmetrized indices spread over four traces, can be related

to the previous ones noticing that

Tm ( i Tj |n Tp | k Tl ) q = T( ij Tkl Tmn Tpq ) − T( ij Tk | (m | T| l ) |n Tpq )

− T( ij Tkl ) T(mn Tpq ) . (2.75)

Just to clarify the notation, we would like to recall that in the previous expressions the

vertical bars are used to stress that the symmetrization also applies to the indices after

the next bar and so on, until a parenthesis signals the end of the group.

In conclusion, only two-column projected multiple traces of F can enter the Lagrangians,

and it is convenient to denote them concisely as

F [ p ]
i1j1, ... , ipjp = Y{2p} Ti1j1 . . . Tipjp F . (2.76)

Here Y{2p} denotes the Young projector onto the {2, . . . , 2} irreducible representation of

the permutation group acting on the family indices. Hence, F [ 1 ]
ij simply denotes a trace

Tij while, for instance,

F [ 2 ]
i1j1, i2j2 =

1

3

{
2 Ti1j1 Ti2j2 − Ti1( j1Tj2) i2

}
F . (2.77)

An ansatz for the bosonic Lagrangians should contain all these terms, contracted with
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suitable products of invariant tensors. It is thus natural to introduce the new operators

η ii ϕ = η (µi
1µ

i
2 | ϕ ... , |µi

3... µ
i
si+2 ) , ... ,

η ij ϕ =
1

2

si+1∑

n= 1

ηµi
n (µj

1 | ϕ ... , ... µi
n−1 µ

i
n+1 ... , ... , |µ

j
2... µ

j
sj+1) , ... , i 6= j , (2.78)

where the somehow unconventional factor 1/2 entering the second line will prove conve-

nient in the presentation of a number of results.

We now have all ingredients to propose an ansatz displaying the structure of the La-

grangians for arbitrary Bose fields of mixed symmetry [39, 40]. It reads

L =
1

2
〈 ϕ ,

N∑

p=0

k p η
i1j1 . . . ηipjp F [ p ]

i1j1, ... , ipjp 〉 , (2.79)

where we have introduced a convenient scalar product that is described in detail in Ap-

pendix A. The upper limit of the sum is the number of index families, simply because it is

not possible to antisymmetrize over more than N family indices, as a {2N+1} Young pro-

jection would require. Barring some unimportant differences in the notation, the ansatz

(2.79) is equivalent to that proposed by Labastida in [39]. He did not explicitly consider

the two-column projections but, as we have seen, for any given product of traces only a

single two-column component exists. Thus, one can also present (2.79) in a redundant

fashion, without displaying the projections explicitly. At any rate, Labastida fixed the

coefficients k p looking for a self-adjoint Einstein-like tensor, while in the following we

shall directly look for a gauge invariant action. A self-adjoint extension of F is clearly

automatically gauge invariant, but the approach we are reviewing here has the advan-

tage of leading to an unconstrained extension of the theory in a clearcut way. Moreover,

it also definitely shows that the Bianchi identities provide the conceptual frame for the

Lagrangians.

As we learned from gravity and from the Fronsdal examples, the gauge invariance of

the Lagrangians is guaranteed by the Bianchi identities, that in the constrained mixed-

symmetry case read

∂ iF −
1

2
∂ j Tij F = 0 , (2.80)

since the “classical anomaly” appearing on the right-hand side of eq. (2.28) cancels im-

posing the Labastida constraints (2.29). Clearly, eq. (2.80) cannot directly deal with the

higher traces contained in the ansatz (2.79), but we shall see in a while that suitable com-

binations of multiple traces of the Bianchi identities provide all the needed information.

In fact, the gauge variation of eq. (2.79) reads

δL = −
N∑

p=0

1

2 p+1
〈 Ti1j1 . . . Tipjp Λ k , k p ∂ k F

[ p ]
i1j1, ... , ipjp

+ ( p+ 1 ) k p+1 ∂
lF [ p+1 ]

i1j1, ... , ipjp, kl 〉 , (2.81)
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where the factors 1/2 come from the definition (2.78) of the ηij tensors. In analogy with

the Fronsdal case, part of this gauge variation is proportional to the constraints (2.12)

on the gauge parameters. Again, one can identify these contributions with the aid of

the permutation group acting on the family indices. The divergence terms in eq. (2.81)

indeed admit {3, 2 p−1} and {2 p, 1} Young projections, but the first one would produce

terms annihilated by the constraints (2.12) in the left entries of the scalar products. This

can be realized resorting to arguments similar to those used to discard from the ansatz

(2.79) the tableaux with more than two columns. In conclusion, one can cast the gauge

variation (2.81) in the form

δL = −
N∑

p= 0

1

2 p+1
〈 Y{2p,1} Ti1j1 . . . Tipjp Λ k , k p Y{2p,1} ∂ k F

[ p ]
i1j1, ... , ipjp

+ ( p+ 1 ) k p+1 ∂
lF [ p+1 ]

i1j1, ... , ipjp, kl 〉 , (2.82)

since the gradient terms are already {2 p, 1}-projected in their free family indices. Notice

that for p = 0 the terms

k 0 ∂ k F + k 1 ∂
l TklF (2.83)

appear in the right entry of the scalar product. Fixing conventionally k 0 = 1, the Bianchi

identities (2.80) annihilate this sum provided k 1 = −1
2
. The other coefficients can be

similarly fixed resorting to suitable combinations of traces of the Bianchi identities.

The multiple traces of eq. (2.80) read

∂ k Ti1j1 . . . Tipjp F −
1

2

p∑

n= 1

∂ ( in Tjn ) k

p∏

r 6=n

Tirjr F

−
1

2
∂ l Ti1j1 . . . Tipjp Tkl F = 0 , (2.84)

and in order to compare them with eq. (2.82) one has to compute their {2 p, 1} projections.

Due to the symmetries of these expressions, the full Young projector can be chosen to

coincide with that associated to the single standard Young tableau

i1 j1
...

...

ip jp

k (2.85)

which corresponds to the choice of standard labeling in = 2n− 1, jn = 2n for 1 ≤ n ≤ p

and k = 2 p + 1. Thus, thanks to a standard property of Young tableaux, when acting

with Y{2p,1} all symmetrizations in ( in, jn, k ) vanish. This means that the terms in the

sum can be manipulated according to

Y{2p,1} ∂ ( in Tjn ) k

p∏

r 6=n

Tirjr F = − Y{2p,1} ∂ k Ti1j1 . . . Tipjp F , (2.86)
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while the products of traces can be everywhere replaced with their two-column projections

on account of eq. (2.72). The {2 p, 1} Young projection of eq. (2.84) thus reads

( p+ 2 ) Y{2p,1} ∂ k F
[ p ]

i1j1, ... , ipjp − ∂ l F [ p+1 ]
i1j1, ... , ipjp , k l = 0 . (2.87)

Notice that this result was obtained using only elementary properties of the involved

two-column projections, without any need of knowing their detailed form. At any rate,

the identities (2.87) contain the same terms entering eq. (2.82), and one can use them to

eliminate the gauge variation of the ansatz (2.79) provided the coefficients satisfy

k p+1 = −
k p

( p+ 1 )( p+ 2 )
. (2.88)

Since k 0 = 1, this recursion relation is solved by

k p =
(−1) p

p ! ( p+ 1 ) !
, (2.89)

and indeed the coefficients in eq. (2.89) are those first identified by Labastida in [39],

barring a slight change of conventions and a typo in their relative signs.

In order to identify the coefficients (2.89) we only kept track of a particular class of

traces of the Bianchi identities (2.80). Notice, however, that in the constrained theory

this is the only non-trivial one, since the combination

∂ k F
[ p ]

i1j1, ... , ipjp −
1

2

p∑

n= 1

∂ ( in F
[ p ]

jn ) k , ... , ir 6=njr 6=n, ... (2.90)

appearing in eq. (2.84) is actually {2p, 1}-projected when eq. (2.72) holds. The same is

true also for the gradient terms. A simpler manifestation of this fact can be recognized in

the fully symmetric case where, for instance, the trace of the Bianchi identity (2.26) simply

reduce to the gradient of the double trace of F , that vanishes on account of eq. (2.68).

Before closing this section, let us also review Labastida’s derivation of the coefficients

(2.89), exploiting the self-adjointness of the Einstein-like tensors that will be useful to

identify the field equations following from the Lagrangians (2.94). Starting from

E =

N∑

p= 0

k p η
i1j1 . . . ηipjp Ti1j1 . . . Tipjp F (2.91)

and resorting to the expression for the multiple traces of F that is displayed in eq. (B.22)

one finds

〈 ϕ , E (φ ) 〉 = 〈 E (ϕ ) , φ 〉

−
N∑

p= 0

1

2 p
〈 Y{2p} Ti1j1 . . . Tipjp ϕ ,

[
( p+ 1 ) k p +

k p−1

p

]
Y{2p}

p∑

n= 1

∂ in∂ jn

p∏

r 6=n

Tirjr φ

−
1

2

[
k p + ( p+ 1 ) ( p+ 2 ) k p+1

]
∂ k∂ l Y{2p+1} Ti1j1 . . . Tipjp Tkl φ 〉 . (2.92)
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This rewriting holds up to constraints and total derivatives. It follows from the combina-

tion of some of the contributions entering eq. (B.22), that is admitted when the multiple

traces of ϕ or φ are substituted with their two-column projections. The relevant manip-

ulations are similar to those adopted in the treatment of multiple traces of the Bianchi

identities. In conclusion, if the k p are those in eq. (2.89), the E tensors are self-adjoint

since eq. (2.92) up to total derivatives reduces to

〈 ϕ , E (φ ) 〉 = 〈 E (ϕ ) , φ 〉 . (2.93)

To recapitulate, the Lagrangian for an arbitrary Bose field of mixed-symmetry is

L =
1

2
〈 ϕ ,

N∑

p=0

(−1) p

p ! ( p+ 1 ) !
ηi1j1 . . . ηipjp F [ p ]

i1j1, ... , ipjp 〉 . (2.94)

Its most evident signature is the presence of higher traces of F . Let us stress that this

property is definitely related to the presence of more than one family of symmetrized

space-time indices or, equivalently, to the number of rows of the Young tableau describing

the representation of the Lorentz group under scrutiny. Therefore, it is independent of

the need for constraints, that is dictated by the number of columns in the Young tableau.

A clarifying example is provided by irreducible mixed-symmetry bosons with at most

two columns. In the present symmetric convention, these fields carry an arbitrary number

of families comprising at most two space-time indices, while all symmetrizations over

any group of three indices vanish. They are the simplest class of mixed-symmetry Bose

fields and they are actually unconstrained. Their Lagrangians can be easily obtained

generalizing the expression

L = −
1

2
∂ µ h ν [µ ∂ν h ρ ]

ρ , (2.95)

where the couple of square brackets denotes a complete antisymmetrization of the indices

it encloses, with the minimum possible number of terms and with unit overall normal-

ization. The Lagrangian (2.95) coincides with the linearized Einstein-Hilbert one (2.66),

up to total derivatives. Furthermore, it is manifestly gauge invariant under linearized

diffeomorphisms, simply because two derivatives commute. In a similar fashion, when

written directly in terms of the field, the Lagrangian for an arbitrary two-column boson17

ϕµ1
1µ

1
2 , ... , µ

p
1µ

p
2 ; ν1 ... νq

must be of the form

L ∼ ∂ µ1 ϕµ2
[µ1 | , ... ,

µp+1
|µp ;µp+1... µp+q |

× ∂ |µp+q+1 ϕµp+q+2 |
µp+2

, ... , |µ2p+q+1 ]
µ2p+1;µ2p+2... µ2p+q+1 . (2.96)

This expression is again manifestly gauge invariant due to the antisymmetrizations it

contains and, up to total derivatives, must be proportional to the Lagrangian (2.94),

that is uniquely fixed by the request for gauge invariance. Furthermore, in eq. (2.96) the

presence of higher traces of the field is manifest.

17Notice that the indices coming after the semicolon are actually fully antisymmetrized between each

others. As warned in Appendix A, we shall often abide on this convention also in the following.
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2.2.2 Fermi fields

In the fully symmetric case Bose and Fermi fields behave in a very similar way. Actually,

the Fang-Fronsdal constraint (2.38) on the field induces a similar condition on the kinetic

spinor-tensor,

6 S µ1... µs−3 λ
λ = 0 , (2.97)

and the Lagrangians thus take the form

L =
1

2
ψ̄ µ1... µs

(
Sµ1... µs

−
1

2
γ (µ1

6 S µ2... µs ) −
1

2
η (µ1µ2

Sµ3... µs )λ
λ

)
+ h.c. . (2.98)

The gauge variation of eq. (2.98) does not entail particularly subtleties and reads

δ L = −
s

2
ǭµ1... µs−1

(
∂ · Sµ1... µs−1 −

1

2
6∂ 6 S µ1... µs−1 −

1

2
∂ (µ1

Sµ2... µs−1 )λ
λ

)

+
1

2

(
s

2

)
¯6ǫ
µ1... µs−2 ∂ · 6S µ1... µs−2 +

3

4

(
s

3

)
ǭµ1...µs−3 λ

λ ∂ · Sµ1... µs−3 λ
λ + h.c. . (2.99)

The first group of terms cancels on account of the constrained Bianchi identity coming

from eq. (2.57), while the others cancel on account of the constraint (2.56) on the gauge

parameter.

In the mixed-symmetry case, the structure of the Lagrangians is roughly modified as in

the bosonic case, since not all triple γ-traces of the kinetic tensor S are forced to vanish.

Hence, the Lagrangians can and indeed do contain additional contributions with multiple

γ-traces of S. Still in analogy with the bosonic case, the Labastida constraints on the

fields (2.59) induce similar constraints

T( ij γ k ) S = 0 (2.100)

on the kinetic tensors. As a consequence, only particular linear combinations of γ-traces

of S can enter the Lagrangians. Notice that eq. (2.100) can be easily checked via a direct

computation:

T( ij γ k ) S = − i
(

2 6∂ T( ij γ k ) ψ + ∂ l T( ij Tkl ) ψ + ∂ l T( ij γ k ) l ψ
)
. (2.101)

The first two terms in this expression are directly related to the constraints (2.59), while

the last one can be linked to them expanding the antisymmetric γ-trace according to

T( ij γ k ) l ψ = − γ l T( ij γ k ) ψ − T( ij Tkl ) ψ . (2.102)

In order to select the non-vanishing combinations entering the Lagrangians one can

again classify all candidate terms according to the irreducible representations of the per-

mutation group acting on the family indices. Moreover, as anticipated in Section 2.1.2,

it is convenient to work in an antisymmetric basis for γ-matrices, introducing the fully

antisymmetrized γ-traces

γ k1... kq
=

1

q !
γ [ k1γ k2 . . . γ kq ] . (2.103)
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The final outcome of this analysis is that, for any given number of traces and antisymmet-

ric γ-traces of the kinetic tensor S, all Young projections in family indices with more than

two columns vanish in the constrained theory on account of eq. (2.100). This condition

identifies the wide class of terms that can enter fermionic Lagrangians which, as a result,

are far more involved than their bosonic counterparts. For N families the Lagrangians are

in fact bound to rest on O(N2) distinct Young projections, with a first column of length

l1 ≤ N and a second column of length l2 ≤ l1, that in general is actually shorter, since

antisymmetric γ-traces γ k1... kq
of S can accompany the ordinary Tij traces that already

enter the bosonic Lagrangians. Before using this information to present an ansatz for the

Lagrangians for mixed-symmetry Fermi fields, let us sketch a proof of this statement. This

goal can be reached repeating the analysis performed in the bosonic case. First, one can

recognize that all Young projections associated to tableaux with at least three columns

involve a sum of terms containing at least a symmetrization over three family indices. One

can then study how the symmetrized indices can be spread over the products of traces

and antisymmetrized γ-traces, to eventually recognize that all different possibilities can

be related to the Labastida-like constraints (2.100). This detailed analysis is performed

in [41], but here we would like to refer to a simpler argument, that was also introduced

in the same paper. Indeed, one can notice that

Ti1j1 . . . Tip−1jp−1T( ab γ c ) k1... kq−1 (2.104)

admits all Young projections allowed by the very general expression

Ti1j1 . . . Tip−1jp−1Tab γ c k1... kq−1 , (2.105)

aside from the two-column one. Furthermore, acting on each irreducible component of

(2.104) the permutation group can generate the entire corresponding irreducible subspace,

and in particular the irreducible component of (2.105) that it contains. This suffices

to show that all Young projections of the generic expression (2.105) with more than

two columns are actually related to terms containing an expression annihilated by the

constraints. In fact, the previous observation shows that they can be expressed as linear

combinations of (2.104) with similar quantities obtained permuting indices, while (2.104)

is related to the constraints via the identity

T( ab γ c ) k1... kq−1
= (−1) q+1 γ k1... kq−1 γ ( a T bc ) + (−1) q γ [ k1... kq−2

T kq−1 ] ( a T bc ) . (2.106)

The first term in eq. (2.106) indeed contains manifestly symmetrized triple γ-traces, while

the second can be related to them extending the symmetrizations as pertains to a product

of identical T tensors.

In conclusion, only two-column projected multiple traces of S can enter the constrained

Lagrangians, and it is convenient to denote them as

( γ [ q ] S [ p ] ) i1j1, ... , ipjp ; k1... kq
= Y{ 2p, 1q} Ti1j1 . . . Tipjp γ k1... kq

S . (2.107)

Here Y{2p,1q} denotes the Young projector onto the {2, . . . , 2, 1, . . . , 1} irreducible repre-

sentation of the permutation group acting on the family indices. Furthermore, the reader
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should appreciate that in eq. (2.107) colons separate again groups of symmetric indices,

while a semicolon precedes the left-over group of antisymmetric ones. Hence, barring the

substitution F → S, for q = 0 these terms reduce to those introduced in the previous

section, while for p = 0 they simply reduce to fully antisymmetrized γ-traces,

( γ [ q ] S [ 0 ] ) k1... kq
= γ k1... kq

S . (2.108)

All other terms contain both traces and antisymmetrized γ-traces, as for instance

( γ [ 1 ] S [ 1 ] ) ij ; k =
1

3

{
2 Tij γ k − Tk ( i γ j )

}
S . (2.109)

An ansatz for the fermionic Lagrangians should contain all these terms, contracted with

suitable products of invariant tensors. It is of course natural to consider both the ηij

operators introduced in eq. (2.78) and the operators

γ i ψ ≡ γ (µi
1|
ψ ... , |µi

2 ... µ
i
si+1) , ...

, (2.110)

together with their antisymmetric combinations

γ k1... kq =
1

q !
γ [ k1γ k2 . . . γ kq ] . (2.111)

We now have all ingredients to propose an ansatz for the structure of the Lagrangians

for Fermi fields of mixed symmetry [41]. It reads

L =
1

2
〈 ψ̄ ,

N∑

p , q=0

k p , q η
i1j1 . . . ηipjp γ k1... kq ( γ [ q ] S [ p ] ) i1j1 , ... , ipjp ; k1... kq

〉 + h.c. , (2.112)

where we are resorting to the scalar product that was already introduced for bosons, and

that is described in detail in Appendix A. Again, the upper limit of the sum is the number

of index families, simply because it is not possible to antisymmetrize over more than N

family indices, as would be required by a Young tableaux with N + 1 rows. We shall see

shortly that the k p , q coefficients in eq. (2.112) are uniquely determined by the condition

that L be gauge invariant, up to the convenient choice k 0 , 0 = 1.

As in the bosonic case and in the fully symmetric example, the gauge invariance of the

Lagrangians is guaranteed by the Bianchi identities, that for constrained mixed-symmetry

fermions read

∂ i S −
1

2
6∂ γ i S −

1

2
∂ j Tij S −

1

6
∂ j γ ij S = 0 . (2.113)

In fact, the “classical anomaly” appearing in the right-hand side of eq. (2.58) cancels after

imposing the Labastida constraints (2.59) on the field. Again, eq. (2.113) cannot directly

deal with the higher traces contained in the ansatz (2.112), but suitable combinations of

multiple γ-traces of the Bianchi identities can, barring some new subtleties that we shall

dwell upon shortly. In order to proceed, one can begin by noticing that the identities
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collected in Appendix B make it possible to recast the gauge variation of eq. (2.112), up

to total derivatives, in the form

δ L = −
N∑

p , q= 0

1

2 p+1
〈 Ti1j1 . . . Tipjp ǭ l γ k1... kq

, k p , q ∂ l ( γ
[ q ] S [ p ] ) i1j1, ... , ipjp ; k1... kq

+ ( q + 1 ) k p , q+1 6∂ ( γ [ q+1 ] S [ p ] ) i1j1, ... , ipjp ; k1... kq l

+ ( p+ 1 ) k p+1, q ∂
m ( γ [ q ] S [ p+1 ] ) i1j1, ... , ipjp , lm ; k1... kq

+ ( q + 1 ) ( q + 2 ) k p , q+2 ∂
m ( γ [ q+2 ] S [ p ] ) i1j1, ... , ipjp ; k1... kq lm 〉 + h.c. . (2.114)

All ( γ [m ] S [n ] ) terms that are right entries of the scalar products are two-column pro-

jected by assumption. This statement applies to all free indices carried by the last three

terms, while the first is slightly more complicated, since due to the l index carried by the

divergence it also allows projections with three boxes in the first row. However, the left

entry of the scalar product makes this type of projections proportional to the constraints

on the gauge parameters (2.42). As usual, this can be realized resorting to arguments

similar to those used to discard from the ansatz (2.112) the tableaux with more than two

columns. Thus, up to the Labastida constraints one can effectively restrict the attention

to two-column projections of the gauge variation (2.114).

On the other hand, in sharp contrast with the bosonic case, here two types of two-

column projections are allowed for the terms of the type

Ti1j1 . . . Tipjp ǭ l γ k1... kq
(2.115)

that are left entries of the scalar products. One can obtain for them a two-column pro-

jection acting on ǭ l with an already two-column projected combination of traces and

antisymmetric γ-traces, but the possible outcomes are

{ 2 p, 1q } ⊗ {1} = { 2 p, 1q+1} ⊕ { 2 p+1, 1q−1} ⊕ {3, 2 p−1, 1q} , (2.116)

where the last term is related to the constraints on the gauge parameters. Thus, after

using the constraints (2.42), the gauge variation (2.114) can be cast in the form

δ L = −
N∑

p , q= 0

1

2 p+1
〈 Y{2p,1q+1} Ti1j1 . . . Tipjp ǭ l γ k1... kq

,

k p , q ∂ l ( γ
[ q ] S [ p ] ) i1j1, ... , ipjp ; k1... kq

+ ( q + 1 ) k p , q+1 6∂ ( γ [ q+1 ] S [ p ] ) i1j1, ... , ipjp ; k1... kq l

+ ( p+ 1 ) k p+1, q ∂
m ( γ [ q ] S [ p+1 ] ) i1j1, ... , ipjp , lm ; k1... kq

+ ( q + 1 ) ( q + 2 ) k p , q+2 ∂
m ( γ [ q+2 ] S [ p ] ) i1j1, ... , ipjp ; k1... kq lm 〉

−
N∑

p , q= 0

1

2 p+1
〈 Y{2p+1,1q−1} Ti1j1 . . . Tipjp ǭ l γ k1... kq

,

k p , q ∂ l ( γ
[ q ] S [ p ] ) i1j1, ... , ipjp ; k1... kq

+ ( p+ 1 ) k p+1 , q ∂
m ( γ [ q ] S [ p+1 ] ) i1j1, ... , ipjp , lm ; k1... kq

〉 + h.c. . (2.117)
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Notice that the first term in eq. (2.114) gives contributions to both groups of projected

terms above, while the second term gives a single contribution. The analysis of the

gradient terms is slightly more subtle, but the end result is that one of them, the third

term in eq. (2.114), contributes to both. Indeed,

{2 p, 1q+1} ⊗ {1} = { 2 p, 1q+2} ⊕ { 2 p+1, 1q} ⊕ {3, 2 p−1, 1q+1} ,

{2 p+1, 1q−1} ⊗ {1} = { 2 p+1, 1q} ⊕ { 2 p+2, 1q−2} ⊕ {3, 2 p, 1q−1} , (2.118)

so that both types of projections are compatible with the {2p+1, 1q} projection carried by

( γ [ q ] S [ p+1 ] ). This is no longer true for the fourth term in eq. (2.114).

At this stage fermionic fields bring about a novel type of complication. Indeed, the

γ-traces of the Bianchi identities do not suffice to directly set to zero the two groups of

terms of eq. (2.117), but these, on the other hand, are not fully independent and can

be partly combined using the constraints (2.42) on the gauge parameters. In fact the

projections { 2 p, 1q+1} and { 2 p+1, 1q−1} appearing in eq. (2.116) can actually arise from

pairs of neighboring contributions of the form (2.115), with values of p differing by one

unit and with values of q differing by two units. The key step to proceed is to relate these

two types of terms, that are only apparently different, making use of the constraints (2.42)

on the gauge parameters and of proper relabelings. To this end, it proves particularly

convenient to manipulate the combinations ǭ l γ k1... kq
according to

ǭ l γ k1... kq
=

1

q + 1
ǭ [ l γ k1... kq ] +

1

q + 1

q∑

n= 1

(−1)(n+1) ǭ ( l γ kn ) k1... kr 6=n... kq
. (2.119)

The terms entering the sum can then be rewritten more conveniently as

ǭ ( l γ k1 ) k2... kq
= ǭ ( l γ k1 ) γ k2... kq

− T[ k2 | ( l ǭ k1 ) γ |k3... kq ] , (2.120)

where the first contribution on the right-hand side clearly vanishes in the constrained

setting, on account of eq. (2.42). Enforcing the constraints thus leads to

q∑

n= 1

(−1)(n+1) ǭ ( l γ kn ) k1... kr 6=n... kq
→ Tl [ k1 ǭ k2 γ k3... kq ] , (2.121)

since the sum with oscillating signs induces a complete antisymmetry in the kr indices,

that as such forbids the simultaneous presence of two of them on the trace T . As a result,

in the constrained theory eq. (2.119) implies

Ti1j1 . . . Tipjp ǭ l γ k1... kq
=

1

q + 1
Ti1j1 . . . Tipjp

(
ǭ [ l γ k1... kq ] + T l [ k1 ǭ k2 γ k3... kq ]

)
, (2.122)

where the first term is annihilated by the {2p+1, 1q−1} projection, while the second is

similarly annihilated by the {2p, 1q+1} projection. In conclusion one is led to

Y{ 2p+1, 1q−1} Ti1j1 . . . Tipjp ǭ l γ k1... kq
=

1

q + 1
Y{ 2p+1, 1q−1} Ti1j1 . . . Tipjp T l [ k1 ǭ k2 γ k3... kq ] ,

Y{ 2p, 1q+1} Ti1j1 . . . Tipjp ǭ l γ k1... kq
=

1

q + 1
Y{ 2p, 1q+1} Ti1j1 . . . Tipjp ǭ [ l γ k1... kq ] . (2.123)
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While the second of these relations is rather trivial, the first is quite interesting, since it

connects a relatively complicated projection of p traces and a single q-fold antisymmetric

γ-trace to a simpler one involving p+ 1 traces and a (q − 2)-fold antisymmetric γ-trace

with the maximum possible number of antisymmetrizations. Let us stress that one can

also proceed in the opposite direction, decreasing the value of p. The relevant identity,

that can be proved with similar techniques is then

Y{ 2p,1q+1} Ti1j1 . . . Tipjp ǭ l γ k1... kq

=
(−1) q+1

p ( q + 1 )
Y{ 2p,1q+1}

p∑

n=1

(
p∏

r 6=n

Tirjr

)
ǭ ( in γ jn ) k1 ... kq l , (2.124)

but it is simpler to work with terms whose projections involve the maximum number of

antisymmetrizations compatible with their tensorial character.

One can now manipulate the second group of terms in eq. (2.117) using the key relation

appearing in the first line of eq. (2.123). As a result, after a proper relabeling eq. (2.117)

can be finally turned into

δ L = −
N∑

p , q= 0

1

2 p+1
〈 Y{ 2p, 1q+1} Ti1j1 . . . Tipjp ǭ l γ k1... kq

,

k p , q ∂ l ( γ
[ q ] S [ p ] ) i1j1, ... , ipjp ; k1... kq

+
( q + 1 ) ( q + 2 )

p ( q + 3 )
k p−1, q+2

p∑

n=1

∂ ( in | ( γ
[ q+2 ] S [ p−1 ] ) ... , ir 6= njr 6= n , ... ; | jn ) l k1... kq

+ ( q + 1 ) k p , q+1 6∂ ( γ [ q+1 ] S [ p ] ) i1j1, ... , ipjp ; k1... kq l

+ ( p+ 1 ) k p+1, q ∂
m ( γ [ q ] S [ p+1 ] ) i1j1, ... , ipjp , lm ; k1... kq

+
( q + 1 ) ( q + 2 )

q + 3
k p , q+2

p∑

n=1

∂m ( γ [ q+2 ] S [ p ] ) ... , ir 6= njr 6= n, ... ,m ( in; jn ) l k1... kq

+ ( q + 1 ) ( q + 2 ) k p , q+2 ∂
m ( γ [ q+2 ] S [ p ] ) i1j1, ... , ipjp ; k1... kq lm 〉 + h.c. , (2.125)

where we enforced the symmetry under interchanges of the ( in, jn ) pairs brought about by

the products of identical T tensors present on the right-hand sides of the scalar products.

Furthermore, the contributions in the last two terms are proportional, since

( γ [ q+2 ] S [ p ] ) i1j1, ... , ipjp ; k1... kq lm = ( γ [ q+2 ] S [ p ] ) i1j1, ... , ip−1jp−1 ,m ( ip ; jp ) l k1... kq
, (2.126)

because a symmetrization in ( ip, jp, m ) vanishes on account of the two-column projection.
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Therefore, on account of the constraints (2.42), eq. (2.114) finally reduces to

δ L = −
N∑

p , q= 0

1

2 p+1
〈 Y{ 2p, 1q+1} Ti1j1 . . . Tipjp ǭ l γ k1... kq

,

k p , q ∂ l ( γ
[ q ] S [ p ] ) i1j1, ... , ipjp ; k1... kq

+
( q + 1 ) ( q + 2 )

p ( q + 3 )
k p−1, q+2

p∑

n=1

∂ ( in | ( γ
[ q+2 ] S [ p−1 ] ) ... , ir 6= njr 6= n , ... ; | jn ) l k1... kq

+
( q + 1 ) ( q + 2 ) ( q + p+ 3 )

q + 3
k p , q+2 ∂

m ( γ [ q+2 ]S [ p ] ) i1j1, ... , ipjp ; k1... kq lm

+ ( q + 1 ) k p , q+1 6∂ ( γ [ q+1 ] S [ p ] ) i1j1, ... , ipjp ; k1... kq l

+ ( p+ 1 ) k p+1, q ∂
m ( γ [ q ] S [ p+1 ] ) i1j1, ... , ipjp , lm ; k1... kq

〉 + h.c. . (2.127)

In the fermionic case, the γ-traces of the Bianchi identities take the rather involved

form presented in eq. (B.28), but it is possible to extract from them the far simpler chain

of { 2 p, 1q+1}-projected identities

( p+ q + 2 ) Y{ 2p, 1q+1} ∂ l ( γ
[ q ] S [ p ] ) i1j1, ... , ipjp ; k1... kq

+
1

q + 3
Y{ 2p, 1q+1}

p∑

n= 1

∂ ( in | ( γ
[ q+2 ] S [ p−1 ] ) ... , ir 6= njr 6= n , ... ; | jn ) l k1... kq

+ (−1) q+1 6∂ ( γ [ q+1 ] S [ p ] ) i1j1, ... , ipjp ; k1... kq l − ∂m ( γ [ q ] S [ p+1 ] ) i1j1, ... , ipjp , lm ; k1... kq

−
1

q + 3
∂m ( γ [ q+2 ] S [ p ] ) i1j1, ... , ipjp ; k1... kq lm = 0 . (2.128)

This can be done resorting to techniques similar to those applied to manipulate eq. (2.84)

in the bosonic case, and more details are presented in Appendix C. Comparing eqs. (2.127)

and (2.128) one can now recognize that, in order to obtain a gauge invariant Lagrangian,

the coefficients must satisfy the two recursion relations

k p+1, q = −
1

( p+ 1 ) ( p+ q + 2 )
k p , q ,

k p , q+1 =
(−1) q+1

( q + 1 ) ( p+ q + 2 )
k p , q , (2.129)

whose solution is

k p , q =
(−1) p+ q (q+1)

2

p ! q ! ( p+ q + 1 ) !
(2.130)

if k 0 , 0 = 1. This result is also fully consistent with the vanishing of the other terms

in eq. (2.127). Notice that this expression includes as special cases the coefficients first

obtained by Labastida for Bose fields: in fact, letting q = 0 in eq. (2.130) recovers the

result presented in eq. (2.89).
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The coefficients given in eq. (2.130) determine completely the constrained Lagrangians

(2.112) for mixed-symmetry Fermi fields. Together with the unconstrained Lagrangians

that we shall come across in Section 3, they are the main results of [40, 41].

Interestingly, eq. (2.130) can be also obtained demanding that the kinetic operator be

self-adjoint, along the lines of what was done by Labastida for Bose fields in [39]. The

idea is to build a Rarita-Schwinger-like tensor such that

〈 ψ̄ , E 〉 + h.c. = 2 〈 ψ̄ , E 〉 , (2.131)

up to constraints and total derivatives, starting from a general ansatz of the type

E =
N∑

p , q= 0

k p , q η
i1j1 . . . ηipjp γ k1... kq Ti1j1 . . . Tipjp γ k1... kq

S . (2.132)

Whereas this sum apparently differs from the one contained in eq. (2.112), in the con-

strained case they actually coincide, since each term gives rise to a unique two-column

projection. Hence, making use of the result for the general γ-trace of the S tensor given

in eq. (B.26), up to total derivatives and constraints one is led to the condition

〈 ψ̄ , E 〉 + h.c. = 2 〈 ψ̄ , E 〉 +
N∑

p , q= 0

i

2 p+1
〈 Y{2p,1q} Ti1j1 . . . Tipjp ψ̄ γ k1... kq

,

−

[
( p+ q + 1 ) k p , q −

(−1) q

q
k p , q−1

]
Y{2p,1q} γ [k1... kq−1

∂ kq ]

p∏

r=1

Tirjr ψ

+

[
k p , q − (−1) q

q + 1

p
k p−1 , q+1

]
Y{2p,1q}

p∑

n= 1

γ k1... kq ( in ∂ jn )

p∏

r 6=n

Tirjr ψ

+

[
k p , q + (−1) q ( q + 1 ) ( p+ q + 2 ) k p , q+1

]
∂ l Y{2p,1q+1} γk1... kq l

p∏

r= 1

Tirjr ψ

+

[
k p , q + (−1) q

p+ 1

q
k p+1 , q−1

]
∂ l Y{2p+1,1q−1} γ [k1... kq−1 Tkq ] l

p∏

r= 1

Tirjr ψ 〉 , (2.133)

so that the remainder vanishes precisely if the coefficients k p , q are those of eq. (2.130).

To reiterate, the coefficients for the general fermionic Lagrangians can be derived in two

distinct ways: enforcing the gauge symmetry via the Bianchi identities as in [41], or

alternatively requiring that the kinetic operator be self adjoint, as was done only for Bose

fields in [39]. In Section 3.1.2 we shall see that the first method appears more natural in

the unconstrained case. Moreover, as in the bosonic case, it also definitely shows that the

Bianchi identities provide the frame of the far more involved Lagrangians (2.112).

In order to summarize the result of this rather long discussion, let us briefly comment

on the structure of the Lagrangian for an arbitrary Fermi field of mixed-symmetry, that

reads

L =
1

2
〈 ψ̄ ,

N∑

p , q=0

(−1) p+ q (q+1)
2

p ! q ! ( p+ q + 1 ) !
η p γ q ( γ [ q ] S [ p ] ) 〉 + h.c. , (2.134)
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where for brevity we have introduced the shorthand

η p γ q ( γ [ q ] S [ p ] ) ≡ ηi1j1 . . . ηipjp γ k1... kq ( γ [ q ] S [ p ] ) i1j1 , ... , ipjp ; k1... kq
. (2.135)

As in the bosonic case, the most evident signature of the Lagrangian (2.134) is the presence

of higher γ-traces of S. Again, this property is definitely related to the presence of more

than one family of symmetrized space-time indices or, equivalently, to the number of rows

of the Young tableau describing the representation of the Lorentz group under scrutiny.

On the contrary, the need for constraints is dictated by the number of columns in the

Young tableau.

A clarifying example is provided by fully antisymmetric, “single-column” fermions.

They are the simplest class of mixed-symmetry Fermi fields and they are actually uncon-

strained. Their Lagrangians can be easily obtained generalizing the usual presentation of

the Rarita-Schwinger Lagrangian, that takes the form

L =
i

2
ψ̄µ γ

µνρ ∂ ν ψ ρ + h.c. . (2.136)

Up to total derivatives, it actually coincides with the Lagrangian that one can extract

from eq. (2.98) for a spin 3/2 fermion. Eq. (2.136) is manifestly left invariant by the

gauge transformation δ ψµ = ∂µ ǫ, simply because two derivatives commute. In a similar

fashion, when written directly in terms of the field, the Lagrangian for an arbitrary single-

column fermion18 ψ ν1... νq
can be cast in the form

L = i
(−1)

2 q !

q (q−1)
2

ψ̄µ1... µq
γ µ1... µqλν1... νq ∂λ ψ ν1... νq

+ h.c. . (2.137)

This expression is again manifestly gauge invariant due to the presence of the fully an-

tisymmetrized γ-matrix and, up to total derivatives, must be proportional to the La-

grangian (2.134), that is uniquely fixed by the request for gauge invariance. Furthermore,

in eq. (2.137) the presence of higher γ-traces of the field is manifest.

2.3 Lagrangian field equations

In the previous sections, together with a set of gauge transformations and a set of con-

straints to be enforced on fields and gauge parameters, we first presented gauge invariant

differential operators and then gauge invariant quadratic Lagrangians built upon them.

We also saw that the null eigenfunctions of these differential operators propagate free

massless modes. The next step is to ask whether the quadratic Lagrangians (2.94) and

(2.134) give rise to field equations equivalent to the non-Lagrangian ones of eqs. (2.13)

and (2.43), that set to zero these differential operators.

18Notice the slight abuse of notation: here the indices carried by the field are fully antisymmetrized,

rather than fully symmetrized as, for instance, in eq. (2.98).
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First of all one has to vary the Lagrangians in order to extract the corresponding field

equations. In eq. (2.92) we showed that the Einstein-like tensor

EBose =
(−1) p

p ! ( p+ 1 ) !
ηi1j1 . . . ηipjp F [ p ]

i1j1, ... , ipjp (2.138)

entering eq. (2.94) is self-adjoint, as first pointed out by Labastida [39]. As a consequence,

up to total derivatives, the δ ϕ variation of the Lagrangians (2.94) can be cast in the form

δ LBose = 〈 δ ϕ , EBose 〉 . (2.139)

Furthermore, in eq. (2.133) we proved that similar considerations apply to the Rarita-

Schwinger-like spinor-tensor

EFermi =
(−1) p+

q (q+1)
2

p ! q ! ( p+ q + 1 ) !
ηi1j1. . . ηipjp γ k1... kq ( γ [ q ] S [ p ] ) i1j1 , ... , ipjp ; k1... kq

. (2.140)

Again up to total derivatives, the δ ψ̄ variation of the Lagrangians (2.134) can thus be

cast in the form

δLFermi = 〈 δ ψ̄ , EFermi 〉 , (2.141)

where the δ ψ̄ dependence of δ L is now manifest.

At this point one would be tempted to declare that the Lagrangian field equations are

given by EBose = 0 and EFermi = 0. However, a bit of caution is needed, since we are

dealing with constrained variations. In the Fang-Fronsdal case the free variation actually

coincides with the constrained one, since the double traces of the Einstein-like tensors

and the triple γ-traces of the Rarita-Schwinger-like tensors vanish. This is almost obvious

recalling eqs. (2.68) and (2.97). On the other hand, as first19 noticed in [40, 41], in the

mixed-symmetry case some subtleties arise, since

T( ij Tkl ) EBose 6= 0 , T( ij γ k ) EFermi 6= 0 , (2.142)

even if

T( ij Tkl ) F = 0 , T( ij γ k ) S = 0 . (2.143)

At first sight this result could look strange. Nevertheless, in the mixed-symmetry case a

new class of operators enters the (γ-)traces of expressions containing a bunch of invariant

tensors. In fact, as shown in Appendix A, the operators

S i
j ϕ ≡ ϕ... , (µi

1... µ
i
si
| , ... , |µi

si+1 )µj
1... µ

j
sj−1 , ...

. (2.144)

are needed to close the algebra of the operators Tij and ηij or γ i and γ i. Looking at

eq. (2.144) one can see that, for i 6= j, the net effect of the S i
j operators is to displace

19Actually, in [39] Labastida briefly commented on this issue, but he did not seem to fully realize the

subtleties that we are about to describe.
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indices from one family to another. Their ubiquitous presence in the (γ-)traces of the E
tensors can thus be manifested looking at very simple examples, such as

η λρ ηλ (µ ϕ ν ) , ρ = ϕ (µ , ν ) . (2.145)

These new operators play a crucial role in leading to eqs. (2.142). In fact, they permit

to spread the symmetrized indices also over the S i
j , rather than only over products of

(γ-)traces. This avoids the reconstruction of T( ij Tkl ) F or T( ij γ k ) S in some terms, that

as such are not annihilated by eqs. (2.143). To be more concrete, let us dwell further

upon these subtleties in a simplified setting. For instance, Bose fields with only two index

families already display this behavior, but their Einstein-like tensors take the relatively

simple form

E = F −
1

2
ηij Tij F +

1

36
ηij ηkl

(
2 Tij Tkl − Ti ( k Tl ) j

)
F . (2.146)

Enforcing the Labastida constraints on the field, the symmetrized double traces of E read

T( ij Tkl ) E = −
1

36
Sm

( i S
n
j |

(
2 T| kl ) Tmn − Tm | k Tl )n

)
F . (2.147)

The combination of double traces of F entering this expression is actually {2, 2}-projected

in its family indices, so that it is orthogonal to the {4}-projected constraints (2.72). This

explains why the result does not vanish even in the constrained theory. As a consequence,

in order to obtain a field equation satisfying the same constraints as the gauge field a

projection is needed. However, the projected field equations would take a very involved

form, so that it is more convenient to reach them via the addition of some independent

contributions to the naive equations, coming from suitable Lagrange multiplier terms to

be added to the Lagrangians. We shall postpone this discussion to Section 3, where these

terms will naturally emerge in the unconstrained framework that we shall present there.

Independently of the precise form taken by the Lagrangian field equations, some very

general comments regarding their equivalence to the non-Lagrangian Labastida ones can

be already made. Even in this respect, the paradigmatic example of linearized gravity

provides important hints. In fact, in all space-time dimensions D 6= 2 the Lagrangian

field equation

Rµν −
1

2
ηµν Rλ

λ = 0 (2.148)

can be reduced to the non-Lagrangian one (2.1) combining it with its trace. On the other

hand, in two dimensions a couple of pathologies appear: the Einstein-Hilbert action actu-

ally vanishes, even if the linearized Ricci tensor Rµν does not, while the formal expression

(2.148) is traceless. The first statement becomes manifest writing the Lagrangian directly

in terms of the fields as in eq. (2.95), where an antisymmetrization over three indices is

present. Therefore, in two dimensions we should compare a non-Lagrangian setup where

the field is bounded to satisfy the non-trivial equation of motion

Rµν = 0 , (2.149)
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and a Lagrangian setup, where no equations of motion are present. On the other hand,

in D = 2 the little group is degenerate and no local degrees of freedom are present. A

three-component symmetric tensor hµν can thus be forced to propagate no degrees of

freedom in two different ways, either imposing a gauge invariant field equation, or stating

directly that all its components are pure gauge. Indeed, in D = 2 an arbitrary shift of

the field is a symmetry of the action! More precisely, the usual gauge transformations in

D = 2 are accompanied by Weyl transformations, that in their linearized form read

δ hµν = ηµν Ω . (2.150)

When combined, these two sets of gauge transformations suffice to rebuild an arbitrary

shift of the field. Even without resorting to eq. (2.95), the presence of a pathological

behavior can be recognized looking at eq. (2.148) and considering Rµν as an independent

tensor. Since the combination in eq. (2.148) is traceless in D = 2, it is evident that

the Lagrangian field equation is at least weaker than the non-Lagrangian one, because

it displays an additional symmetry. In D = 2 the traceless part of the linearized Ricci

tensor Rµν then disappears altogether, and this brings together the two observations we

made.

In conclusion, in some degenerate cases the Lagrangian field equations can not be

directly equivalent to the non-Lagrangian ones, but at the same time new Weyl-like sym-

metries emerge. The rich structure of two-dimensional gravity naturally leads to wonder

whether it is the only example presenting this pathological behavior. Actually, another

example should be rather familiar, since the Rarita-Schwinger Lagrangian (2.136) mani-

festly vanishes in D = 2, even if Sµ does not. However, these two-dimensional examples

are the only pathological cases in the fully symmetric setting, for both Bose and Fermi

fields.

Moving to the mixed-symmetry setup, the far more involved form of the Lagrangians

makes it plausible that in particular space-time dimensions the tensors (2.138) and (2.140)

could coincide by chance with some particular o (D) components of the tensors F or S.

This is indeed the only way to obtain a new symmetry with respect to the non-Lagrangian

field equations. The resulting o (D) component could then also vanish when written in

terms of the fields. A detailed discussion of these issues leading to the identification of

a rich set of pathological cases will be presented in Section 4. On the other hand, we

can already identify some mixed-symmetry fields behaving exactly like spin 2 or spin 3/2

fields in two space-time dimensions. Indeed, the actions (2.96) for {2 p, 1q}-projected Bose

fields manifestly vanish in D ≤ 2 p + q, while these tensors are available for D ≥ p + q.

In a similar fashion, the actions (2.137) for fully antisymmetric Fermi fields with q vector

indices manifestly vanish in q ≤ D ≤ 2 q even if the corresponding S spinor-tensors do not

vanish for D ≥ q + 1. In all these pathological cases the fields should not propagate any

degrees of freedom20, and this is compatible with the vanishing of their actions. Since any

shift of the fields leaves invariant the actions, the usual gauge transformations must be

20The gauge transformations, the field equations and, possibly, the constraints introduced until now

force gl(D) tensors and spinor-tensors to propagate the degrees of freedom of the o (D − 2) represen-

tation associated to the same Young tableau identifying them. On the other hand, a general result of
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accompanied by additional Weyl-like symmetries as in the case of two-dimensional gravity.

Indeed, let us stress that the formal expressions (2.138) and (2.140) for the Einstein-like

tensors can vanish when they are written in terms of the fields only if they coincide with

a vanishing o (D) component of the non-trivial kinetic tensors.

2.4 Irreducible fields

The gauge fields considered in the previous sections were in general only symmetric under

the interchange of pairs of vector indices belonging to the same set, but did not possess

any symmetry relating different sets. In other words, they were reducible gl(D) tensors

or spinor-tensors. Fields of this type naturally emerge in String Theory, where they are

associated with products of bosonic oscillators, together with more general reducible gl(D)

tensors, where some sets of indices are actually antisymmetrized rather than symmetrized.

In [40, 41] we also described how the previous results can be rewritten in an antisymmetric

framework, while in the following we shall briefly concentrate on Young projected gl(D)

spinor-tensors, still with manifestly symmetric index sets. They propagate the degrees

of freedom of irreducible representations of the Lorentz group, up to possible (Majorana-

)Weyl projections in the fermionic case, and in this respect they are more along the lines of

the usual low-spin examples. Since Young projections only affect in a non-trivial fashion

the vector indices carried by the gauge fields, the changes occurring in this case were

essentially the same for both Bose and Fermi fields.

The condition of irreducibility states that the symmetrization of a given line of the

corresponding Young tableaux with any additional index belonging to one of the lower

lines gives a vanishing result. This condition can be neatly formulated using the S i
j

operators introduced in Appendix A as

S i
j ϕ = 0 , S i

j ψ = 0 , i < j , 2 ≤ j ≤ N , (2.151)

where N is the number of index families. The Fronsdal-Labastida kinetic operator (2.11)

and the Fang-Fronsdal-Labastida kinetic operator (2.41) commute with the S i
j operators.

In a similar fashion, the operators building the Einstein-like tensors (2.138) and the Rarita-

Schwinger-like tensors (2.140) also commute with the S i
j operators, on account of the

relations

[Sm
n , η

i1j1 . . . ηipjp γ k1... kq Ti1j1 . . . Tipjp γ k1... kq
] = 0 . (2.152)

As a consequence, in the constrained theory Lagrangians and field equations take exactly

the same form for reducible and irreducible gauge fields. On the other hand, for irreducible

fields not all traces of ϕ or F and not all γ-traces of ψ or S remain independent, and

therefore it is possible to reduce the number of those appearing in the field equations and

in the Lagrangians, although the redundant description remains correct.

representation theory (see, for instance, the first reference in [101], §10-6) implies that, for O(n) groups,

if the total number of boxes in the first two columns of a tableau exceeds n, the corresponding traceless

tensor vanishes. A similar result also applies to spinor-tensor representations.
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Moreover, in general irreducible fields involve fewer gauge parameters than their re-

ducible counterparts, and how this number is reduced was already stated in the second

reference of [33]: the relevant irreducible gauge parameters can be associated to all admis-

sible Young diagrams obtained stripping one box from the diagram corresponding to the

gauge field. The difference could be sizeable: if an irreducible gauge field is characterized

by a Young diagram containing a number of identical rows, only a single gauge parameter

is associated to all of them.

It is instructive to recover these results in an algebraic fashion, that will also prove

very useful in Section 4. They follow in fact rather directly from the structure of the

S i
j operators that implement the irreducibility condition. For instance, let us begin by

considering how to select independent gauge parameters in the bosonic case, since no

relevant changes occur in the fermionic case. First of all, eq. (2.151) must be preserved

under gauge transformations, and this implies that

∂ k
(
S i

j Λ k + δ ik Λ j

)
= 0 , i < j , (2.153)

which forces the terms between parentheses to define a gauge-for-gauge transformation:

S i
j Λ k + δ ik Λ j = ∂ l Λi

[ kl ] j , i < j . (2.154)

Up to the last irrelevant term, one thus obtains a set of constraints that are conveniently

analyzed starting from the highest available value of k. In this case, in fact, i is necessarily

less than k, being constrained to be less than j, so that eq. (2.154) reduces to the more

familiar condition that the last gauge parameter in the chain, Λk, be irreducible,

S i
j Λ k = 0 . (2.155)

The remaining contributions can then be used to determine the other parameters cor-

responding to lower values of k in terms of this solution and of additional independent

ones that emerge, one for each step, from the homogeneous parts of eqs. (2.155). Let us

stress that the independent parameters solve further irreducibility conditions, and there-

fore can only exist if the corresponding Young diagrams are admissible. In conclusion,

one thus obtains an irreducible gauge parameter for each admissible Young diagram built

stripping one box from the original diagram for the gauge field, precisely as anticipated.

Furthermore, the independent parameters lead by construction to irreducible gauge trans-

formations where no explicit Young projectors are needed. The general solution of the

conditions (2.154) can be found in [41], but here we can see how this works referring to a

simple example. For instance, for an irreducible {4, 2} gauge field the conditions (2.154)

read

S 1
2 Λ 1 + Λ 2 = 0 ,

S 1
2 Λ 2 = 0 . (2.156)

To begin with, Λ1 could have three irreducible components, a {3, 2}, a {4, 1} and a {5},
while Λ2 could have a {4, 1} and a {5}. Now the second of eqs. (2.156) eliminates directly
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the {5} component of Λ2, and then the first eliminates the {5} component of Λ1. The two

{4, 1} components are then connected by the first equation, while the {3, 2} component is

a zero mode of the first equation, and as such is not constrained. In space-time notation

the conclusion is that, when adapted to an irreducible {4, 2} field, the original reducible

gauge transformation of the form (2.5) can be recast as

δ ϕµ1µ2µ3µ4 , ν1ν2 = ∂ (µ1
Λ(1){3,2}

µ2µ3µ4 ) , ν1ν2

+
(
∂ (µ1

Λ(1){4,1}
µ2µ3µ4 ) , ν1ν2 − ∂ ( ν1|Λ

(1){4,1}
(µ1µ2µ3 , µ4) | ν2 )

)
. (2.157)

Let us stress again that no explicit Young projector is needed here, since both combina-

tions are already {4, 2} projected, as one can see enlarging the cycle that contains the µ

indices to comprise also a ν index.

In full analogy, one can relate to each other the irreducible components of the (γ-)traces

of ϕ and ψ, or of F and S, simply computing the (γ-)traces of eq. (2.151) and moving to

the left the S i
j operators. For instance, for Bose fields the relevant conditions are

Sm
n Ti1j1 . . . Tipjp F +

p∑

i=1

δm( in Tjn )n

p∏

r 6=n

Tirjr F = 0 , (2.158)

that can be solved resorting to the arguments presented for eq. (2.154). These identities

should not be regarded as a mere curiosity, since they will play a crucial role in simplifying

some expressions that we shall come across in Section 4.

3 Unconstrained theory

In Section 2 we have presented second order field equations and Lagrangians for massless

Bose fields of mixed symmetry and first order field equations and Lagrangians for massless

Fermi fields of mixed symmetry. The field content was the minimal one leading to a co-

variant description, since the representations of the Lorentz group associated with Young

tableaux {s1, s2, . . .} were described via single Young-projected multi-symmetric tensors

ϕµ1... µs1 , ν1... νs2 , ...
or spinor-tensors ψ α

µ1... µs1 , ν1... νs2 , ...
. As repeatedly stressed, however, in

the formulation presented in Section 2 fields and gauge parameters must satisfy some al-

gebraic (γ-)trace constraints. In this section we shall describe how one can recover a more

conventional description, removing the constraints at the price of introducing a number of

auxiliary fields. Aside from bringing these systems closer to their “low-spin” counterparts,

this operation could well remove some complications in the treatment of these complicated

models at the interacting level. With this aim in mind, we shall present a way to forego

the need for constraints preserving as much as possible the simplicity of the construction

developed in the previous sections. Thus, we shall try to contain the enhancement of the

field content, introducing at most one auxiliary field for each constraint. To do that, we

shall follow the main lines of the strategy adopted by Francia and Sagnotti to build their

local unconstrained formulation for fully symmetric fields [42, 56, 57, 51]. This “minimal”
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procedure will lead to higher-derivative terms involving some of the new auxiliary fields,

but this does not create any problem since the extra derivatives appear in pure-gauge

contributions. At any rate, we shall also show how to remove them enlarging a bit the

field content, via additional auxiliary fields whose number only depends on the number of

index families, and not on the total number of space-time indices. These unconstrained

formulations will be obtained reexamining in a critical fashion the consequences of the

principle of gauge invariance underlying the constrained theory.

Let us close these cursory remarks by recalling that the introduction of these auxiliary

fields has another important benefit. As anticipated in the Introduction, eliminating

them in terms of the basic fields ϕ or ψ one indeed ends up with the geometrical non-

local formulation of the dynamics [48, 52, 42, 50]. While we shall not deal with this point,

we would like to stress that the formulation we are going to present is in this sense the

minimal local one allowing a contact with the higher-spin geometry.

3.1 Minimal Lagrangian formulation

In the Lagrangian theory of Section 2, the Labastida constraints can be eliminated in a

“minimal” way in two steps:

• the constraints (2.12) or (2.42) on the gauge parameters can be eliminated via the

introduction of at most one compensator field for each constraint;

• the constraints (2.29) or (2.59) on the gauge fields can be eliminated via the intro-

duction of at most one Lagrange multiplier for each constraint.

This program can be pursued following similar steps for both Bose and Fermi fields.

Nevertheless, the two types of fields will be treated separately as in Section 2, also because

Fermi fields involve again some additional subtleties related to the presence of γ-matrices.

At any rate, the reader is invited to notice the similarities between the two setups.

3.1.1 Bose fields

In Section 2 we showed that the Labastida constraints

T( ij Λ k ) = 0 (3.1)

lead to second order gauge invariant field equations. Indeed, computing the gauge varia-

tion of the Fronsdal-Labastida tensor (2.11) one obtains

δF =
1

6
∂ i∂ j∂ k T( ij Λ k ) . (3.2)

We also showed that the Labastida constraints

T( ij Tkl ) ϕ = 0 (3.3)
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lead to gauge invariant Lagrangians, since

∂ iF −
1

2
∂ j Tij F = −

1

12
∂ j∂ k∂ l T( ij Tkl ) ϕ , (3.4)

and Bianchi identities free of the “classical anomaly” appearing on the right hand-side of

eq. (3.4) guarantee the gauge invariance of the Lagrangians (2.94).

Looking at eq. (3.2), it seems that the simplest solution to overcome the constraints

(3.1) would be to introduce for each of them one auxiliary field transforming as

δ α ijk =
1

3
T( ij Λ k ) . (3.5)

This was indeed the strategy followed in [42, 56, 57, 51] in order to obtain an unconstrained

local formulation for fully symmetric Bose fields. Consistently with the notation adopted

for the gauge parameters Λ i, the auxiliary fields α ijk would carry one less space-time

index in the i-th, j-th and k-th families with respect to the gauge field ϕ. Introducing

these auxiliary fields, unconstrained gauge invariant field equations could be obtained

defining the new kinetic tensors

A ≡ F −
1

2
∂ i∂ j∂ kα ijk , (3.6)

and forcing them to vanish21. Furthermore, A would satisfy the Bianchi identities

∂ iA −
1

2
∂ j Tij A = −

1

4
∂ j∂ k∂ l C ijkl , (3.7)

where the tensors

C ijkl =
1

3

{
T( ij Tkl ) ϕ − 3 ∂ ( i α jkl ) −

3

2
∂m
(
T( ij α kl )m − Tm ( i α jkl )

)}
(3.8)

provide a gauge invariant completion of the Labastida constraints (3.3).

On the other hand, as anticipated in Section 2, the Labastida constraints (3.1) or

(3.3) are not independent. As a consequence, gauge invariant combinations of the α ijk

exist. This means that, if regarded as independent, they would not be pure-gauge fields

as the single compensator introduced for a given spin s field in [42, 56, 57, 51]. This is

however a crucial requirement, since it enables one to eliminate the auxiliary fields by

a partial gauge fixing, while still maintaining the constrained gauge symmetry needed

to force the gauge fields to propagate the proper massless modes. Before showing how

it is possible to overcome the problem, let us support these arguments by displaying

explicitly a gauge invariant combination of the α ijk. In order to do that, it is convenient

21As already recalled in the Introduction, for a spin 3 field an equation of motion of this form was

first proposed by Schwinger in [55], and independently rediscovered by Francia and Sagnotti in [48].

This result was then extended to arbitrary symmetric fields in [42]. The other papers already recalled

[56, 57, 51] present a Lagrangian extension of the non-Lagrangian field equations of the form (3.6) in the

fully symmetric case.
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to first exploit the linear dependence of the Labastida constraints on the fields. In Section

2.1.1 we have already seen an example of this fact, and in the present setup the result

shown in eq. (2.32) implies that the ϕ part of a {5, 1}-projected combination of traces

of the C ijkl tensors vanishes. On the contrary, there are no group theoretical arguments

forcing its α ijk portion to vanish as well. Moreover, if it does not vanish, it must define a

gauge invariant combination of these fields, since the C ijkl are gauge invariant. A direct

computation finally shows that the divergence terms in Y{5,1} Tmn C ijkl actually vanish,

while the gradient ones do not. In conclusion,

Y{5,1} Tmn C ijkl = −
3

2
Y{5,1} ∂

p Tmn
(
T( ij α kl ) p − Tp ( i α jkl )

)
, (3.9)

where the {5, 1} projection is applied only on the free indices and not on the dumb index

p. The combination of double traces of the α ijk fields appearing in eq. (3.9) is available in

general from two-families onward and it is gauge invariant, as the reader can verify using

its explicit expression

Y{5,1} Tmn C ijkl ∼ ∂ p
{ (

Tn( i Tjk α lm ) p + Tm( i Tjk α ln )p

)

− 2
(
Tp ( i | Tn |j α klm ) + Tp ( i | Tm |j α kln )

)
+
(
Tpn T( ij α klm ) + Tpm T( ij α kln )

)

− 2
(
T( ij Tkl αm )np + T( ij Tkl αn )mp

)
+
(
Tp ( iTjk α lm )n + Tp ( iTjk α ln )m

)}
. (3.10)

Let us close this digression by noticing that the linear dependence of the Labastida con-

straints does not manifest itself in simple mixed-symmetry models with small numbers of

space-time indices. In fact, with fewer traces of the α ijk it is not possible to obtain gauge

invariant combinations.

As we have argued before, the presence of gauge invariant combinations of the α ijk

fields definitely shows that one cannot consider them independent. The most economical

solution to the problem consists in regarding them as “composite” objects, introducing a

set of fundamental compensators that transform as

δΦ i = Λ i . (3.11)

On the other hand, the new compensators enter field equations and Lagrangians only

through their symmetrized traces, so that they can be gauged away without spoiling the

Labastida constrained gauge symmetry. For this reason, for brevity in the following we

shall often abide by the notation

α ijk ≡
1

3
T( ij Φ k ) , (3.12)

explicitly displaying the Φ dependence of the “composite compensators” α ijk only where

it is particularly relevant.

Furthermore, the Φ i compensators naturally emerge when trying to enlarge the set

of gauge transformations via a Stueckelberg-like realization of the missing unconstrained

ones. In fact, this can be done shifting the gauge field as

ϕ → ϕ − ∂ i Φ i . (3.13)
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Notice that the gradients present in eq. (3.13) imply that the compensators cannot have

the same dimension of the gauge field. This fact is at the origin of the (harmless) higher-

derivative term that appears in the new kinetic tensor of the unconstrained theory. Either

directly or via the shift (3.13), one can indeed cast it in the form

A ≡ F −
1

6
∂ i∂ j∂ k T( ij Φ k ) , (3.14)

and define the equation of motion

A = 0 , (3.15)

that is invariant under the unconstrained gauge transformations

δ ϕ = ∂ i Λ i ,

δΦ i = Λ i . (3.16)

We shall comment more on the issue of higher derivatives in Section 3.2.1, where we

shall show how to obtain a two-derivative unconstrained Lagrangian formulation for Bose

fields, joining the Φ i compensators with other auxiliary fields of the same dimension as

the gauge field ϕ. At any rate, when working with the fundamental compensators Φ i,

the C ijkl tensors appearing on the right-hand sides of the Bianchi identities (3.7) take the

simpler form

C ijkl =
1

3
T( ij Tkl ) (ϕ − ∂m Φm ) , (3.17)

as should be clear looking at the Stueckelberg method to introduce the Φ i. Furthermore,

eq. (3.12) was introduced to eliminate all gauge invariant combinations of the α ijk fields,

so that it implies

Y{5,1} Tmn C ijkl (ϕ ,Φ i ) = 0 . (3.18)

We have thus seen how to eliminate the constraints (3.1) on the gauge parameters and

we can now move on and analyze the role of the constraints (3.3) on the fields. Since

they are related to the Lagrangians, whose complexity increases with the number of index

families, let us return for a while to the fully symmetric case in order to better delineate

the strategy that we shall follow. Moreover, we shall begin by keeping the constraint

on the gauge parameter in order to focus only on the elimination of the double trace

constraint on ϕ. Using the Bianchi identity (2.26) in eq. (2.70), in this framework the

gauge variation of the Fronsdal Lagrangian can be cast in the form

δL = − 3

(
s

4

)
∂ · ∂ · ∂ · Λµ1... µs−4 ϕµ1... µs−4 λρ

λρ . (3.19)

Instead of imposing the constraint (2.25) on the gauge field, one can thus cancel it intro-

ducing a Lagrange multiplier with (s− 4) space-time indices that transforms as

δ βµ1... µs−4 = ∂ · ∂ · ∂ · Λµ1... µs−4 . (3.20)
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In fact, one can couple it to the double trace of the gauge field and add the new term to

the Fronsdal Lagrangian:

L =
1

2
ϕµ1... µs

(
Fµ1... µs

−
1

2
η (µ1µ2 Fµ3... µs )λ

λ

)

+ 3

(
s

4

)
β µ1... µs−4 ϕµ1... µs−4 λρ

λρ . (3.21)

The resulting Lagrangian contains unconstrained fields, but is still gauge invariant only

under constrained gauge transformations. One can also relax this requirement introducing

suitable compensator terms that lead to the Lagrangian22 of [56, 57, 51]. Thus, in the

fully symmetric setting a couple of auxiliary fields suffices to eliminate the constraints for

any value of the spin s.

In the mixed-symmetry case we shall now attack the problem following the same strat-

egy. To begin with, let us continue for a while to discard the terms proportional to the

constraints on the gauge parameters (3.1). As we have seen in eq. (2.82), the gauge

variation of the Labastida Lagrangian (2.94) thus reads

δ L =
N∑

p= 0

( p+ 1 ) k p+1

2 p+1
〈 Y{2p,1} Ti1j1 . . . Tipjp Λ k ,

( p+ 2 )Y{2p,1} ∂ k F
[ p ]

i1j1, ... , ipjp − ∂ lF [ p+1 ]
i1j1, ... , ipjp, kl 〉 , (3.22)

where the k p are the coefficients of eq. (2.89). In order to continue one has to identify

the unconstrained analogues of the identities (2.87) that we used at this stage in the

constrained setting. As a starting point one can consider again the multiple traces of

the Bianchi identities of eq. (2.84), but some of the manipulations that led from them to

eq. (2.87) were based on the constraints on F of eq. (2.72). These are clearly not available

here, since they were induced by the constraints on ϕ that we are eliminating. Some care

is thus in order, but it is still true that the divergence terms of eq. (2.84) can be combined

when computing a two-column projection. Thus, the {2 p, 1} projection of a product of p

traces of the Bianchi identities reads

( p+ 2 )Y{2p,1} ∂ k Ti1j1 . . . Tipjp F − Y{2p,1} ∂
l Ti1j1 . . . Tipjp Tkl F

= −
1

6
Y{2p,1} Ti1j1 . . . Tipjp ∂

l∂m∂ n T( kl Tmn ) ϕ (3.23)

To compare it with the gauge variation (3.22), one must now reconstruct the two-column

projections of the traces of F . This is the point where in Section 2.2.1 we resorted for

brevity to the constraints (2.72). On the other hand, one can notice that

Y{2p,1} ∂ k Ti1j1 . . . Tipjp F = Y{2p,1} ∂ k F
[ p ]

i1j1, ... , ipjp , (3.24)

22Actually the Lagrangians of [56, 57, 51] were presented in the far more effective index-free convention

which inspired the one that we are using to describe mixed-symmetry fields. On the other hand, the

space-time indices are here displayed in order to keep this cursory example immediately accessible.
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since all other terms in the expansion

Ti1j1 . . . Tipjp F = Y{2p} Ti1j1 . . . Tipjp F + Y{4,2p−1} Ti1j1 . . . Tipjp F + . . . (3.25)

would be annihilated by the {2 p, 1} projection. Thus, the result that was obtained via

the constraints (2.72) still holds. In a similar fashion, the presence of identical tensors

promotes the {2 p, 1} projection in the gradient term to a {2 p+1} projection comprising

also the lower index l. We can thus conclude that

( p+ 2 ) Y{2p,1} ∂ k F
[ p ]

i1j1, ... , ipjp − ∂ lF [ p+1 ]
i1j1, ... , ipjp , k l

= −
1

6
Y{2p,1} Ti1j1 . . . Tipjp ∂

l∂m∂ n T( kl Tmn ) ϕ , (3.26)

where for brevity we avoided to normal order the terms on the right-hand side. Notice that

simple considerations fix again the form of the result, even without knowing explicitly the

form taken by the projections involved. Using these identities the gauge variation (3.22)

can be eventually cast in the form

δL =
N∑

p=0

( p+ 1 ) k p+1

48
×

× 〈 ∂ ( k ∂ l ∂m | η
i1j1. . . ηipjp Y{2p,1} Ti1j1 . . . Tipjp Λ |n ) , T( kl Tmn ) ϕ 〉 . (3.27)

In analogy with the fully symmetric case, it is thus possible to deal with unconstrained

fields introducing the Lagrangians

L =
1

2
〈 ϕ ,

N∑

p=0

(−1) p

p ! ( p+ 1 ) !
ηi1j1. . . ηipjp F [ p ]

i1j1, ... , ipjp 〉

+
1

24
〈 β ijkl , T( ij Tkl ) ϕ 〉 , (3.28)

that are invariant under constrained gauge transformations provided the Lagrange multi-

pliers β ijkl transform as

δ β ijkl =
1

2

N∑

p= 0

(−1) p

p ! ( p+ 2 ) !
∂ ( i ∂ j ∂ k | η

i1j1. . . ηipjp Y{2p,1} Ti1j1 . . . Tipjp Λ | l ) . (3.29)

Indeed, let us recall that in eq. (2.30) we also saw that T( ij Tkl ) ϕ is left invariant by

constrained gauge transformations. Notice that the new term added to the Lagrangian

(2.94) enforces on-shell the Labastida constraints (3.3) via the equations of motion of the

Lagrange multipliers. Moreover, the result is consistent with that in eq. (3.20), since in

the single-family case the {2 p, 1} projections are clearly not available while the p = 0

term in the sum reproduces eq. (3.20).

The linear dependence of the Labastida constraints leads again to some subtleties: here

it induces a symmetry of the Lagrangian (3.28) under shifts of the Lagrange multipliers

of the form

δ β ijkl = ηm1n1. . . ηmknk Y oddL ijkl ,m1n1, ... ,mknk
. (3.30)
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These transformations are characterized by Y odd, that must be a Young projector associ-

ated to a tableau having an odd number of boxes in some rows. To be more concrete, let

us consider the simplest example

δ β ijkl = ηmn Y{5,1} L ijkl ,mn (3.31)

that is already visible for two-family fields, and from which all other transformations can

be extracted as particular cases. The variation of the Lagrangian (3.28) under the shifts

(3.31) is

δL =
1

48
〈 L ijkl ,mn , Y{5,1} Tmn T( ij Tkl ) ϕ 〉 , (3.32)

and vanishes on account of the repeatedly stressed properties of products of identical

Tij tensors (see for instance eq. (2.32)). A similar cancelation clearly accompanies a

generic transformation of the form (3.30). As a consequence, some combinations of traces

of the β ijkl Lagrange multipliers are left undetermined by the field equations, but they

can be anyhow gauged away exploiting the new symmetry. Moreover, this observation

also implies that part of the gauge transformations (3.29) is actually ineffective in the

Lagrangian (3.28). One could indeed normal-order eq. (3.29) commuting the ηij operators

through the divergences, and a generic term of the sum would still start with a bunch of

ηij operators. When considering the gauge variation of the Lagrangian, these act as trace

operators on T( ij Tkl ) ϕ. As we have seen, their Young projections with odd numbers of

boxes in some rows vanish. On the other hand, projections of this kind are admitted

by the terms appearing in eq. (3.29). Indeed, in general their lower family indices carry

either components that can couple to the resulting products of traces or components that

annihilate them. This can be recognized looking at the manifest symmetries of these

terms, and selecting the compatible structures according to

{2 p, 1} ⊗ {3} = {5, 2 p−1, 1} ⊕ {4, 2 p} ⊕ . . . . (3.33)

This observation will play a role in the definition of a proper Stueckelberg-like shift for

the Lagrangian theory, and more details and examples can be found in [40].

To build the Lagrangians (3.28), we revisited the gauge variation of the constrained

Lagrangians (2.94). As a consequence, the Einstein-like tensors still only contain the

projected traces of F that are not fully proportional to symmetrized double traces of ϕ.

On the other hand, if one relaxes the constraints some terms proportional to the double

traces of ϕ pop up in eq. (2.94). These are at the origin of the “classical anomalies” that

in Section 2.2.1 we canceled imposing the constraints. This observation suggests an alter-

native approach to the elimination of the constraints that leads to a different presentation

of the Lagrangians for unconstrained fields. In fact, one can directly extract the terms

proportional to T( ij Tkl ) ϕ in the Lagrangians (2.94). This can be done introducing the

quantities

F̂ [ p ]
i1j1, ... , ipjp = F [ p ]

i1j1, ... , ipjp −
1

2
∂ k∂ l Y{4,2p−1} Ti1j1. . . TipjpTkl ϕ , (3.34)
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that coincide with the two-column projected traces of F up to the terms proportional to

the symmetrized double traces of ϕ that the latter contain (see for instance eq. (B.22)).

One can eventually use them to obtain the gauge invariant Lagrangians

L =
1

2
〈 ϕ ,

N∑

p=0

(−1) p

p ! ( p+ 1 ) !
ηi1j1. . . ηipjp F̂ [ p ]

i1j1, ... , ipjp 〉

+
1

24
〈 B ijkl , T( ij Tkl ) ϕ 〉 , (3.35)

where the B ijkl are gauge invariant Lagrange multipliers enforcing on-shell the double

trace constraints. These Lagrangians are not written in terms of the multiple traces of

F but their Einstein-like tensors are manifestly self-adjoint, since they contain only the

non-trivial terms that survive in eq. (2.92) when one imposes the constraints. Since the

bare ϕ terms in eq. (3.34) can be cast in a form manifestly proportional to T( ij Tkl ) ϕ, the

new Lagrangians are clearly related to those presented in eq. (3.28) via a field redefinition

of the Lagrange multipliers. In this respect they do not introduce any real novelty, but

this different viewpoint can be of some interest nonetheless. For instance, it manifestly

shows that the complicated gauge transformation of eq. (3.29) are not an intrinsic feature,

since they can be eliminated via a judicious choice of the terms quadratic in ϕ. Finally,

notice that the new tensors entering the Lagrangians satisfy the “anomaly-free” Bianchi

identities

( p+ 2 ) Y{2p,1} ∂ k F̂
[ p ]

i1j1, ... , ipjp − ∂ l F̂ [ p+1 ]
i1j1, ... , ipjp , k l = 0 , (3.36)

as the gauge invariance of eq. (3.35) suggests.

To summarize, in eq. (3.15) we have presented non-Lagrangian field equations that

are left invariant by the unconstrained gauge transformations (3.16), while in eqs. (3.28)

and (3.35) we have presented Lagrangians for unconstrained gauge fields that are still

invariant only under constrained gauge transformations. We can now combine these two

improvements and build a fully unconstrained Lagrangian theory. As a matter of principle,

this can be done simply refining the Stueckelberg-like shift of eq. (3.13). For instance,

performing the shift

ϕ → ϕ − ∂ i Φ i ,

β ijkl → β ijkl −
1

2

N∑

p=0

k p
p+ 2

∂ ( i ∂ j ∂ k | η
i1j1 . . . ηipjp Y{2p,1} Ti1j1 . . . TipjpΦ | l ) (3.37)

in eq. (3.28), one ends up with a fully unconstrained Lagrangian, where the compensators

Φ i only appear through their symmetrized traces. The shift of the Lagrange multipliers

is crucial in order to fulfill this important condition, and it maps the β ijkl into their gauge

invariant completions. Since the Stueckelberg-like shift of ϕ has the same structure as

a gauge transformation, the Φ i portion of the β ijkl shifts cancels the terms that in the

gauge variation would be annihilated via the Bianchi identities. In fact, in the present

context they would not be expressible in terms of T( ij Φ k ). This approach makes it clear
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that a fully unconstrained Lagrangian exists, and will prove useful when dealing with its

field equations. On the other hand, it does not provide a clear hint on the structure of

the compensator terms, and further computations are needed. Since the steps involved

are exactly the same, rather than dealing with the Stueckelberg-like shifts (3.37) we shall

now fix the precise form of the compensator terms reconsidering the gauge variation of the

Lagrangian (3.28). We shall thus compensate the terms proportional to T( ij Λk ) adding

new contributions to the Lagrangian, rather than taking advantage of the constraints

(3.1).

To fix the structure of the fully unconstrained Lagrangians one can thus start from

L0 =
1

2
〈 ϕ ,

N∑

p=0

(−1) p

p ! ( p+ 1 ) !
ηi1j1 . . . ηipjp A [p ]

i1j1; ... ; ipjp 〉

+
1

8
〈 β ijkl , C ijkl 〉 , (3.38)

that correspond to eq. (3.28) up to the substitution of F with A and of T( ij Tkl )ϕ with

C ijkl. Since the tensors A and C ijkl of eqs. (3.14) and (3.17) are gauge invariant under

unconstrained gauge transformations, the gauge variation of the trial Lagrangian (3.38)

can be cast in the form

δ L = −
N∑

p= 0

k p
2 p+1

〈 Y{3,2 p−1} Ti1j1 . . . Tipjp Λ k , Y{3,2 p−1} ∂ kA
[p ]

i1j1, ... , ipjp 〉 . (3.39)

These are indeed the terms that were discarded in eq. (3.22). As we have already stressed

in Section 2.2.1, the left entries of the scalar products are proportional to T( ij Λk ) on

account of the {3, 2 p−1} projection that they carry. However, we now have to refine

this argument, since we must identify the precise relation to compensate them adding

new terms to the Lagrangians. The needed techniques are similar to those adopted to

manipulate the two-column projections of the traces of the Bianchi identities. On the other

hand, the chain of steps leading to the result is more involved, and in the following we

shall only quote the final result. The interested reader can find more details in Appendix

C. At any rate, these manipulations recast the gauge variation (3.39) in the form

δL = −
N∑

p= 0

p k p
2 p+1( p+ 2 )

〈 Ti1j1 . . . Tipjp Λ k , ∂ ( kA
[ p ]

i1j1 ), i2j2 , ... , ipjp 〉 , (3.40)

where now only symmetrized traces of the gauge parameters appear. This suffices to

identify the structure of the fully unconstrained Lagrangians

L =
1

2
〈 ϕ ,

N∑

p=0

(−1) p

p ! ( p+ 1 ) !
ηi1j1 . . . ηi pj p A [ p ]

i1j1, ... , ipjp 〉

−
1

4
〈 α ijk ,

N−1∑

p= 0

(−1) p

p ! ( p+ 3 ) !
ηi1j1 . . . ηipjp ∂ ( iA

[ p+1 ]
jk ), i1j1, ... , ipjp 〉

+
1

8
〈 β ijkl , C ijkl 〉 . (3.41)
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Notice that these Lagrangians possess the same symmetry under shifts of the Lagrange

multipliers as their counterparts in eq. (3.28). Actually, in eq. (3.18) we have seen that,

when working in terms of the compensators Φ i, the C ijkl tensors satisfy the same properties

as the combinations T( ij Tkl )ϕ.

In the previous pages we have extended the constrained Labastida framework proposing

the Lagrangians (3.28) and (3.35) for unconstrained fields still subjected to constrained

gauge transformations, and the Lagrangians (3.41) for fully unconstrained fields. We can

now close this section presenting their field equations. Those coming from the Lagrangians

(3.35) can be obtained almost by inspection, since we stressed that their Einstein-like

tensors are self-adjoint as in the constrained theory. On the other hand, the subtleties

discussed in Section 2.3 do not arise in this framework since the fields are unconstrained.

The equations of motion following from the Lagrangian (3.35) thus read

Eϕ :
N∑

p=0

(−1) p

p ! ( p+ 1 ) !
ηi1j1 . . . ηi pj p F̂ [ p ]

i1j1, ... , i pj p
+

1

2
ηij ηkl B ijkl = 0 , (3.42)

EB : T( ij Tkl ) ϕ = 0 , (3.43)

where the projections that we discussed in Section 2.3 can be recovered in Eϕ via the

elimination of the B ijkl tensors. This is the first example where the removal of the

constraints simplifies, technically at least, the discussion of mixed-symmetry fields.

The equations of motion following from the Lagrangians (3.28) take a similar form,

that reads

Eϕ :
N∑

p= 0

(−1) p

p ! ( p+ 1 ) !
ηi1j1 . . . ηi pj p F [ p ]

i1j1, ... , i pj p
+

1

2
ηij ηkl B ijkl

−
1

4

N∑

p= 0

(−1) p

p ! ( p+ 1 ) !
ηi1j1 . . . ηi pj p ∂ k∂ l Y{4,2p−1} Tkl ϕ

[ p ]
i1j1, ... , i pj p

= 0 , (3.44)

Eβ : T( ij Tkl ) ϕ = 0 , (3.45)

where the B ijkl are now the combinations

B ijkl = β ijkl −
1

2

N−1∑

p= 0

(−1) p

p ! ( p+ 3 ) !
ηi1j1 . . . ηjpjp ∂ ( i ∂ j ϕ

[ p+1 ]
kl ), i1j1, ... , ipjp , (3.46)

that are invariant under constrained gauge transformations. Notice that in these expres-

sions we have extended the notation adopted for F in order to denote the two-column

projected traces of ϕ. Moreover, when combined with eq. (3.45), eq. (3.44) can be cast in

the form (3.42), so that in both cases we can effectively refer to these equations of motion.

Finally, the field equations following from the Lagrangians (3.41) can be also obtained

from eqs. (3.42) and (3.43). In fact, these Lagrangians result from the action of the
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Stueckelberg-like shifts (3.37) in eq. (3.28). One can thus identify the corresponding field

equations for ϕ and the β ijkl as

Eϕ :
N∑

p=0

(−1) p

p ! ( p+ 1 ) !
ηi1j1 . . . ηi pj p A [p ]

i1j1; ... ; i pj p
+

1

2
ηij ηkl B ijkl = 0, (3.47)

Eβ : Cijkl = 0 , (3.48)

where, barring some subtleties that we shall dwell upon in a while, the B ijkl tensors are

obtained shifting the corresponding tensors in eq. (3.46) according to eq. (3.37). Further-

more, the equations of motion for the compensators Φi must provide the conservation

conditions for external unconstrained currents that are missing in the theory with con-

strained gauge invariance. In the general mixed symmetry case they thus read

∂ iEϕ +

N∑

p=0

2

p ! ( p+ 2 ) !
ηm1n1 . . . ηmpnp Y{2p,1} Tm1n1 . . . Tmpnp

∂ j∂ k∂ l (Eβ) ijkl = 0 .

(3.49)

The equations of motion (3.47) and (3.48) can then be reduced to eqs. (3.42) and (3.43)

undoing the Stueckelberg-like shift or, more precisely, performing a partial gauge fixing

that does not spoil the Labastida constrained gauge symmetry. As a consequence, when

in Section 4.1.1 we shall discuss the reduction of these three sets of field equations to the

Labastida form F = 0 we shall only deal with eqs. (3.42) and (3.43). These indeed suffice

to capture the relevant features of all equations of motion following from the various

approaches.

A last comment is in order, since the linear dependence of the Labastida constraints

plays a role at this stage. In fact, the Stueckelberg-like shifts (3.37) map the β ijkl into

their gauge invariant completions, but we have seen that the gauge transformations (3.29)

can be redefined eliminating all terms that do not affect the Lagrangians. Only the shifts

built upon these refined transformations will lead to B ijkl tensors expressible in terms of

the combinations α ijk ( Φ ), while the “naive” form presented in eq. (3.37) does not. A

more detailed discussion supported by explicit two-family examples can be found in [40].

3.1.2 Fermi fields

In Section 2 we showed that the Labastida constraints

γ ( i ǫ j ) = 0 (3.50)

lead to first order gauge invariant field equations. Indeed, computing the gauge variation

of the Fronsdal-Labastida tensor (2.11) one obtains

δ S = −
i

2
∂ i∂ j γ ( i ǫ j ) . (3.51)

We also showed that the Labastida constraints

T( ij γ k ) ψ = 0 (3.52)
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lead to gauge invariant Lagrangians, since

∂ i S −
1

2
6∂ γ i S −

1

2
∂ j Tij S −

1

6
∂ j γ ij S =

i

6
∂ j∂ k T( ij γ k ) ψ , (3.53)

and Bianchi identities free of the “classical anomaly” appearing on the right hand-side of

eq. (3.53) guarantee the gauge invariance of the Lagrangians (2.134).

The simplest solution to eliminate the constraints (3.50) on the gauge parameters would

be again to introduce for each of them one auxiliary field transforming as

δ ξ ij =
1

2
γ ( i ǫ j ) . (3.54)

However, even in this setup the linear dependence of the Labastida constraints (3.50)

would imply the existence of gauge invariant combinations of the ξ ij fields. At any rate,

in analogy with the bosonic case, this problem can be overcame resorting to a set of

fundamental compensators transforming as

δΨ i = ǫ i . (3.55)

The constrained gauge symmetry then guarantees that the Ψ i enter field equations and

Lagrangians only through their symmetrized γ-traces. For this reason, in the following

we shall often abide by the notation

ξ ij ≡
1

2
γ ( i ǫ j ) . (3.56)

Before going on along the lines followed for bosons, let us support further these arguments

by displaying a gauge invariant combination of the ξ ij. A convenient starting point is

the combination (2.65), that displays a vanishing linear combination of γ-traces of the

constraints (3.52) on the fields ψ. Considering the gauge invariant completions of these

constraints,

Z ijk =
i

3

{
T( ij 6ψk ) − 2 ∂ ( i ξ jk ) − 6∂ γ ( i ξ jk )

− ∂ l
(
2 T( ij ξ k ) l − Tl ( i ξ jk ) − γ l ( i ξ jk )

)}
, (3.57)

one can built the same combination of γ-traces acting on the Z ijk tensors. Yet, there are

no group theoretical arguments forcing its ξ ij part to vanish, and indeed

(
γm ( iZ j ) kl + γm ( k Z l ) ij

)
− 15 Y{4,1} (Tij Z klm + Tkl Z ijm )

=
i

3
∂ n
{

8 T( ij Tkl ) ξmn − 4 Tmn T( ij ξ kl ) + 4Tm ( i | Tn | j ξ kl ) − 2 T(m | ( i Tjk ξ l ) |n )

}

+
i

3
∂ n
{

2 T( i | (m γn ) | j ξ kl ) − 2 γ (m | ( i Tjk ξ l ) |n )

}
. (3.58)

The terms on the right-hand side of this expression are available from two families onward

and define a gauge invariant combination of the ξ ij fields. In analogy with the bosonic

case, linear combinations involving a smaller number of γ-traces cannot lead to gauge
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invariant combinations of the ξ ij, so that this problem can be avoided in simple mixed-

symmetry models as in the fully symmetric case. Moreover, when the Z ijk are expressed

in terms of the independent compensators Ψ i, they clearly satisfy the same set of linear

relations as the combinations T( ij γ k ) ψ: for instance

(
γm ( iZ j ) kl + γm ( k Z l ) ij

)
− 15 Y{4,1} (Tij Z klm + TklZ ijm ) = 0 . (3.59)

Now that we have identified the needed auxiliary fields, we can introduce the new

kinetic tensors

W = S +
i

2
∂ i∂ j γ ( i Ψ j ) , (3.60)

that are invariant under the unconstrained gauge transformations

δ ψ = ∂ i ǫ i ,

δΨ i = ǫ i . (3.61)

One can then obtain gauge invariant field equations imposing

W = 0 . (3.62)

This “minimal” recipe to recover an unconstrained gauge symmetry leads again to a

higher-derivative kinetic tensor. Indeed, W contains two gradients acting on the Ψ i,

but the corresponding term is harmless since it can be gauged away without spoiling

the constrained Labastida gauge symmetry. At any rate, ordinary single derivative field

equations will be presented in Section 3.2.2 at the price of increasing a bit the number of

auxiliary fields.

Notice that the new kinetic tensors satisfy the Bianchi identities

∂ iW −
1

2
6∂ γ iW −

1

2
∂ j Tij W −

1

6
∂ j γ ijW =

i

2
∂ j∂ k Z ijk , (3.63)

where the tensors

Z ijk =
1

3
T( ij γ k )

(
ψ − ∂ l Ψ l

)
(3.64)

coincide with those previously introduced in eq. (3.57), as can be seen expressing the ξ ij
in terms of the Ψ i. Moreover, as suggested by the form taken by the Z ijk, it is also

possible to introduce the Ψ i compensators performing a Stueckelberg-like shift

ψ → ψ − ∂ i Ψ i . (3.65)

Having seen how to eliminate the constraints (3.50) on the gauge parameters, we can

move on and analyze the constraints (3.52) on the field. The strategy will be that already

delineated in the bosonic case. Relaxing the constraints (3.52), the gauge variation of

the Lagrangian (2.134) no longer vanishes, but using the Bianchi identities (3.53) one

can control the remaining terms proportional to T( ij γ k ) ψ. Rather than imposing the

Labastida constraints (3.52), these can then be canceled via the gauge variation of some
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extra terms containing a proper set of Lagrange multipliers. To identify them, let us

continue to discard the contributions that are proportional to γ ( i ǫ j ) as in Section 2.2.2.

In this fashion we can focus only on the portion of the gauge variation that is really

linked to the Labastida constraints on the fields ψ. Under this hypothesis it is again

possible to combine the two kinds of contributions appearing in eq. (2.117), as we did

in the constrained theory. Thus, we can start to reconsider the gauge variation of the

Lagrangian (2.134) from eq. (2.127), that we write again here for clarity, denoting by k p , q
the coefficients of eq. (2.130):

δL = −
N∑

p , q= 0

1

2 p+1

k p , q
( q + 3 ) ( p+ q + 2 )

〈 Ti1j1 . . . Tipjp ǭ l γ k1... kq
,

( q + 3 ) ( p+ q + 2 ) Y{2p,1q+1} ∂ l ( γ
[ q ] S [ p ] ) i1j1, ... , ipjp ; k1... kq

+ Y{2p,1q+1}

p∑

n=1

∂ ( in | ( γ
[ q+2 ] S [ p−1 ] ) ... , ir 6= njr 6= n , ... ; | jn ) l k1... kq

+ (−1) q+1 ( q + 3 ) 6∂ ( γ [ q+1 ] S [ p ] ) i1j1, ... , ipjp ; k1... kq l

− ( q + 3 ) ∂m ( γ [ q ] S [ p+1 ] ) i1j1, ... , ipjp , lm ; k1... kq

− ∂m ( γ [ q+2 ] S [ p ] ) i1j1, ... , ipjp ; k1... kq lm 〉 + h.c. . (3.66)

In order to proceed it is then necessary to identify the unconstrained analogue of eq. (2.128).

In the fermionic case this step is more subtle than its bosonic counterpart. Indeed, a

generic γ-trace Ti1j1 . . . Tipjp γ k1... kq
of the Bianchi identities (3.53) admits a couple of

two-column projections since

{2 p, 1q} ⊗ {1} = {2 p, 1q+1} ⊕ {2 p+1, 1q−1} ⊕ {3, 2 p−1, 1q} . (3.67)

While in the constrained case the constraints on S of eq. (2.100) allow to simply consider

the first of them to reach eq. (2.128), in the unconstrained case one has to combine different

consequences of the Bianchi identities in order to reproduce the terms entering eq. (3.66).

This rather involved procedure is sketched in Appendix C, but the final outcome is

( p+ q + 2 ) Y{ 2p, 1q+1} ∂ l ( γ
[ q ] S [ p ] ) i1j1, ... , ipjp ; k1... kq

+
1

q + 3
Y{ 2p, 1q+1}

p∑

n=1

∂ ( in | ( γ
[ q+2 ] S [ p−1 ] ) ... , ir 6= njr 6= n , ... ; | jn ) l k1... kq

+ (−1) q+1 6∂ ( γ [ q+1 ] S [ p ] ) i1j1, ... , ipjp ; k1... kq l − ∂m ( γ [ q ] S [ p+1 ] ) i1j1, ... , ipjp , lm ; k1... kq

−
1

q + 3
∂m ( γ [ q+2 ] S [ p ] ) i1j1, ... , ipjp ; k1... kq lm

=
i

p+ q + 3
Y{2p,1q+1}

{
( p+ 2 ) Ti1j1. . . Tipjp γ k1... kq

∂m∂ n T( lm γn ) ψ

−
1

q + 3

p∑

n= 1

p∏

r 6=n

Tirjr γ k1... kq l ( in | ∂
m∂ n

(
T | jn ) (m γn ) + Tmn γ | jn )

)
ψ

}
. (3.68)
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The complicated structure of the constraint terms on the right-hand side actually comes

from the combination of different γ-traces of the Bianchi identities. At any rate, substi-

tuting eq. (3.68) in eq. (3.66) one can identify the gauge variation of the set of Lagrange

multipliers to be added to the Lagrangian (2.134). Removing the Labastida constraints

on the fields thus leads to consider the Lagrangians

L =
1

2
〈 ψ̄ ,

N∑

p , q= 0

(−1) p+ q (q+1)
2

p ! q ! ( p+ q + 1 ) !
η p γ q ( γ [ q ] S [ p ] ) 〉

+
i

12
〈 λ̄ ijk , T( ij γ k ) ψ 〉 + h.c. , (3.69)

where we resorted to the shorthand notation of eq. (2.135). These Lagrangians are gauge

invariant under constrained gauge transformations provided the λ ijk transform as

δ λ ijk =
N∑

p , q= 0

1

p+ q + 2
ηm1n1 . . . ηmpnp γ l1... lq ×

× ∂ ( i ∂ j |

{
( p+ 2 ) k p , q
( p+ q + 3 )

Y{2p,1q+1} Tm1n1 . . . Tmpnp
γ l1... lq ǫ | k )

+
(−1) q+1 ( p+ 1 ) k p+1 , q−2

q ( q + 1 ) ( p+ q + 1 )
Y{2p+1,1q−1} Tm1n1 . . . Tmpnp

T| k ) [ l1γ l2... lq−1 ǫ lq ]

}
. (3.70)

In analogy with the bosonic case, the linear dependence of the Labastida constraints

displayed in eq. (2.65) implies the existence of a symmetry of the Lagrangians (3.69) under

shifts of the Lagrange multipliers of the type

δλ ijk = η lmM ijk, lm + γ lmN ijk; lm . (3.71)

The symmetry holds provided the M ijk, lm and N ijk; lm parameters are {4, 1} projected in

their family indices and are related according to

N ij ( k ; l )m + N kl ( i ; j )m = −
1

2
(M ijm, kl + M klm, ij ) . (3.72)

In fact, the shift (3.71) gives rise to

δ L =
i

24
〈 M̄ ijk,mn , Tmn T( ij γ k ) ψ 〉 (3.73)

−
i

12
〈 N̄ ijk;mn ,

(
γmn ( i Tjk ) − T( ij Tk ) [m γn ]

)
ψ 〉 + h.c. . (3.74)

The first scalar product can give contributions in the {5}, {4, 1} and {3, 2} representations

of the permutation group acting on the family indices. On the other hand, the first term

in the second scalar product can give contributions in the {3, 1, 1} and {2, 1, 1, 1}, and

finally the last can give contributions in the {4, 1} and {3, 1, 1}. Therefore, if the M

and N parameters are {4, 1} projected and are related to one another as in eq. (3.72),

an interesting symmetry of the Lagrangians (2.134) emerges. It manifests itself rather
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clearly when one tries to reduce the Lagrangian field equations to the Labastida form

(2.43), since all contributions that can be shifted away by (3.71) are left undetermined.

Furthermore, as in the bosonic case, an important lesson to be drawn from this symmetry

is that only part of the gauge transformation (3.70) of the Lagrange multipliers λ ijk is

effective in the variation of the Lagrangian. As we shall see in a while, this is important

when trying to extend at the Lagrangian level the Stueckelberg-like shift (3.65).

For Bose fields we also saw an alternative presentation of the Lagrangians for uncon-

strained fields. One can follow the same approach even for Fermi fields. In particular,

looking at eq. (B.26) one can recognize that the combinations

Ŝ [ p , q ]
i1j1, ... , ipjp; k1... kq

= Y{2p,1q} Ti1j1. . . Tipjpγ k1... kq
S

+ i ∂ l Y{3,2p−1,1q} Ti1j1. . . Tipjpγ k1... kql ψ , (3.75)

allow to define the Lagrangians

L =
1

2
〈 ψ̄ ,

N∑

p , q= 0

(−1) p+
q (q+1)

2

p ! q ! ( p+ q + 1 ) !
η p γ q ( γ [ q ] Ŝ [ p ] ) 〉

+
i

12
〈 Ȳ ijk , T( ij γ k ) ψ 〉 + h.c. , (3.76)

that are gauge invariant under constrained transformations even with gauge invariant

Lagrange multipliers Y ijk. Notice that the portion of the new Lagrangians containing

both ψ̄ and ψ is no more written in terms of the projected traces of S, but rather directly

in terms of the fields. As in the bosonic case, these Lagrangians are related to those in

eq. (3.69) via a field redefinition of the Lagrange multipliers, but this rewriting will prove

useful when dealing with the field equations. Furthermore, the new tensors entering the

Lagrangians satisfy “anomaly-free” Bianchi identities with the same structure as those in

eq. (2.128).

To summarize, in eq. (3.62) we have presented non-Lagrangian field equations that are

invariant under the full unconstrained gauge transformations (3.61), while in eqs. (3.69)

and (3.76) we have presented Lagrangians for unconstrained gauge fields that are still

only invariant under constrained gauge transformations. As we did for Bose fields, we can

now combine these two results and build a fully unconstrained Lagrangian theory. Again,

in principle this can be done simply refining the Stueckelberg-like shift of eq. (3.65). This

can be done defining also a proper shift of the Lagrange multipliers according to

ψ → ψ − ∂ i Ψ i ,

ζ ijk → λ ijk − ∆ ijk ( Ψ ) . (3.77)

The ∆ ijk(Ψ) that appear in eq. (3.77) can be formally obtained replacing ǫ i with Ψ i in

the gauge variation of the Lagrange multipliers λ ijk, so that the ζ ijk are mapped into

gauge invariant combinations. Performing these shifts in eq. (3.69), one ends up with a

fully unconstrained Lagrangian, where the compensators Ψ i only appear through their

symmetrized γ-traces. As for Bose fields, the shift of the Lagrange multipliers is crucial
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in order to satisfy this important condition, since it cancels the terms that would not

be expressible in terms of γ ( i Ψ j ). Again, this approach makes it clear that a fully

unconstrained Lagrangian exists but, at least at this level, it does not provide a clear hint

on the structure of the compensator terms. More work is needed to display these terms,

and to this end we shall now follow the path outlined in Section 3.1.1 for Bose fields.

Rather than dealing directly with the shifts (3.77), we shall in fact reconsider the gauge

variation of a suitable modification of the Lagrangian (3.69), compensating the terms

proportional to γ ( i ǫ k ) via the addition of new compensator terms.

A convenient starting point is thus provided by the trial Lagrangian obtained substi-

tuting S with W and T( ij γ k ) ψ with Z ijk in eq. (3.69):

L0 =
1

2
〈 ψ̄ ,

N∑

p , q=0

(−1) p+
q (q+1)

2

p ! q ! ( p+ q + 1 ) !
η p γ q ( γ [ q ] W [ p ] ) 〉

+
1

4
〈 λ̄ ijk , Z ijk 〉 + h.c. . (3.78)

The gauge variation of the first line of eq. (3.78) takes exactly the form of eq. (2.134), bar-

ring the substitution of S with W. On the other hand, since we are relaxing the constraints

(3.50) on the gauge parameters, we now have to keep the terms that in Section 2.2.2 we

discarded in going from eq. (2.114) to eq. (2.127). These can eventually be canceled by

the gauge variation of some compensator terms to be added to L0. However, differently

from the bosonic case, here the compensator terms originate from two types of remain-

ders: in fact, in the constrained theory we first eliminated the {3, 2 p−1, 1q}-projected

terms in eq. (2.114) and then we used again these constraints in order to combine the two

classes of two-column projections appearing in eq. (2.117). In the unconstrained theory

the first type of remainders can be compensated exploiting the precise dependence on

the constraints of the {3, 2 p−1, 1q} components of the Ti1j1 . . . Tipjp ǭ l γ k1... kq
combinations

appearing on the left entries of the scalar products in eq. (2.114). The precise relation is

rather involved and it is derived in Appendix C, but the end result is

〈 Y{3,2p−1,1q} Ti1j1 . . . Tipjp ǭ l γ k1... kq
, ∂ l ( γ

[ q ] W [ p ] ) i1j1, ... , ipjp ; k1... kq
〉

= 〈 ( p+ 1 ) Ti2j2 . . . Tipjp T( i1j1 ǭ l ) γ k1... kq
− Ti2j2 . . . Tipjp T [ k1 | ( l ǭ i1 γ j1 ) γ | k2... kq ] ,

p

3 ( p+ 1 )( p+ q + 2 )
∂ ( l | ( γ

[ q ] W [ p ] ) | i1j1 ), ... , ipjp ; k1... kq
〉 . (3.79)

Hence, the three-column projected terms appearing in the gauge variation of the trial

Lagrangians (3.78) can be compensated adding to them

L1 = −
1

4
〈 ξ̄ ij ,

N∑

p , q= 0

ηi1j1 . . . ηipjp γ k1... kq ×

×

{
( p+ 1 ) k p+1 , q−1

p+ q + 2
∂ ( k1 |( γ

[ q−1 ] W [ p+1 ] ) | ij ), i1j1 , ... , ipjp ; k2... kq

+
2 p ( p− 1 ) q k p , q+1

( p+ 1 ) ( p+ q + 3 )
∂ ( i1 |(γ

[ q+1 ] W [ p ]) | ij ), i2j2 , ... , ipjp ; j1 k1... kq

}
〉 + h.c. , (3.80)
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In the constrained theory we combined the remaining two-column projected terms in

eq. (2.117) using the first identity in eq. (2.123), whose unconstrained analogue is

Y{2p+1,1q−1} Ti1j1 . . . Tipjp ǭ l γ k1... kq
=

1

q + 1
Y{2p+1,1q−1} Ti1j1 . . . Tipjp T l [ k1 ǭ k2 γ k3... kq ]

−
2

q + 1
Y{2p+1,1q−1} Ti1j1 . . . Tipjp δ ξ̄ l [ k1 γ k2... kq ] . (3.81)

The gauge variation of (L0 + L1 ) thus vanishes up to the terms proportional to δ ξ ij
coming from eq. (3.81), that can be canceled by the gauge transformation of

L2 = −
1

4
〈 ξ̄ ij ,

N∑

p , q= 0

ηi1j1 . . . ηipjp γ k1... kq ×

×
2 ( q + 1 )

q + 2

{
k p , q+1 Y{2p+1,1q} ∂ ( i |( γ

[ q+1 ] W [ p ] ) i1j1 , ... , ipjp ; | j ) k1... kq

− ( p+ 1 ) k p+1 , q+1 ∂
m (γ [ q+1 ] W [ p+1 ]) i1j1 , ... , ipjp , ij ;mk1... kq

}
〉 + h.c. . (3.82)

As a consequence, our fully unconstrained Lagrangians for mixed-symmetry Fermi

fields take the form

L =
1

2
〈 ψ̄ ,

N∑

p , q= 0

(−1) p+
q (q+1)

2

p ! q ! ( p+ q + 1 ) !
η p γ q ( γ [ q ] W [ p ] ) 〉 +

1

4
〈 ξ̄ ij , Ξ ij 〉

+
1

4
〈 λ̄ ijk , Z ijk 〉 + h.c. , (3.83)

where
1

4
〈 ξ̄ ij , Ξ ij 〉 = L1 + L2 , (3.84)

and where the gauge transformations of the Lagrange multipliers are given in eq. (3.70).

Notice that the fully unconstrained Lagrangians also display a symmetry under shifts of

the Lagrange multipliers of the form (3.71). This essentially follows from eq. (3.59), that

holds when one works in terms of the independent compensators Ψ i.

Following the lines already depicted in the bosonic case, in the previous pages we

have extended the constrained framework proposing the Lagrangians (3.69) and (3.76)

for unconstrained fields that still allow only constrained gauge transformations, and the

Lagrangians (3.83) for fully unconstrained fields. We can now close this section by pre-

senting their field equations. As for Bose fields, those coming from the Lagrangians (3.76)

can be obtained almost by inspection, since these Lagrangians satisfy the identity (2.141)

as in the constrained theory. Furthermore, in this framework the fields are unconstrained,

so that the subtleties discussed in Section 2.3 are absent. The equations of motion thus

read

E ψ̄ :
N∑

p , q= 0

(−1) p+ q (q+1)
2

p ! q ! ( p+ q + 1 ) !
η p γ q ( γ [ q ] Ŝ [ p ] ) −

1

2
ηij γ k Y ijk = 0 , (3.85)

E Ȳ : T( ij γ k ) S = 0 , (3.86)
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where the projections of Section 2.3 can be recovered via the eliminations of the Y ijk

tensors from eq. (3.85). This is another example of the technical simplifications following

from the elimination of the constraints (3.52). Clearly, the equation of motion coming

from the Lagrangians (3.69) can be cast in the same form if one cancels from E ψ̄ the

terms proportional to E λ̄. The only difference is that now the Y ijk are expressed in terms

of the basic fields via the combinations

Y ijk ≡ i ζ ijk + i

N∑

p , q=0

(−1) p+ q (q+1)
2

+1

p ! q ! ( p+ q + 3 ) !
ηm1n1 . . . ηmpnp γ l1... lq ×

× ∂ ( i | ( γ
[ q ] ψ [ p+1 ] ) | jk ) , m1n1, ... ,mpnp ; l1... lq , (3.87)

that are invariant under constrained gauge transformations. Notice that in these expres-

sions we have extended to ψ the notation adopted in order to denote the two-column

projected traces of S.

Finally, even the field equations coming from the Lagrangians (3.83) can be obtained

from eqs. (3.85) and (3.86). In fact, these Lagrangians result from the action of the

Stueckelberg-like shifts (3.37) in eq. (3.69). One can thus identify the corresponding field

equations for ψ̄ and the λ̄ ijk shifting eqs. (3.85) and (3.86) into

E ψ̄ :
N∑

p , q=0

(−1) p+ q (q+1)
2

p ! q ! ( p+ q + 1 ) !
η p γ q ( γ [ q ] W [ p ] ) −

1

2
ηij γ k Y ijk = 0 , (3.88)

E λ̄ : Z ijk = 0 , (3.89)

where, barring some subtleties that we shall dwell upon in a while, the Y ijk tensors are

obtained shifting the corresponding tensors in eq. (3.87) according to eq. (3.77). Further-

more, the equations of motion for the compensators Ψ̄i must provide the conservation

conditions for external unconstrained currents that are missing in the theory with con-

strained gauge invariance. In the general mixed symmetry case they thus read

E Ψ̄ : ∂ l E ψ̄ −
N∑

p , q=0

3 ( q + 1 ) ( q + 2 ) (−1) p+
q (q+1)

2

p ! ( q + 3 ) ! ( p+ q + 3 ) !
ηi1j1. . . ηipjp γ k1... kq Y{2p,1q+1}×

×
{

( p+ 2 ) ( q + 3 ) Ti1j1 . . . Tipjp γ k1... kq
∂m∂ n (E λ̄) lmn

−

p∑

n= 1

p∏

r 6=n

Tirjr γ k1... kq l ( in | ∂
m∂ n (E λ̄) | jn )mn

}
= 0 . (3.90)

The equations of motion (3.88) and (3.89) can then be reduced to eqs. (3.85) and (3.86)

performing a partial gauge fixing that does not spoil the Labastida constrained gauge

symmetry. As a consequence, when we shall discuss the reduction of these three sets of

field equations to the Labastida form S = 0 we shall only deal with eqs. (3.85) and (3.86).

These equations indeed suffice to capture the relevant features of all those coming from

the various approaches.
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A last comment is in order, since the linear dependence of the Labastida constraints

plays a role at this stage. In fact, the Stueckelberg-like shifts (3.77) map the λ ijk into

their gauge invariant completions, but we have seen that the gauge transformations (3.70)

can be redefined eliminating all terms that do not affect the Lagrangians. Only the shifts

built upon these refined gauge transformations will lead to Y ijk tensors expressible in

terms of the combinations ξ ij ( Ψ ), while the “naive” form presented in eq. (3.77) does

not. A more detailed discussion supported by explicit two-family examples can be found

in [41].

3.1.3 Irreducible fields

As in most of Section 2, the fields considered in the previous sections were in general

only symmetric under the interchange of pairs of vector indices belonging to the same set,

but did not possess any symmetry relating different sets. They were thus reducible gl(D)

tensors or spinor-tensors. In Section 2.4 we have already seen the kinds of modifications

that emerge when dealing with irreducible fields, that are subjected to suitable Young

projections. The relations (2.154) involving the gauge parameters are still valid in the

unconstrained framework, since we did not exploit the constraints (3.50) to derive them.

In a similar fashion, the Einstein-like tensors appearing in the Lagrangians still commute

with the S i
j operators as in the constrained setup. Furthermore, the (γ-)traces of the

unconstrained kinetic tensors A or W still satisfy the same relations as the traces of the

constrained kinetic tensors F of S. For instance, in the bosonic case the identity (2.158)

simply becomes

Sm
n Ti1j1 . . . Tipjp A +

p∑

i=1

δm( in Tjn )n

p∏

r 6=n

Tirjr A = 0 . (3.91)

On the other hand, in general the irreducibility conditions (2.151) also restrict the

extra field content introduced in the previous sections. For instance, eq. (2.154) induces

an identical set of conditions on the Φ i compensators,

Sm
n Φ i + δmi Φn = 0 . (3.92)

As a consequence, the “composite” compensators α ijk satisfy the relations

Sm
n α ijk + δm( i α jk )n = 0 , (3.93)

while computing the symmetrized double traces of (2.151) and moving to the left the Sm
n

operator one can obtain the relations satisfied by the C ijkl tensors. These induce identical

conditions on the Lagrange multipliers, so that

Sm
n β ijkl + δm( i β jkl )n = 0 . (3.94)

Similar conditions restrict the field content of the unconstrained fermionic models, so

that the Ψ i are related according to

Sm
n Ψ i + δmi Ψn = 0 , (3.95)
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while their symmetrized γ-traces satisfy

Sm
n ξ ij + δm( i ξ j )n = 0 . (3.96)

Finally, in the fermionic case the Lagrange multipliers are related according to

Sm
n λ ijk + δm( i λ jk )n = 0 . (3.97)

For further details we refer the reader to [41], where we also sketched a general procedure

for solving conditions with this structure.

3.2 Low-derivative Lagrangian formulation

In Section 3.1 we have seen how the constraints can be eliminated introducing a “minimal”

number of auxiliary fields [56, 57, 51, 40, 41], that only depends on the number of index

families and not on the total number of space-time indices carried by the gauge fields

as in the BRST-like constructions of [47, 54]. However, while the constraints on the

gauge fields were eliminated adding Lagrange multiplier terms to the Lagrangians, the

unconstrained gauge symmetry was recovered adding higher-derivative terms involving

extra compensator fields. As repeatedly stressed in the previous pages, these higher-

derivative contributions do not represent a real problem since they can be gauged away

without spoiling the Labastida constrained gauge symmetry, but they still represent an

unconventional ingredient that is absent in lower-spin examples. On the contrary, the

BRST-like constructions contain a number of auxiliary fields that grows with the “spin”,

but associate only the conventional number of derivatives even to the auxiliary fields. In

this section we would like to show that the presence of one or more of these peculiarities

is not an essential feature of higher-spin dynamics. In fact, in the following we shall

explain how to combine the good properties of both unconstrained setups, presenting a

more conventional description of the free dynamics for massless mixed-symmetry fields. It

contains again only unconstrained gl(D) (spinor-)tensors, but they have now second order

field equations and Lagrangians in the case of Bose fields and first order field equations and

Lagrangians in the case of Fermi fields. Furthermore, the field content is a bit larger with

respect to the “minimal” construction, but the number of auxiliary fields still depends

only on the number of index families. This means, for instance, that in the fully symmetric

framework four auxiliary fields suffice to obtain an ordinary Lagrangian formulation for

arbitrary higher-spin bosons and fermions.

Before moving to the details of the construction, let us recall that for fully symmetric

Bose and Fermi fields an unconstrained formulation of the free dynamics without higher-

derivative terms and with a fixed number of extra fields was first attained in [59]. It is

an interesting off-shell variant of the on-shell truncation of the “triplets” [35] of String

Field Theory [7] obtained in [42, 43] (see also [103] for some recent developments in the

“frame-like” formalism). For fully symmetric Bose fields it was then followed by the

construction of [53], that is really tailored to the compensator constructions of [56, 51].

This also stimulated the development of the formulation that was presented in [40, 41],

for both Bose and Fermi fields of mixed-symmetry, and that we are going to review.

67



3.2.1 Bose fields

The idea underlying the construction of the new unconstrained formulation is the replace-

ment of the Φ i compensators of eq. (3.11) with other fields whose dimensions are at least

as high as that of the gauge potentials ϕ. Let us stress that such fields can not be pure

gauge for this reason but, as first proposed in [53], they can be forced to vanish on shell

adding a suitable set of Lagrange multipliers to the Lagrangians.

Whether one relaxes the request for pure-gauge compensators, it is simple to construct

gauge invariant kinetic tensors similar to A but free of higher derivatives, and indeed

several options are available. However, it is less straightforward to make sure that the

resulting Lagrangians do not propagate additional degrees of freedom, and in [40] the

potential problems were discussed in some examples. On the other hand, a systematic

way to forego the constraints without introducing higher-derivative terms can be attained

refining the Stueckelberg way to enhance the gauge symmetry [40]. This procedure permits

to follow closely the steps outlined in the previous sections, and in this fashion it also

simplifies the check of its reduction to the constrained formulation. In Section 3.1.1

we have indeed seen that the kinetic tensors A of eq. (3.14) can be obtained via the

Stueckelberg-like shift

ϕ → ϕ − ∂ i Φ i , with δΦ i = Λ i . (3.98)

As we have already pointed out, this operation makes it manifest that the Φ i compensators

have higher (mass) dimensions than the gauge field, and this leads directly to the higher-

derivative term in eq. (3.14). Furthermore, the shift (3.98) maps ϕ into a gauge invariant

combination, so that arbitrary functions of ϕ become gauge invariant under its action.

However, this condition looks somehow unnatural, since our goal should be only to enhance

the constrained gauge symmetry that is already present. Indeed, only the symmetrized

traces of the Φ i compensators play a role in the minimal unconstrained construction.

Thus, even if the solution provided by the Stueckelberg-like shift (3.98) is technically very

simple, it would be more natural to map ϕ into a combination that is gauge invariant

only under the transformations that are forbidden in the constrained theory.

Actually, these two comments are related, and a proper redefinition of the shift (3.98)

naturally outlines a safe way of introducing a set of compensators with the same dimen-

sions as the gauge field. Indeed, the gauge parameters can be decomposed according

to

Λ i = Λ(t)
i + η jk Λ(p)

i , jk , (3.99)

where the Λ (t)
i satisfy the conditions

T( ij Λ (t)
k ) ≡ 0 (3.100)

while the Λ(p)
i , jk carry the full amount of gauge symmetry that one would like to add,

and are such that

T( ij | η
lm Λ (p)

| k ) , lm ≡ T( ij Λ k ) . (3.101)
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Hence, the Labastida constrained gauge transformations can be cast in the form

δ ϕ = ∂ i Λ (t)
i , (3.102)

while the gauge transformations of the form

δ ϕ = η ij ∂ k Λ (p)
k , ij (3.103)

are those we would like to allow via the introduction of a proper set of auxiliary fields.

If one accepts compensators that are not pure gauge this goal can be achieved with a

set of fields transforming as

δ θ ij = ∂ k Λ (p)
k , ij . (3.104)

They manifestly have the same dimension as the gauge potential, and one can use them

to define the Stueckelberg-like shift

ϕ → ϕ − η ij θ ij . (3.105)

The combination on the right-hand side of this expression transforms exactly like the

gauge potential under (3.102), while it is gauge invariant under (3.103). Performing the

shift (3.105) in the Fronsdal-Labastida tensor (2.11) one thus obtains the new kinetic

tensor

A θ = F −
1

2

[
(D − 2 ) ∂ i∂ j + ∂ k∂ ( iS j )

k

]
θ ij − η ij F ( θ ij ) , (3.106)

that is gauge invariant under the unconstrained gauge transformations

δ ϕ = ∂ i Λ i , (3.107)

δ θ ij = ∂ k Λ(p)
ijk , (3.108)

and where F ( θ ij ) is the Fronsdal-Labastida tensor for the θ ij. Moreover, A θ satisfies

the Bianchi identities

∂ iA θ −
1

2
∂ j T ij A θ = −

1

12
∂ j∂ k∂ l T( ij Tkl ) (ϕ− ηmn θmn ) , (3.109)

that have the same form as those emerging in the minimal formulation. As a consequence,

a gauge invariant Lagrangian for fully unconstrained fields obtains performing the shift

(3.105) in eq. (3.28), or in eq. (3.35).

This step does not conclude our analysis: one cannot gauge away the θ ij exploiting

the new gauge symmetry because their transformations (3.104) are not algebraic in the

gauge parameters. However, a possible way out of this problem was proposed for the fully

symmetric case in [53]. In that framework, a spin s boson is described in an unconstrained

fashion adding a compensator transforming as

δ θµ1... µs−2 = ∂ (µ1 Λµ2... µs−2 )λ
λ . (3.110)
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In analogy with the θ ij of the present setup, θµ1... µs−2 is not pure gauge but it can be

forced to vanish on shell via the addition of a Lagrange multiplier term of the form

χµ1...µs−2
(
θµ1... µs−2 − ∂ (µ1

αµ2... µs−2 )

)
(3.111)

The αµ1... µs−3 field entering eq. (3.111) is nothing but the pure-gauge compensator of the

minimal construction, that transforms as

δ αµ1... µs−3 = Λµ2... µs λ
λ (3.112)

and can be gauged away without spoiling the Labastida gauge symmetry. This finally

permits to effectively gauge away the θµ1... µs−2 field via the equation of motion of the

gauge invariant Lagrange multiplier χµ1...µs−2 .

The same strategy leads to consider in the present framework the Lagrangians

L =
1

2
〈 ϕ − ηmn θmn ,

N∑

p= 0

(−1) p

p ! ( p+ 1 ) !
ηi1j1. . . ηipjp A [ p ]

θ i1j1, ... , ipjp 〉

+
1

8
〈 β ijkl , T( ij Tkl ) (ϕ − ηmn θmn ) 〉 + 〈 χ ij , θ ij − ∂ k Π lmn

ijk α lmn(Φ) 〉 , (3.113)

that can be obtained shifting the ϕ fields in eq. (3.28) according to eq. (3.105) and adding

a new set of gauge invariant Lagrange multipliers χ ij . They play the same role as the

χµ1...µs−2 multiplier introduced in the previous example and relate each θ ij compensator to

the combination of the pure-gauge compensators Ψ i displaying the same gauge transfor-

mation. As a consequence, this Lagrangian is invariant under the gauge transformations

that we already defined, and that we collect again here for the sake of clarity:

δ ϕ = ∂ i Λ i ,

δ θ ij = ∂ k Λ(p)
k , ij ,

δ α ijk =
1

3
T( ij Λ k) ,

δ β ijkl =
1

2

N∑

p= 0

(−1) p

p ! ( p+ 2 ) !
∂ ( i ∂ j ∂ k | η

i1j1. . . ηipjp Y{2p,1} Ti1j1 . . . Tipjp Λ(t)
| l ) ,

δ χ ij = 0 . (3.114)

Notice that the Π lmn
ijk appearing in eq. (3.113) is the projector defining the solution of

eq. (3.101) for Λ(p)
ijk in the form

Λ(p)
ijk = Π lmn

ijk T ( lm Λn ) . (3.115)

Computing the projector Π lmn
ijk represents the main technical difficulty of this construction,

and indeed we cannot display an explicit closed form for it in the general case, although

it is rather straightforward, if lengthy, to compute it explicitly in specific cases of interest.
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Thus, for instance, in the fully symmetric case the explicit relation between Λ (p) and the

full gauge parameter Λ is

Λ(p) =

[ s−3
2

]∑

k=0

(−1) k k !
∏k

i=0

∑i
j=0 [D + 2 (s − 2 j − 3)]

η k Λ [k+1] , (3.116)

where Λ [k+1] denotes the (k+ 1)-th trace of Λ and η k is a product of k Minkowski metric

tensors written with unit overall normalization and with the minimal number of terms

needed to be totally symmetric.

Finally, the reduction of the equations of motion to the Fronsdal-Labastida form F = 0

would result from steps similar to those needed for the minimal higher-derivative La-

grangians. Indeed, the fields θ ij and Φ i can be gauged away simultaneously, while the

Lagrange multipliers β ijkl and χ ij can be expressed in terms of the physical field ϕ by

the equations for ϕ and θ ij , respectively. Clearly this last statement holds up to the

already discussed symmetries of the Lagrangians (3.113) under shifts of the Lagrange

multipliers β ijkl. Furthermore, this construction can be adapted to describe irreducible

fields following the same lines sketched for the minimal case in Section 3.1.3.

3.2.2 Fermi fields

The extension of the previous results to mixed-symmetry fermions proceeds exactly along

the same lines: to begin with, in the gauge variation (2.39) of the field ψ,

δ ψ = ∂ i ǫ i , (3.117)

one should isolate the contribution to the gauge parameters that is to vanish in the

constrained theory. To this end, let us consider the decomposition

ǫ i = ǫ (t)
i + γ k ǫ (g)

i ; k , (3.118)

where

γ ( i ǫ
(t)

j ) ≡ 0 ,

γ ( i γ
k ǫ (g)

j ) ; k ≡ γ ( i ǫ j ) . (3.119)

In this fashion, the parameters ǫ (g)
i ; k embody precisely the gauge freedom that is absent in

the Labastida formulation, and that we would like to allow here without introducing new

fields whose dimensions differ from that of ψ. Guided by the solution of the problem for

Bose fields presented in the previous section, we are thus led to introduce new compensator

fields σ k such that

δ σ k = ∂ l ǫ (g)
l ; k . (3.120)

Notice that we have to give up again pure gauge compensators in order to do that, but

this allows the redefinition

ψ → ψ − γ k σ k (3.121)
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of the field ψ, that has the virtue of identifying a combination of fields possessing the

same gauge transformation as the constrained Labastida field under variations involving

unconstrained gauge parameters. As we already observed, this is to be contrasted with

the Stueckelberg shift (3.65). It is then possible to verify that, after the substitution

(3.121), the Labastida tensor (2.41) takes the form

Wσ = S + i
[
(D − 2 ) ∂ j + 2 ∂ i S j

i

]
σ j + γ k S ( σ k ) , (3.122)

where

S (σ k ) = i ( 6∂ σ k − ∂ j γ j σ k ) (3.123)

is the Fang-Fronsdal-Labastida tensor for the σ k, and where, let us reiterate, no higher

derivatives appear, precisely because the compensators σ k have the same physical dimen-

sion as ψ.

The Bianchi identities for Wσ,

∂ iWσ −
1

2
6∂ γ iWσ −

1

2
∂ j Tij Wσ −

1

6
∂ j γ ijWσ

=
i

6
∂ j∂ k T( ij γ k ) (ψ − γ l σ l ) , (3.124)

take a particularly nice form, as should be clear recalling eq. (3.121).

One can thus follow a relatively straightforward route to a Lagrangian based on the

tensor (3.122), starting from the Lagrangian defined by eq. (3.69), where the constraints

on the symmetrized triple γ-trace of ψ are enforced by Lagrange multipliers. Since (3.69) is

gauge invariant under constrained gauge transformations, by construction it will become

gauge invariant under unconstrained ones if one performs everywhere the substitution

(3.121), that leads to

L =
1

2
〈 ψ̄ + σ̄ k γ

k ,

N∑

p , q=0

(−1)
q (q+1)

2

p ! q ! ( p+ q + 1 ) !
η p γ q ( γ [ q ] W [ p ]

σ ) 〉

+
i

12
〈 λ̄ ijk , T( ij γ k ) (ψ − γ l σ l ) 〉 + h.c. . (3.125)

Finally, in order to guarantee that the new compensators σ k be effectively pure gauge,

eq. (3.125) should be supplemented with further constraints, meant to enforce a linear re-

lation between the σ k and the compensators ξ ij (Ψ) defined in (3.56), so that the complete

Lagrangian eventually takes the form

L =
1

2
〈 ψ̄ + σ̄ k γ

k ,

N∑

p , q= 0

(−1)
q (q+1)

2

p ! q ! ( p+ q + 1 ) !
η p γ q ( γ [ q ] W [ p ]

σ ) 〉

+
i

12
〈 λ̄ ijk , T( ij γ k ) (ψ − γ l σ l ) 〉 + 〈 χ̄ k , σ k − ∂ l Π ij

kl ξ ij (Ψ) 〉 + h.c. . (3.126)

Π ij
kl is the projector allowing to express the solution of eq. (3.118) as

ǫ (g)
k ; l = Π ij

kl γ ( i ǫ j ) , (3.127)
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while the transformations that leave eq. (3.126) invariant are

δ ψ = ∂ i
(
ǫ (t)

i + γ k ǫ (g)
i ; k

)
,

δ σ k = ∂ l ǫ (g)
l ; k ,

δ ξ ij = γ ( i ǫ j ) ,

δ χ k = 0 , (3.128)

with δ λ ijk given in (3.70) after replacing ǫ with ǫ (t).

As in the bosonic case, constructing explicitly the projector Π ij
kl represents the main

technical difficulty of this construction, and we are again unable to display an explicit

closed form for it in the general case. On the other hand, it is still rather straightforward,

if lengthy, to compute it explicitly in specific cases of interest. For instance, in the fully

symmetric case the explicit relation between ǫ (g) and the full gauge parameter ǫ is

ǫ (g) =

[ s
2
]∑

n=1

ρn(D, s) η
n−1

{
6ǫ [n−1] +

1

2n
γ ǫ [n]

}
, (3.129)

with

ρn(D, s) = (− 1)n+1

n∏

k=1

1

D + 2 (s − k − 1)
. (3.130)

Here s is the tensorial rank of ψ and ǫ [n] denotes the n-th trace of ǫ, while η n denotes

a combination of products of n Minkowski metric tensors defined with unit overall nor-

malization and with the minimal number of terms needed in order to obtain a totally

symmetric expression.

Let us close the present section by noticing that this derivation of the Lagrangian

(3.126) makes it also manifest that the equations of motion reduce generically to S = 0,

since the fields σ i and Ψ i can be gauged away simultaneously, while the Lagrange multi-

pliers λ ijk and χ k can be expressed in terms of the physical field ψ by the equations for ψ̄

and σ̄ k, respectively. Clearly this last statement holds up to the already discussed sym-

metries of the Lagrangians (3.126) under shifts of the Lagrange multipliers λ ijk. Again,

this formulation can be also adapted to irreducible fields following steps similar to those

performed in the minimal case in Section 3.1.3.

4 Weyl-like symmetries

Inspired by the example of two-dimensional gravity, in Section 2.3 we identified a class

of mixed-symmetry Bose and Fermi fields with vanishing actions. This is a manifestation

of a more general phenomenon, since in low space-time dimensions field equations and

Lagrangians can display additional accidental symmetries under Weyl-like shifts of the

fields. The classification of these “pathological” cases is very interesting, since in most of

them the Lagrangian field equations display extra symmetries with respect to the non-

Lagrangian ones. Thus, the two sets of field equations are not directly equivalent, and
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in the Lagrangian setup the correct description of the free dynamics involves in a crucial

way the extra Weyl-like transformations. The rich structure displayed by two-dimensional

gravity also stimulates an effort aimed at classifying the “pathological” examples. Even

if at the free level we can only display these algebraic similarities, the analogy could well

signal some peculiar features of possible non-linear completions of these models.

Following [40, 41], in Section 4.1 we shall thus derive the conditions that identify the

mixed-symmetry models with additional Weyl-like symmetries, for both Bose and Fermi

fields. In Section 4.2 we shall then display some classes of solutions of these conditions

in the general N -family case. The results of this analysis show that the two-column Bose

fields and the single-column Fermi fields discussed in Section 2.3 are simple examples of a

rather rich set of Weyl-invariant mixed-symmetry models. Let us also anticipate that some

of these models have non-trivial actions, so that the existence of Weyl-like symmetries

and the vanishing of the action do not necessarily go in hands in the mixed-symmetry

case as in the fully symmetric setup. Indeed, in Section 4.2 we shall exhibit some simple

counterexamples to this effect.

4.1 Reduction of the Lagrangian field equations to the

Labastida form

In the fully symmetric framework, the minimal local unconstrained Lagrangian field equa-

tions of Francia and Sagnotti were shown to be generally equivalent to the Fang-Fronsdal

ones in [56]. This result was achieved computing successive traces of the equations of

motion and using them to express the Lagrange multipliers in terms of the gauge fields.

This information then enables one to set zero also the A or W tensors and their (γ-)traces

that are not directly proportional to the constraints. The other (γ-)traces are in fact di-

rectly annihilated by the field equations of the Lagrange multipliers. The elimination of

the compensators via a partial gauge fixing eventually recovers the Fang-Fronsdal form of

eqs. (2.2) or (2.37). As anticipated in Section 2.3, this procedure reduces the Lagrangian

field equations to the non-Lagrangian ones in all space-time dimensions and for all spins,

with two exceptions: the spin 2 and the spin 3/2 cases in two space-time dimensions.

As we repeatedly pointed out, the elimination of the compensators via a partial gauge

fixing does not create any problem even in the mixed-symmetry framework, but the

procedure just delineated would become rather complicated for mixed-symmetry fields.

Indeed, eq. (2.142) implies that the kinetic tensors and the gauge invariant completions

of the multipliers cannot be simply decoupled as in the fully symmetric setup, while the

rather involved structure of the quadratic portion of the Lagrangians complicates their

simultaneous treatment. On the other hand, the existence of the symmetries (3.31) and

(3.71) under shifts of the Lagrange multipliers already shows that for generic mixed-

symmetry fields some quantities are left undetermined by the Lagrangian field equations.

At the same time it suggests that the classification of the symmetries of the equations of

motions could be a more efficient way to treat the problem, and in the following we shall

proceed along this direction. The logic behind this approach will be exactly the same for
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both Bose and Fermi fields, but in the fermionic framework the proofs of some statements

in Section 4.1.2 are still missing due to the harder technical steps that they involve.

4.1.1 Bose fields

At the end of Section 3.1.1 we have seen that all field equations following from the un-

constrained Lagrangians that we presented in eqs. (3.28), (3.35) and (3.41) can be cast in

the form

Eϕ :

N∑

p= 0

(−1) p

p ! ( p+ 1 ) !
ηi1j1 . . . ηi pj p F [ p ]

i1j1, ... , i pj p
+

1

2
ηij ηkl B ijkl = 0 , (4.1)

EB : T( ij Tkl ) ϕ = 0 =⇒ T( ij Tkl ) F = 0 , (4.2)

possibly after a partial gauge fixing that eliminates the compensators Φ i. Moreover, these

conditions can also conveniently describe the field equations following from the constrained

Lagrangians (2.94). In that case the second condition holds by definition even off-shell,

while a field equation for ϕ alone is obtained eliminating the B ijkl tensors from eq. (4.1).

Let us stress that, in this respect, the equivalence between the Lagrangian field equations

and the non-Lagrangian Labastida ones

F = 0 (4.3)

must be verified even at the constrained level, as first pointed out in [39]. Rather than

adding complications, the unconstrained formulation simplifies the treatment of this prob-

lem providing the more manageable form of the field equations displayed in eq. (4.1), that

allowed the detailed discussion of [40].

To better describe the framework, let us focus for a while on the fully symmetric case.

There the field equations (4.1) and (4.2) take the simpler form

Eϕ : Fµ1... µs
−

1

2
η (µ1µ2 Fµ3... µs )λ

λ + η (µ1µ2 ηµ3µ4 Bµ5... µs ) = 0 , (4.4)

EB : ϕµ1... µs−4 λρ
λρ = 0 =⇒ Fµ1... µs−4 λρ

λρ = 0 , (4.5)

and they imply Fµ1... µs
= 0 and Bµ1... µs−4 = 0 unless s = 2 and D = 2. Even if the field

equations take a universal form in any space-time dimension, an explicit D dependence

indeed emerges when computing their traces. One can better understand its role recalling

that in the unique pathological case the combination of the kinetic tensor and its trace

appearing in eq. (4.4) becomes traceless. In the mixed-symmetry case a similar behavior

is displayed by more complicated models so that, in general, eq. (4.1) does not reduce

directly to the conditions

F = 0 , B ijkl = 0 . (4.6)

The existence of non-trivial solutions of the homogeneous equation (4.1) calls for the

existence of additional symmetries, and let us stress again that we already know an
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example of this kind. In fact, the symmetry of the Lagrangians under the shift (3.31) of

the Lagrange multipliers induces a symmetry of the field equations under shifts

δ B ijkl = ηmn Y{5,1} L ijkl ,mn (4.7)

even when the B ijkl are composite objects. For all mixed-symmetry fields carrying a

large enough number of space-time indices the field equations thus do not set to zero all

trace components of the B ijkl tensors. On the other hand, those left undetermined do

not really enter the linear combinations that are present in the equations of motion or,

equivalently, they can be gauged away exploiting the symmetry (4.7). As a result, the

leftover components are immaterial insofar as the reduction to the Labastida form (4.3)

is concerned. More explicit examples of this statement can be found in [40], where the

field equations of some simple models were reduced to the Labastida form dealing with

all their traces.

We can now classify the more interesting models where a symmetry involving also the F
portion of eq. (4.1) is present. In these cases some o (D) components of the kinetic tensors

are not forced to vanish on-shell by eq. (4.1), as the trace of the linearized Ricci tensor

is left undetermined by eq. (4.4) in D = 2. Therefore, Lagrangian and non-Lagrangian

field equations are not directly equivalent. In order to proceed toward the identification

of the pathological cases, let us remark that in these preliminary considerations we are

treating F as if it were a generic tensor. This is however not true, since it is the specific

combination of differential operators acting on the gauge field ϕ defined in eq. (2.11). This

fact has a couple of notable implications: first of all in some cases the non-Lagrangian field

equations could also display additional symmetries, and in highly pathological models the

F tensors even vanish identically23. In these examples, rather than discovering a lack

of direct equivalence of the different field equations, one can thus only identify a set of

symmetries that are common to both setups. Moreover, analyzing the symmetries of

the equations of motion we are really interested only in those that can be realized in

terms of the fields. This means that we can perform our analysis dealing directly with

the expression (4.1), but we must consider only the shift symmetries of F that can be

realized shifting ϕ. Other possible alternatives would be associated to tensors that cannot

be written in the form (2.11), and that are thus of no interest. This information can be

codified requesting that the δF transformations also preserve the Bianchi identities, that

directly follow from eq. (2.11). When enforcing the field equations (4.2) these take the

form

Bi : ∂ iF −
1

2
∂ j Tij F = 0 . (4.8)

Furthermore, we must clearly consider only the transformations that preserve also the set

of field equations (4.2), or equivalently that preserve

T( ij Tkl ) F = 0 . (4.9)

23A very simple example, even if highly degenerate, is given by a spin 1 field in one dimension, for

which the Fronsdal tensor vanishes identically.
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Thus, in the following we shall first classify the conditions that allow non-trivial shifts

of F preserving the Bianchi identities (4.8) and the constraints (4.9), and then we shall

show that all these transformations also leave invariant the field equation (4.1). We shall

finally close the circle, showing explicitly that all these F shifts can be induced by Weyl-

like transformations of the gauge field ϕ. These thus enable one to complete the reduction

of the Lagrangian field equations to the Labastida form via a partial gauge fixing, and

thus complete the proof of the equivalence of the two setups in this roundabout way. The

conditions that we are going to identify will be then discussed in Section 4.2.1, but we can

anticipate that all pathological models that we are going to present “live” in backgrounds

with dimensions D < N−2
2

, where N is the number of index families. This means that they

do not really propagate the degrees of freedom of a mixed-symmetry representation of the

Lorentz group, and actually they do not propagate any local degrees of freedom. At any

rate, this is true also for two-dimensional gravity, so that the appearance of Weyl-invariant

models in arbitrary space-time dimensions could be of some interest in the future.

Looking at eq. (4.1) one can then recognize that, if F does not vanish identically, in

principle it can admit shift symmetries of the form24

δF = ηij Ω ij , (4.10)

and we now want to classify those that also preserve the Bianchi identities. In general

under shifts of the form (4.10) these vary according to25

δBi = −
1

2
∂ j
[
(D − 2 ) Ω ij + S k

( i Ω j ) k

]
+ η jk Bi (Ω jk ) , (4.11)

where the Bi ( Ω jk ) obtain acting with the differential operator ∂ i −
1
2
∂ j Tij on the Ω jk

parameters. Thus, if the conditions

(D − 2 ) Ω ij + S k
( i Ω j ) k = 0 , (4.12)

are satisfied by non-trivial parameters Ωij that are themselves subject to the Bianchi

identities, the corresponding shift (4.10) preserve indeed eq. (4.8). Notice that the S i
j

operators already encountered in Section 2.3 and defined in detail in Appendix A play a

crucial role at this stage. Indeed, the conditions (4.12) are nothing but eigenvalue prob-

lems for the S i
j operators, parametrized by the space-time dimension D. This outcome

restates in a more precise algebraic language that, while field equations and Lagrangians

take a universal form that does not depend on the space-time dimension and on the de-

tailed Lorentz structure of the fields under scrutiny, their traces do not. They depend

explicitly on D, while we shall see that the behavior of the S i
j operators is directly related

to the Lorentz structure of the tensors on which they act. The eigenvalue problems (4.12)

24Since we are not considering the cases where F is identically zero, we are thus going to identify only

the conditions that select the models for which the Lagrangian field equations are not directly equivalent

to the non-Lagrangian ones. An exhaustive classification of the symmetries of the actions should also

take care of the highly degenerate cases where F itself vanishes.
25In this section we shall often introduce a slight abuse of notation, identifying with Bi and with

“Bianchi identities” only the left-hand side of eq. (4.8).
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will be discussed in Section 4.2.1, but let us stress that in general these conditions are only

sufficient to identify a symmetry of the Bianchi identities. In fact, the contributions that

appear in eq. (4.11) could in principle balance each other. However, one can proceed to

look for alternative solutions in an iterative manner, analyzing directly more complicated

shifts of F that involve more than one naked ηij tensor.

The most general shift transformation that one can consider is of the form

δF = ηi1j1. . . ηinjn Ω (n)
i1j1, ... , injn , (4.13)

and varies the Bianchi identities according to

δBk = −
n

2
ηi1j1 . . . ηin−1jn−1 ∂ l

[
(D − 2 ) Ω (n)

kl , i1j1, ... , in−1jn−1

+
n−1∑

r= 1

Ω (n)
ir ( k , l ) jr , ... , is6=rjs6=r, ... + Sm

( k Ω (n)
l )m , i1j1, ... , in−1jn−1

]

+ ηi1j1 . . . ηinjn Bk

(
Ω (n)

i1j1, ... , injn

)
. (4.14)

Following this recursive approach, in order to identify the models that can display addi-

tional Weyl-like symmetries one is thus led to consider all conditions of the form

(D − 2 ) Ω (n)
kl , i1j1, ... , in−1jn−1 +

n−1∑

r=1

Ω (n)
ir ( k , l ) jr, ... , is6=rjs6=r, ...

+ Sm
( k Ω (n)

l )m, i1j1, ... , in−1jn−1 = 0 . (4.15)

Their solutions depend again on the space-time dimension and on the Lorentz structure

of the involved tensors. Notice also that these conditions are all inequivalent, since the

one identified by a given value of n cannot be obtained via the redefinition

Ω i1j1, ... , in−1jn−1 → ηinjn Ω i1j1, ... , injn , (4.16)

or extracting in a similar way ηij tensors from the parameters characterized by lower

values of n. This confirms the initial motivation to come across eqs. (4.15), and one is

thus forced to deal with all these conditions in order to classify Weyl-invariant models26.

On the other hand, whenever one fixes the number of index families N , not all shifts

(4.13) compatible with the Lorentz structure of the field are expected to play a role,

simply because the constraints (4.9) imply that all combinations of N + 1 traces of F
vanish.

We can now show that the same set of conditions emerges even when one considers

the variation of the constraints (4.9) under these transformations. Let us start with the

simplest example: under the shift (4.10) the symmetrized double traces of F vary as

T( ij Tkl ) δF = T( ij |

[
(D − 2 ) Ω |kl ) + Sm

| k Ω l )m

]
+ ηmn T( ij Tkl ) Ωmn , (4.17)

26As in the first step of this analysis, the conditions (4.15) actually select only the cases where La-

grangian and non-Lagrangian field equations are not directly equivalent, while an exhaustive classification

of the symmetries of the actions should also identify all vanishing o (D) components of the F tensors.
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so that they vanish provided eq. (4.12) holds and that the parameters satisfy

T( ij Tkl ) Ωmn = 0 . (4.18)

These last conditions will not play any role when we shall look for the shift symmetries

of the equation of motion for ϕ, but they will be crucial in the identification of the

pathological models for which, let us reiterate, all field equations must possess a symmetry.

Otherwise, the quantities left undetermined by eq. (4.1) will be simply forced to vanish

by eq. (4.2).

For generic shifts of the form (4.13) it is more convenient to proceed in steps. The

traces of the F variation indeed read

Tab δF = n ηi1j1. . . ηin−1jn−1

[
D Ω (n)

ab , i1j1, ... , in−1jn−1

+

n−1∑

r= 1

Ω (n)
ir ( a , b ) jr, ... , is6=rjr 6=n, ... + S k

( a Ω (n)
b ) k , i1j1, ... , in−1jn−1

]

+ ηi1j1 . . . ηinjn Tab Ω
(n)

i1j1, ... , injn , (4.19)

and we can simplify them using the relations (4.15). In fact, the aim is to check whether

the constraints (4.9) imply additional conditions, so that we can restrict the attention

only to the cases where the conditions (4.15) are satisfied. When eqs. (4.15) hold the

traces of δF simply reduce to

Tab δF = ηi1j1. . . ηin−1jn−1

[
2n Ω (n)

ab , i1j1, ... , in−1jn−1 + ηinjn Tab Ω
(n)

i1j1, ... , injn

]
. (4.20)

Computing a further trace and using again the relations (4.15) leads eventually to

Tab Tcd δF = 2n (n− 1 ) ηi1j1. . . ηin−2jn−2×

×
[
2 Ω (n)

ab , cd , i1j1, ... , in−2jn−2 − Ω (n)
a ( c , d ) b , i1j1, ... , in−2jn−2

]

+ n ηi1j1. . . ηin−1jn−1

[
DTab Ω

(n)
cd , i1j1, ... , in−1jn−1 + 2Tcd Ω (n)

ab , i1j1, ... , in−1jn−1

− T( a | ( c Ω
(n)

d ) | b ) , i1j1, ... , in−1jn−1
+

n−1∑

r= 1

Tab Ω
(n)

ir ( c , d ) jr, ... , is6=rjr 6=n, ...

+ Tab S
k
( c Ω

(n)
d ) k , i1j1, ... , in−1jn−1

]
+ ηi1j1. . . ηinjn Tab Tcd Ω (n)

i1j1, ... , injn . (4.21)

After symmetrizing in the four family indices ( a, b, c, d ) the first group of terms vanishes

while the others combine to give

T( ab Tcd ) δF =
n

2
ηi1j1. . . ηin−1jn−1 T( ab |

[
(D − 2 ) Ω (n)

| cd ) , i1j1, ... , in−1jn−1

+
n−1∑

r= 1

Ω (n)
ir | c , d ) jr , ... , is6=rjr 6=n, ... + S k

| c Ω
(n)

d ) k , i1j1, ... , in−1jn−1

]

+ ηi1j1 . . . ηinjn T( ab Tcd ) Ω (n)
i1j1, ... , injn . (4.22)
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In conclusion, when eqs. (4.15) hold even the constraints (4.9) are preserved by a generic

shift of the form (4.13) provided the parameters also satisfy the conditions

T( ab Tcd ) Ω (n)
i1j1, ... , injn = 0 . (4.23)

We can now move on to prove that, as expected, all shifts satisfying the conditions

(4.15) also leave invariant the field equation (4.1). Let us start again from the simplest

example, in order to clarify the strategy that we are going to conform to. The shift (4.10)

varies the Einstein-like tensors (2.138) as

δ E =
N∑

p=1

(−1) p

p ! ( p+ 1 ) !
ηi1j1 . . . ηipjp [Y{2p} Ti1j1 . . . Tipjp , η

kl ] Ω kl

+

N∑

p=0

(−1) p

p ! ( p+ 1 ) !
ηi1j1 . . . ηipjp η kl

(
Y{2p} Ti1j1 . . . Tipjp

)
Ω kl . (4.24)

Taking into account the {2 p} Young projection in the family indices, the commutator

appearing in eq. (4.24) reduces to

[Y{2p} Ti1j1 . . . Tipjp , η
kl ] Ω kl

= Y{2p}

p∑

n= 1

p∏

r 6=n

Tirjr
{

(D + p− 1 ) Ω injn + S k
( in Ω jn ) k

}
, (4.25)

as can be seen resorting to the techniques repeatedly used to manipulate the traces of the

Bianchi identities in Sections 2.2.1 and 3.1.1 and to the computational rules collected in

Appendix B. Once the two-column projection of the second line of eq. (4.24) is combined

with the first, one is left with

δ E =

N∑

p=1

(−1) p

p ! ( p+ 1 ) !
ηi1j1 . . . ηipjp Y{2p}

p∑

n=1

p∏

r 6=n

Tirjr
{

(D − 2 ) Ω injn + S k
( inΩ jn ) k

}

+
N∑

p=2

(−1) p

( p ! ) 2
ηi1j1. . . ηipjp Y{4,2p−2}

p∑

n=1

(
Y{2p−1}

∏

r 6=n

Tirjr

)
Ω injn . (4.26)

The arguments used to identify the ansatz for the constrained Lagrangians in Section

2.2.1 now guarantee that the {4, 2 p−2} projection present in eq. (4.26) can be recast in

a form where the family indices carried by a pair of η tensors are fully symmetrized.

Hence, the terms in the second line can be compensated by a shift of the Bijkl, in sharp

contrast with the whole first line, that vanishes if one tries to symmetrize three or more

indices. Therefore, these terms can not be canceled redefining the Bijkl and must vanish

identically, as they indeed do if the conditions (4.12) hold. As in the previous analyses,

alternative solutions exist if the contributions appearing in the first line actually embody

at least an additional η tensor, and this leads again to consider the other shifts of the

form (4.13).
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To begin with, one can notice that the conditions (4.15) suffice to eliminate all S i
j

operators that would appear in the variation of the Einstein like-tensors. As a result,

when eqs. (4.15) hold all Ω (n) parameters that carry a Young projection with more than

two columns induce a variation of E that can be canceled by suitable B ijkl shifts. On

the other hand, for two-column projected Weyl-parameters the invariance of the field

equations under shifts satisfying eqs. (4.15) is less evident, and it rests on the precise form

of these relations rather than on the mere possibility of eliminating all S i
j operators. To

treat this problem in full generality it is convenient to introduce the notation

O (λ ) kl ij =
λ

2
δ i

( k δ l )j + S ( k
( i δ

l )
j ) . (4.27)

Restricting the attention to two-column projected parameters the conditions (4.15) then

take the form

O (D − n− 1 ) ab ij Ω (n)
ab , k1l1, ... , kn−1ln−1 = 0 , (4.28)

simply because any symmetrization over four family indices vanishes. Moreover, starting

from eq. (4.26) one can prove via a recursive argument that a shift of the form (4.13)

induces the variation

δ E =

N∑

p=n

n! k p η
i1j1. . . ηipjp Y{2p}

p∑

r1<...< rn

p∏

s 6= rq

Tisjs O (D − n− 1 ) k1l1 ir1jr1×

× O (D − n− 2 ) k2l2 ir2jr2 . . . O (D − 2n ) knln
irn jrn

Ω (n)
k1l1, ... , knln , (4.29)

up to terms that carry Young projections with more than two columns. Indeed, we have

already seen that these can be compensated by suitable B ijkl shifts and thus do not have

to vanish identically. All crucial contributions are thus displayed in eq. (4.29), whose

recursive proof can be obtained via the redefinitions

Ω (n)
k1l1, ... , knln → η ab Ω (n+1)

ab , k1l1, ... , knln , (4.30)

and noticing that they imply

O (λ ) ab ij Ω (n)
ab , k1l1, ... , kn−1ln−1 → η abO (λ− 2 ) cd ij Ω (n+1)

ab , cd , k1l1, ... , kn−1ln−1 . (4.31)

Therefore, one can move the η ab tensor to the left of the O operators using (4.31), and

then repeat the steps that led to eq. (4.26) to conclude the proof.

The expression appearing in eq. (4.29) is not normal ordered, but it is rather conve-

nient since it contains the same operator defining the conditions (4.28) that we identified

analyzing the Bianchi identities. O (D− n− 1 ) does not appear immediately on the left

of the Weyl parameter as in eq. (4.28), but one can notice that eqs. (4.28) also imply

Sm
( i Ω

(n)
j )m,kl , ... − Sm

( k Ω (n)
l )m, ij , ... = 0 (4.32)

via proper reshuffling of their indices. As a consequence, when eqs. (4.28) hold the O
operators commute since

[O (λ1 )mnij , O (λ2 ) pqkl ] Ωmn , pq , ... = Sm
( i Ω j )m, kl , ... − Sm

( k Ω l )m, ij , ... . (4.33)
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This suffices to show that the equation of motion (4.1) is left invariant by shift transfor-

mations of F of the form (4.13) provided the parameters satisfy the conditions (4.15).

In eqs. (4.15) and (4.23) we have thus identified the set of conditions that select the

“physical” shift symmetries of the field equations (4.1) and (4.2), and we can now verify

that they indeed follow from suitable Weyl-like shifts of the gauge fields. One can begin

by considering a Weyl-like transformation of the form

δ ϕ = η ij Θ ij , (4.34)

that shift the Fronsdal-Labastida tensor (2.11) as

δF =
1

2
∂ i∂ j

[
(D − 2 ) Θ ij + S k

( i Θ j ) k

]
+ η ij F (Θ ij ) . (4.35)

The F ( Ω ij ) are simply Fronsdal-Labastida tensors for the Ω ij parameters, while the

conditions that emerge commuting η ij with the derivatives are again those appearing in

eqs. (4.11), (4.17) and (4.26). As a consequence, if the equations of motion admit a shift

symmetry subject to the conditions (4.12) and (4.18), it is always possible to realize it in

the form

δF = η ij F( Θij ) (4.36)

starting from the shift (4.34) of the gauge field. Indeed, the S i
j operators commute with

the Fronsdal-Labastida ones, so that

(D − 2 )F ( Θ ij ) + S k
( i | F

(
Θ | j ) k

)
= 0 (4.37)

if the Θ ij satisfy the conditions (4.12). Furthermore, an admissible shift of the field should

clearly satisfy

T( ij Tkl ) δ ϕ = 0 . (4.38)

When eq. (4.12) holds this implies that

T( ij Tkl ) Θmn = 0 , (4.39)

and, as a consequence of eq. (2.73), this leads to

T( ij Tkl ) F (Θmn ) = 0 . (4.40)

The conditions (4.39) then imply that the Θ ij satisfy the same properties as gauge fields,

so that the F ( Θ ij ) are also subject to the Bianchi identities. In conclusion, the induced

shifts (4.36) fulfill all conditions we selected when working directly in terms of F shifts,

and they thus leave the field equations (4.1) and (4.2) invariant.

Even in this context the terms appearing in eq. (4.35) could well cancel each other,

and one is thus led to consider in a recursive fashion also shifts of the form

δ ϕ = ηi1j1 . . . ηinjn Θ (n)
i1j1, ... , injn (4.41)
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in order to classify the Weyl-like transformations that leave invariant the traceless part

of F . These affect the Fronsdal-Labastida tensor as

δF =
n

2
ηi1j1 . . . ηin−1jn−1 ∂ l

[
(D − 2 ) Θ (n)

kl , i1j1, ... , in−1jn−1

+

n−1∑

r=1

Θ (n)
ir ( k , l ) jr , ... , is6=rjs6=r, ... + Sm

( k Ω (n)
l )m, i1j1, ... , in−1jn−1

]

+ ηi1j1 . . . ηinjn F
(
Θ (n)

i1j1, ... , injn

)
, (4.42)

so that, whenever the conditions (4.15) hold, the shifts (4.13) leaving invariant the field

equations can be realized in the form

δF = ηi1j1. . . ηinjn F
(
Θ (n)

i1j1, ... , injn

)
. (4.43)

Notice that in the bosonic framework the analogy between shifts of F that preserve the

Bianchi identities and shifts of ϕ that act on F as in eq. (4.43) is easily seen. Indeed,

barring an irrelevant overall gradient, the terms of F that do not contain 2ϕ build the

same combination of differential operators that enter the Bianchi identities. On the other

hand, in the fermionic case this analogy is not so direct and these different viewpoints

will be of help in the identification of the relevant Weyl-like transformations.

4.1.2 Fermi fields

In analogy with the bosonic case, all unconstrained Lagrangians that we presented in

eqs. (3.69), (3.76) and (3.83) give rise to field equations that can be cast in the form

E ψ̄ :

N∑

p , q= 0

(−1) p+
q (q+1)

2

p ! q ! ( p+ q + 1 ) !
η p γ q ( γ [ q ] S [ p ] ) −

1

2
ηij γ k Y ijk = 0 , (4.44)

E Ȳ : T( ij γ k ) ψ = 0 =⇒ T( ij γ k ) S = 0 , (4.45)

possibly after a partial gauge fixing that eliminates the compensators Ψ i. Moreover, we

have seen that these conditions can also describe the field equations following from the

constrained Lagrangians. In that case the second condition holds by definition even off-

shell, while the field equation for ψ̄ is obtained eliminating the Y ijk tensors from eq. (4.44).

As for bosons, the equivalence of the Lagrangian field equations with the non-Lagrangian

Labastida ones

S = 0 (4.46)

must thus be verified even at the constrained level. Rather than adding complications, the

unconstrained formulation again simplifies the analysis, providing the more manageable

form of the field equations displayed in eq. (4.44).

In this respect Bose and Fermi fields display a similar behavior, since in general

eq. (4.44) does not reduce directly to the conditions

S = 0 , Y ijk = 0 . (4.47)
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The existence of non-trivial solutions of the homogeneous equation (4.44) is again equiv-

alent to the existence of additional symmetries, and even in this setting we already know

an example of this kind. Indeed, the shift symmetry (3.71) of the Lagrange multipliers

induces a symmetry of the field equations under27

δ Y ijk = η lmM ijk, lm + γ lmN ijk; lm (4.48)

even when the Y ijk are composite objects. Therefore, in general the fields equations

do not set to zero all γ-trace components of the Y ijk tensors. On the other hand, the

undetermined components do not really enter the linear combinations that are present in

the equations of motion or, equivalently, can be gauged away exploiting the symmetry

(4.48). As a consequence they are immaterial insofar as the reduction to the Labastida

form (4.46) is concerned. More explicit examples of this statement can be found in [41],

where the field equations of some simple models were reduced to the Labastida form

dealing with all their γ-traces.

As in the bosonic case, one can then move on to consider more interesting shift symme-

tries that involve also the S portion of eq. (4.44). In these cases some o (D) components of

the kinetic tensors are not forced to vanish on-shell by eq. (4.44), and thus Lagrangian and

non-Lagrangian field equations are not directly equivalent. However, even in the fermionic

framework one has to take into account that the S tensor identifies the combination of

differential operators acting on the gauge field ψ defined in eq. (2.11). As a result, in some

cases Lagrangian and non-Lagrangian field equations could share additional symmetries

and, most importantly, one has to select only the symmetries of the formal expression

(4.44) that can be realized in terms of the fields. This information can be again codified

in the request for δ S transformations that also preserve the Bianchi identities, that take

the form

Bi : ∂ i S −
1

2
6∂ γ i S −

1

2
∂ j Tij S −

1

6
∂ j γ ij S = 0 , (4.49)

when eqs. (4.45) hold. Furthermore, the relevant S shifts must also preserve the con-

straints

T( ij γ k ) S = 0 . (4.50)

In principle one should then analyze these conditions following an iterative procedure

similar to that developed for Bose fields. On the other hand, in the present framework

this would involve a number of technical difficulties. For this reason, we shall present here

a detailed analysis of this kind only for the first level of the iteration. For the successive

levels we are going to discuss only the variations of the S tensors induced by the Weyl-like

transformation of the fields. These identify a set of conditions that should naturally lead

to symmetries of the actions, and for some partial checks of this conjecture we refer the

reader to [41]. There the two-family case is discussed in full detail, and for N -family fields

some additional checks are presented in Appendix D. In spite of the sharp differences at

the technical level, let us stress that no substantial differences with respect to the bosonic

27In order to lead to a symmetry of the equations of motion, the M ijk, lm and N ijk; lm parameters must

be {4, 1} projected and must be related between each other as in eq. (3.72).
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setup are expected to be met in the fermionic one. For instance, in Section 4.2.2 we

shall show that the conditions we are going to treat admit solutions very similar to those

emerging for Bose fields. In particular, let us anticipate that we shall present a rather

rich set of Weyl-invariant models, that all “live” in D < N−2
2

space-time dimensions and

do not propagate any local degrees of freedom.

The discussion of Section 4.1.1 thus suggests to begin by considering Weyl-like trans-

formations

δ ψ = γ i Θ i , (4.51)

that give rise to a variation of the Fang-Fronsdal-Labastida tensor (2.41) of the form

δ S = − i ∂ k
[
(D − 2 ) Θ k + 2S l

k Θ l

]
− γ k S ( Θ k ) . (4.52)

As in the bosonic case, the formal expression (4.44) in principle can admit shift symmetries

of the type28

δ S = γ i Ω i , (4.53)

so that one is led to consider the conditions

(D − 2 ) Θ i + 2S j
i Θ j = 0 (4.54)

in order to select fields that are good candidates to display an extra symmetry of the

action. In these cases one can indeed identify the Ω i of eq. (4.53) with −S ( Θ i ) and,

since the S i
j operators commute with S, the Ω i also satisfy eq. (4.54). In order to

fully characterize the ansatz one must also take into account that the Weyl-like gauge

transformations must preserve the triple γ-trace constraints, so that

T( ij γ k ) δ ψ = T( ij |

[
(D − 2 ) Θ |k ) + 2S l

| k ) Θ l

]
− γ l T( ij γ k ) Θ l (4.55)

must vanish. When eq. (4.54) holds this only implies the additional conditions

T( ij γ k ) Θ l = 0 , (4.56)

that in analogy with the bosonic case induce similar conditions on the Ω i via eq. (2.101).

We can now verify that Weyl-like transformations of the form (4.51) satisfying the

conditions (4.54) and (4.56) leave invariant the equations of motion. In the E Ȳ case

eq. (4.55) already suffices to conclude that this is true, while in the E ψ̄ case more work is

needed. On the other hand, we are dealing with δ S transformations that can be expressed

as S ( γ i Θ i) on account of eq. (4.52), and that preserve the constraints (4.50) on account

of eq. (4.55). As a result, they must preserve the Bianchi identities as well, and a direct

check indeed gives

δBi = −
1

2
6∂
[
(D − 2 ) Ω i + 2S j

i Ω j

]

−
1

6
∂ j γ [ i |

[
(D − 2 ) Ω | j ] + 2S k

| j ] Ω k

]
+ γ j Bi ( Ω j ) . (4.57)

28As in the bosonic case, we are discarding here the cases in which S vanishes identically. This analysis

is thus aimed to select the cases where Lagrangian and non-Lagrangian field equations are not directly

equivalent.
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As usual, the Bi ( Ω j ) denote the Bianchi identities for the parameters Ω j, that clearly

vanish when Ω i = −S ( Θ i) and the constraints (4.56) are satisfied. Since the Bianchi

identities provide the frame for the structure of the Rarita-Schwinger-like tensors E of

eq. (2.140), the existence of a symmetry of the field equation (4.44) is thus really expected.

In order to finally prove this statement one can verify that the transformation (4.51) shifts

E as

δ E =

N∑

p , q= 0

k p , q η
i1j1. . . ηipjp γ k1... kq [Y{2p,1q} Ti1j1. . . Tipjp γ k1... kq

, γ l ] (−1) q+1 Ω l

+
N∑

p , q= 0

(−1) q k p , q η
i1j1. . . ηipjp γ k1... kq γ l Y{3,2p−1,1q}

(
Y{2p,1q} Ti1j1. . . Tipjp γ k1... kq

)
Ω l

+
N∑

p , q= 0

(−1) q q

p+ 1
k p , q η

i1j1. . . ηip+1jp+1γ k1... kq−1Y{2p+1,1q−1}

p+1∑

n= 1

p∏

r 6=n

Tirjrγ k1... kq−1 ( in Ω jn )

+

N∑

p , q= 0

(−1) q

q + 1
k p , q η

i1j1. . . ηipjp γ k1... kq+1 Y{2p,1q+1} Ti1j1 . . . Tipjp γ [k1... kq
Ω kq+1 ] . (4.58)

When one considers the variation of the full equation of motion (4.44), the second line in

eq. (4.58) can be compensated by Ω-dependent shifts of the Y ijk tensors, on account of its

three-column projection. On the contrary, the other three lines should vanish directly, as

they indeed do provided they combine to rebuild the analogue of the conditions (4.54). To

proceed one can prove that, taking into account the two-column projection in the family

indices, the (anti-)commutators reduce to

[Y{2p,1q} Ti1j1 . . . Tipjp γ k1... kq
, γ l ] (−1)q+1 Ω l = Y{2p,1q}

p∑

n= 1

p∏

r 6=n

Tirjr γ k1... kq ( in Ω jn )

+ Y{2p,1q} Ti1j1 . . . Tipjp γ [k1... kq−1 |

{
(D + p+ q − 1 ) Ω |kq ] + 2S l

| kq ] Ω l

}
. (4.59)

Substituting this identity in eq. (4.58) and combining the terms containing the same

invariant tensors finally gives

δ E =

N∑

p , q=0

k p , q η
i1j1 . . . ηipjp γ k1... kq ×

× Y{2p,1q} Ti1j1 . . . Tipjp γ [k1... kq−1 |

{
(D − 2 ) Ω |kq ] + 2S l

| kq ] Ω l

}
+ . . . , (4.60)

where we have omitted the third line of eq. (4.58), since we have already stressed that

proper shifts of the Y ijk tensors can cancel it. This concludes the proof that all Weyl-

like transformations (4.51) satisfying the conditions (4.54) and (4.56) leave invariant the

equations of motion (4.44) and (4.45).

On the other hand, in analogy with the bosonic framework, the contributions appearing

in eq. (4.52) could in principle cancel each other, rather than vanish independently. As

anticipated, one should then recursively consider all Weyl-like transformations

δ ψ = ηi1j1. . . ηinjn γ k1... km Θ (n ,m )
i1j1, ... , injn; k1... km

, (4.61)
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together with the conditions that lead to corresponding F shifts of the form

δ S = ηi1j1 . . . ηinjn γ k1... km S
(
Θ (n ,m )

i1j1, ... , injn; k1... km

)
. (4.62)

However, the explicit expression

δ S = − im ηi1j1 . . . ηinjn γ k1... km−1 ∂ l
{

(D −m− 1 ) Θ (n ,m )
i1j1, ... , injn; l k1... km−1

+

n∑

r=1

Θ (n ,m )
... , is6=rjs6=r, ... , l ( ir ; jr ) k1... km−1 + 2S q

l Θ
(n ,m )

i1j1, ... , injn; q k1... km−1

}

− i
n

m+ 1
ηi1j1 . . . ηin−1jn−1 γ k1... km+1 ∂ l Θ (n ,m )

i1j1, ... , in−1jn−1, l [ k1; k2... km+1]

+ (−1)m ηi1j1 . . . ηinjn γ k1... km S
(
Θ (n ,m )

i1j1, ... , injn; k1... km

)
(4.63)

shows that parameters carrying the same number of family indices but having different

symmetries can enter eq. (4.63) via terms that are saturated with the same combination

of invariant tensors. As a consequence, one can obtain less restrictive conditions allowing

Weyl-like transformations of the form

δ ψ =

[m
2 ]∑

n=0

ηi1j1 . . . ηinjn γ k1... km−2n Θ (n ,m−2n )
i1j1, ... , injn; k1... km−2n

, (4.64)

that affect S according to

δ S =

[m
2 ]∑

n=0

ηi1j1 . . . ηinjn γ k1... km−2n S
(
Θ (n ,m−2n )

i1j1, ... , injn; k1... km−2n

)
, (4.65)

provided the chains of n-dependent conditions

n+ 1

(m− 2n− 1 ) (m− 2n )
Θ (n+1 ,m−2(n+1) )

i1j1, ... , injn, l [ k1 ; k2... km−2n−1 ]

+ (D −m+ 2n− 1 ) Θ (n ,m−2n )
i1j1, ... , injn; l k1... km−2n−1

+
n∑

r=1

Θ (n ,m−2n )
... , is6=rjs6=r, ... , l ( ir ; jr ) k1... km−2n−1

+ 2S q
l Θ

(n ,m−2n )
i1j1, ... , injn; q k1... km−2n−1 = 0 (4.66)

hold for the allowed values of m. It is thus natural to conjecture that the conditions (4.66)

select models whose actions display Weyl-like symmetries when these are supplemented

by the conditions

T( ab γ c ) Θ (n ,m )
i1j1, ... , injn; k1... km

= 0 . (4.67)

Nevertheless, the explicit check that these transformations actually leave invariant the

equations of motion (4.44) and (4.45) is a non-trivial technical task, that will not be

treated here. In Section 4.2.2 we shall only show that for fully antisymmetric fermions
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one of the m-dependent relations (4.66) admits solutions in the space-time dimensions

where the action vanishes. This is a good check because in these cases the S tensor does

not vanish, so that the Lagrangian can be a total derivative only if it coincides with a

vanishing o (D) component of the kinetic tensor. This implies the existence of a shift

symmetry of the field equations, that should be recovered by this analysis. Moreover, a

detailed treatment of all transformations of the form (4.64) with up to four family indices

can be found in [41]. They suffice to classify all Weyl-like symmetries emerging in the

two-family case, and this selected the bound on the number of family indices. Further

steps toward a proof of this conjecture are also presented in the Appendix D of [41], but

the final answer is still missing.

4.2 Pathological cases

We can now take a closer look at the conditions identified in Section 4.1 that select the

models with additional Weyl-like symmetries. For both Bose and Fermi fields one is facing

eigenvalue problems for the S i
j operators, but whose solutions are to be subjected to fur-

ther conditions arising from the constraints (4.9) or (4.50). For the reader’s convenience,

let us thus recall here the definition of the S i
j operators already introduced in Section

2.3:

S i
j ϕ ≡ ϕ... , (µi

1... µ
i
si
| , ... , |µi

si+1 )µj
1... µ

j
sj−1 , ...

. (4.68)

As shown in Appendix A, these operators generate a gl(N) algebra if N index families are

present, and introducing a proper dictionary this enables to treat the eigenvalue problems

resorting to rather standard techniques. In particular, we shall see that a substantial

progress in the classification of the solutions can be attained only exploiting the properties

of the gl(2) subalgebras generated by the operators S i
j, S

j
i, S

i
i and S j

j with fixed family

indices i and j. As a consequence, in this section no summations over the indices are left

implicit. In dealing with these gl(2) subalgebras it is convenient to turn to the notation

L
(ij)
+ = S i

j , L
(ij)
− = S j

i , L
(ij)
3 =

1

2

(
S i

i − S j
j

)
, i < j , (4.69)

that readily recovers the angular momentum algebra

[L
(ij)
3 , L

(ij)
± ] = ±L

(ij)
± , [L

(ij)
+ , L

(ij)
− ] = 2L

(ij)
3 . (4.70)

Moreover, looking at eqs. (4.68) or (A.6), one can recognize that S i
i and S j

j act diagonally

on any given tensor or spinor-tensor of rank (s1, . . . , sN). For instance,

S i
i ϕ = si ϕ , S j

j ψ = sj ψ . (4.71)

Hence, also L
(ij)
3 acts diagonally on arbitrary tensors or spinor-tensors, with eigenvalues

m ij =
si − sj

2
. (4.72)

Notice that the spinor index does not play any role in these relations. Actually, all

techniques that we are going to present only deal with the vector indices carried by the
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fields, so that in the following we shall often explicitly refer only to ϕ. However, in Section

4.2.2 all results will be transferred verbatim to the fermionic framework.

In order to proceed, it is convenient to split the problems into combinations of simpler

ones, expanding in bases on which the “total angular momentum” L2
ij acts diagonally.

For instance, a gauge field ϕ of rank (s1, . . . , sN) can be decomposed according to

ϕ =

sj∑

n= 0

ϕ {si+sj−n, n} , (4.73)

where the various components are characterized by the same L
(ij)
3 eigenvalue, that is

fixed by the rank of ϕ to be that displayed in eq. (4.72). On the other hand, the terms

ϕ {si+sj−n, n} can be related to null eigenvectors of L
(ij)
+ via the standard descent relations

ϕ {si+sj−n, n} = (L
(ij)
− ) sj−n ϕ̂ {si+sj−n, n} , L

(ij)
+ ϕ̂ {si+sj−n, n} = 0 , (4.74)

so that they are all eigenvectors of L2
ij , but in general with different eigenvalues ℓ ij. The

ϕ̂ that lie at the tips of the chains are irreducible when considering the permutation group

acting only on the i-th or j-th index families since they satisfy eq. (2.151) with fixed i

and j. Indeed, they are annihilated by L
(ij)
+ , so that a vanishing result obtains if one

tries to extend the symmetrization beyond the i-th family. However, the lower members

of the chains, that are built acting on the ϕ̂ with powers of L
(ij)
− , are still eigenvectors of

the corresponding Young projectors acting on the couple of index families under scrutiny.

In fact, they commute with L
(ij)
− simply because the permutation group acts irreducibly

within individual Y (ij) eigenspaces. The terms appearing in the decomposition (4.73) can

thus be directly identified as

ϕ {si+sj−n, n} ≡ Y
(ij)
{si+sj−n, n}

ϕ , (4.75)

where Y
(ij)
{si+sj−n, n}

projects ϕ on the {si + sj − n, n} irreducible representation of the

permutation group acting only on the i-th and j-th index families. All in all, the operator

L
(ij)
− L

(ij)
+ = L2

ij − (L
(ij)
3 )2 − L

(ij)
3 (4.76)

is diagonal when acting on this basis, whose members ϕ {si+sj−n, n} are characterized by

the fixed value (4.72) for m ij and by a range of values of ℓ ij,

ℓ ij (n ) =
si + sj

2
− n ,

si − sj
2

≤ ℓ ij ≤
si + sj

2
, (4.77)

so that

L
(ij)
− L

(ij)
+ ϕ {si+sj−n, n} = (n− si − 1 ) (n− sj )ϕ {si+sj−n, n} . (4.78)

Let us conclude by remarking that the decomposition (4.73) corresponds to a true de-

composition in irreducible representations of the permutation group acting on the whole

set of space-time indices only in the two-family case. This reason, together with the other
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technical simplifications that emerge in the two-family case, allowed the exhaustive treat-

ment of this class of fields, in both the bosonic [40] and the fermionic cases [41]. On the

other hand, to get a clue on the space of solutions here we shall follow an alternative path

already outlined in [41] for Fermi fields. When combined with the techniques described

in Section 2.4, the information provided by the various su(2) subalgebras (4.70) indeed

suffices to solve in the general N -family case various eigenvalue problems. Rather than

performing an exhaustive analysis, in the following we shall thus present some general

classes of solutions, in order to show the richness of the set of Weyl-invariant models in

arbitrary dimensions.

4.2.1 Bose fields

In most of this review we worked with reducible fields. The presence of more than one

family of symmetrized indices is indeed the only feature that shapes the structure of

constraints, field equations and Lagrangians. On the other hand, one can directly look

for irreducible solutions of the eigenvalue problems of Section 4.1.1, since one can clearly

decompose a reducible field in irreducible components and analyze each of them indepen-

dently. Furthermore, this approach is suggested by a simple observation. In Section 2.3

we have seen that in any space-time dimension irreducible two-column Bose fields with

Weyl-like symmetries exist, but we also know that fully symmetric bosons admit Weyl-

invariant actions only for s = 2 and in D = 2. Since all multi-symmetric fields carry a

single-row irreducible component, it is evident that the presence of Weyl-like symmetries

is intimately related to the detailed irreducible structure of the fields.

When dealing with irreducible fields, one can also take advantage of the irreducibility

conditions of eq. (2.151). In fact, they relate the parameters that enter the shifts of Section

4.1.1, and one can use them to simplify the corresponding eigenvalue problems. In order

to display this mechanism, let us consider the simplest class of Weyl-like transformations,

those of the form (4.10). As we have seen, they leave invariant the equation of motion

(4.1) provided the conditions (4.12) hold. For a field ϕ of rank (s1, . . . , sN) these give rise

to two groups of equations of the form

(D + 2 s1 − 6 ) Ω ii + 2
i−1∑

k=1

S k
i Ω ik + 2

N∑

k= i+1

S k
i Ω ik = 0 , 1 ≤ i ≤ N ,

(D + si + sj − 4 ) Ω ij +

i−1∑

k= 1

S k
i Ω jk +

j−1∑

k 6= i

S k
j Ω ik + S i

j Ω ii

+

j−1∑

k= i+1

S k
i Ω jk + S j

i Ω jj +

N∑

k= j+1

S k
( i Ω j ) k = 0 , i < j . (4.79)

The S i
j operators modify the number of space-time indices contained in the various

families, and this allows the simultaneous presence of more than one parameter in each

condition, even if they have a different rank. On the other hand, in order to preserve
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the irreducibility conditions (2.151) that project ϕ on its {s1, . . . , sN} component, the

parameters must also satisfy the relations

S k
l Ω ij + δ k( i Ω j ) l = 0 , k < l , (4.80)

that actually leave only one independent parameter for each symmetry type. This can be

seen resorting to the procedure outlined in Section 2.4 in the discussion of the structure

of the gauge transformations of irreducible fields. At any rate, let us anticipate that

these conditions suffice to “diagonalize” eqs. (4.79), reducing the identification of their

solutions to simple algebraic equations involving the space-time dimension and the rank

of the fields.

Indeed, one can directly use the relations (4.80) to simplify some of the terms in

eqs. (4.79) since for proper index choices they read

S k
i Ω jk = − Ω ij , k < i ,

S i
j Ω ii = − 2 Ω ij , i < j . (4.81)

As a result the conditions (4.79) can be cast in the form

[D + 2 s1 − 2 ( i+ 2 ) ] Ω ii + 2
N∑

k= i+1

S k
i Ω ik = 0 , 1 ≤ i ≤ N ,

[D + si + sj − ( i+ j + 3 ) ] Ω ij +

j−1∑

k= i+1

S k
i Ω jk + S j

i Ω jj

+
N∑

k= j+1

S k
( i Ω j ) k = 0 , i < j . (4.82)

If all parameters are related by eq. (4.80), even the remaining terms in the first group

of equations can be related to Ω ii, while in the second group of equations all terms can

be related to Ω ij . To this end one can act with the S k
i or S k

j operators appearing in

eq. (4.82) on some of the consequences of eq. (4.80), obtaining

S k
i S

i
k Ω ij = − S k

i Ω jk , k > i ,

S k
i S

i
k Ω ii = − 2S k

i Ω ik , k > i , (4.83)

and similar conditions with i exchanged with j. The operators on the left-hand sides are

of the form L
(ik)
− L

(ik)
+ and, as we have already seen, standard “angular momentum” tech-

niques imply that they act diagonally on eigenvectors of L2
ik. Furthermore, the relations

(4.80) imply

S k
l Ω ij = 0 , k < l , k 6= i , j , (4.84)

so that the parameters appearing on the right-hand sides of eqs. (4.83) are actually eigen-

vectors of L2
ik or can be simply related to highest-weight eigenvectors. Acting with L

(ik)
−

one then remains inside the same ℓ ik multiplet. As a result, even the left-hand sides are
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eigenvectors of L2
ik with the same value of ℓ ik. In conclusion, the L

(ik)
− L

(ik)
+ operators ap-

pearing in eqs. (4.83) indeed act diagonally, and their eigenvalues can be easily computed

exploiting these considerations. For instance, for the first group of conditions (4.83),

ℓ ik ( Ω ij ) = ℓ ik ( Ω jk ) = m ik (Ω jk ) =
si − sk + 1

2
, (4.85)

while

m ik (Ω ij ) =
si − sk − 1

2
. (4.86)

One can eventually use this information to cast eqs. (4.83) in the form

( si − sk + 1 ) Ω ij = − S k
i Ω jk , i < k , k 6= j ,

( si − sk + 2 ) Ω ij = − S j
i Ω jj , i < j ,

( si − sk + 1 ) Ω ii = −S k
i Ω ik , i < k . (4.87)

When dealing with irreducible fields, the conditions (4.79) are thus equivalent to

[
D − 2 (N + 2 ) + 2

(
N∑

k= i+1

sk − (N − i− 1 ) si

)]
Ω ii = 0 , 1 ≤ i ≤ N ,

[
D − 2 (N + 2 ) +

N∑

k= i+1

sk − (N − i− 1 ) si

+
N∑

k= j+1

sk − (N − j − 1 ) sj

]
Ω ij = 0 , i < j , (4.88)

so that they reduce to a system of algebraic equations for the coefficients that multiply

the parameters. In conclusion, one can identify Weyl-invariant models simply checking

whether this homogeneous system admits solutions for proper values of the space-time

dimension D and of the si that describe the rank of the field ϕ. Before dealing with this

problem, let us recall that this analysis does not suffice to classify all Weyl-invariant mod-

els for two reasons. First of all, the manipulations that we performed to reach eqs. (4.88)

are only valid when all Ω ij are available, and then only when si ≥ 2 for 1 ≤ i ≤ N . The

other degenerate cases should be treated separately, and one should also discuss the other

eigenvalues problems of the form (4.15). In the following we shall briefly discuss some

simple solutions of these further conditions, but the scrutiny of eqs. (4.88) already suffices

to display a rich set of Weyl-invariant models in arbitrary space-time dimensions.

In the study of eqs. (4.88), one cannot forget that the irreducibility conditions (4.80)

played a crucial role in reaching this rewriting of eqs. (4.79). Therefore one has to look for

solutions that are compatible with them. For instance, the irreducibility of ϕ implies that

if a parameter Ω ij vanishes, all other parameters Ω kl with k ≥ i and l ≥ j must vanish as

well. Indeed, in principle Ω ij carries all irreducible components that are admitted by the

Ω kl with k ≥ i and l ≥ j, and eqs. (4.80) relate all contributions associated to the same

Young tableau. Thus, a Weyl-like transformation with a non-trivial ΩNN parameter must
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contain all Ω ij. We can then begin by looking for Weyl-like symmetries of this kind, since

the condition for ΩNN in (4.88) takes the simple form

D + 2 sN − 2 (N + 2 ) = 0 , (4.89)

and admits solutions for D ≤ 2N . In these cases the other equations reduce to

(
N−1∑

k= i+1

sk − (N − i− 1 ) si

)
Ω ii = 0 , 1 ≤ i ≤ N − 2 ,

(
N∑

k= i+1

sk − (N − i− 1 ) si +
N∑

k= j+1

sk − (N − j − 1 ) sj

)
Ω ij = 0 , (4.90)

where the latter hold for all i < j < N . These conditions iteratively fix the si with i < N

to be identical, so that a non-trivial solution of eqs. (4.79) exists in D = 2 (N − sN + 2 )

for all {s, . . . , s, sN}-projected fields with 2 ≤ sN ≤ N + 1 . This means that these fields

admit a shift transformation of F that leaves invariant the equation of motion (4.1) in the

corresponding space-time dimension. The irreducibility conditions (4.80) also suffice to

fix the detailed structure of this shift, since they can be inverted to relate all parameters

to ΩNN via

Ω ij =
1

( si − sj + 1 ) ( sj − sN + 2 )
S N

i S
N
j ΩNN , i < j < N ,

Ω iN = −
1

si − sN + 2
S N

i ΩNN , i < N . (4.91)

The Lorentz structure of ΩNN can be easily extracted from eqs. (4.80), since they imply

S k
l ΩNN = 0 , 1 ≤ k < l ≤ N , (4.92)

so that ΩNN is a {s, . . . , s, sN − 2}-projected tensor. In the two-family case these re-

sults agree with those obtained in the complete classification of the Weyl-like symmetries

emerging in that setup [40]. The analysis of eq. (4.1) indeed selected the candidate Weyl-

invariant models gathered in Table 1. The first column collects the models where eq. (4.1)

is left invariant by the shifts of the form (4.10) that we are considering, and contains {s, 2}
bosons in D = 4 and {s, 3} bosons in D = 2. The second column then collects the models

where eq. (4.1) is left invariant by shifts of the form (4.13) involving parameters with four

family indices.

On the other hand, in order to identify a Weyl-like symmetry of the action one must

also check whether the corresponding transformations leave invariant the field equations

(4.2). As we have seen in eq. (4.17), this means that the Ω ij parameters must also satisfy

the constraints

T( ij Tkl ) Ωmn = 0 . (4.93)

In general these conditions would simply reduce the number of independent components

of the parameters entering the shift (4.10), but in some cases they could even trivialize
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F ′ F ′′

D s1 s2 s1 s2

2 2 0

2 2 1

2 3 1

2 s 3

3 2 1 2 2

4 s 2

Table 1: Two-family irreducible bosons with Weyl-like symmetries of eq. (4.1)

it. Rather than identifying a true Weyl-like symmetry of the action, the corresponding

transformation thus only signals an accidental symmetry of the formal expression (4.1).

In order to clarify this statement let us consider a {4, 3} field in D = 2, that provides the

simplest example to this effect. Displaying explicitly the space-time indices, the candidate

Weyl-like transformation identified in the previous analysis reads

δ ϕµ1... µ4 , ν1ν2ν3 =
1

3
η (µ1µ2

Ωµ3µ4 ) ( ν1ν2 , ν3 ) −
1

3
η (n1 | (µ1

Ωµ2µ3µ4 ) | ν2 , ν3 )

+ η ( ν1ν2 |Ωµ1... µ4 , | ν3 ) , (4.94)

with a single independent {4, 1}-projected Weyl parameter. On the other hand, in D = 2

an irreducible {4, 3} field actually admits only two independent components. Denoting

the two space-time directions as 0 and 1, one can then choose them to be ϕ 0000 , 111 and

ϕ 1111 , 000, and their Weyl-like shifts (4.94) explicitly read

δ ϕ 0000 , 111 = 3 ( Ω 0000 , 1 − 2 Ω 0011 , 1 ) ,

δ ϕ 1111 , 000 = − 3 ( Ω 1111 , 0 − 2 Ω 1100 , 0 ) . (4.95)

Furthermore, the conditions (4.93) simply reduce to the double trace constraint

η λρ η δσ Ωλρδσ ; ν = 0 , (4.96)

that in components reads

− 2 Ω 1100 , 0 + Ω 1111 , 0 = 0 , Ω 0000 , 1 − 2 Ω 0011 , 1 = 0 . (4.97)

These are exactly the combinations that appear in eq. (4.95) and, as a result, a non-trivial

shift of the form (4.94) cannot preserve the constraints in D = 2. A similar behavior is

common to all {s, 3} models in two space-time dimensions, with the exception of the {3, 3}
case, where the fields are actually unconstrained. With the same strategy one can also

analyze the {s, 2} models in D = 4, but in these cases the constraints (4.93) do not suffice

to trivialize the ϕ or F shifts. Thus, for these fields the Weyl-like transformations we

have identified leave the actions invariant. In the two-family case all pathological models
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F ′ F ′′

D s1 s2 s1 s2

2 2 0

2 2 1

2 3 1

2 3 3

3 2 1 2 2

4 s 2

Table 2: Two-family irreducible bosons with Weyl-invariant actions

can be studied with this direct approach and the reader can find in Table 2 the full set of

two-family Weyl-invariant models that were identified in [40].

In conclusion, not all solutions of eqs. (4.79) that we have presented effectively identify

models that admit Weyl-like symmetries. On the other hand, one can at least select a

subclass which does, and which extends the example of two-column Bose fields of Section

2.3. In fact, a general result of representation theory (see, for instance, the first reference

in [101], §10-6) implies that, for O (n) groups, if the total number of boxes in the first

two columns of a tableau exceeds n, the corresponding traceless tensor vanishes. Thus, in

D = 2 the {4, 1}-projected parameter of eq. (4.94) does not carry a traceless component.

As a result, the constraint (4.93) can and indeed do annihilate all its components. On the

other hand, the {s}-projected parameters of the Weyl transformations of {s, 2} fields in

D = 4 carry also a traceless component, that as such cannot be affected by the constraints

(4.93). This pattern extends to the general N -family case, where the {s, . . . , s, sN − 2}-
projected Weyl parameters emerging for {s, . . . , s, sN} fields in D = 2 (N − sN + 2 ) in

general do not admit a traceless component. The only exception is provided by the class

of {s, . . . , s, 2}-projected fields in D = 2N . Therefore, their Weyl-like parameters contain

some components that cannot be affected by the constraints (4.93), and eqs. (4.2) can

be preserved by non-trivial shifts. We can thus conclude that the presence of Weyl-like

symmetries is not confined to unconstrained two-column bosons, and the paradigmatic

examples of {s, . . . , s, 2}-projected fields in D = 2N display all features of generic higher-

spin mixed-symmetry fields.

In this fashion we have shown that the conditions (4.12) admit a rather rich set of

solutions in arbitrary dimensions, and we can now show that all shifts of the form (4.13)

actually play a role. In fact, all conditions (4.15) admit at least one solution. Rather than

proposing a detailed treatment similar to that presented in the previous pages, we shall

identify simple solutions for all of them confining the attention to two-column Bose fields.

For instance, irreducible bosons of the form {2N} must display Weyl-like symmetries in

N ≤ D ≤ 2N since their actions vanish in these space-time dimensions. Indeed, let

us recall that, since F does not vanish identically, the formal expression (2.138) for the

Einstein-like tensor can vanish only if it coincides with a vanishing o (D) component of
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the kinetic tensor. Hence, the other components can be arbitrarily shifted and this is the

origin of the Weyl-like symmetries that we have to recover from the conditions (4.10) or

(4.13). In the previous analysis we have identified for this class of fields only Weyl-like

symmetries in D = 2N , and we can now show that in the other space-time dimensions

the relevant Weyl-like transformations are of the form (4.13).

Let us begin by noticing that in an algebraic language the Weyl-like transformations

are to satisfy

S k
1 Ω 1k = − Ω 11 , for k fixed and k 6= 1 , (4.98)

ore more generally

S k
1 Ω 1k , 22 , ... , pp = − Ω 11 , 22 , ... , pp , for k fixed and k > p , (4.99)

for the higher shifts of eq. (4.13). These are but simple consequences of the vanishing of

all symmetrizations over three space-time indices. As a result, the N(N+1)
2

conditions of

eq. (4.79) effectively reduce to the single equation

(D − 2 ) Ω 11 + 2

N∑

k= 2

S k
1 Ω 1k = 0 , (4.100)

and finally to

(D − 2N ) Ω 11 = 0 , (4.101)

that recovers the non-trivial solution for D = 2N that we already identified. In a similar

fashion, one can recognize that all equations of the form (4.15) are equivalent to the

conditions

(D − 2N + p− 1 ) Ω 11 , 22 , ... , pp = 0 , (4.102)

so that the p-th trace of a {2N}-projected field ϕµ1
1µ

1
2; ... ;µN

1 µ
N
2

is not determined by the

Lagrangian field equation in D = 2N − p + 1. We have thus recovered the expected

Weyl-like symmetries, but in order to do that we had to consider all available conditions

of the form (4.15). Let us stress that the presence of shift symmetries with more “naked”

invariant tensors could be expected, since lowering the number of space-time dimensions

one has to lower the rank of the Weyl-like parameter in order to allow a traceless com-

ponent for it. Nevertheless, the fact that these solutions are identified by the conditions

(4.15) is not at all obvious, since in principle they could emerge as particular solutions of

the conditions (4.12).

To summarize, even if a full classification of Weyl-invariant models in arbitrary dimen-

sions is deferred to a future work, we have identified two paradigmatic classes of examples

and we would like to briefly comment on their properties. First of all, {sN−1, 2} fields in

D = 2N and {2 p, 1q} fields in D ≤ 2 p+ q do not propagate any local degrees of freedom.

This can be seen resorting to the standard theorem that we applied to select the {sN−1, 2}
cases out of the {sN−1, sN} class. The same is true even for the other models collected

in Tables 1 and 2, that complete the full classification when only two index families are

present. It is thus reasonable to expect that we have identified a key feature of the patho-

logical models, and that the Lagrangian field equations (4.1) are directly equivalent to the
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Labastida ones (4.3) in all space-time dimensions D > N−2
2

. In fact, above this bound

N -family fields propagate the degrees of freedom of a proper N -row representation of the

Lorentz group. Moreover, looking at eq. (A.12) or at the form taken by the conditions

(4.15), one can recognize that for large D the S i
j can be discarded, so that the field equa-

tions reduce rather directly to the Labastida form. In addition, performing the counting

of the propagating degrees of freedom with the techniques of [100, 39] one should obtain

the correct answer of eq. (A.38) independently of the value of D. The modifications re-

lated to the emergence of new Weyl-like gauge transformations are thus expected to occur

only outside of the range of validity of eq. (A.38). This expectation is well sustained by

the explicit counting of the degrees of freedom propagated by two-family fields that was

performed in [41], extending to a whole class of mixed-symmetry fields the partial results

of [39].

On the other hand, aside from this common signature the pathological models can

display different properties. In eq. (4.102) we have indeed seen that two-column fields

have vanishing actions in all cases where Weyl-like symmetries exist, but in general this is

not necessary by any means. Indeed, one can verify that the action of a {3, 2} field does

not vanish inD = 4. This result can be also recovered noticing that if an action vanishes in

a given space-time dimension it must also vanish in all lower ones. No additional subtleties

are involved in this example since {3, 2} fields are actually unconstrained. Therefore, in

the mixed-symmetry case the existence of Weyl-like symmetries does not imply in general

that the Lagrangian is a total derivative.

4.2.2 Fermi fields

Even when dealing with Fermi fields it is convenient to study the eigenvalue problems of

Section 4.1.1 directly in the irreducible case. As for Bose fields, the irreducibility condi-

tions (2.151) greatly simplify the search for Weyl-invariant actions. On the other hand,

we shall again present only some paradigmatic classes of solutions, deferring to a future

work a more detailed analysis. In analogy with the bosonic case, we shall thus discuss

in some detail the conditions (4.54), that identify Weyl-like transformations of the form

(4.53). For the more involved conditions (4.66), that identify Weyl-like transformations of

the form (4.65), we shall only present simple solutions associated to fully antisymmetric

fields, just to show that they all play a role, rather than looking for new Weyl-invariant

models.

Let us thus begin by considering Weyl-like transformations of the form

δ ψ = γ i Θ i , (4.103)

for which the irreducibility of ψ translates into the conditions

δ ik Θ j + S i
j Θ k = 0 , i < j (4.104)

that again leave only one independent Θ i parameter for each symmetry type. These are

to be combined with the conditions allowing (4.103) to define a Weyl symmetry, that were
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given in eq. (4.54) and that one can rewrite in the convenient form

(D + 2 si − 4 ) Θ i + 2

i−1∑

j=1

S j
i Θ j + 2

N∑

j= i+1

S j
i Θ j = 0 , 1 ≤ N . (4.105)

As in the preceding section si denotes the number of Lorentz labels in the i-th family for

the spinor-tensor ψ. Eqs. (4.104) then reduce (4.105) to

[D + 2 si − 2 ( i+ 1 ) ] Θ i − 2

N∑

j= i+1

S j
i S

i
j Θ i = 0 , 1 ≤ N . (4.106)

The sum is absent in the last of these equations, that is simply

[D + 2 sN − 2 (N + 1 ) ] ΘN = 0 , (4.107)

and admits non-trivial solutions provided the condition

D + 2 sN = 2 (N + 1 ) (4.108)

holds. On the other hand, the irreducibility conditions (4.104) again imply that if ΘN

does not vanish then all Θ i cannot vanish as well. As a consequence, one has to discuss

also the other conditions with i < N . To this end one can notice that, in analogy with

the bosonic case, the irreducibility conditions (4.104) ensure that the operators S j
i S

i
j

act diagonally on Θ i. In fact, S j
i and S i

j are the L
(ij)
− and L

(ij)
+ operators for the su(2)

subalgebra of gl(N) connecting the two rows i and j, and eq. (4.104) implies that

L
(ij)
+ Θ j = 0 , Θ j = −L

(ij)
+ Θ i . (4.109)

As a result, Θ i and Θ j have the same “total angular momentum” quantum number

ℓ ij ( Θ i ) = ℓ ij ( Θ j ) =
si − sj + 1

2
, (4.110)

that is also the “magnetic” quantum number of Θ j , that lies at the tip of the su(2) chain

and lacks one space-time index of the j-th row when compared to the gauge field ψ. At

the same time, the “magnetic” quantum number of Θ i, that lacks an index in the i-th

row compared to ψ, is

m ij ( Θ i ) =
si − sj − 1

2
, (4.111)

so that finally

S j
i S

i
j Θ i = ( si − sj + 1 ) Θ i . (4.112)

In conclusion, when the condition (4.108) holds the remaining equations (4.106) with

i < N reduce to the chain of conditions
[

(N − i− 1 ) si −
N−1∑

j= i+1

sj

]
Θ i = 0 , 1 ≤ i ≤ N − 2 , (4.113)
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while the (N −1)-th condition is also identically satisfied on account of eq. (4.108). Since

under these conditions all Θ i must be non-vanishing, a solution obtains only if all the

coefficients in (4.113) vanish, which is the case for {s, . . . , s, sN} irreducible fields with s

arbitrary and sN ≤ N in the space-time dimensions determined by eq. (4.108). As for

Bose fields, the irreducibility conditions also suffice to identify the detailed form of the

Weyl-like transformations because they relate the Θ i as

Θ i = −
1

si − sj + 1
S j

i Θ j , i < j . (4.114)

These results agree with those obtained in the exhaustive classification of the shift

symmetries of the equation of motion (4.44) performed for two-family fields in [41]. The

outcome of that analysis is presented in Table 3, where the reader can recognize the

presence of {s, 2} fields in D = 2 and of {s, 1} fields in D = 4. They appear in the

first column, that collects the fields admitting shift symmetries of the form (4.103). The

second column then collects the models that admit shift symmetries of the form

δ ψ = η ij Θ ij + γ ij Θ̃ ij , (4.115)

while the third column collects finally the models that admit shift symmetries of the form

δ ψ = η ij γ k Θ ij ; k . (4.116)

6 S S ′ 6 S ′

D s1 s2 s1 s2 s1 s2

2 1 0 2 1 s 3

2 1 1

2 s 2

3 1 1

4 s 1

Table 3: Two-family irreducible fermions with Weyl-like symmetries of eq. (4.44)

As in the bosonic case, this first step does not suffice to identify Weyl-like symmetries

of the actions: the solutions we identified are also to preserve the Labastida constraints

(3.52). In eq. (4.55) we have seen that, whenever eqs. (4.105) hold, for the Weyl-like shifts

that we are considering this is guaranteed by the additional conditions

T( ij γ k ) Θ l = 0 . (4.117)

On the other hand, the conditions (4.114) imply that all Θ l parameters have the same

gl(D) structure as the irreducible ΘN , that in this sense represents the most convenient

choice for the single independent quantity left over in eq. (4.105). Therefore, the trans-

formations of the {s, . . . , s, 1} fields in D = 2N rest on a {s, . . . , s} conformal Weyl
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parameter, that in this space-time dimension admits a γ-traceless component that as

such cannot be annihilated by the triple γ-trace constraints (4.117). This is consistent

with the fact that for two-family fields one can check explicitly that {s, 1} fields admit

Weyl-like symmetries of the type (4.103) compatible with the Labastida constraints. On

the contrary, for higher values of sN the standard theorem already recalled in Section

4.2.1 states that a γ-traceless component does not exist for {s, . . . , s, sN − 1}-projected

parameters in D = 2 (N − sN + 1 ). As a consequence, the previous considerations pro-

tecting this type of shift are no more available and indeed in the {s, 2} case in D = 2

one can verify that the shift transformations are trivialized by the constraints (4.117). As

first recognized in [41], at two-families a cancelation of this kind also concerns the {s, 3}
case in D = 2, so that the true Weyl-invariant models are only those displayed in Table 4.

While we do not have a complete argument to this effect, the explicit analysis of the

two-family case thus suggests that the triple γ-trace conditions could eliminate at least

some of the solutions (4.108) in low enough space-time dimensions. Nevertheless, as in

the bosonic case we have at least identified a rather general class of solutions that extends

the simple example of fully antisymmetric Fermi fields, that are actually unconstrained

fields and thus do not display all features of generic mixed-symmetry fermions.

6 S S ′

D s1 s2 s1 s2

2 1 0

2 2 2

3 1 1

4 s 1

Table 4: Two-family irreducible fermions with Weyl-invariant actions

Let us support these statements by displaying the simplest case were the constraints

(4.117) obstruct the promotion of the symmetries of eq. (4.44) to symmetries of the

action. It is provided by a {3, 2} field, whose E ψ̄ field equation is left invariant by the

shift transformation

δ ψµ1µ2µ3 , ν1ν2 = −
1

2
γ (µ1

Θµ2µ3 ) ( ν1 , ν2 ) + γ ( ν1 |Θµ1µ2µ3 , | ν2 ) , (4.118)

that involves a single {3, 1}-projected parameter. Even in this example the irreducibility

conditions leave only two independents components in D = 2. Let us denote the two

space-time directions as 0 and 1, and let us choose them to be ψ 000 , 11 and ψ 111 , 00. Their

Weyl-like transformations then read

δ ψ 000 , 11 = 2 γ 1 Θ 000 , 1 − 3 γ 0 Θ 001 , 1 ,

δ ψ 111 , 00 = 2 γ 0 Θ 111 , 0 + 3 γ 1 Θ 001 , 1 , (4.119)

where we have chosen to identify the three independent components of the parameter with

Θ 000 , 1, Θ 111 , 0 and Θ 001 , 1. Furthermore, in this context the conditions (4.117) reduce to
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the constraint

η λρ γ σ Θλρσ , ν = 0 , (4.120)

that implies the relations

γ 1

(
Θ 111 , 0 +

1

3
Θ 000 , 1

)
+ γ 0 Θ 001 , 1 = 0 ,

γ 0

(
Θ 000 , 1 +

1

3
Θ 111 , 0

)
− γ 1 Θ 001 , 1 = 0 . (4.121)

Resorting to a standard representations of the two-dimensional γ-matrices of the form

γ 0 =

(
0 1

−1 0

)
, γ 1 =

(
0 1

1 0

)
, (4.122)

one can then recognize that the conditions (4.121) imply

Θ 000 , 1 =

(
f1(t, x)

f2(t, x)

)
⇒ Θ 111 , 0 = −

(
f1(t, x)

f2(t, x)

)
, Θ 001 , 1 =

2

3

(
− f1(t, x)

f2(t, x)

)
. (4.123)

Finally, substituting this result in eqs. (4.119) one can notice that it eliminates the com-

binations of the parameter components that they contain.

We can now close this section by showing that the conditions (4.66) admit a solution.

Indeed, in Section 2.3 we pointed out that the actions for fully antisymmetric Fermi fields

vanish manifestly for N ≤ D ≤ 2N , and we noticed that the formal expressions for their

field equations in terms of S must possess Weyl-like symmetries. On the other hand,

with the previous analysis we have identified a Weyl-like symmetry for these fields only

in D = 2N , and we can now recover the missing symmetries solving the conditions (4.66)

for spinor-tensor forms. First of all, in this case the ηij tensors do not enter Lagrangians

and field equations, so that the chains of conditions (4.66) reduce to the far simpler

independent equations

(D − q − 1 ) Θ ( q )
k1... kq−1l + 2Sm

l Θ
( q )

k1... kq−1m = 0 , (4.124)

whose solutions identify Weyl-like shifts of the form

δ ψ = γ k1... kq Θ ( q )
k1... kq

. (4.125)

Let us also stress that no other conditions are to be imposed on these parameters, because

all spinor-tensor forms are unconstrained. Furthermore, for this type of fields Sm
l ψ = 0

for all l 6= m, since it is clearly impossible to symmetrize their space-time indices. As a

result for all l 6= m

Sm
l δ ψ = γ k1... kq

(
Sm

l Θ
( q )

k1... kq
+ (−1) q+1 δm[ k1Θ

( q )
k2... kq ] l

)
= 0 , (4.126)

so that eq. (4.124) becomes

(D − 2N+ q − 1 ) Θ ( q )
k1... kq−1l = 0 . (4.127)
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Fully antisymmetric fields can admit a single independent q-th γ-trace, that as we now

see is left undetermined in D = 2N− q + 1, since it can be shifted by non-vanishing

Θ ( q ) parameters. Therefore, as expected, we are recovering the existence of Weyl-like

symmetries for these fields for N + 1 ≤ D ≤ 2N . Notice, finally, that the Lagrangians

(2.137) are total derivatives also for D = N , but in these cases the S spinor-tensors vanish

as well, as one can see computing explicitly their only available component. This explains

why these special space-time dimensions do not emerge from the previous discussion.

The final considerations of the previous section can be repeated almost verbatim also

in the fermionic case. Even in this framework we cannot present a full classification of

the Weyl-invariant models, but we have identified two paradigmatic classes of examples:

{sN−1, 1} fields in D = 2N and fully antisymmetric {1N} fields in N ≤ D ≤ 2N . In

both cases and in all additional examples contained in Tables 3 and 4 no local degrees

of freedom are involved. Furthermore, looking at eq. (A.24) and at the structure of the

conditions (4.66), one can realize that for large D the S i
j operators cannot obstruct the

reduction of the Lagrangian field equations to the Labastida form (4.46). As a result, it

is natural to expect that the lack of propagating degrees of freedom be a key signature of

the pathological models, and that for D > N−2
2

the two forms of the field equations are

directly equivalent. Even if no degrees of freedom are involved, the two classes of examples

that we have selected can present rather different behaviors. In fact, the Lagrangians of

fully antisymmetric fermions are total derivatives when they admit Weyl-like symmetries

but, for instance, this is not the case for {3, 1} fermions in D = 4.

5 Conclusions

This review presents three alternative local and covariant Lagrangian formulations for

fields transforming in arbitrary representations of the Lorentz group in Minkowski back-

grounds of generic dimension. The various options detailed here can be regarded as

natural extensions of the metric formulation of linearized gravity, since they all reduce to

it in the spin-2 case. In the metric formalism the graviton polarizations are described in

arbitrary space-time dimensions via a symmetric tensor hµν that varies under linearized

diffeomorphisms as

δ hµν = ∂ (µ ξ ν ) . (5.1)

However, moving to generic representations of the Lorentz group the natural extension

of this setup, involving multi-symmetric tensors ϕµ1... µs1 , ν1... νs2 , ...
subjected to the gauge

transformations

δ ϕµ1... µs1 , ν1... νs2 , ...
= ∂ (µ1

Λ(1)
µ2... µs ) , ν1... νs2 , ...

+ ∂ ( ν1 |Λ
(2)
µ1... µs , | ν2... νs2 ) , ... + . . . (5.2)

or their fermionic analogues, does not lead to a local description of the dynamics. This

is the very origin of the three complementary approaches reviewed here, since a local

metric-like Lagrangian formulation can be achieved either constraining fields and gauge

parameters or adding auxiliary fields.
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The constrained formulation reviewed in Section 2 for Bose fields took its final form

in the late eighties, with the identification of the Lagrangians of eq. (2.94) by Labastida

[39]. In the compact notation adopted in this review, it involves multi-symmetric tensors

ϕ transforming under gauge transformations as

δ ϕ = ∂ i Λ i , (5.3)

but fields and gauge parameters are subjected to the constraints

T( ij Tkl ) ϕ = 0 , T( ij Λ k ) = 0 . (5.4)

In the same years Labastida also proposed field equations forcing multi-symmetric spinor-

tensors ψ to describe free massless modes [38, 39]. To this end, he identified the gauge

transformations

δ ψ = ∂ i ǫ i (5.5)

and the constraints

T( ij γ k ) ψ = 0 , γ ( i ǫ j ) = 0 , (5.6)

but did not relate his field equations to an action principle. The constrained formulation of

the dynamics was then completed twenty years later in [41], with the identification of the

Lagrangians (2.134). The choice of working with multi-symmetric (spinor-)tensors, that

was adopted also in this review, is merely conventional. Indeed, in the third-reference of

[52] and in [40, 41] it was pointed out how one can easily adapt the formalism to describe

fields carrying also antisymmetric sets of indices.

The constrained formulation involves the minimal field content leading to a local co-

variant description, but does not link directly to the non-local geometrical description

[48, 52, 42, 51, 53] involving the curvatures of de Wit and Freedman [28] or their mixed-

symmetry generalizations [52]. In order to fill this gap, in [40, 41] we also completed

the alternative program initiated by Francia and Sagnotti in [56]. Its goal is the con-

struction of local Lagrangians that do not rest upon the constraints (5.4) or (5.6), via

the introduction of a minimal number of auxiliary fields. As reviewed in Section 3.1, the

treatment of fully-symmetric fields developed in [56, 57, 51] can be extended to arbitrary

mixed-symmetry Bose fields introducing a set of “composite” compensators α ijk( Φ ) and

a set of Lagrange multipliers β ijkl. For Fermi fields the same result can be achieved intro-

ducing a set of “composite” compensators ξ ij( Ψ ) and a set of Lagrange multipliers λ ijk.

The α ijk and the ξ ij cannot be regarded as independent fields on account of the linear

dependence of the Labastida constraints on the gauge parameters, and this leads to the

introduction of the “fundamental” compensators Φ i and Ψ i. At any rate, the labeling of

the auxiliary fields with the family indices used throughout this review makes it manifest

that their number depends only on the number of index families carried by the fields and

not on their detailed Lorentz structure. Moreover, the “composite” compensators and

the Lagrange multipliers share the index structure of the constraints on gauge parameters

and fields, so that this field content is expected to be the minimal one leading to an

unconstrained covariant formulation of the dynamics.
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However, the minimal formulation of Section 3.1 contains higher-derivative terms in-

volving the compensators. These can be gauged away via a partial gauge fixing that does

not spoil the constrained gauge symmetry, and therefore are not expected to create any

problem. Nevertheless, their presence stimulated the development of the third approach

described in this review, and first presented in [40, 41] further elaborating the treatment

of fully symmetric bosons presented in [53]. In fact, in Section 3.2 it is shown how it is

possible to obtain a truly conventional description of the free theory, without resorting

to higher-derivative terms but still involving a number of auxiliary fields only depending

on the number of index families. Clearly, in principle one can deal even with alternative

setups, adding more auxiliary fields with suitable Stueckelberg-like gauge symmetries.

Various examples are provided by [47, 54, 59]. Even if at the free level it is not possible to

select a “best” solution among all these equivalent formulations, let us stress again that

the unconstrained frameworks reviewed here have a minimal field content among those

that turn into the geometrical non-local formulation after the auxiliary fields are elimi-

nated. On the contrary, the field content of the constrained formulation is too limited to

allow a direct link with higher-spin geometry.

Aside from describing the construction of field equations and Lagrangians in these

three setups, this review also illustrates some peculiar properties of their structure. The

most striking one is the emergence, in particular low space-time dimensions, of Weyl-like

symmetries of the form

δ ϕ = η ij Ω ij , δ ψ = γ i Ω i . (5.7)

Qualitatively they are allowed by the rather complicated form taken by the Lagrangians,

that contain a number of (γ-)traces of the gauge fields that grows proportionally to the

number of index families that they carry. A full classification of these pathological cases,

that somehow generalize the example of two-dimensional gravity, is still missing. Yet, the

various classes of examples presented in Section 4 and the complete classification for two-

family fields presented in [40, 41] vindicate the expectation that Weyl-like symmetries

are confined to space-time dimensions were the corresponding fields do not propagate

any degrees of freedom. At any rate, the analogy with two-dimensional gravity suggests

that these models could present nonetheless a rich structure, that it would be worth

investigating in the future.

Looking for a better characterization and understanding of Weyl-invariant models is

only one of the directions along which the work presented in this review could be further

developed. First of all, it would be interesting to adapt the results reviewed here to back-

grounds of constant curvature. This could provide a way to make contact with the Vasiliev

construction and with its possible mixed-symmetry extensions. As repeatedly stressed in

this review, all string spectra contain mixed-symmetry excitations, and this line of devel-

opment could then be crucial in order to understand the interplay between the Vasiliev

setup, its possible generalizations involving mixed-symmetry fields and String Theory.

Furthermore, the completion of the free theory for both Bose and Fermi fields naturally

calls for a study of the properties of supermultiplets involving even mixed-symmetry fields.
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This requires the crossing of the N = 8 border either via the introduction of higher-spin

supermultiplets or even, possibly, via the introduction of higher-spin supercharges.

The real challenge is eventually the study of the interactions of systems of mixed-

symmetry fields. Progress in this direction is expected to be slower and more problematic,

but the definite hope is that the metric-formulation of the dynamics presented in this

review can provide useful insights to this end.
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A Notation and conventions

The gauge fields treated in this review are multi-symmetric tensors ϕµ1... µs1 , ν1... νs2 , ...
or

spinor tensors ψ α
µ1... µs1 , ν1... νs2 , ...

, whose different groups of indices are fully symmetric

under interchanges of pairs belonging to the same set, but have no prescribed symme-

try relating different sets. They are thus reducible gl(D) tensors or spinor-tensors. As

a result, they are perhaps less familiar than Young projected (spinor-)tensors, but are

most convenient for the present discussion and play a natural role in String Theory. For

instance, for bosonic strings or for the five superstring models these reducible tensors

accompany products of bosonic oscillators of the type α
µ1

−1 . . . α
µs1
−1 α

ν1
−2 . . . α

νs2
−2 . . . , that

are only symmetric under interchanges of pairs of identical oscillators. Let us stress that

this is only a conventional choice, and one can work as conveniently in an antisymmetric

basis, dealing with multi-forms [104] rather than with multi-symmetric tensors. Both

conventions can be used to describe arbitrary representations of the Lorentz group, and

in general massive superstring spectra contain spinor-tensors carrying both symmetric

and antisymmetric index sets. At any rate, in this review we only deal with the sym-

metric convention, while a description of how the various formulations presented here

adapt to multi-forms can be found in [40, 41]. On the other hand, in Sections 2.4 and

3.1.3 the modifications that one has to take into account when dealing with irreducible

(spinor-)tensors are described in some detail.

Turning to the details of the notation, the reader should be aware that the “mostly plus”

convention for the space-time signature is used throughout this review, as in [40, 41, 98].

We also resort to the compact notation introduced in these papers, that extends the index-

free notation developed for fully symmetric fields in [48, 42, 43, 56, 57, 51, 53]. It eliminates

all space-time indices from tensor relations, so that the gauge fields ϕµ1... µs1 , ν1... νs2 , ...
and

ψ α
µ1... µs1 , ν1... νs2 , ...

are simply denoted by ϕ and ψ. When needed, in the reducible case

their rank is denoted in general by the list of integer numbers (s1, s2, . . . ), both in the

bosonic and in the fermionic case, the only exception being the example of fully symmetric

fields. For them we resort to the standard convention, and the single label denoting the

spin takes as usual both integer and half-integer values. Aside from these basic fields,

Lagrangians and field equations involve gradients, divergences and traces of ϕ or ψ, as

well as γ-traces of ψ in the fermionic case. Furthermore, the Lagrangians also contain

Minkowski metric tensors related to one (or two) of the previous index sets and γ-matrices.

As a result, “family indices” are often needed in order to specify the sets to which some

tensor indices belong. As in [40, 41, 98], these family indices are here denoted by small-

case Latin letters, and the Einstein convention for summing over pairs of them is used

throughout. It actually proves helpful to be slightly more precise: upper family indices

are thus reserved for operators, like a gradient, which add space-time indices, while lower

family indices are used for operators, like a divergence, which remove them. For instance

gradients, divergences and traces of a field ϕ are denoted concisely by ∂ i ϕ, ∂ i ϕ and Tij ϕ.
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This shorthand notation suffices to identify the detailed meaning of these symbols, so that

∂ i ϕ ≡ ∂ (µi
1|
ϕ ... , |µi

2 ... µ
i
si+1) , ...

,

∂ i ϕ ≡ ∂ λ ϕ ... , λ µi
1 ... µ

i
si−1 , ...

,

Tij ϕ ≡ ϕ λ
... , µi

1 ... µ
i
si−1 , ... , λ µ

j
1... µ

j
sj−1 , ...

. (A.1)

The couple of parentheses that appears in the first line of eq. (A.1) denotes a symmetriza-

tion of the indices it encloses. Let us stress that in this review the symmetrizations are

not of unit strength, but involve nonetheless the minimum possible number of terms.

Thus, for instance, T( ij Tkl ) here stands for Tij Tkl + Tik Tjl + Til Tjk. Moreover, we also

use square brackets to denote antisymmetrizations.

An explicit description of the remaining operations similar to that in eq. (A.1) can be

found in the main body of this review, where they are introduced for the first time. On

the other hand, all computational rules follow from the algebra of these operators, and we

shall thus momentarily resort to an oscillator realization that it is convenient to derive it.

To this end, in the present symmetric convention one can introduce commuting vectors

u i µ to cast generic gauge fields in the form

ϕ ≡
1

s1 ! . . . sN !
u 1µ1 . . . u 1µs1 u 2 ν1 . . . u 2 νs2 . . . ϕµ1... µs1 , ν1... νs2 , ...

,

ψ ≡
1

s1 ! . . . sN !
u 1µ1 . . . u 1µs1 u 2 ν1 . . . u 2 νs2 . . . ψµ1... µs1 , ν1... νs2 , ...

. (A.2)

Divergences, gradients, γ-traces and “γ-matrices” can thus be described via

∂ i ≡ ∂ µ
∂

∂ u i µ
, ∂ i ≡ ∂µ u

i µ ,

γ i ≡ γ µ
∂

∂ u i µ
, γ i ≡ γµ u

i µ , (A.3)

while traces and “metric tensors” can be introduced either via the commutation relations

of the family γ-matrices

{ γ i , γ j } = 2 Tij ,
{
γ i , γ j

}
= 4 η ij , (A.4)

or directly as

Tij ≡ η µν
∂

∂ u i µ
∂

∂ u j ν
, η ij ≡

1

2
ηµν u

i µ u j ν . (A.5)

Interestingly, the algebra of the Tij and η ij operators or, equivalently, that of the γ i and

γ i operators close only introducing the new operators

S i
j ≡ ηµ

ν u i µ
∂

∂ u j ν
. (A.6)

For i = j these act as number operators and count the indices in the i-th family,

S i
i ϕ = si ϕ , S i

i ψ = si ψ , (A.7)
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while for i 6= j their net effect is to displace indices from the i-th to the j-th index families.

Using the natural convention
[

∂

∂ u i µ
, u j ν

]
= ηµ

ν δ i
j (A.8)

one can finally compute the algebra of the various operators used in this review. Focusing

for a while on those that do not involve γ-matrices it reads

[ ∂ i , ∂
j ] = 2 δ i

j , (A.9)

[Tij , ∂
k ] = ∂ ( i δ j )

k , (A.10)

[ ∂ k , η
ij ] =

1

2
δ k

( i ∂ i ) , (A.11)

[Tij , η
kl ] =

D

2
δ i

( k δ j
l ) +

1

2

(
δ i

( kS l )
j + δ j

( kS l )
i

)
, (A.12)

[S i
j , η

kl ] = δ j
( k η l ) i , (A.13)

[Tij , S
k
l ] = Tl ( i δ j )

k , (A.14)

[S i
j , ∂

k ] = ∂ i δ j
k , (A.15)

[ ∂ k , S
i
j ] = δ k

i ∂ j , (A.16)

[S i
j , S

k
l ] = δ j

kS i
l − δ l

iS k
j . (A.17)

Notice that the commutators of the S i
j operators, the key novelty of the mixed-symmetry

case, build the gl(N) Lie algebra if N index families are present. The other relevant

commutation relations are

[ γ i , ∂
j ] = 6∂ δ i

j , (A.18)

[ ∂ i , γ
j ] = 6∂ δ i

j , (A.19)

[ γ i , η
jk ] =

1

2
δ i

( j γ k ) , (A.20)

[Tij , γ
k ] = γ ( i δ j )

k , (A.21)

[S i
j , γ

k ] = γ i δ j
k , (A.22)

[ γ k , S
i
j ] = δ k

i γ j , (A.23)

while the basic anticommutators are

{ γ i , γ
j } = D δ i

j + 2S j
i , (A.24)

{ γ i , 6∂ } = 2 ∂ i , (A.25)

{6∂ , γ i } = 2 ∂ i . (A.26)

Altogether these relations give rise to the more involved computational rules of Appendix

B, that describes the (anti)commutators involving different copies of these objects that

are needed to derive the results presented in this review. In this respect, let us stress that

in these cases we always use an antisymmetric basis for “family” γ-matrices, that can be

obtained joining the Tij operators with the fully antisymmetric combinations

γ i1... in ≡
1

n!
γ [ i1 γ i2 . . . γ in ] , (A.27)
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and joining the η ij operators with the corresponding objects with raised indices,

γ i1... in ≡
1

n!
γ [ i1 γ i2 . . . γ in ] . (A.28)

Furthermore, different groups of symmetrized indices borne by a given quantity are sep-

arated by colons, while a semicolon signals the beginning of a group of antisymmetrized

indices.

In order to further simplify the combinatorics, as in [40, 41] it also proves convenient

to introduce the scalar product

〈ϕ , φ 〉 ≡
1

s1! . . . sn!
ϕµ1

1... µ
1
s1
, ... , µn

1 ... µ
n
sn
φ µ1

1... µ
1
s1
, ... , µn

1 ... µ
n
sn ≡

1

s1! . . . sn!
ϕφ , (A.29)

that can be adopted even in the fermionic case in the form

〈 ψ̄ , χ 〉 ≡
1

s1! . . . sn!
ψ̄µ1

1... µ
1
s1
, ... , µn

1 ... µ
n
sn
χµ

1
1... µ

1
s1
, ... , µn

1 ... µ
n
sn ≡

1

s1! . . . sn!
ψ̄ χ . (A.30)

Inside the brackets it is then possible to integrate by parts and to turn η’s into traces

without introducing any si-dependent combinatoric factors, since for instance

〈ϕ , ∂ i φ 〉 ≡
1

s1! . . . sn!
ϕ ∂ i φ = −

si
s1! . . . sn!

( ∂ i ϕ )φ ≡ −〈 ∂ i ϕ , φ 〉 , (A.31)

and, if i 6= j,

〈ϕ , η ij φ 〉 ≡
1

s1! . . . sn!
ϕ η ij φ =

1

2

si sj
s1! . . . sn!

(Tij ϕ )φ ≡
1

2
〈 Tij ϕ , φ 〉 , (A.32)

where the reader should notice the somewhat unusual factor 1
2
, originating from our choice

of normalization in eq. (A.5). In a similar fashion, for γ-matrices

〈 ψ̄ , γ i χ 〉 ≡
1

s1! . . . sn!
ψ̄ γ i χ =

si
s1! . . . sn!

( ψ̄ γ i )χ ≡ 〈 ψ̄ γ i , χ 〉 . (A.33)

However, in the main body of this review we are ignoring, for simplicity, the overall

factors
∏N

i=1 si!, that should accompany the Lagrangians of multi-symmetric tensors or

spinor-tensors to grant them the conventional normalization.

Finally, in this review we make extensive use of a number of standard tools related

to the symmetric group. These include, in particular, the Young projectors Y , that are

used repeatedly to separate irreducible components in family-index space. In the text

the various components are often specified by ordered lists of the lengths of the rows

for the associated diagrams enclosed between braces. For instance, the {3, 2} component

corresponds to

(A.34)

In general the Young projectors Y can be built combining the contributions of different

Young tableaux, that can be identified associating integer labels to the tensor indices to

109



be projected and allowing within the given graph all their arrangements such that these

integers grow from left to right and from top to bottom. In some cases, however, this

simple procedure can fail to produce an orthogonal decomposition, which can still be

attained by a further Graham-Schmidt orthogonalization. This difficulty is not present

if, for any pair of tableaux, there is at least a couple of indices belonging to a row of the

first that lie in the same column of the second, and vice versa. Let us stress that this

problem is never to be faced in the constructions presented in this review, as a result of

the particular symmetry properties of the involved objects.

Moreover, in this review we adopt the conventions of [40, 41] and Young tableaux are

then defined in the symmetric basis. Thus, the projector corresponding to a tableau τ

containing n boxes takes the form

Yτ =
λ(τ)

n !
S A , (A.35)

where S and A are the corresponding products of “row symmetrizers” and “column an-

tisymmetrizers”. As pointed out in [40, 41] the antisymmetric basis, where the roles of

S and A are interchanged, is more convenient when dealing with multi-forms rather than

with multi-symmetric fields and, as a consequence, it is never used in this review. At

any rate, the function λ(τ) appearing in eq. (A.35) gives the dimension of the associ-

ated representation of the symmetric group, that can be computed, for instance, counting

the standard ways of filling the boxes of the corresponding diagram with the numbers

1, 2, . . . , n in increasing order from left to right and from top to bottom. We often denote

the ratio that appears in eq. (A.35) as

λ(τ)

n !
=

1

h(τ)
, (A.36)

where h(τ) is the “hook length” of the corresponding tableau. Similar techniques are used

in Section 2.4 to identify irreducible Lorentz tensors.

The hook length h also enters the formulae for the dimensions of gl(D) and o(D)

(spinorial) representations, that might prove useful to the reader. Thus, the number of

components of an irreducible gl(D) tensor whose vector indices are {s1, . . . , sN} projected

is

dim gl(D) [{s1, . . . , sN}] =
1

h

N∏

i= 1

(D + si − i ) !

(D − i ) !
. (A.37)

For spinor-tensors this value must be multiplied by the number of their spinorial com-

ponents, that is 2 [ D
2

] in the Dirac case. The number of independent components of the

corresponding {s1, . . . , sN}-projected o(D) tensor is given by

dimT [{s1, . . . , sN}] =
1

h

N∏

i= 1

(D + si −N − i− 1 ) !

(D − 2 i ) !

N∏

j= i

(D + si + sj − i− j ) , (A.38)

while for the o(D) spinor-tensor with the same Young projection in its vector indices it
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reads

dimS [{s1, . . . , sN}] =
2 [ D

2
]

h

N∏

i=1

(D + si −N − i ) !

(D − 2 i ) !

N∏

j= i+1

(D+si+sj−i−j+1 ) . (A.39)

We refrain from adding further details, since these and other related standard facts are

discussed extensively in the literature, and in particular in [101].

B Useful identities

Using repeatedly the (anti)commutation rules of Appendix A yields the useful identities

[ ∂ l , η
i1j1 . . . ηipjp ] =

1

2

p∑

n=1

p∏

r 6=n

ηirjr δ l
( in ∂ jn ) , (B.1)

[Ti1j1 . . . Tipjp , ∂
l ] =

p∑

n= 1

p∏

r 6=n

Tirjr ∂ ( in δ jn )
l , (B.2)

that are widely used in Section 2.2.1 and in Section 2.2.2 in the construction of the

constrained Lagrangians. To built the Lagrangians for Fermi fields we also abide to the

identities

[ ∂ l , γ
k1... kq ] = (−1) q+1 δ l

[ k1 γ k2... kq ] 6∂ + δ l
[ k1 ∂ k2 γ k3... kq ] , (B.3)

[ γ k1... kq
, ∂ l ] = (−1) q+1 6∂ γ [ k1... kq−1

δ kq ]
l + γ [ k1... kq−2

∂ kq−1 δ kq ]
l , (B.4)

[ γ k1... kq
, 6∂ ] (−1) q+1 = 2 γ [ k1... kq−1

∂ kq ] , (B.5)

[ 6∂ , γ k1... kq ] (−1) q+1 = 2 ∂ [ k1 γ k2... kq ] , (B.6)

where the symbols [ , ] (−1) q+1 can denote both commutators and anticommutators, de-

pending on the sign of (−1) q+1.

For the reduction of the equation of motion to the Labastida form discussed in Section

4.1, Fermi fields require the knowledge of a set of (anti)commutation relations that can

be conveniently presented introducing the new operators

γ k1... kq
l = γ k1... kq γ l − γ [ k1... kq−1 S kq ]

l . (B.7)

They appear in fact in the identities

[ γ l , γ
k1... kq ] (−1) q+1 = (D − q + 1 ) δ l

[ k1 γ k2... kq ] + 2 (−1) q+1 γ [ k1... kq−1 S kq ]
l , (B.8)

[ γ k1... kq
, γ l ] (−1) q+1 = (D − q + 1 ) γ [ k1... kq−1 δ kq ]

l + 2 (−1)q+1 S l
[ k1 γ k2... kq ] , (B.9)

[T lm , γ
k1... kq ] = (−1) q+1 δ ( l |

[ k1 γ k2... kq ]
|m ) , (B.10)
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[ γ lm , γ
k1... kq ] = − (D − q + 1 ) (D − q + 2 ) δ l

[ k1 δm
k2 γ k3... kq ]

+ (−1) q (D − q + 2 ) δ [ l |
[ k1 γ k2... kq ]

|m ] + 2 γ [ k1... kq−1 |
[ l S

| kq ]
m ]

+ (−1) q+1 (D − q + 1 ) δ [ l |
[ k1 γ k2... kq−1 S kq ]

|m ] , (B.11)

[S l
m , γ

k1... kq ] = (−1) q+1 δm
[ k1 γ k2... kq ] l , (B.12)

[ γ k1... kq
, S l

m ] = (−1) q+1 γm [ k1... kq−1
δ kq ]

l . (B.13)

These are used together with the corresponding commutators involving products of metric

tensors:

[ γ l , η
i1j1 . . . ηipjp ] =

1

2

p∑

n= 1

p∏

r 6=n

ηirjr δ l
( in γ jn ) , (B.14)

[T lm , η
i1j1 . . . ηipjp ] =

1

2

p∑

n= 1

{
D

p∏

r 6=n

ηirjr δ l
( in δm

jn )

+
∑

m<n

p∏

r 6=m,n

ηirjrδ ( l |
( im η jm ) ( in δ jn )

|m ) +

p∏

r 6=n

ηirjr δ ( l |
( in S jn )

|m )

}
, (B.15)

[ γ lm , η
i1j1 . . . ηipjp ] =

1

4

p∑

n=1

{ ∑

m<n

p∏

r 6=m,n

ηirjr δ [ l |
( im γ jm ) ( in δ jn )

|m ]

+ 2

p∏

r 6=n

ηirjr δ [ l |
( in γ jn )

|m ]

}
. (B.16)

Finally, when dealing with Fermi fields one has to make a wide use of the following

composition rules for family γ-matrices:

γ k1... kq
γ l = γ k1... kq l + γ [k1... kq−1 Tkq ] l , (B.17)

γ k1... kq
γ lm = γ k1... kq lm +

(
γ [ k1... kq−1 |m T | kq ] l − γ [ k1... kq−1 | l T | kq ]m

)

+ γ [k1... kq−2
Tkq−1 |m T | kq ] l . (B.18)

Similar rules also apply when one raises indices, but the normalization of η ij introduced

in eq. (A.5) requires that this operation be supplemented by the substitution

Tij → 2 ηij . (B.19)

In order to derive the equations of motion for Fermi fields, or in order to impose the

condition (2.133) of self-adjointness of the constrained Lagrangians, it is also convenient

to keep in mind the further, standard relation

γ 0 (γ k1... kq
) † γ 0 = (−1)

(q−1)(q−2)
2 γ k1... kq

. (B.20)

The computational rules collected in these first two appendices suffice to compute

generic (γ-)traces of the kinetic tensors F and S and of the Bianchi identities. In partic-

ular, starting from the Fronsdal-Labastida tensor

F = 2ϕ − ∂ i∂ i ϕ +
1

2
∂ i∂ j Tij ϕ , (B.21)
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for Bose fields one can obtain

p∏

r= 1

Tirjr F = ( p+ 1 ) 2

p∏

r=1

Tirjr ϕ − 2

p∑

n= 1

∂ in∂ jn

p∏

r 6=n

Tirjr ϕ

+

p∑

n= 1

∑

m<n

(
∂ in∂ ( im Tjm ) jn + ∂ jn∂ ( im Tjm ) in

) p∏

r 6=m,n

Tirjr ϕ

− ∂ k
[
∂ k

p∏

r=1

Tirjr ϕ −

p∑

n=1

∂ ( in T jn ) k

p∏

r 6=n

Tirjr ϕ

]
+

1

2
∂ k∂ l Tkl

p∏

r= 1

Tirjr ϕ . (B.22)

This result is at the root of the derivation, in eq. (2.92), of the constrained Lagrangians via

the identification of a constrained self-adjoint Einstein-like operator. As a consequence,

it is also crucial in the derivation of the equations of motion that follow from the various

bosonic Lagrangians presented in this review. Furthermore, starting from the Bianchi

identities

Bi : ∂ iF −
1

2
∂ j Tij F = −

1

12
∂ j∂ k∂ l T( ij Tkl ) ϕ , (B.23)

in the constrained theory one can obtain the result

Ti1j1 . . . Tipjp Bk : ∂ k Ti1j1 . . . Tipjp F −
1

2

p∑

n=1

∂ ( in Tjn ) k

p∏

r 6=n

Tirjr F

−
1

2
∂ l Ti1j1 . . . Tipjp TklF = 0 , (B.24)

that was already displayed in eq. (2.84), and that plays a crucial role in the derivation of

the constrained Lagrangians via the request of gauge invariance.

In a similar fashion, starting from the Fang-Fronsdal-Labastida tensor

S = i
{
6∂ ψ − ∂ i γ i ψ

}
, (B.25)

for Fermi fields one can obtain

p∏

r=1

Tirjr γ k1... kq
S = (−1) q i ( q + 1 ) 6∂ γk1... kq

p∏

r= 1

Tirjr ψ

+ i ( q + 1 ) γ [k1... kq−1
∂ kq ]

p∏

r=1

Tirjr ψ − i

p∑

n=1

γ [ k1... kq−1
Tkq ] ( in ∂ jn )

p∏

r 6=n

Tirjr ψ

− i

p∑

n= 1

γ k1... kq ( in ∂ jn )

p∏

r 6=n

Tirjr ψ − i ∂ l γ [ k1... kq−1 Tkq ] l

p∏

r=1

Tirjr ψ

− i ∂ l γk1... kq l

p∏

r=1

Tirjr ψ (B.26)

In analogy with the bosonic case, this result is at the root of the derivation, in eq. (2.133),

of the constrained Lagrangians via the identification of a constrained self-adjoint Rarita-

Schwinger-like operator. As a consequence, it is also crucial in the derivation of the
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equations of motion that follow from the various fermionic Lagrangians presented in this

review. The γ-traces of the Bianchi identities

Bi : ∂ i S −
1

2
6∂ γ i S −

1

2
∂ j Tij S −

1

6
∂ j γ ij S =

i

6
∂ j∂ k T( ij γ k ) ψ , (B.27)

can be also easily computed applying the rules displayed in this appendix. However, even

at the constrained level the result takes the far more involved form

(−1) q
p∏

r= 1

Tirjr γ k1... kq
Bl :

1

6

p∑

n= 1

∂ ( in γ jn) k1... kq l

p∏

r 6=n

Tirjr S

+ ∂ [ k1 γ k2... kq l ]

p∏

r= 1

Tirjr S +
q − 1

6
∂ [ k1 γ k2... kq ] l

p∏

r= 1

Tirjr S

−
(−1) q

2

p∑

n=1

γ k1... kq
∂ ( in Tjn ) l

p∏

r 6=n

Tirjr S +
1

6

p∑

n= 1

∂ ( in γ jn ) [ k1... kq−1 T kq ] l

p∏

r 6=n

Tirjr S

−
1

6

p∑

n= 1

γ l [ k1... kq−1
T kq ] ( in ∂ jn )

p∏

r 6=n

Tirjr S +
q + 1

6
∂ [ k1 γ k2... kq−1 T kq ] l

p∏

r= 1

Tirjr S

+
(−1) q

6

p∑

n= 1

γ [ k1... kq−2
T kq−1 | l T | kq ] ( in ∂ jn )

p∏

r 6=n

Tirjr S

− 6∂

{
q + 3

6
γ k1... kq l +

q − 1

6
γ [ k1... kq−1 T kq ] l

} p∏

r= 1

Tirjr S

−
(−1) q

6
∂m γ k1...kq lm

p∏

r= 1

Tirjr S −
(−1) q

2
∂m γ k1...kq

Tlm

p∏

r= 1

Tirjr S

−
1

6
∂m
(
γ l [ k1... kq−1 T kq ]m − γm [ k1... kq−1 T kq ] l

) p∏

r=1

Tirjr S

+
(−1) q

6
∂m γ [ k1... kq−2

T kq−1 | l T | kq ]m

p∏

r=1

Tirjr S = 0 . (B.28)

The projections of this expression that allow to build the Lagrangians via the request of

gauge invariance will be computed in the next appendix.

C Proofs of some results of Section 3

In this last appendix we would like to provide the proofs of some results that we used in

Section 3 to fix the structure of the unconstrained Lagrangians. In particular we shall

deal with

• the structure of the compensator terms of the bosonic Lagrangians, that is fixed by

eq. (3.40);
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• the structure of the compensator terms of the fermionic Lagrangians, that is fixed

by eq. (3.79);

• the two-column projections of the multiple γ-traces of the Bianchi identities for

Fermi fields, that lead to eq. (2.128) and to eq. (3.68).

Proof of eq. (3.40)

For Bose fields the structure of the compensator terms entering the unconstrained La-

grangians is fixed by the identity

〈 Y{3,2 p−1} Ti1j1 . . . Tipjp Λ k , ∂ kA
[ p ]

i1j1, ... , ipjp 〉

=
p

p + 2
〈 Ti2j2 . . . Tipjp T( i1j1 Λ k ) , ∂ kA

[p ]
i1j1, ... , ipjp 〉 , (C.1)

that allows to rewrite the terms in the gauge variation (3.39) in a way that manifestly

contains symmetrized traces of the gauge parameters. The scalar product plays a crucial

role here, since makes it possible to extract the {3, 2 p−1} component enforcing the pro-

jection associated to a single Young tableau. In fact, while the full {3, 2p−1} projection

results from a sum of different tableaux, one can choose them in such a way that only one

of them contributes to the scalar product. In particular, one needs only the tableau

i1 j1 k
...

...

ip jp (C.2)

which corresponds to the choice of standard labeling in = 2n− 1, jn = 2n for 1 ≤ n ≤ p

and k = 2 p+ 1. In fact, any symmetrization involving three indices of the set ( im, jn ) in

the right entry of the scalar product would induce a symmetrization beyond a given line

of the tableau
i1 j1
...

...

ip jp (C.3)

that identifies the structure of A [ p ]
i1j1, ... , ipjp. In order to proceed, it is then convenient

to apply the projection associated to the tableau (C.2) directly on the right entry of the

scalar product. In fact, the operations needed to build it differ from those implied by the

tableau (C.3) only in the symmetrization of the three indices ( i1, j1, k ). More precisely,

denoting the tableau (C.2) by τ1 and the tableau (C.3) by τ2 and using the notation of

eq. (A.35) one can recognize that acting on products of traces

Yτ2 = 2
λ(τ2)

( 2 p ) !
S̃ τ2 A τ2 . (C.4)

Notice that the product S̃ τ2 of “row symmetrizers” does not include the operator S(i1,j1)

because this symmetrization is already induced by the others. When applied to the
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expression ∂ k Ti1j1 . . . Tipjp, the product of the two Young projectors Yτ1 and Yτ2 then

gives

Yτ1 Yτ2 =
λ(τ1)

( 2 p+ 1 ) !
S (i1, j1, k) S̃ τ2 A τ2 Y τ2 =

λ(τ1)

2 ( 2 p+ 1 )λ(τ2)
S (i1, j1, k) ( Yτ2 ) 2. (C.5)

The ratio that appears in eq. (C.5) is

λ(τ1)

( 2 p+ 1 )λ(τ2)
=

p

p+ 2
, (C.6)

so that

Yτ1 ∂ kA
[ p ]

i1j1 , ... , ipjp =
p

p+ 2
∂ ( kA

[ p ]
i1j1 ), i2j2 , ... , ipjp . (C.7)

Proof of eq. (3.79)

For Fermi fields the structure of the compensator terms entering the unconstrained La-

grangians is fixed by the identity

〈 Y{3,2p−1,1q} Ti1j1 . . . Tipjp ǭ l γ k1... kq
, ∂ l ( γ

[ q ] W [ p ] ) i1j1, ... , ipjp ; k1... kq
〉

= 〈 ( p+ 1 ) Ti2j2 . . . Tipjp T( i1j1 ǭ l ) γ k1... kq
− Ti2j2 . . . Tipjp T [ k1 | ( l ǭ i1 γ j1 ) γ | k2... kq ] ,

p

3 ( p+ 1 )( p+ q + 2 )
∂ ( l | ( γ

[ q ] W [ p ] ) | i1j1 ), ... , ipjp ; k1... kq
〉 . (C.8)

that appears in eq. (3.79). As in eq. (C.1), the presence of the scalar product makes it

possible to extract the {3, 2p−1} component acting on the left entry with the projector

associated to the single Young tableau

i1 j1 l
...

...

ip jp

k1

...

kq (C.9)

In fact, one can decompose Y{3,2p−1} into a sum of Young tableaux where only the projector

associated to (C.9) is not annihilated when contracted against the right entry of the scalar

product, where (γ [ q ] W [ p ]) carries the projection

i1 j1
...

...

ip jp

k1

...

kq (C.10)
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since all other tableaux would result in symmetrizations beyond a given a line.

In analogy with the previous discussion, the operations needed to build the projection

associated to the tableau (C.9) differ from those implied by the tableau (C.10) only in the

symmetrization of the three indices (i1, j1, l). More precisely, denoting the tableau (C.9)

by τ1 and the tableau (C.10) by τ2 and using the notation of eq. (A.35), when acting on

the left entry of eq. (C.8)

Yτ2 =
2

h(τ2)
S̃ τ2 A τ2 . (C.11)

The product S̃ τ2 of “row symmetrizers” does not include the operator S(i1,j1) simply

because this symmetrization is already induced by the others. Acting with Yτ1 gives

instead

Yτ1 Yτ2 =
1

h(τ1)
S (i1, j1, l) S̃ τ2 A τ2 Y τ2 =

h(τ2)

2 h(τ1)
S (i1, j1, l) ( Yτ2 ) 2 , (C.12)

so that, taking into account the ratio between the hook lengths, one ends up with

〈 Y{3,2p−1,1q} Ti1j1 . . . Tipjp ǭ l γ k1... kq
, ∂ l ( γ

[ q ] W [ p ] ) i1j1, ... , ipjp ; k1 ... kq
〉 (C.13)

=
p ( p+ q + 1 )

(p+ 1)(p+ q + 2)
〈 Yτ2 Ti1j1 . . . Tipjp ǭ l γ k1... kq

, ∂ ( l | ( γ
[ q ]W [ p ] ) | i1j1 ) , ... , ipjp ; k1 ... kq

〉 .

In the bosonic case these steps sufficed to recover the Labastida constraints on the gauge

parameters, due to the presence of only identical T tensors. However, here one needs to

refine the arguments, because the family indices (i1, j1) that are symmetrized with l can

be carried both by a trace T and by an antisymmetrized γ-trace, as can be easily seen

absorbing the symmetrizations induced by τ2 in the right entry of the scalar product, so

that

〈 Y{3,2p−1,1q} Ti1j1 . . . Tipjp ǭ l γ k1... kq
, ∂ l ( γ

[ q ] W [ p ] ) i1j1, ... , ipjp ; k1 ... kq
〉

= 〈
2 p ( q + 1 ) !

( p+ q + 1 ) !
T[ i1 | j1 . . . T| ip | jp ǭ l γ |k1... kq ] ,

p ( p+ q + 1 )

( p+ 1 )( p+ q + 2 )
∂ ( l | ( γ

[ q ] W [ p ] ) | i1j1 ) , ... , ipjp ; k1 ... kq
〉 . (C.14)

In order to proceed, it is convenient to separate the terms in the antisymmetrization

that differ in the position of ( i1, j1 ),

T[ i1 | j1 . . . T| ip | jp ǭ l γ | k1... kq ] = Ti1j1 T[ i2 | j2 . . . T| ip | jp ǭ l γ |k1... kq ]

−

p∑

n=2

(−1)n p Ti1jn Tj1 [ i2 Ti3 | jn+1
. . . T| ip | jn−1

ǭ l γ | k1... kq ]

− T[ i2 | j2 . . . T| ip | jp T| k1 | j1 ǭ l γ i1 | k1... kq ] . (C.15)

Forcing again the symmetrization in ( i1, j1, l ), in the scalar product the second group of
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terms in eq. (C.15) becomes proportional to the first term, because

p∑

n= 2

(−1)np T[ i2 | jn . . . T| ip−1 | jn−2
. . . T| ip | ( i1 Tj1 | jn−1

ǭ | l ) γ | k1... kq ]

=

p∑

n= 2

(−1)np T[ i2 | jn . . . T| ip−1 | jn−2
. . . T| ip | ( i1 Tj1l ǭ jn−1 ) γ |k1... kq ]

−

p∑

n= 2

(−1)np T( i1j1 Tl ) [ i2 Ti3 | jn+1
. . . T| ip | jn−1

ǭ jn γ | k1... kq ]

− ( p− 1 )T[ i2 | jn . . . T| ip | jn−1
T( i1j1 ǭ l ) γ | k1... kq ] , (C.16)

and all antisymmetrizations over four indices (including those induced on a couple of

traces by a symmetrization over three indices) are annihilated by the right entry of the

scalar product (C.14), so that only the last term survives.

In conclusion, the left entry of eq. (C.14) gives rise to two terms when one forces the

symmetrization in ( i1, j1, l ),

T[ i1 | j1 . . . T| ip | jp ǭ l γ | k1... kq ] −→
1

6

{
( p+ 1 )T[ i2 | jn . . . T| ip | jn−1 T( i1j1 ǭ l ) γ | k1... kq ]

− T[ i2 | jn . . . T| ip | jn−1 T| k1 | ( i1 ǭ j1 γ l ) | k1... kq ]

}
, (C.17)

and imposing the remaining symmetrizations one can recover in each of them the projec-

tion associated to the Young tableau

i2 j2
...

...

ip jp

k1

...

kq (C.18)

However, this projection is automatically enforced by the right entry of the scalar product,

so that

〈 Y{3,2p−1,1q} Ti1j1 . . . Tipjp ǭ l γ k1... kq
, ∂ l ( γ

[ q ] W [ p ] ) i1j1, ... , ipjp ; k1 ... kq
〉

=
p ( p+ q + 1 )

( p+ 1 )( p+ q + 2 )
〈

1

3 ( p+ q + 1 )
Yτ3

{
( p+ 1 )T[ i1 | j1 . . . T| ip | jp ǭ l γ |k1... kq ]

− T[ i2 | jn . . . T| ip | jn−1
T| k1 | ( i1 ǭ j1 γ l ) | k1... kq ]

}
, ∂ ( l | ( γ

[ q ] W [ p ] ) | i1j1 ) , ... , ipjp ; k1 ... kq
〉

= 〈 ( p+ 1 ) Ti2j2 . . . Tipjp T( i1j1 ǭ l ) γ k1... kq
− Ti2j2 . . . Tipjp T [ k1 | ( i1 ǭ j1 γ l ) | k2... kq ] ,

p

3 ( p+ 1 )( p+ q + 2 )
∂ ( l | ( γ

[ q ] W [ p ] ) | i1j1 ), ... , ipjp ; k1 ... kq
〉 , (C.19)

where τ3 denotes the tableau of eq. (C.18) and the last two lines lead to the result in

eqs. (3.79) or (C.8), using eq. (B.17).
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Two-column projected consequences of the Bianchi identities for Fermi fields

In Sections 2.2.2 and 3.1.2 we presented some two-column projected consequences of the

Bianchi identities (B.27), and now we would like to show how they can be extracted

from their multiple γ-traces (B.28). As anticipated in Section 3.1.2, in the fermionic case

eqs. (B.28) actually admit the couple of two-column projections that can be obtained from

the action of an already two-column projected combination of γ-traces. More precisely,

acting with Ti1j1 . . . Tipjp γ k1... kq
on the Bl of eq. (B.27) one can obtain both two-column

projections appearing in

{2 p, 1q} ⊗ {1} = {2 p, 1q+1} ⊕ {2 p+1, 1q−1} ⊕ {3, 2 p−1, 1q} . (C.20)

On the other hand, it is convenient to deal with Young projections containing the max-

imum number of antisymmetrizations compatible with the tensorial structure of the ex-

pressions under scrutiny. In this case one is led to consider the {2 p, 1q+1} projection of

(B.28), that can be computed acting with the projector associated to the single Young

tableau
i1 j1
...

...

ip jp

k1

...

kq

l (C.21)

on account of the symmetry properties of the combination Ti1j1 . . . Tipjp γ k1... kq
Bl. One

can thus combine the terms of (B.28) resorting to techniques similar to those adopted to

deal with the traces of the bosonic Bianchi identities in Section 3.1.1. First of all, the

structure of the tableau (C.21) implies that all symmetrizations in the generic set of three

indices ( im, jm, kn ) vanish. One can use this fact to immediately relate various terms

as in eq. (2.86). However, for Fermi fields this kind of manipulations does not suffice to

make all contributions with the same number of traces and an antisymmetrized γ-trace

with a given number of indices proportional. Still, one can also consider that, in order

to build the projection associated to (C.21), an antisymmetrization over l and all the kn
indices is required. The {2 p, 1q+1} projections of expressions that become proportional

after this operation remain proportional with the same overall factor even after the full

projection is enforced. For instance, denoting the column antisymmetrizer with A{2p,1q}

as in eq. (A.35), one can easily recognize that

A{2p,1q} ∂ l Ti1j1 . . . Tipjp γ k1... kq
S = p ! ( q − 1 ) ! ∂ [ l Ti1 | j1 . . . T| ip | jp γ |k1... kq ] S ,

A{2p,1q} ∂ [ k1 γ k2... kq ] l

p∏

r=1

Tirjr S = (−1) q p ! q ! ∂ [ l Ti1 | j1 . . . T| ip | jp γ | k1... kq ] S , (C.22)
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and this implies

Y{2p,1q} ∂ [ k1 γ k2... kq ] l

p∏

r= 1

Tirjr S = (−1) q q Y{2p,1q} ∂ l Ti1j1 . . . Tipjp γ k1... kq
S . (C.23)

Using these techniques one can finally obtain

Y{2p,1q+1} Ti1j1 . . . Tipjp γ k1... kq
Bl :

[
( q + 1 ) +

q ( q − 1 )

6
+
p

2
+
p q

6

]
Y{ 2p, 1q+1} ∂ l Ti1j1 . . . Tipjp γ k1... kq

S

+
1

6
Y{ 2p, 1q+1}

p∑

n=1

∂ ( in |

p∏

r 6=n

Tirjr γ | jn ) l k1... kq
S

−
q + 3

6
Y{ 2p, 1q+1}

{
6∂ Ti1j1 . . . Tipjp γ l k1... kq

S + ∂m Ti1j1 . . . Tipjp Tlm γ k1... kq
S
}

−
1

6
Y{ 2p, 1q+1} ∂

m Ti1j1 . . . Tipjp γ k1... kq lm S = 0 . (C.24)

As in eq. (3.25), in the two divergence terms only the two-column projected combination

of traces and antisymmetrized γ-traces can contribute to the full two-column projection

involving also the divergence. In a similar fashion, a two-column projection in all indices

is enforced in the first gradient term. In fact, the manifest symmetries for its lower family

indices are

{2 p, 1q+1} ⊗ {1} = {2 p, 1q+2} ⊕ {2 p+1, 1q} ⊕ {3, 2 p−1, 1q+1} , (C.25)

but on the other hand this term originates from the product of (p + 1) traces and a q-

fold γ-trace. As a result, the irreducible components with less than four columns that it

admits come from the decomposition

{2 p+1} ⊗ {1q} = {2 p+1, 1q} ⊕ {3, 2 p, 1q−1} ⊕ {32, 2 p−1, 1q−2} ⊕ . . . , (C.26)

so that the corresponding term is actually {2p+1, 1q} projected. This is no longer true

for the last term of eq. (C.24), where the components displayed in eq. (C.25) and those

carried by the product of p traces and a (q + 2)-fold γ-trace,

{2 p} ⊗ {1q+2} = {2 p, 1q+2} ⊕ {3, 2 p−1, 1q+1} ⊕ {32, 2 p−2, 1q} ⊕ . . . , (C.27)

share two admissible components. However, in the constrained setting one can elude this

problem and simply select the {2p, 1q+2} component, because it is the only non-vanishing

one. Therefore eq. (C.24) directly leads to eq. (2.128), that suffices to annihilate the gauge

variation of the constrained Lagrangians.

On the contrary, in the unconstrained setting the situation is more subtle, since one is
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left with

( q + 3 ) ( p+ q + 2 )

6
Y{ 2p, 1q+1} ∂ l ( γ

[ q ] S [ p ] ) i1j1, ... , ipjp ; k1... kq

+
1

6
Y{ 2p, 1q+1}

p∑

n= 1

∂ ( in | ( γ
[ q+2 ] S [ p−1 ] ) ... , ir 6= njr 6= n , ... ; | jn ) l k1... kq

−
q + 3

6

{
6∂ ( γ [ q+1 ] S [ p ] ) i1j1, ... , ipjp ; l k1... kq

− ∂m ( γ [ q ] S [ p+1 ] ) i1j1, ... , ipjp , lm ; k1... kq

}

−
1

6
Y{ 2p, 1q+1} ∂

m Ti1j1 . . . Tipjp γ k1... kq lm S

=
i

6
Y{ 2p, 1q+1} Ti1j1 . . . Tipjp γ k1... kq

∂m∂ n T( lm γn ) ψ . (C.28)

In order to reproduce the expression that appears in the gauge variation (3.66), one

should extract the {3, 2 p−1, 1q+1} component from the last gradient term. Then one

should express it as a combination of γ-traces of T( ij γ k ) ψ in order to fix the structure

of the gauge transformations of the Lagrange multipliers λ ijk. Rather than following this

path, it is more convenient to exploit the possibility of producing different two-column

projected consequences of the Bianchi identities. In fact, one can consider

Y{2p,1q+1}

p∑

n= 1

p∏

r 6=n

Tirjr γ k1... kq l ( inBjn ) , (C.29)

that displays the same manifest symmetries as Y{2p,1q+1} Ti1j1 . . . Tipjp γ k1... kq
Bl. Using

the techniques described at the beginning of this appendix it can be cast in the form

p ( q + 1 )

{
( q + 3 ) ( p+ q + 2 )

6
Y{ 2p, 1q+1} ∂ l ( γ

[ q ] S [ p ] ) i1j1, ... , ipjp ; k1... kq

+
1

6
Y{ 2p, 1q+1}

p∑

n= 1

∂ ( in | ( γ
[ q+2 ] S [ p−1 ] ) ... , ir 6= njr 6= n , ... ; | jn ) l k1... kq

−
q + 3

6

[
6∂ ( γ [ q+1 ] S [ p ] ) i1j1, ... , ipjp ; lk1... kq

+ ∂m( γ [ q ] S [ p+1 ] ) i1j1, ... , ipjp , lm ; k1... kq

]}

−
p ( q + 3 )

6
Y{2p,1q+1} ∂

m Ti1j1 . . . Tipjp γ k1... kq lm S

+
(−1) q

3
Y{2p,1q+1} ∂

m

p∑

n=1

p∏

r 6=n

Tirjr Tm ( in γ jn ) k1... kq l S

=
i

6
Y{2p,1q+1}

p∑

n=1

p∏

r 6=n

Tirjr γ k1... kq l ( in | ∂
m∂ n

(
T | jn ) (m γn ) + Tmn γ | jn )

)
. (C.30)

The terms that already came in the form ( γ [m ] S [n ] ) in eq. (C.28) enter exactly the same

combination also here, but one can rearrange these two expressions in order to project

the gradient terms that do not appear in the desired form. Indeed, in the combination

Y{2p,1q+1}

{
( p+2 ) ( q+3 ) Ti1j1. . . Tipjp γ k1... kq

Bl −

p∑

n= 1

p∏

r 6=n

Tirjr γ k1... kq l ( inBjn )

}
(C.31)
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the terms with p traces and a (q + 2)-fold γ-trace,

−
1

3
Y{2p,1q+1} ∂

m

{
( q + 3 ) Ti1j1 . . . Tipjp γ k1... kq lm S

+ (−1) q+1

p∑

n=1

p∏

r 6=n

Tirjr Tm ( in γ jn ) k1... kq l S

}
, (C.32)

are actually {2 p, 1q+2} projected. In order to verify this statement, notice that one can

impose the {2 p, 1q+1} projection again via the single Young tableau (C.21). Then, using

the notation of eq. (A.35) and applying the column antisymmetrizer associated to (C.21)

to the expression within parentheses gives

A{2p,1q+1} ∂
m

{
( q + 3 ) Ti1j1. . . Tipjp γ k1... kq lm S + . . .

}

= p ! ( q + 1 ) ! ∂m
{

( q + 3 ) T[ i1 | j1 . . . T| ip | jp γ | k1... kq l ]m S

+ (−1) q+1 ( q + 2 )

p∑

n= 1

T[ i1 | jn . . . T| ip−1 | jn−2
Tmjn−1 γ | ip k1... kq l ] S

+ (−1) q+1

p∑

n= 1

T[ i1 | jn . . . T| ip−1 | jn−2 Tm | ip | γ jn−1 | k1... kq l ] S

}
. (C.33)

When acting with the row symmetrizer S, the last two terms become proportional, since

they only differ because of an antisymmetrization over all the in indices and a single

jn index, that is annihilated by S. In conclusion, the right-hand side of eq. (C.33) is

equivalent to

( q + 3 ) p ! ( q+ 1 ) ! ∂m T[ i1 | j1 . . . T| ip | jp γ | k1... kq lm ] S , (C.34)

and the remaining symmetrizations induced by S build an expression proportional to that

associated to a Young tableau with the index m attached at the end of the longer column

of (C.21). Due to the symmetry properties of the underlying combination, this suffices to

build the Young projector Y{2p,1q+2}. In order to fix the proportionality factor and to reach

the result displayed in eq. (3.68), one can then compare eq. (C.34) with an expression

obtained acting with the column antisymmetrizer of the {2p, 1q+2} projector,

A{2p,1q+2} Ti1j1 . . . Tipjp γ k1... kq lm S = p ! ( q + 2 ) ! T[ i1 | j1. . . T| ip | jp γ |k1... kq lm ] S . (C.35)

Taking into account the hook lengths of the corresponding expressions,

h ( {2p, 1q+1} ) =
p ! ( p+ q + 2 ) !

q + 2
, h ( {2p, 1q+2} ) =

p ! ( p+ q + 3 ) !

q + 3
, (C.36)

finally gives

Y{2p,1q+1} ∂
m

{
( q + 3 ) Ti1j1. . . Tipjp γ k1... kq lm S −

p∑

n= 1

p∏

r 6=n

Tirjr Tm ( in γ jn ) l k1... kq
S

}

= ( p+ q + 3 ) ∂m Y{2p,1q+2} Ti1j1. . . Tipjp γ k1... kq lm S , (C.37)

that when added to the other contributions contained in eqs. (C.28) and (C.30) proves

the result in eq. (3.68).
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