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Abstract

In this paper we give all the details of the calculation that we presented in our
previous paper arXiv:0908.0387 where the infrared structure of the MHV gluon
amplitudes in the planar limit for N = 4 super Yang-Mills theory was considered
in the next-to-leading order of perturbation theory. Explicit cancellation of the
infrared divergencies in properly defined inclusive cross-sections is demonstrated
first in a toy model example of ”conformal QED” and then in the real N = 4 SYM
theory. We give the full-length details both for the calculation of the real emission
and for the diagrams with splitting in initial and final states. The finite parts for
some inclusive differential cross-sections are presented in an analytical form. In
general, contrary to the virtual corrections, they do not reveal any simple structure.
An example of the finite part containing just the log functions is presented. The
dependence of inclusive cross-section on the external scale related to the definition
of asymptotic states is discussed.
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1 Introduction

In recent years remarkable progress in understanding the structure of the planar limit1

of the N = 4 SYM (supersymmetric Yang-Mills) theory has been achieved. In the pla-
nar limit this theory seems to be integrable at the quantum level and its possible solu-
tion would be the first example of a solvable nontrivial four-dimensional Quantum Field
Theory. The objects which were in the spotlight starting from the AdS/CFT (Anti de
Sitter/Conformal Field Theory) correspondence [1] were the local operators, namely, the
spectrum of their anomalous dimensions. They were calculated on the one hand side
from the field theory approach [2] and, on the other hand, as energy levels of a string
in the classical background [3, 4] revealing a remarkable coincidence. This coincidence
being part of the general conjecture suggests the way towards solution of the model at
the quantum level.

1.1 Scattering amplitudes at weak coupling

Other quantities of interest are the so-called MHV2 scattering amplitudes. It was realized
long ago that in the planar limit even for the pure gauge non-supersymmetric theories they
do have a truly simple structure [5]. In papers [6, 7, 8], the powerful tool for calculating
the loop expansion for these amplitudes was suggested which allows one to calculate the
loop contributions to the amplitudes without calculating the usual Feynman diagrams
the number of which grows exponentially with the growth of the order of perturbation
theory. Even greater simplification occurs in the case of the N = 4 SYM theory where
the loop expansion takes extremely simple form in comparison with a less supersymmetric
case [9]. To see the hidden symmetries of the MHV amplitudes, it is useful to consider
the color-ordered amplitude defined through the group structure decomposition

A(l−loop)
n = gn−2(

g2Nc

16π2
)l
∑

perm

Tr(T a(1)...T a(n))A(l)
n (pa(1), ..., pa(n)), (1.1)

where An is the physical amplitude, An are the partial color-ordered amplitudes, T a(i)

are the generators of the gauge group SU(Nc), ai is the color index of the i-th external
particle, and pa(i) is its momentum.

To be more precise, it was found that these amplitudes revealed the iterative structure
which was first established in two loops [10] and then confirmed at the three loop level by
Bern, Dixon and Smirnov, who formulated the ansatz [11] for the all-loop n-point MHV

1Defined as g → 0; Nc → ∞; λ = g2Nc fixed
2MHV (maximally helicity violating) amplitudes are the amplitudes where all particles are treated as

outgoing and the net helicity is equal to n − 4 where n is the number of particles. For gluon amplitudes
MHV amplitudes are defined as the amplitudes in which all but two gluons have positive helicities.
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amplitudes:

Mn ≡ An

Atree
n

=1+
∞∑

L=1

(
g2Nc

16π2

)L

M (L)
n (ǫ) = exp




∞∑

l=1

(
g2Nc

16π2

)l(
f (l)(ǫ)M (1)

n (lǫ)+C(l)+E(l)
n (ǫ)

)


 ,

(1.2)
where E(l)

n vanishes as ǫ → 0, C(l) are some finite constants, and M (1)
n (lǫ) is the lǫ-

regulated one-loop n-point φ3 scalar amplitude.
It is not surprising that the IR divergent parts of the amplitudes factorize and expo-

nentiate [12]. What is less obvious is that it is also true for the finite part

Mn(ǫ) = exp


−1

8

∞∑

l=1

(
g2Nc

16π2

)l

γ(l)

cusp

(lǫ)2
+

2G
(l)
0

lǫ




n∑

i=1

(
µ2

−si,i+1

)lǫ

+
1

4

∞∑

l=1

(
g2Nc

16π2

)l

γ(l)
cuspF

(1)
n (0)


 , (1.3)

where γcusp is the so-called cusp anomalous dimension [13] and G0 is the second function
(dependent on the IR regularization) which defines the IR structure of the amplitude.

According to the BDS ansatz, the finite part of the amplitude is defined by the cusp
anomalous dimension and a function of kinematic parameters specified at one-loop. For
a four gluon amplitude one has

F
(1)
4 (0) =

γcusp

4
log2 s

t
. (1.4)

The cusp anomalous dimension is a function of the gauge coupling, for which four terms
of the weak coupling expansion [2] and two terms of the strong coupling expansion [3, 4]
are known. Integrability from the both sides of the AdS/CFT correspondence leads to
the all-order integral equation [14] solution to which, being expanded in the coupling,
reproduces both series [15].

For n = 4, 5 the BDS ansatz goes through all checks, namely, the amplitudes were
calculated up to four loops for four gluons [2] and up to two loops for five gluons [16].
However, starting from n = 6 it fails. The first indication of the problem was strong
coupling calculation in the limit n → ∞ [17] where discrepancy with the BDS formula was
found using the MHV gluon amplitude/Wilson loop duality [18]. The second indication
came also from this duality, namely, from the comparison of hexagonal light-like Wilson
loop and finite part of the BDS ansatz for the six-gluon amplitude. It was found that the
two expressions differ by a nontrivial function of the three (dual) conformally invariant
variables [19]. The third indication appeared in [20] where the analytical structure of
the BDS ansatz was analyzed and starting from n = 6 the Regge limit factorization of
the amplitude in some physical regions failed. Finally, it was shown by explicit two-loop
calculation [21] that the BDS ansatz is not true and it needs to be modified by some
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unknown finite function, which is an open and intriguing problem. However, from the
two-loop calculation for the six-point amplitude [21] and hexagonal light-like Wilson loop
[22] it was shown that the gluon amplitude/Wilson loop duality is still valid.

1.2 Strong coupling dual of amplitudes, light-like Wilson loops

and dual conformal invariance

In [23], the authors defined the prescription for calculating the amplitudes at strong
coupling. It happens that in leading order the amplitude is given by the light-like Wilson
loop living on the boundary of dual AdS space

Mn ∼ exp[−SE
cl ] = exp[

√
λ

2π
(Area)cl], (1.5)

where SE
cl denotes the classical action of classical solution of the string worldsheet equa-

tions in Euclidean space-time, which is proportional to the area of the string world-sheet.
After this in [18] it was conjectured that duality between light-like Wilson loops and

MHV scattering amplitudes is valid at any coupling, which was proved for n-point MHV
amplitudes at one loop [24] and for n = 6 at two loops [25] (for more details and references
see the review [26]).

Due to the cusps the light-like Wilson loop is UV divergent; however, this divergency
is under control, namely one can write the divergent factor in all orders in the coupling
governed by two functions, one of them being the cusp anomalous dimension mentioned
above. This allows one to define the finite parts for both the Wilson loop with n cusps
and the n–point MHV amplitude which, according to DKS conjecture [18], are equal to
each other

Fin[logMn] = Fin[logWn]. (1.6)

In [27] the notion of dual superconformal symmetry was introduced, which is conformal
invariance acting in momentum space. What is important, this symmetry has a non-
Lagrangian nature. After this in [28] the fermionic T -duality was suggested which maps
the dual superconformal symmetry of the original theory to the ordinary superconformal
symmetry of the dual model.

For a Wilson loop the conformal invariance is broken due to the cusps, but one can
write the anomalous Ward identities which allows one to find the finite parts of the Wilson
loop with n = 4 and n = 5 cusps exactly [29]

n∑

i=1

(2xν
i xi∂i − x2

i ∂
ν
i )Fin[logWn] =

1

2
γcusp

n∑

i=1

log
x2

i,i+2

x2
i−1,i+1

xν
i,i+1, (1.7)

where the connection between the momentum space and its dual xµ
i,i+1 = xµ

i − xµ
i+1 = pµ

i

is used. This equation uniquely fixes the finite parts of the Wilson loop with n = 4 and
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n = 5 cusps; however, starting from n = 6 more input is needed since the finite part of
the Wilson loop in this case can be a function of the three conformal invariant variables.
Hopefully, one can find hidden symmetries which fix the finite part for any n [30].

It is not clear how to derive this duality from the field theory point of view, and also
how to extend it to the NMHV case3. At one-loop one can show that finite part of the
so-called two mass easy box which governs the finite function of MHV amplitudes could
be directly mapped to Wilson loop diagrams through a simple change of variables in the
space of Feynman parameters and also through the connection between scalar integrals
in different dimensions [31].

1.3 Infrared-safe observables

While all the UV divergences in N = 4 SYM are absent in scattering amplitudes the
IR ones remain and are supposed to be canceled in properly defined quantities. By
themselves the divergent amplitudes have no sense. Regularized expressions act like some
kind of scaffolding which has to be removed to obtain eventual physical observables. It
is these quantities that are the aim of our calculation. And though the Kinoshita-Lee-
Nauenberg [32] theorem in principle tells us how to construct such quantities, explicit
realization of this procedure is not simple and one can think of various possibilities.
The well known example is a successful application to observables in QED [33]. The
other suggestion is to consider the so-called energy flow functions defined in terms of
the energy-momentum tensor correlators introduced in [34] and considered in the weak
coupling regime in [35] and recently in the strong coupling regime in [36]. From our side
we concentrated on inclusive cross-sections in hope that they reveal some factorization
properties discovered in the regularized amplitudes. Similar questions were discussed
in [37], where the inclusive cross-sections like the IR safe observables based on on-shell
formfactors in N=4 SYM were constructed.

To perform the procedure of cancellation of the IR divergences, one should have in
mind that in conformal theory all the masses are zero and one has additional collinear
divergences which need special care. In this work we employ the method developed in the
QCD parton model [38, 39, 40, 41, 42]. It includes two main ingredients in the cancellation
of infrared divergencies coming from the loops: emission of additional soft real quanta
and redefinition of the asymptotic states resulting in the splitting terms governed by
the kernels of the DGLAP equations [43, 44]. The latter ones take care of the collinear
divergences.

Typical observables in QCD parton model calculations are inclusive jet cross-sections,
where the total energy of scattered partons is not fixed since they are considered to be parts
of the scattered hadrons. In [39], the algorithm for extracting divergences was developed
which allows one to cancel divergences and apply numerical methods for calculation of

3NMHV (next to maximally helicity violating) amplitudes are the amplitudes where all particles are
treated as outgoing and the net helicity is equal to n − 6 where n is the number of particles.
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the finite part. In our paper we choose as our observables the inclusive cross-sections with
fixed initial energy and get an analytical expression for the finite part of the differential
cross-section. We do not assume any confinement and consider the scattering of the single
parton based “coherent” states,4 being the asymptotic states of conformal field theory.

There are some attempts to deal with the divergences for the amplitudes themselves.
For example in [45] a deformation of the free superconformal representation by contribu-
tions which change the number of external legs was proposed which looks similar to the
procedure that we apply below considering the inclusive cross-sections. In [46], it was
argued that superconformal symmetry survives regularization and a new holomorphic
anomaly friendly regularization was introduced to deal with the divergences.

The paper is organized as follows. In Section 2, we consider general issues concerning
the construction of the infrared-finite observables in the massless QFT. We discuss the IR
and collinear divergencies for the scattering amplitudes and the ways of their cancellation
based on the Kinoshita-Lee-Nauenberg theorem. We introduce the notion of the measure-
ment functions and discuss their properties. Then the concept of the splitting functions
and splitting counterterms is outlined. We define the IR finite inclusive cross-sections
which are the subject of calculations in the subsequent sections.

Section 3 is devoted to the demonstration of the techniques discussed above in practice.
In a toy model of “conformal QED” we consider the αs correction to the massless electron-
quark scattering. We show how the IR and collinear divergences cancel and calculate
analytically the remaining finite part of the differential cross-section. Due to absence of
the identical particles in the final state this example turns out to be much simpler than
gluon scattering in N = 4 SYM and serves as a good warm-up exercise before going to
N = 4 SYM.

In Section 4, we calculate the leading order PT correction to the gluon-gluon scattering
inclusive cross-section. It includes the one-loop contribution to the 2 → 2 scattering
differential cross-section, the tree level 2 → 3 scattering with the integration over the
phase space of the fifth gluon and an account of the splitting of the initial and final
states. We consider also the amplitudes with creation of pairs of the matter fields from
the N = 4 supermultiplet.

In Section 5, using the results of Section 4 we present the infrared finite results for the
differential inclusive cross-section in N = 4 SYM theory for different physical setups.

Section 6 contains discussion and concluding remarks.
In appendices we present the technical details of our calculations.

4the squared perturbative amplitudes used in our calculation are summed over colors, so in this sense
they are colorless and there are no contradiction with statements that cancellation of IR divergences
occurs only for colorless objects.
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2 Construction of Infra-Red Safe Observables

The tree level matrix elements are finite and well defined in perturbation theory. Diver-
gences appear when integrating over virtual loops or over phase space of real particles. So
the first step is to choose a proper quantity which is finite in the lowest order of PT prior
to calculation of radiative corrections. For example, the total elastic 2 × 2 cross-section
is divergent, but differential cross-section is well defined. The choice of a proper quantity
is performed by imposing conditions on the phase space. This can be achieved by intro-
ducing the concept of the measurement function Sn, where n is the number of particles
in the final state. It defines which physical quantity we are measuring. Typical examples
are: a total cross-section, a differential cross-section, an n-jet cross-section, etc. In the
case of 2 × n scattering the differential cross-section is given by

dσ2→n

dΩ
=

1

J

∫
|M2+n|2dφnSn,

where Sn is the measurement function and the n-particle phase space dφn is given by

dφn =
n∏

k=3

δ+(p2
k)

dDpk

(2π)D−1
(2π)DδD(p1 + p2 − p3 − ... − pn). (2.8)

Here J is the flux factor, p1, p2 are the momenta of the incoming particles, p3, ..., pn are the
momenta of the outgoing ones, M2+n is the matrix element of the corresponding process
and we use the dimensional regularization with D = 4 − 2ǫ.

Then, for example, choosing the measurement function to be

S2 = δD−2(ΩDet − Ω13),

one singles out the standard differential cross-section for the scattering of a third particle
on a certain solid angle Ω13 for the 2 → 2 process

dσ2→2

dΩ13

=
∫

|M4|2dφ2 S2. (2.9)

If one wants to construct the IR finite quantity then, according to the Kinoshita-Lee-
Nauenberg [32] theorem, it is not sufficient to consider the process with the fixed number
of final particles. One has to include the processes of the same order of the perturbation
theory with emission of extra soft quanta and integrate over their momenta. This leads
to the notion of inclusive cross-section when one fixes some particles and integrate over
all the others allowed by the conservation laws.

When the number of particles increases, one has to specify the measurable quantity
in a more accurate way and to distinguish the particle(s) in the final state. Thus, one
can introduce the energy and angular resolution for the detector and cut the phase space
so that the soft quanta with total energy below the threshold as well as all the particles
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within the given solid angle are included. This procedure requires the corresponding
measurement functions and works well in QED but introduces explicit dependence on the
energy and angular cutoff, thus violating conformal invariance.

We adopt here different attitude without introducing any cutoffs but rather considering
the inclusive cross-section with the emission of particles with all possible momenta allowed
by kinematics. Having identical particles in the final state one has to specify which
particles are detected by introducing some measurement function. For instance, one can
detect the given particle scattering on a given angle while integrating over the phase space
of the other particles. As it will be clear later in this case due to collinear divergences
one still cannot avoid introducing some scale related to the definition of the asymptotic
states of a theory. Below we show how it works in particular examples.

To have the cancellation of all the IR divergences, according to the analysis of Ellis,
Kunszt and Soper [39], the measurement functions for the processes with a different
number of external particles have to obey the following conditions:

Sn+1(..., λ~p, ...) = Sn(......), λ → 0, (2.10)

which reflects the insensitivity to the soft quanta, and

Sn+1(..., λ~p, ..., (1 − λ)~p, ...) = Sn(..., ~p, ...) (2.11)

here 0 ≤ λ ≤ 1. This condition expresses our insensibility to collinear quanta.
It should be pointed out that in case of identical particles one has an additional

problem when calculating the differential cross-sections: one has to specify the scattering
angles and to choose the detectable particle. This requirement imposes further conditions
on the phase space as will be shown below when considering the gluon scattering.

The additional divergences appearing in the massless case which come from the in-
tegration over angles rather than the modulus of momentum, as in the case of the IR
divergences, are related to the collinearity of momenta of two particles. For this reason
they are called the collinear divergences. To get the cancellation of all divergences, the
observed cross-section should include besides the main process and emission of the soft
quanta the process of emission of collinear particles with kinematically allowed absolute
values of momenta. As we will see below, the leading IR divergences coming from the
cross-section of the processes with the virtual loop correction and from the real emission
of the soft quanta cancel. However, the total cancellation of divergencies does not happen.
The remaining divergences in the form of a single pole have the collinear nature. For the
cancellation of the remaining pole one has to properly define the initial (and final) states.
The reason is that a massless particle can emit a collinear one which carries part of the
initial momentum and in this case, it is impossible to distinguish one particle propagating
with the speed of light from the two flying parallel. This is the common problem for any
theory containing the interacting massless particles.
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To deal with this problem, let us consider a particle in the initial state and introduce
the notion of distribution of a particle with respect to the fraction of the carried momen-
tum z: q(z). Then the zero-order distribution corresponds to q(z) = δ(1 − z) and the
emission of a collinear particle leads to the splitting: the particle i carries the fraction
of momentum equal to z, while the collinear particle j - (1 − z). The probability of this
event is given by the so-called splitting functions Pij(z) [44]. In case of a particle in a
final state, this corresponds to the fragmentation into a pair of particles i and j. In the
lowest order of perturbation theory the distribution can be written in the form

qi(z,
Q2

f

µ2
) = δ(1 − z) +

α

2π

1

ǫ

(
µ2

Q2
f

)ǫ∑

j

Pij(z), (2.12)

where the scale Q2
f , sometimes called factorization scale, defines the measure of collinearity

of the emitted particles, i.e., it refers to the definition of the initial state. In fact, in the
massless case one cannot define the initial state that contains just one particle, it exists
together with the set of collinear particles forming a coherent state.

This leads to the additional terms in the cross-section

α

2π

1

ǫ

(
µ2

Q2
f

)ǫ ∫ 1

0
dz
∑

j

Pij(z) dσBorn
j (zp1, p2, p3, p4) + (p1 ↔ p2), (2.13)

referred hereafter as the initial splitting contributions or collinear counterterms.
The same is true for the final states. The corresponding final state collinear countert-

erms are
α

2π

1

ǫ

(
µ2

Q2
f

)ǫ ∫ 1

0
dx
∑

j

Pij(x) dσBorn
j (p1, p2, p3, p4) + (p3 ↔ p4). (2.14)

Summarizing all the contributions we come to the following set of IR safe observables
that we consider here

dσincl
obs =

∞∑

n=2

1∫

0

dz1q1(z1,
Q2

f

µ2
)

1∫

0

dz2q2(z2,
Q2

f

µ2
)

n∏

i=1

1∫

0

dxiqi(xi,
Q2

f

µ2
) × (2.15)

× dσ2→n(z1p1, z2p2, ...)Sn({z}, {x}) = g4N4
c

∞∑

L=0

(
g2Nc

16π2

)L

dσF inite
L (s, t, u, Q2

f),

where p1, p2 are the momenta of the initial particles, pi are the momenta of the final
particles, Sn are the measurement functions which define the measurable quantity, qi are
the initial and final state distributions.

The above expression looks like the parton model cross-section. The difference is that
in the parton model one uses the parton distributions inside hadrons while here it belongs
to the definition of the asymptotic states.
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3 Toy model:“Conformal QED”

To illustrate the main ideas of the previous chapter, we study first a toy model example.
Let us consider the electron-quark scattering and put all the masses equal to zero. We
will be interested in the radiative corrections in the first order with respect to the strong
coupling αs. The corresponding diagrams are shown in Fig.1. In the chosen process the

Figure 1: The process of electron-quark scattering in the first order in αs: ) the Born
diagram, b)-d) the corrections due to the virtual gluons, e)-f) the corrections due to the
real gluons

UV divergences cancel due to the Ward identities so we are left only with the IR ones.
To handle them, we use dimensional regularization. This situation exactly imitates the
four-dimensional CFT’s like the N = 4 SYM theory.

Define the measurement function in the following way:

S2 = δ±,h3δ
D−2(ΩDet − Ω13),

where δ±,h3 means that we detect the third particle with any helicity, i.e. we are interested
in unpolarized differential cross-section. Here dΩ13 = dφ13dcos(θ13)

5, θ13 is the scattering
angle of the particle with momentum p3 with respect to the particle with momentum p1

in the center of mass frame. In the leading order (LO) we have the well known text-book
formula [47] (

dσ2→2

dΩ13

)

Born

=
α2

2E2

(
s2 + u2

t2
− ǫ

)(
µ2

s

)ǫ

, (3.16)

where E is the total energy of initial particles in the center of mass frame, and s, t, u are
the standard Mandelstam variables. In the c.m. frame s = E2, t = −E2/2(1 − c), u =
−E2/2(1 + c), c = cos θ13.

The one loop correction coming from the diagrams with virtual gluon, Fig.1 b)-d), has
the form (

dσ2→2

dΩ13

)

1−loop

=

(
dσ2→2

dΩ13

)

Born

[
−2CF

αs

4π

(
µ2

−t

)ǫ

(
2

ǫ2
+

3

ǫ
+ 8)

]
. (3.17)

5if to be more accurate in dimensional regularization we have dΩD−2
13 =

dφ13sin(φ13)
−2ǫdcos(θ13)sin(θ13)

−2ǫ, D = 4 − 2ǫ.
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In order to avoid the transcendental numbers, we used the helpful definition of the angu-
lar measure in the space of 4 − 2ǫ dimensions and multiplied the standard expression by
Γ(1 − ǫ)/(4π)ǫ. Then the constants like γE, log(4π) and ζ(2) disappear from the inter-
mediate expressions. Due to the cancellation of divergences in the final expressions, this
redefinition does not influence the answer.

Now, following the general prescription, we have to calculate the diagrams with emis-
sion of real gluons, Fig.1 e) - f). For the measurement function of these processes we take
S3 = S2, then all requirements on S2 and S3 are satisfied trivially. Besides the squares
of each of the diagrams one should also take into account the interference term. After
contracting all the indices the phase integral takes the form
(

dσ2→3

dΩ13

)

Born

=
1

2πE2

∫
dDp3δ

+(p2
3)
∫

dDk

(2π)D
δ+(k2)δ+((p4−k)2)S3|M |2p4=p1+p2−p3

,

|M |2 =
e4g2

4
8
M0 + ǫM1 + ǫ2M2

t(s + t + u)
, (3.18)

M0 = 4s − 8p1k − 4p2k +
−8(p1k)2 + 4(2s + t)p1k − (3s2 + t2 + u2 + 2st)

p2k
,

M1 =−4(s+u)+8p1k+8p2k+
8(p1k)2−4(s+t+u)p1k+2(s+t+u)2−2(u+s)t

p2k
,

M2 = 4(s + t + u) − 4p2k − (s + t + u)2

p2k
= −(s + t + u + 2p2k)2

p2k
.

It is useful to pass to the spherical coordinates and use the c.m. frame. After the
integration over the phase volume the result can be represented as

(
dσ2→3

dΩ13

)

Born

=

(
dσ2→2

dΩ13

)

Born

[
2CF

αs

4π

(
µ2

−t

)ǫ

(
2

ǫ2
+

3

ǫ
+ 8)

]

+ CF
α2

E2

αs

4π

(
µ2

s

)ǫ (
µ2

−t

)ǫ

(
f1

ǫ
+ f2) + O(ǫ), (3.19)

where the functions f1 and f2 in the c.m. frame are

f1 = −2
(1−c)(c3+5c2−3c+5) log(1−c

2
)−(c−1)2(c+1)(c−11)/4

(1 − c)2(1 + c)2
, (3.20)

f2 = − 1

(1 − c)2(1 + c)2

[
(1 − c)(c3 + 5c2 − 3 + 5) log2(

1 − c

2
)

+
1

2
(1 − c)(3c3+15c2+77c−31) log(

1 − c

2
)+(1 + c)2(c2+5c+3)π2

−12(9c2+2c+5)Li2(
1 + c

2
)+

1

2
(1 − c)(1 + c)(5c2−42c−23)

]
. (3.21)

As one can see from comparison of the cross-sections of the processes with virtual
(3.17) and real gluons (3.19), in the sum the virtual part completely cancels and the
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second order pole disappears. However, the total cancellation of divergences does not
happen. The remaining divergences in the form of a single pole have a collinear nature.
As was already mentioned, for their cancellation one has to define properly the initial
states.

Introducing the distribution function for initial quark state one gets the additional
contribution [48] to the cross-section which looks like

(
dσ2→2

dΩ13

)

splitt

=
1

ǫ

αs

2π

(
µ2

Q2
f

)ǫ ∫ 1

0
dzPqq(z)

(
dσ2→2

dΩ13
(p1, zp2)

)

Born

, (3.22)

where the Born cross-section is given by (3.16) with the replacement of the initial quark
momentum p2 by p2z. The splitting function Pqq(z) [44] here is

Pqq(z) = CF

(
1 + z2

(1 − z)+
+

3

2
δ(1 − z)

)
. (3.23)

One should also take into account the change of momenta conservation condition which
now looks like p1+zp2−p3−p4 = 0. This gives an additional factor of 4/(1+z−c(1−z))2.

One might also have a contribution from the final state counterterm; however, since in
this case, according to (2.14), the cross-section does not depend on the fraction z, one has
to integrate only the splitting function Pqq(z). And this integral equals zero due to the
requirement of conservation of the number of quarks. Therefore, one has no contribution
from the final state splitting. It will not be the case for the gluon scattering cross-section
considered below.

The factorization scale Q2
f is an arbitrary quantity associated with the quark distribu-

tion function which may depend on z. It is quite natural to choose the factorization scale
equal to the characteristic scale of the process of interest. Thus, in our case this choice
corresponds to Q2

f = −t̂, where t̂ is the Mandelstam parameter t for the process where

p2 is replaced by p2z. One has t̂ = t 2z
(z+1)−c(1−z)

. Substituting this value of Q2
f into (3.22)

leads to the following result:
(

dσ2→2

dΩ13

)

splitt

= CF
α2

2E2

αs

2π

(
µ2

s

)ǫ (
µ2

−t

)ǫ

(−f1

ǫ
+ f3), (3.24)

where

f3 = − 1

(1 − c2)2

[
2(1 − c)(c3 + c2 − 33c + 7) log(

1 − c

2
) + 12(9c2 + 2c + 5)Li2(

1 + c

2
)

−(1 + c)2(c2 + 5c + 3)π2 − 1

2
(1 − c)(1 + c)(11c2 − 19)

]
. (3.25)

Gathering all pieces together we finally obtain the IR finite answer in the NLO order
of PT:
(

dσ

dΩ13

)

IR safe

=

(
dσ2→2

dΩ13

)

Born

+

(
dσ2→2

dΩ13

)

1−loop

+

(
dσ2→3

dΩ13

)

Born

+

(
dσ2→2

dΩ13

)

Split
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=
α2

2E2

{
c2 + 2c + 5

(1 − c)2
− αs

2π

CF

(1 − c)(1 + c)2

[
(c3 + 5c2 − 3c + 5) log2(

1 − c

2
)

+
1

2
(7c3 + 19c2 − 55c − 3) log(

1 − c

2
) − (1 + c)(3c2 + 21c + 2)

]}
. (3.26)

This expression is the final answer for the cross-section of the physical process of the
electron-quark scattering where the initial and the final state include the soft and collinear
gluons. It includes also the definition of the initial state and can be recalculated for the
alternative choice of the factorization scale similar to what happens to the ultraviolet scale
which defines the coupling constant. Thus, we practically deal with the scattering not of
individual particles but rather with coherent states with a fixed total momentum. This
process contrary to the scattering of individual massless quanta has a physical meaning.
The drawback is the dependence on Qf which reflects the definition of the asymptotic
state. This dependence explicitly violates the conformal invariance.

4 Calculation of the Inclusive Cross-sections in N = 4

SYM theory

Consider now the gluon scattering in the N = 4 SYM theory. Our aim is to evaluate the
NLO correction to the inclusive differential polarized cross-section in the weak coupling
limit in planar limit in analytical form and to trace the cancellation of the IR divergences.

We start with the tree level 2 → 2 MHV scattering amplitude with two incoming
positively polarized gluons and two outgoing positively polarized gluons and consider the
differential cross-section dσ2→2(g

+g+ → g+g+)/dΩ as a function of the scattering solid
angle. Treating all the particles as outgoing this amplitude is denoted as (– – , ++) MHV
amplitude. At tree level the differential cross-section is given by

(
dσ2→2

dΩ13

)(−−++)

(tree)

=
1

J

∫
dφ2|M(tree)

4 |2S2, (4.27)

where J is a flux factor, in our case J = s, and the phase volume of the two-particle
process (we use the FDH version of the dimensional reduction, see [49] for details) is

dφ2 =
dDp3δ

+(p2
3)

(2π)D−1

dDp4δ
+(p2

4)

(2π)D−1
(2π)DδD(p1 + p2 − p3 − p4), (4.28)

and Sn (n = 2) in this particular case is

S2 = δ+,h3δ
D−2(ΩDet − Ω13), (4.29)

where δD−2(ΩDet − Ω13) means that our observable is the differential cross-section and
δ+,h3 indicates that we detect a particle with positive helicity.
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The squared matrix element is obtained from the color-ordered amplitudes via sum-
mation

|M(tree)
4 |2 = g4N2

c (N2
c − 1)

∑

σ∈P3

|A(tree)
4 (p1, pσ(2), pσ(3), pσ(4))|2, (4.30)

where Pn is the set of the permutations of n objects (n = 3 in this case), so that in our
case [5, 50] (see also appendix A for details)

|M(tree)(−−++)
4 |2 = g4N2

c (N2
c − 1)

∑

σ∈P3

s4
12

s1σ(2)sσ(2)σ(3)sσ(3)σ(4)sσ(4)1

, (4.31)

where we use the notation sij = (pi + pj)
2. The corresponding Feynman diagrams are

Figure 2: Tree-level diagrams for the color-ordered MHV amplitudes

shown in Fig.2.
Within the dimensional regularization (reduction) the cross-section in the planar limit

looks like (
dσ2→2

dΩ13

)(−−++)

(tree)

=
α2N2

c

2E2

(
s2

t2
+

s2

u2
+

s4

t2u2

)(
µ2

s

)ǫ

, (4.32)

where s, t, u are the Mandelstam variables, E is the total energy in the center of mass
frame, and α = g2Nc/4π. So in the center of mass frame the cross-section can be rewritten
as: (

dσ2→2

dΩ13

)(−−++)

(tree)

=
α2N2

c

E2

4(3 + c2)

(1 − c2)2

(
µ2

s

)ǫ

, (4.33)

where c = cos θ13. The next step is to calculate the NLO corrections.

4.1 Virtual part

To get the one-loop contribution to the differential cross-section, one has to consider
the diagrams shown in Fig.3. We use the already known one loop contribution to the
color-ordered amplitude [51]

M
(1−loop)
4 (ǫ) = A

(1−loop)
4 /A

(tree)
4 = −1

2
stI

(1−loop)
4 (s, t),
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Figure 3: The one-loop diagrams for the color-ordered MHV amplitude in the N = 4
SYM theory. Particles running inside the loop include all the members of the N = 4
supermultiplet. The solid and dashed lines correspond to the fermion and scalar particles,
respectively.

where I
(1)
4 (s, t) is the scalar box diagram

I
(1−loop)
4 (s, t) = − 2

st

Γ(1+ǫ)Γ(1−ǫ)2

Γ(1 − 2ǫ)
[
1

ǫ2

(
(
µ2

s
)ǫ+(

µ2

−t
)ǫ

)
+

1

2
log2

(
s

−t

)
+

π2

2
] + O(ǫ).

The square of the matrix element summed over colors

|M(1−loop)
4 |2 =

∑

colors

(A(tree)
4 A(1−loop)∗

4 + c.c.)

has the form

|M(1−loop)(−−++)
4 |2 = −g4N2

c (N2
c − 1)

(
g2Nc

16π2

)
(4.34)

×
[

s4

s2t2
stI

(1−loop)
4 (s, t) +

s4

s2u2
suI

(1−loop)
4 (s, u) − s4

t2u2
tuI

(1−loop)
4 (−t, u)

]
,

which gives the one-loop contribution to the cross-section in the planar limit

(
dσ2→2

dΩ13

)(−−++)

virt

=
α2N2

c

2E2

(
µ2

s

)ǫ {
α

4π

s4

s2t2u2

[
− 8

ǫ2

(
((

µ2

−t
)ǫ + (

µ2

−u
)ǫ)s2

+((
µ2

s
)ǫ + (

µ2

−t
)ǫ)u2 + ((

µ2

s
)ǫ + (

µ2

−u
)ǫ)t2

)
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+
16

3
π2(s2+t2+u2) + 4(u2 log2(

s

−t
) + t2 log2(

s

−u
) + s2 log2(

t

u
))
]}

. (4.35)

Rewriting this expression in the center of mass frame we have:

(
dσ2→2

dΩ13

)(−−++)

virt

=
α2N2

c

E2

(
µ2

s

)2ǫ

4

{
α

4π

[
−16

ǫ2

3 + c2

(1 − c2)2
+

4

ǫ

(
5 + 2c + c2

(1 − c2)2
log(

1 − c

2
)

+
5 − 2c + c2

(1 − c2)2
log(

1 + c

2
)

)
+

16(3 + c2)π2

3(1 − c2)2
− 16

(1 − c2)2
log(

1 − c

2
) log(

1 + c

2
)

]}
. (4.36)

It should be stressed that due to the conformal invariance of the N = 4 SYM theory
at the quantum level there are no UV divergences in (4.36) and all divergences have the
IR soft or collinear nature. They have to be canceled in properly defined observables.
Note also the simplicity of the finite part which is a consequence of symmetries of N = 4
SYM and the fact that all the terms in (4.36) have the same transcendentality [14, 52].

4.2 Real emission

The next step, as in the toy model considered above, is the calculation of the amplitude
with three outgoing particles. Here we have to define the process we are interested in.
There are several possibilities.

1. Three gluons with positive helicities: g+g+ → g+g+g+. This is the MHV amplitude;

2. Two gluons with positive helicities and the third one with negative helicity: g+g+ →
g+g+g−.6 This is the anti-MHV amplitude;

3. One of three final particles is the gluon with positive helicity and the rest is the
quark-antiquark pair7: g+g+ → g+q−q+ or g+g+ → g+q+q−. This is an anti-MHV
amplitude;

4. One of three final particles is the gluon with positive helicity and the rest are two
scalars: g+g+ → g+ΛΛ. This is an anti-MHV amplitude.

The corresponding diagrams are shown in Fig.4.
If one fixes one gluon with positive helicity scattered at angle θ and sum over all the

other particles then all the processes mentioned above contribute. In the case when one
fixes two gluons with positive helicity and look for the rest, only the first two options are
allowed.

6There is also a g+g+ → g+g−g+ helicity configuration, but the partial amplitudes for them are equal.
We will use the (− − + + −) notation for both of them.

7The N = 4 supermultiplet consists of a gluon g, 4 fermions (”quarks”) qA and 6 real scalars ΛAB; A

and B are SU(4)R indices, Λ is an antisymmetric tensor. It is implied that all squared amplitudes with
quarks and scalars are summed over these indices.
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Figure 4: The tree diagrams with three outgoing particles for the color-ordered ampli-
tudes. Permutations are not shown.

The cross-section of these processes can be written as

(
dσ2→3

dΩ13

)

Real

=
1

J

∫
dφ3|M(tree)

5 |2S3, (4.37)

where dφ3 is the three-particle phase volume

dφ3 =
dDp3δ

+(p2
3)

(2π)D−1

dDp4δ
+(p2

4)

(2π)D−1

dDp5δ
+(p2

5)

(2π)D−1
(2π)DδD(p1 + p2 − p3 − p4 − p5), (4.38)

and S3 is the measurement function which constraints the phase space and defines the
particular observable.

The squared matrix element is expressed through the amplitudes as before

|M(tree)
5 (p1, ..., p5)|2 = g6N3

c (N2
c − 1)

∑

σ∈P4

|A(tree)
5 (p1, pσ(1), ..., pσ(4))|2. (4.39)

For the processes mentioned above one has the following expressions for the matrix
elements: 8:

1. |M(tree)(−−+++)
5 |2 = g6N3

c (N2
c − 1)

∑

σ∈P4

s4
12

s1σ(1)sσ(1)σ(2)sσ(2)σ(3)sσ(3)σ(4)sσ(4)1

. (4.40)

8It is implied that all squared amplitudes with quarks and scalars are summed over SU(4)R indices.
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Since there are three identical gluons with positive helicity in the final state one has to
define which ones are detected. In case of one detectable particle, one can choose the
fastest one; in case of two, the two fastest ones. The measurement function for detecting
only one gluon with momentum p3 with positive helicity can be written as

S(−−+++),1
3 = δ+,h3Θ(p0

3 > p0
4)Θ(p0

3 > p0
5)δ

D−2(ΩDet − Ω13); (4.41)

and for detecting of two gluons with positive helicities as

S(−−+++),2
3 = δ+,h3δ+,h4Θ(p0

3 > p0
5)Θ(p0

4 > p0
5)δ

D−2(ΩDet − Ω13), (4.42)

where we detect the 3-rd and the 4-th gluons. Analogous measurement function would
appear if we would like to detect the 3-rd and the 5-th gluons.

2. |M(tree)(−−++−)
5 |2 = g6N3

c (N2
c − 1)

∑

σ∈P4

s4
34

s1σ(1)sσ(1)σ(2)sσ(2)σ(3)sσ(3)σ(4)sσ(4)1

; (4.43)

The measurement function for detecting one gluon with positive helicity and momentum
p3 is given by

S(−−+++),1
3 = δ+,h3Θ(p0

3 > p0
4))δ

D−2(ΩDet − Ω13); (4.44)

and for detecting of two gluons with positive helicity by

S(−−++−),2
3 = δ+,h3δ+,h4(5)

δD−2(ΩDet − Ω13). (4.45)

3. |M(tree)(−−+qq)
5 |2 = g6N3

c (N2
c − 1)

∑

σ∈P4

s34s35(s
2
34 + s2

35)

s1σ(1)sσ(1)σ(2)sσ(2)σ(3)sσ(3)σ(4)sσ(4)1

; (4.46)

The measurement function in this case is simple since we have only one gluon in the final
state

S(−−+qq)
3 = δ+,h3δ

D−2(ΩDet − Ω13). (4.47)

4. |M(tree)(−−+ΛΛ)
5 |2 = g6N3

c (N2
c − 1)

∑

σ∈P4

s2
34s

2
35

s1σ(1)sσ(1)σ(2)sσ(2)σ(3)sσ(3)σ(4)sσ(4)1

. (4.48)

The measurement function is given by the same formula (4.47) as in the previous case.
One can check that the measurement functions written above satisfy the IR and

collinear limit conditions (2.10,2.11). Indeed, one has
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1. p5 → 0, |p4| = |p3|:

S3(p3, p4, 0) → Θ(p0
3 − p0

4)δ
D−2(Ω − Ω3),

2. p3 = P,p4 = xP,p5 = (1 − x)P:

S3(P, P, (1− )P ) → Θ(1 − x)Θ(x)δD−2(Ω − Ω3).

The latter θ-functions give 0 < x < 1 restricting the fraction of momenta in a natural
way.

Choosing the fastest momentum one has to have in mind the conservation of momen-
tum and energy

p3 + p4 + p5 = 0, |p3| + |p4| + |p5| = E.

This means that the three momenta form a triangle with the perimeter equal to E. Hence
the requirement that, say, the third particle is the fastest one means that p0

3 > E/3.
Therefore, to simplify the integration, in what follows we choose the universal measure-
ment function

S3(p3, p4, p5) = Θ(p0
3 −

1 − δ

2
E)δD−2(ΩDet − Ω3), (4.49)

where we take δ = 1/3 in the case of identical particles and δ = 1 in the other cases. Thus,
the registration of one fastest gluon corresponds to δ = 1/3 for the MHV and anti-MHV
amplitudes and δ = 1 for the matter-antimatter amplitude, while the registration of two
fastest gluons corresponds to δ = 1/3 for the MHV amplitude and δ = 1 for the anti-MHV
amplitude.

In what follows we keep the value of δ arbitrarily and show that the IR and collinear
divergences cancel in observables for any value of δ. We omit the details of the calculation,
which can be found in Appendix B, and present here only the divergent parts of the
calculated objects. All the finite parts can be found in Appendix D.

With these definitions the contributions to the 2 → 3 cross-sections from the ampli-
tudes that are listed above are

1. Real Emission (MHV)

(
dσ2→3

dΩ13

)(−−+++)

Real

=
α2N2

c

E2

(
µ2

s

)2ǫ
α

π

{
8

ǫ2

(3 + c2)

(1 − c2)2
(4.50)

+
1

ǫ

[
2

(1+c)2
log(

1−c

2
)+

2

(1−c)2
log(

1+c

2
) +

16δ(2δ−3)

(1−c2)2(1−δ)2
+

12(3+c2)

(1−c2)2
log(

1−δ

δ
)

]

+Finite part} ;

Notice the singularity in the limit δ → 1.
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2. Real Emission (anti-MHV)

(
dσ2→3

dΩ13

)(−−++−)

Real

=
α2N2

c

E2

(
µ2

s

)2ǫ
α

π

{
1

ǫ2

8(3 + c2)

(1 − c2)2
+

1

ǫ

[
−12(c2 + 3) log δ

(1 − c2)2

+
64(12c2 + 17)

3(1 − c2)3
+

2δ

(1 − c2)2

(
2

3
(5 + 3c2)δ2 − (c2 + 19)δ + 2(5c2 + 43)

)

+

(
2(3c2 − 24c + 85)

(1 − c)(1 + c)3
log(

1 − c

2
) − 8(c2 − 6c + 21)

(1 − c)(1 + c)3
log(

1 + δ−(1 − δ)c

2
)

− 32(c2 − 4c + 7)

(1 + c)3(1 − c)(1 + δ − c(1 − δ))
+

32(2 − c)

(1 + c)3(1 + δ − c(1 − δ))2

− 64(1 − c)

3(1 + c)3(1 + δ − c(1 − δ))3
+ (c ↔ −c)

)]
+ Finite part

}
; (4.51)

Contrary to the MHV case the limit δ → 1 is regular here and greatly simplifies the
final result.

3. Fermions (for 4 fermions in adjoint representation of SU(Nc))

(
dσ2→3

dΩ13

)(−−+qq̄)

Real

=
α2N2

c

E2

(
µ2

s

)2ǫ
α

π

{
−16

ǫ

[
(79 + 25c2)

3(1 − c2)2
(4.52)

+
2(3 − c)2

(1 − c)(1 + c)3
log(

1 − c

2
) +

2(3 + c)2

(1 − c)3(1 + c)
log(

1 + c

2
)

]
+ Finite part

}
;

4. Scalars (for 6 scalars in adjoint representation of SU(Nc))

(
dσ2→3

dΩ13

)(−−+ΛΛ)

Real

=
α2N2

c

E2

(
µ2

s

)2ǫ
α

π

{
−8

ǫ

[
−2(10 + 7c2)

(1 − c2)2
(4.53)

−3(5 − c)

(1 + c)3
log(

1 − c

2
) − 3(5 + c)

(1 − c)3
log(

1 + c

2
)

]
+ Finite part

}
.

In the last two expressions we chose the parameter δ = 1 since there are no identical
particles in these cases and there is no need to restrict the phase space. Note also the
absence of the second order pole in ǫ which means that there is no IR soft divergency here
but only a collinear one.

4.3 Splitting

Now we have to deal with an additional 1/ǫ pole coming from the collinear divergences.
As one can see from the toy model example, taking into account emission of additional
quanta in the initial and final states allows one to cancel the IR divergences (double
poles in ǫ) but leaves the single poles originating from collinear ones. Indeed, as it has
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been discussed earlier, the asymptotic states (both the initial and final ones) are not well
defined since a massless quantum can split into two parallel ones indistinguishable from
the original. To take this into account, we introduce the distribution of the initial and
final particle (gluon or any other member of the N = 4 SYM supermultiplet) with respect
to the fraction of the carried momentum z: qi(z, Q

2
f/µ

2). Also, one has to keep in mind
that the particles in this case are polarized. The corresponding Feynman diagrams are
shown in Fig.5.

Λ

Λ

Figure 5: The initial and final particle splitting diagrams: a) the initial MHV amplitude,
b)-c) the initial anti-MHV amplitudes, d)-f) the initial matter amplitudes, g)-h) the final
MHV and anti-MHV amplitudes. Permutations are not shown.

Additional contributions from collinear particles in the initial or final states to the
inclusive gluon cross-section (the collinear counterterms) have the following form, respec-
tively:

dσspl,init
2→2 =

α

2π

1

ǫ

(
µ2

Q2
f

)ǫ ∑

i,j=1,2; i6=j

∫ 1

0
dz
∑

l=g,q,Λ

Pgl(z)dσ2→2(zpi, pj, p3, p4)Sspl,init
2 (z), (4.54)

dσspl,fin
2→2 =

α

2π

1

ǫ

(
µ2

Q2
f

)ǫ

dσ2→2(p1, p2, p3, p4)
∫ 1

0
dz

∑

l=g,q,Λ

Pgl(z)Sspl,fin
2 (z). (4.55)

Having particles with different helicities we have the following set of collinear coun-
terterms (We use here slightly different notation for the splitting functions indicating
explicitly all three particles like P init

fin1,fin2
(z) to avoid confusion.)

22



1. Initial state splitting MHV amplitude (−− + + +)

(
dσ2→2

dΩ13

)(−−+++)

InSplit

=
α

2π

1

ǫ

(
µ2

Q2
f

)ǫ ∫ 1

0
dz 2 P g−

g+g+(z)

(
dσ2→2

dΩ13

)(−−++)

(zp1, p2, p3, p4)S(−−+++)
2, init (z)

+ (p1 ↔ p2), (4.56)

Final state splitting MHV amplitude (−− + + +)

(
dσ2→2

dΩ13

)(−−+++)

FnSplit

= 2
α

2π

1

ǫ

(
µ2

Q2
f

)ǫ (
dσ2→2

dΩ13

)(−−++)

(p1, p2, p3, p4)
∫ 1

0
dz P g−

g+g+(z)S(−−+++)
2, fin (z).

(4.57)
2. Initial state splitting anti-MHV amplitude (−− + + −)

(
dσ2→2

dΩ13

)(−−++−)

InSplit

=
α

2π

1

ǫ

(
µ2

Q2
f

)ǫ ∫ 1

0
dz P g−

g−g+(z) 2

(
dσ2→2

dΩ13

)(−++−)

(zp1, p2, p3, p4)S(−−++−)
2, init (z)

+
α

2π

1

ǫ

(
µ2

Q2
f

)ǫ ∫ 1

0
dz 2 P g−

g+g−(z)

(
dσ2→2

dΩ13

)(−−++)

(zp1, p2, p3, p4)S(−−++−)
2, init (z)

+ (p1 ↔ p2), (4.58)

Final state splitting anti-MHV amplitude (−− + + −)

(
dσ2→2

dΩ13

)(−−++−)

FnSplit

= 2
α

2π

1

ǫ

(
µ2

Q2
f

)ǫ (
dσ2→2

dΩ13

)(−−++)

(p1, p2, p3, p4)
∫ 1

0
dzP g−

g+g−(z)S(−−++−)
2, fin (z).

(4.59)
One has also the collinear counterterms containing the other members of the N = 4

supermultiplet
3. Initial state splitting into a fermion-antifermion pair

(
dσ2→2

dΩ13

)(−−+qq)

InSplit

=
α

2π

nf

ǫ

(
µ2

Q2
f

)ǫ ∫ 1

0
dz



2P g−

q̄−q+(z)

(
dσ2→2

dΩ13

)(−q+q̄)

(zp1, p2, p3, p4)S(−−+qq)
2, init (z)

+2 P g−

q+q̄−(z)

(
dσ2→2

dΩ13

)(−q+q)

(zp1, p2, p3, p4)S(−−+qq)
2, init (z)



+ (p1 ↔ p2), (4.60)

4. Initial state splitting into a scalar pair

(
dσ2→2

dΩ13

)(−−+ΛΛ)

InSplit

=
α

2π

ns

ǫ

(
µ2

Q2
f

)ǫ ∫ 1

0
dz 2 P g−

ΛΛ(z)

(
dσ2→2

dΩ13

)(−Λ+Λ)

(zp1, p2, p3, p4)S(−−+ΛΛ)
2, init (z)

+ (p1 ↔ p2), (4.61)
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where nf and ns is the number of fermions and scalars, respectively. One should put
nf = 4 and ns = 6 in our case.

The explicit form of the Born cross-sections and the splitting functions P i
jk(z) can be

found in Appendices A and C, respectively.
Note that there is no final state splitting counterterms for fermions and scalars. The

reason is that one has to take into account only those final splittings where the original
state (gluon in our case) survives with momentum multiplied by fraction z.

The measurement functions here are the same as in the case of real emission but
depend now on fraction z and restrict the integration region over z. They take the form

Sspl,1
2 (z) = δ+,h3δ

D−2(Ω − Ω13)Θ(z − zmin), (4.62)

for detecting of one gluon and

Sspl,2
2 (z) = δ+,h3δ+,h4,5δ

D−2(Ω − Ω13)Θ(z − zmin) (4.63)

for detecting of two gluons.
The values of zmin can be calculated from the requirement p0

3 > (1−δ)E/2 in different
kinematics. Indeed, for the initial splitting process one has to change the momentum of
in-going particle, for example, p1 to zp1 which gives in the c.m. frame

s → zs,

t → 2z
1+z−c(1−z)

t,

u → 2z2

1+z−c(1−z)
u,

p0
3 → 2z

1+z−c(1−z)
E
2
. (4.64)

At the same time, for the final splitting one has to substitute p0
3 → zE

2
. This leads to the

values of zmin, respectively,

zin
min =

(1 − δ)(1 − c)

1 + δ − c(1 − δ)
, zfin

min = (1 − δ). (4.65)

Taking into account the splitting of the initial states and the fragmentation of the
final states we get the following contribution to the inclusive cross-sections:

1. The initial and final splitting for the MHV amplitude
(

dσ2→3

dΩ13

)(−−+++)

InSplit

=
α2N2

c

E2

(
µ2

s

)ǫ (
µ2

Q2
f

)ǫ
α

π

{
1

ǫ

[
−4(c2+3)

(1−c2)2

(
log

1−c

2
+ log

1+c

2

)

− 8(c2 + 3)

(1 − c2)2
log

1 − δ

δ
− 16δ(2δ − 3)

(1 − c2)2(1 − δ)2

]
+ Finite part

}
, (4.66)

(
dσ2→3

dΩ13

)(−−+++)

FnSplit

=
α2N2

c

E2

(
µ2

s

)ǫ (
µ2

Q2
f

)ǫ
α

π

{
−1

ǫ

4(c2 + 3)

(1 − c2)2
log

1 − δ

δ

}
; (4.67)
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2. The initial and final splitting for the anti-MHV amplitude

(
dσ2→3

dΩ13

)(−−++−)

InSplit

=
α2N2

c

E2

(
µ2

s

)ǫ(
µ2

Q2
f

)ǫ
α

π

{
1

ǫ

[
8(c2 + 3)

(1 − c2)2
log δ − 64(12c2 + 17)

3(1 − c2)3

− 4δ

(1 − c2)2

(
2

3
(1 + c2)δ2 + (c2 − 5)δ + 2(c2 + 17)

)
+

(
4(c3 − 15c2 + 51c − 45)

(1 − c)2(1 + c)3
log

1−c

2

+
8(c2 − 6c + 21)

(1 − c)(1 + c)3
log

1 + δ − c(1 − δ)

2
+

32(c2 − 4c + 7)

(1 + c)3(1 − c)(1 + δ − c(1 − δ))
(4.68)

− 32(2 − c)

(1 + c)3(1+δ−c(1−δ))2
+

64(1 − c)

3(1 + c)3(1+δ−c(1−δ))3
+(c ↔ −c)

)]
+ Finite part

}
,

(
dσ2→3

dΩ13

)(−−++−)

FnSplit

=
α2N2

c

E2

(
µ2

s

)ǫ(
µ2

Q2
f

)ǫ
α

π

{
1

ǫ

4(c2 + 3)

(1 − c2)2

[
log δ−δ(

1

3
δ2−3

2
δ+3)

]}
; (4.69)

3. The initial splitting for the quark final states (δ = 1)

(
dσ2→3

dΩ13

)(−−+qq̄)

InSplit

=
α2N2

c

E2

(
µ2

s

)ǫ (
µ2

Q2
f

)ǫ
α

π

{
16

ǫ

[
(79 + 25c2)

3(1 − c2)2
(4.70)

+
2(3 − c)2

(1 − c)(1 + c)3
log(

1 − c

2
) +

2(3 + c)2

(1 − c)3(1 + c)
log(

1 + c

2
)

]
+ Finite part

}
;

4. The initial splitting for the scalar final states (δ = 1)

(
dσ2→3

dΩ13

)(−−+ΛΛ)

InSplit

=
α2N2

c

E2

(
µ2

s

)ǫ (
µ2

Q2
f

)ǫ
α

π

{
8

ǫ

[
−2(10 + 7c2)

(1 − c2)2
(4.71)

−3(5 − c)

(1 + c)3
log(

1 − c

2
) − 3(5 + c)

(1 − c)3
log(

1 + c

2
)

]
+ Finite part

}
.

5 IR Safe Observables in N = 4 SYM

In the NLO there are two sets of amplitudes, namely, the MHV and anti-MHV amplitudes
which contribute to the observables. The leading order 4-gluon amplitude is both MHV
and anti-MHV and we split it into two parts. Then one can construct three types of
infrared finite quantities in the NLO of perturbation theory, namely,

• pure gluonic MHV amplitude

AMHV =
1

2

(
dσ2→2

dΩ13

)(−−++)

V irt

+

(
dσ2→3

dΩ13

)(−−+++)

Real

+

(
dσ2→2

dΩ13

)(−−+++)

InSplit

+

(
dσ2→2

dΩ13

)(−−+++)

FnSplit

;

(5.72)
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• pure gluonic anti-MHV amplitude

Banti−MHV =
1

2

(
dσ2→2

dΩ13

)(−−++)

V irt

+

(
dσ2→3

dΩ13

)(−−++−)

Real

+

(
dσ2→2

dΩ13

)(−−++−)

InSplit

+

(
dσ2→2

dΩ13

)(−−++−)

FnSplit

;

(5.73)

• anti-MHV amplitude with quarks or scalars forming the full N = 4 supermultiplet

CMatter =

(
dσ2→3

dΩ13

)(−−+, qq̄+ΛΛ)

Real

+

(
dσ2→2

dΩ13

)(−−+, qq̄+ΛΛ)

InSplit

. (5.74)

We would like to stress once more that in each expression (5.72,5.73,5.74) all IR diver-
gencies cancel for arbitrary δ and only the finite part is left.

Defining now the physical condition for the observation we get several infrared-safe
inclusive cross-sections

• Registration of two fastest gluons of positive helicity

AMHV
∣∣∣
δ=1/3

+ Banti−MHV
∣∣∣
δ=1

; (5.75)

• Registration of one fastest gluon of positive helicity

AMHV
∣∣∣
δ=1/3

+ Banti−MHV
∣∣∣
δ=1/3

+ CMatter
∣∣∣
δ=1

; (5.76)

• Anti-MHV cross-section

Banti−MHV
∣∣∣
δ=1

+ CMatter
∣∣∣
δ=1

. (5.77)

Relative simplicity of the virtual contribution (4.36) which does not contain any special
functions but logs suggests a similar structure of the real part. However, this is not the
case. While the singular terms are simple enough and cancel completely, the finite parts
are usually cumbersome and contain polylogarithms. The only expression where they
cancel corresponds to the δ = 1 case which is possible only for the last set of observables,
namely, for the anti-MHV cross-section (5.77). Choosing the factorization scale to be
Qf = E we get:

(
dσ

dΩ13

)

AntiMHV

=
4α2N2

c

E2

{
3 + c2

(1 − c2)2
(5.78)

− α

4π

[
2
(c4+2c3+4c2+6c+19) log2(1−c

2
)

(1 − c)2(1 + c)4
+ 2

(c4−2c3+4c2−6c+19) log2(1+c
2

)

(1 − c)4(1 + c)2

−8
(c2 + 1) log(1+c

2
) log(1−c

2
)

(1 − c2)2
+

6π2(3c2 + 13) − 5(61c2 + 99)

9(1 − c2)2

−2
(11c3−31c2− 47c−133) log(1−c

2
)

3(1 + c)3(1 − c)2
+ 2

(11c3+31c2−47c+133) log(1+c
2

)

3(1 − c)3(1 + c)2

]}
.
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One can see that even this expression does not repeat the form of the Born amplitude
and does not have any simple structure. While the dependence on the parameter µ
of dimensional reduction is completely canceled, the finite answer, as in the toy model
example, depends on the factorization scale. This dependence comes from the asymptotic
states which violate conformal invariance of the Lagrangian. This dependence seems to
be unavoidable and reflects the act of measurement. Construction of observables which
do not contain any external scale remains an open question.

6 Discussion

Remarkable factorization properties of the MHV amplitudes accumulated in the BDS
ansatz (with the so far unknown modification) and duality with the string amplitudes
via the AdS/CFT correspondence seem to suggest the way to get the exact solution of
the N = 4 SYM theory. However, ”to solve the model” might have a different meaning.
Calculation of divergences and understanding of their structure is very useful but surely
not enough, it is the finite part that we are really for. The knowledge of the S-matrix
would be the final goal though the definition of the S-matrix in conformal theory is a
problem. Even in the absence of the UV divergences there are severe IR problems and
matrix elements do not exist after removal of regularization.

The purpose of this paper is to present all the details of the calculation with explicit
cancellation of the infrared divergencies in properly defined cross-sections in the planar
limit for N = 4 SYM. The main results were summarized in our short letter [53]. We
do obtain IR safe observables in the weak coupling regime in the next-to-leading order of
PT which are calculated analytically. The same procedure can also be applied to N = 8
SUGRA [54].

Unfortunately, our calculation has demonstrated that the simple structure of the am-
plitudes governed by the cusp anomalous dimension has been totally washed out by com-
plexity of the real emission matrix elements integrated over the phase space. This means
that either the N = 4 SYM theory does not allow such a simple factorizable solution
or that we considered the unappropriate observables that do not bear the impact of the
N = 4 symmetry. One can obviously see the presence of N = 4 supermultiplet in the
virtual part but not in the real emission. It would be of great importance to find such
quantities.

Another unfortunate feature of inclusive cross-sections is the dependence on the fac-
torization scale. The experience of QCD, which is very similar to the N = 4 SYM theory
from the point of view of the IR problems, tells us that in inclusive cross-sections the
IR divergences cancel and one has finite physical observables. However, in QCD one has
confinement and considers the scattering of the bound states (hadrons, glueballs) rather
than the individual particles. In this case, one usually factorizes the hard part from the
soft part introducing the factorization scale. The dependence on this scale is canceled
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between the hard and soft parts contrary to our case where only the hard part is present.
But in QCD one also has an additional scale. The parton distributions are defined exper-
imentally at some scale Q0 and the dependence on this scale is left. This dependence is
governed by the same DGLAP equations as the dependence on the factorization scale, so
from this point of view the situation in QCD is not better than in our case.

In both the cases one has to introduce some parton distributions which are the func-
tions of a fraction of momenta and, in higher orders, of momenta transferred. This leads
to the appearance of an additional scale which breaks the conformal invariance. One
might think of some observables where this scale dependence is canceled, like the ratio of
some cross-sections, etc. We have not found such quantities so far, though the construc-
tion of such truly conformal observables is of great interest. Probably, they might have
the desired simple structure.

There is an interesting duality between the MHV amplitudes and the Wilson loop,
between the weak and the strong coupling regime [18, 23, 27]. Perhaps, it would be
possible, using the AdS/CFT correspondence, to construct the IR safe observables in the
strong coupling limit (similarly to what we did here) and to shed some light on the true
calculable objects in conformal theories.
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Appendix A. Computation of partial amplitudes

To calculate the cross-section we need the squared matrix elements summed over helicities
and color. They can be expressed in terms of the corresponding partial amplitudes [5]

|Mn(p1, ..., pn)|2 = g2n−4(
g2Nc

16π2
)2l

∑

colors

|A(l−loop)
n |

= g2n−4Nn−2
c (N2

c − 1)(
g2Nc

16π2
)2l

∑

σ∈Pn−1

|A(l−loop)
n (p1, pσ(2), ..., pσ(n))|2. (A.1)

For the massless partial helicity amplitudes it is convenient to use the so-called spinor
helicity formalism initially introduced in [55, 56, 57] (for a review see [58]). In this
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formalism the on-shell momenta of every i-th external massless particle p(i)
µ p(i)µ = 0 is

represented in terms of a pair of massless commuting spinors λ(i)
a and λ̄

(i)
ȧ of positive and

negative chirality in the following way:

p(i)
µ −→ p

(i)
aȧ = p(i)

µ (σµ)aȧ = λ(i)
a λ̄

(i)
ȧ . (A.2)

The spinor inner product is defined by:

ǫabλ(i)
a λ

(j)
b = 〈λ(i)λ(j)〉 .

= 〈ij〉, ǫȧḃλ̄
(i)
ȧ λ̄

(j)

ḃ
= [λ̄(i)λ̄(j)]

.
= [ij], (A.3)

thus the complex conjugation of the product is

(〈ij〉)∗ = [ij]. (A.4)

The scalar product of the two light-like momenta can be represented in terms of these
products as

pµ(i)p(j)
µ =

1

2
〈ij〉[ij], (A.5)

or equivalently
〈ij〉[ij] = sij , (A.6)

where the standard notation (pi + pj)
2 = sij is used.

All the tree-level partial MHV amplitudes can be combined into a single N = 4
supersymmetric expression, first suggested by Nair [59]:

ZN=4 MHV
n = δ8

(
n∑

i=1

λa
i η

(A)
i

)
1

∏n
i=1〈i, i + 1〉 . (A.7)

where η
(A)
i are the Grassmannian coordinates, A = 1, ..., 4 is the SU(4)R fundamental

representation index. ZN=4 MHV
n is invariant under SU(4)R transformations of η

(A)
i and

under the cyclic permutations of momentum labels i. In the product
∏n

i=1〈i, i + 1〉 one
has to identify i + n with i. The Grassmannian-valued delta function is defined in the
usual way:

δ8

(
n∑

i=1

λa
i η

(A)
i

)
=

4∏

A=1

1

2

(
n∑

i=1

λa
i η

(A)
i

)(
n∑

k=1

λkaη
(A)
k

)
=

1

16

4∏

A=1

n∑

i,k=1

〈ik〉
(
η

(A)
i η

(A)
k

)
(A.8)

So one can rewrite ZN=4 MHV
n as

ZN=4 MHV
n =

1

16

n∑

i,...,c=1

〈ik〉〈lm〉〈ab〉〈dc〉
(
η

(1)
i η

(1)
k η

(2)
l η(2)

m η(3)
a η

(3)
b η

(4)
d η(4)

c

) 1

Pn
, (A.9)

where

Pn =
n∏

i=1

〈i, i + 1〉. (A.10)
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Using the Taylor expansion of ZN=4 MHV
n in powers of η(A) one gets the sum of (n(n−1)

2
)4

terms each involving a product of 8 distinct η
(A)
i . One can identify the coefficient of the

product of 8 η’s in each term in the expansion with a particular tree component partial
amplitude. It is very useful to define the following differential operators with the self-
explanatorily notation:

ĝ+(i) = 1,

ĝ−(i) =
1

4!
ǫABCD ∂4

∂η
(A)
i ∂η

(B)
i ∂η

(C)
i ∂η

(D)
i

=
∂4

∂η
(1)
i ∂η

(2)
i ∂η

(3)
i ∂η

(4)
i

,

q̂+(i)A =
∂

∂η
(A)
i

, (A.11)

q̂−(i)A = − 1

3!
ǫABCD

∂3

∂η
(B)
i ∂η

(C)
i ∂η

(D)
i

,

Λ̂(i)AB =
∂2

∂η
(A)
i ∂η

(B)
i

,

Λ̂(i)CD =
1

2!
ǫABCD ∂2

∂η
(A)
i ∂η

(B)
i

.

Taking various combinations of products of these operators one can construct a set of 8-th
order differential operators. These 8-th order differential operators act as projectors on
the component partial amplitudes: q̂+(i)A corresponds to the fermion qA,+ of the N = 4
supermultiplet, q̂−A to q̄−A , Λ̂AB(i) to ΛAB, and Λ̂AB(i) to ΛAB.

For example, the Parke-Taylor n-gluon amplitude can be written as:

A(tree)
n (g−g−g+...g+) = ĝ−(1)ĝ−(2)ĝ+(3)...ĝ+(n)ZN=4 MHV

n = 〈12〉4 1

Pn

, (A.12)

and the squared partial amplitude |A(tree)
n (g−g−g+...g+)|2 then takes the simple form (it

is implemented that momenta are ordered as p1, p2, p3, ..., pn)

|A(tree)
n (g−g−g+...g+)|2 = A(tree)

n (g−g−g+...g+)A(tree)
n (g−g−g+...g+)∗

=
〈12〉4[12]4

PnP∗
n

=
s4
12

s12s23...sn1

. (A.13)

To extract from (A.1) some specific helicity configuration for the MHV amplitude, one
has to sum over the permutations only in the denominator of (A.13) [50]. So, for example,
for the Parke-Taylor n-gluon amplitude one has

|M (tree)
n (g−g−g+...g+)|2 = g2n−4Nn

c s4
12

∑

σ∈Pn−1

1

s1σ(2)sσ(2)σ(3)...sσ(n)σ(1)

. (A.14)
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The anti-MHV amplitudes also needed for our computation can be obtained from
the corresponding conjugated MHV amplitudes. For example the anti-MHV amplitude
A5(g

−g−g+g−g+) can be obtained from the MHV amplitude A5(g
+g+g−g+g−) by making

a complex conjugation.
Below we present the list of four- and five-point tree amplitudes which are relevant to

our calculation. The four-point amplitudes are

A
(tree)
4 (g−g−g+g+) = ĝ−(1)ĝ−(2)ĝ+(3)ĝ+(4)ZN=4 MHV

4 = 〈12〉4 1

P4
, (A.15)

A
(tree)
4 (g−g+g−g+) = g−(1)g+(2)g−(3)g+(4)ZN=4 MHV

4 = 〈13〉4 1

P4
, (A.16)

A
(tree)
4 (g−qAg+q̄A) = ĝ−(1)q̂A,+(2)ĝ+(3)q̂−A(4)ZN=4 MHV

4 = 〈12〉〈14〉3 1

P4
, (A.17)

A
(tree)
4 (g−q̄Ag+qA) = ĝ−(1)q̂−A(2)ĝ+(3)q̂A,+(4)ZN=4 MHV

4 = 〈14〉〈12〉3 1

P4
, (A.18)

A
(tree)
4 (g−ΛABg+ΛAB) = ĝ−(1)Λ̂AB(2)ĝ+(3)Λ̂AB(4)ZN=4 MHV

4 =
〈12〉2〈14〉2

P4
. (A.19)

For the computation of the real emission we need the five-point tree amplitudes

A
(tree)
5 (g−g−g+g+g+) = ĝ−(1)ĝ−(2)ĝ+(3)ĝ+(4)ĝ+(5)ZN=4 MHV

5 = 〈12〉4 1

P5
, (A.20)

A
(tree)
5 (g−g−g+g−g+) = (ĝ+(1)ĝ+(2)ĝ−(3)ĝ+(4)ĝ−(5)ZN=4 MHV

5 )∗ = [35]4
1

P∗
5

, (A.21)

A
(tree)
5 (g−g−g+g+g−) = (ĝ+(1)ĝ+(2)ĝ−(3)ĝ−(4)ĝ+(5)ZN=4 MHV

5 )∗ = [35]4
1

P∗
5

, (A.22)

A
(tree)
5 (g−g−g+qAq̄A) = (ĝ+(1)ĝ+(2)ĝ−(3)q̂A,+(4)q̂−A(5)ZN=4 MHV

5 )∗ =
[34]3[35]

P∗
5

, (A.23)

A
(tree)
5 (g−g−g+q̄AqA) = (ĝ+(1)ĝ+(2)ĝ−(3)q̂−A(4)q̂A,+(5)ZN=4 MHV

5 )∗ =
[34][35]3

P∗
5

, (A.24)

A
(tree)
5 (g−g−g+ΛABΛAB) = (ĝ+(1)ĝ+(2)ĝ−(3)Λ̂AB(4)Λ̂AB(5)ZN=4 MHV

5 )∗

=
[34]2[35]2

P∗
5

. (A.25)

We also provide the list of the born cross-sections used in Sect.4.

(
dσ2→2

dΩ13

)(−−++)

(tree)

=
α2N2

c

2E2
s2

(
s2 + t2 + u2

t2u2

)(
µ2

s

)ǫ

, (A.26)

(
dσ2→2

dΩ13

)(−+−+)

(tree)

=
α2N2

c

2E2
t2
(

s2 + t2 + u2

s2u2

)(
µ2

s

)ǫ

, (A.27)
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(
dσ2→2

dΩ13

)(−++−)

(tree)

=
α2N2

c

2E2
u2

(
s2 + t2 + u2

t2s2

)(
µ2

s

)ǫ

, (A.28)

(
dσ2→2

dΩ13

)(−q+q̄)

(tree)

=
α2N2

c

2E2
|u|
(

s2 + t2 + u2

t2s

)(
µ2

s

)ǫ

, (A.29)

(
dσ2→2

dΩ13

)(−q̄+q)

(tree)

=
α2N2

c

2E2
s

(
s2 + t2 + u2

t2|u|

)(
µ2

s

)ǫ

, (A.30)

(
dσ2→2

dΩ13

)(−Λ+Λ)

(tree)

=
α2N2

c

2E2

(
s2 + t2 + u2

t2

)(
µ2

s

)ǫ

. (A.31)

These cross-sections are written down for the set of momenta (p1, p2, p3, p4) with the
conservation law p1 + p2 = p3 + p4. In the case of initial splitting, according to (4.54), one
should use the cross-sections calculated for the set (zp1, p2, p3, p4) with a new conservation
law zp1 + p2 = p3 + p4. To get them, one should substitute the modified values for the
Mandelstam variables (4.64) into (A.26-A.31) and multiply the cross-sections by the factor
4/(1+ z− c(1− z))2 which comes from the modified delta function δD(zp1 + p2 −p3 −p4).
The same procedure but with the replacement c ↔ −c refers to the p1 ↔ p2 case.

Appendix B. Calculation of phase space integrals

Consider the structure of the matrix elements in detail. First off all it is convenient to
rewrite the standard three-particle phase space

dφ3 = δ+(p2
3)

dDp3

(2π)D−1
δ+(p2

4)
dDp4

(2π)D−1
δ+(p2

5)
dDp5

(2π)D−1
(2π)DδD(p1 +p2 −p3−p4 −p5) (B.1)

in the following form:

dφ3 = δ+(p2
3)

dDp3

(2π)D−1
δ+((p4 − k)2)

dDp4

(2π)D−1
δ+(k2)

dDk

(2π)D−1
(2π)DδD(p1 + p2 − p3 − p4).

(B.2)
The integral we are interested in is

∫
|M5|2S3(p3, k, p4 − k)dφ3, (B.3)

where the matrix element |M5|2 for the five-point amplitude consists of 12 terms with
identical numerator but different denominators. The typical integrand looks like

I =
2s4

12

s13s25s35s24s14

=
2((p1 + p2)

2)4

(p1 − p3)2(p2 − k)2(−p3 − k)2(p2 − [p4 − k])2(p1 − [p4 − k])2
.

(B.4)
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Our strategy is to use the on-shell conditions to simplify all the terms in the sum
so that the integral over dDk can be calculated exactly. For the remaining integrals we
evaluate the necessary terms of the ǫ-expansion.

Taking into account the conservation of the momentum p1 + p2 = p3 + p4 and the
on-shell conditions

p2
1 = 0, p2

2 = 0, p2
3 = 0, k2 = 0, (p4 − k)2 = 0

one can rewrite the integrand (B.4) as

I =
(p1, p2)

4

(p1, p3)(p2, k)(p3, k)(p2, p4 − k)(p1, p4 − k)
, (B.5)

where we use the notation (p,k)=pk for the scalar product.
The next step is to use the partial fraction with respect to k

I =
(p1, p2)

4

(p1, p3)(p3, k)(p1, p4 − k)

1

(p2, p4)

(
1

(p2, k)
+

1

(p2, p4 − k)

)

=
(p1, p2)

4

(p1, p3)(p2, p4)

1

(p3, k)(p2, k)(p1, p4−k)
+

(p1, p2)
4

(p1, p3)(p2, p4)

1

(p3, k)(p2, p4−k)(p1, p4−k)

=
(p1, p2)

4

(p1, p3)(p2, p4)

1

(p1, p4) − (p4, p4)/2

×
(

1

(p3, k)(p2, k)
− 1

(p3, k)(p1, p4 − k)
+

1

(p2, k)(p1, p4−k)

)

+
(p1, p2)

4

(p1, p3)(p2, p4)

1

(p1, p4) + (p2, p4) − (p4, p4)/2
(B.6)

×
(

1

(p3, k)(p2, p4 − k)
+

1

(p3, k)(p1, p4 − k)
+

1

(p2, p4−k)(p1, p4−k)

)

so that one gets at most two brackets with momentum k in the denominator.
In the case of momentum k in the numerator, this procedure also works but with some

variation. For example, one has

J =
(p1, k)

(p1, p2)(p1, p3)(p3, p4 − k)(p2, k)(k, p4 − k)

=
1

(p1, p2)(p1, p3)(p2
4/2)

(p3, k) + p2
4/2 − (p2, k)

(p2, k)(p3, p4 − k)

=
1

(p1, p2)(p1, p3)(p
2
4/2)

(p3, p4) − (p3, p4 − k) + p2
4/2 − (p2, k)

(p2, k)(p3, p4 − k)

=
(p3, p4) + p2

4/2

(p1, p2)(p1, p3)(p
2
4/2)(p2, k)(p3, p4 − k)

(B.7)

− 1

(p1, p2)(p1, p3)(p
2
4/2)(p2, k)

− 1

(p1, p2)(p1, p3)(p
2
4/2)(p3, p4 − k)

.
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Since we usually have (pi, k)4 in the numerator this procedure has to be applied several
times. This way we increase the number of terms in the integrand but drastically simplify
the integration.

The resulting integrals over k have the standard form

∫
dDkδ+((p4 − k)2)δ+(k2)Υi , (B.8)

where

Υ1 =
1

(pi, k)a(pj, k)b
,

Υ2 =
1

(pi, k)a(pj, p4 − k)b
,

Υ3 =
1

(pi, p4 − k)a(pj, p4 − k)b

and can be calculated by the method of unitarity. They correspond to the box-type
diagrams and one can perform the cuts and then take the imaginary part. For example,
the integral ∫

dDkδ+(k2)δ+((p4 − k)2)

(p1 + k)2(p2 − p4 + k)2
, (B.9)

where p2
1 = p2

2 = p2
3 = 0 and p2

4 6= 0 can be obtained from the box-diagram shown in Fig.6.

Figure 6: The box diagram corresponding to the integral (B.9)

For the first time this integral was calculated by van Neerven [60] and the answer is
given by

∫
dDkδ+((p4 − k)2)δ+(k2)Υi =

(p2
4/4)−ǫ

(pip4)a(pjp4)b
Θ(p2

4) (B.10)

× 2π 2−a−b Γ(D − 3)Γ(D/2 − 1 − a)Γ(D/2 − 1 − b)

Γ2(D/2 − 1)Γ(D − 2 − a − b)
2F1(a, b;

D

2
− 1|Υ̃i),
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where

Υ̃1 = 1 − (pi, pj)(p4, p4)

2(pi, p4)(pj, p4)
,

Υ̃2 =
(pi, pj)(p4, p4)

2(pi, p4)(pj, p4)
,

Υ̃3 = 1 − (pi, pj)(p4, p4)

2(pi, p4)(pj, p4)
.

Removing the integral over dDp4 with the help of the delta function we are left with
the last integration over dDp3. Using δ+(p2

3) one can take the integral over p0
3 and going

to the spherical coordinates dD−1p3 = |p3|D−2d|p3|dΩ13 arrive to the single integration
over the modulus of |p3|.

Here we face the problem of singularity at |p3| = 0. It comes from the delta function
in the integration over p0

3 and in some cases is not compensated by the matrix element.
For two matrix elements corresponding to the MHV (g+g+ → g+g+g+) and anti-MHV
(g+g+ → g+g+g−) amplitudes, the first case is singular while the second is not. However,
as we explained earlier, we cut the integral over |p3| at (1 − δ)E/2 and no singularity
appears.

Let us now turn to the calculation of the last integral. Since p3 is a dimensionful
parameter, it is appropriate to change variable to dimensionless one using

|p3| =
E

2
(1 − x). (B.11)

Then the integral over x goes from 0 to δ.
The typical integral to be calculated is of the form

∫ δ

0
dx

xα−1(1 − x)β−1

1 + px
2F1(1,−ǫ; 1 − ǫ; qxm(1 − x)n), (B.12)

where m and n take the values

(m, n) = {(1, 0), (0, 2), (1,−2), (−1, 2)}.
For our purposes we need to calculate this integral to the order O(ǫ). The source of

divergence is the singularity at x = 0. When δ 6= 1, one can expand the hypergeometric
function in ǫ up to the order ǫ and then calculate the integral. Then for the configurations
(1, 0), (0, 2) and (1,−2) the calculation is straightforward while for the case of (−1, 2) one
first makes the transformation of the argument of the hypergeometric function from z to
1/z

2F1(a, b; c|z) =
Γ(c)Γ(−a + b)

Γ(c − a)Γ(b)
2F1

(
a, a − c + 1; a − b + 1|1

z

)
(−z)−a

+
Γ(c)Γ(a − b)

Γ(a)Γ(c − b)
2F1

(
b,−c + b + 1;−a + b + 1|1

z

)
(−z)−b (B.13)
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and then apply the expansion.
For example, consider the integral

I2 =
∫ δ

0
dxx−1−ǫ(1 − x)−2ǫ

2F1(1,−ǫ; 1 − ǫ; qx−1(1 − x)2). (B.14)

After applying the transformation (B.13) it is reduced to the following form

I2 =
∫ δ

0
dx

(
Γ(1 − ǫ)Γ(1 + ǫ)

(
q(1 − x)2

x

)ǫ

+
xΓ(−1 − ǫ)Γ(1 − ǫ)2F1

(
1, 1 + ǫ; 2 + ǫ;− x

q(1−x)2

)

q(1 − x)2Γ(−ǫ)2


 . (B.15)

Performing the expansion over ǫ one gets to the order of O(ǫ)

I2 = − 1

2ǫ
+

(
log δ − log q

2

)
+
[
− log2 δ + log q log δ − log

(
(δ − 1)2q

)
log δ

− log

(
2(δ − 1)q −√

1 − 4q + 1

2q

)
log δ − log

(
2(δ − 1)q +

√
1 − 4q + 1

2q

)
log δ

+ log
(
qδ2 − 2qδ + δ + q

)
log δ − log2 q

4
− 2Li2(1 − δ) − π2

12

− log

(
−2q +

√
1 − 4q + 1

2q

)
log

(
− 2q

−2q +
√

1 − 4q + 1

)

− log

(
2q

2q +
√

1 − 4q − 1

)
log

(
−2q +

√
1 − 4q − 1

2q

)

+ log

(
2δq

2q +
√

1 − 4q − 1

)
log

(
2(δ − 1)q −√

1 − 4q + 1

2q

)

+ log

(
− 2δq

−2q +
√

1 − 4q + 1

)
log

(
2(δ − 1)q +

√
1 − 4q + 1

2q

)

+Li2

(
2(δ − 1)q +

√
1 − 4q + 1

−2q +
√

1 − 4q + 1

)
+ Li2

(
−2δq + 2q +

√
1 − 4q − 1

2q +
√

1 − 4q − 1

)]
ǫ.

Note the singularity when δ → 1 in this expression.
The case of δ = 1 is more tricky. Here one has the overlapping of two singularities.

The argument of the hypergeometric function goes to the edge of the circle of convergence
and it is convenient to use the integral representation

2F1(a, b, c, z) =
Γ(c)Γ(b)

Γ(c − b)

∫ 1

0
dttb−1(1 − t)c−b−1(1 − tz)−a. (B.16)
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As a result, one has a two-fold integral

Γ(c)Γ(b)

Γ(c − b)

∫ 1

0
dx dt tb−1(1 − t)c−b−1xα−1(1 − x)β−1(1 − tqxm(1 − x)n)−a, (B.17)

where parameters a, b and c take the values a = 1, b = −ǫ, c = 1− ǫ. Choosing particular
values of α, β, m, n one can observe the overlapping divergencies. Consider, for example,
the integral
∫ 1

0
dx dt t−1−ǫx−1−ǫ(1−x)−2ǫ 1

1−qt (1−x)2

x

=
∫ 1

0
dx dt t−1−ǫx−ǫ(1−x)−2ǫ 1

x−qt(1−x)2
, (B.18)

where we see in the last term that the denominator equals zero at t = 0 and x = 0. The
divergence, which occurs in this case, is the overlapping IR divergence and to handle it
we use the following trick: we insert in the integral a unity

1 = Θ(x − t) + Θ(t − x),

which splits the integral into two parts. The first θ-function gives
∫ 1

0
dx dz z−1−ǫx−1−2ǫ(1 − x)−2ǫ 1

1 − qz(1 − x)2
, (B.19)

while the other leads to
∫ 1

0
dz dt t−1−2ǫz−ǫ(1 − zt)−2ǫ 1

z − q(1 − zt)2
. (B.20)

The calculation now is straightforward. One has to extract a few terms of the ǫ
expansion.

For example, the first three terms of the ǫ–expansion for the integral (B.14) when
δ = 1 are

∫ 1

0
dxx−1−ǫ(1 − x)−2ǫ

2F1(1,−ǫ; 1 − ǫ; qx−1(1 − x)2) (B.21)

= −1

ǫ
− Li2



 2
√

1
q
− 4

√
1
q
− 1

q
+ 2



 ǫ − Li2



− 2
√

1
q
− 4

√
1
q

+ 1
q
− 2



 ǫ +
2π2ǫ

3
+ O(ǫ2).

Appendix C. Splitting functions

The splitting functions Pij which we use to calculate the splitting contribution to the
cross-section can be obtained from the collinear limit of the color ordered tree level par-
tial amplitudes. Suppose one has an n-point partial tree amplitude in 0 ≤ N ≤ 4
supersymmetric gauge theory

A(tree)
n (pλ1

a(1), ..., p
λi

a(i), ..., p
λn

a(n)),

37



where a(i) is the color index of i-th particle and λi is it’s helicity.
It can be shown [5, 6] that the MHV amplitudes have the following universal behaviour

in the collinear limit when momenta of two particles i and i + 1 become collinear i||i + 1

Atree
n (..., pλi

a , p
λi+1

b , ...)
i||i+1→

∑

λ,c

Split−λ(a
λi , bλi+1 , z)Atree

n−1(..., p
λ
c , ...), (C.1)

where the two momenta satisfy

pi = zp, pi+1 = (1 − z)p,

p being some arbitrary momentum. The sum goes over all possible helicities and particle
types for which Atree

n−1 is nonvanishing. The function Split−λ(a
λi, bλi+1 , z) depends on p

and z. Notice the flip of helicity in Split−λ(a
λi , bλi+1 , z) which comes from considering all

particles as outgoing ones.
Then the polarized version of the splitting function Pij can be obtained from Split−λ,

up to the terms proportional to δ(1 − z) by means of

P c−λ

aλi bλi+1 = (pi + pi+1)
2|Split−λ(a

λi , bλi+1 , z)|2 (C.2)

and corresponds to the process c → i, i + 1 when the particle c with momentum p and
helicity λ splits into collinear particles i and i + 1 with momenta zp and (1 − z)p and
helicities λi and λi+1, respectively.

For example, the splitting function P g−

g+g+ can be obtained from the partial amplitude
Atree

5 (g−g−g+g+g+) taking the limit 4||5 (p4 = zp, p5 = (1 − z)p) in

Atree
5 (g−g−g+g+g+) =

〈12〉4
〈12〉〈23〉〈34〉〈45〉〈51〉. (C.3)

One has

Atree
5 (g−g−g+g+g+)

4||5→ 1

〈45〉
1

√
z(1 − z)

〈12〉4
〈12〉〈23〉〈3p〉〈p1〉.

Thus, the only one term in the sum (C.1) survives and Atree
n−1 in this case is Atree

4 (g−g−g+g+).
This gives

Split−(g+, g+, z) =
1

〈45〉
1

√
z(1 − z)

, (C.4)

so that, according to (C.2),

P g−

g+g+ =
1

z
+

1

(1 − z)+

. (C.5)
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All the splitting functions necessary for our computation can be obtained in a similar
fashion. They look like

P g−

g+g+ =
1

z
+

1

(1 − z)+
,

P g−

g+g− =
z3

(1 − z)+
,

P g−

g−g+ =
(1 − z)3

z
, (C.6)

P g−

q+q̄− = z2,

P g−

q̄−q+ = (1 − z)2,

P g−

ΛΛ = z(1 − z).

The contributions proportional to δ(1−z) are calculated separately from the requirement
of conservation of momenta and are absent in our case since they are proportional to the
β function which vanishes in the N = 4 SYM theory.

The ”plus” prescription in the expression 1
(1−z)+

in (C.6) should be understood in the
usual way: ∫ 1

0
dz

f(z)

(1 − z)+
=
∫ 1

0
dz

f(z) − f(1)

(1 − z)
. (C.7)

When f(z) contains the theta function like in the splitting counterterm

f(z) = Θ(z − zmin)g(z),

one has
∫ 1

0
dz

f(z)

(1 − z)+

=
∫ 1

0
dz

Θ(z − zmin)g(z) − g(1)

(1 − z)
(C.8)

=
∫ 1

zmin

dz
g(z) − g(1)

(1 − z)
−
∫ zmin

0
dz

g(1)

1 − z
=
∫ 1

zmin

dz
g(z)

(1 − z)+
+ log(1 − zmin)g(1).

The splitting function Pqq(z) (3.23) used in our toy model example can be obtained
from the polarized splitting functions

P q+

q̄−g− =
1

(1 − z)+
,

P q+

q̄−g+ =
z2

(1 − z)+
(C.9)

by summation over helicities. The term proportional to δ(1 − z) is obtained from the
requirement of conservation of the number of quarks

∫
dz q(z, Q2

f/µ
2) = 1 ⇒

∫
dzPqq(z) = 0.
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Appendix D. Finite parts of amplitudes.

In general all finite parts have the following structure:

F inite part =
1

(1 − c2)2
[fSym(c, δ) + (fAsym(c, δ) + fAsym(−c, δ))] ,

where the functions fSym and fAsym contain Log9 and Polylog functions of c and δ. Below
we present the expressions for fSym(c, δ) and fAsym(c, δ).

((
dσ2→3

dΩ13

)(−−+++)

Real

)

fin

, general δ.

f
(−−+++)
Sym (c, δ) =

S1 + S2L(1 − δ) + S3L(δ)

(1 − δ)2
− 4(13 + 3c2)L(δ)L(1 − δ) (D.1)

+ 10(3+c2)L2(δ) − 4(5+c2)L(
1−c

2
)L(

1+c

2
) − 16(3+c2)L2(1−δ) − 4(9c2+35)Li2(δ),

where

S1 =
4

3
(3 + c2)π2(1 − δ)2 + 32(4 − 3δ)δ,

S2 = 4(3c2(1 − δ)2 + 37 − 26δ + 5δ2),

S3 = −4δ(c2(δ − 1) + 11δ − 15).

f
(−−+++)
Asym (c, δ) =

1

(1 − δ)2

(
A1L(

1 − c

2
) + A2L(

1 + δ − c(1 − δ)

2
)

)

− 2(−1 + 4c + c2)L2(
1 − c

2
) − 8(3 + 2c + c2)L(1 − δ)L(

1 − c

2
)

+ 16cL(δ)L(
1 − c

2
) + 4(1 + c)2L(

1 − c

2
)L(

1 + δ − c(1 − δ)

2
)

+ 4(1 + c)2L(1 − δ)L(
1+δ−c(1−δ)

2
)−4(1+c)2L(δ)L(

1+δ−c(1−δ)

2
)

+ 8(1 + c)Li2(
1 − c

2
) + 4(5 + 2c + c2)Li2(−

δ(1 − c)

1 + c
)

− 4(5 + 2c + c2)Li2(
(1 − δ)(1 − c)

2
), (D.2)

where

A1 = 4(c2(1 − δ)2 − 6c(1 − δ)2 + 5 + 2δ − 3δ2),

A2 = −4(c2(1 − δ)2 − 2c(3 − 4δ + δ2) + 5 + 2δ − 3δ2).

9To make the expressions more compact we use L for the logarithms
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((
dσ2→3

dΩ13

)(−−++−)

Real

)

fin

, general δ.

f
(−−++−)
Sym (c, δ) = S1 + S2L(δ) + S3L(1−δ) + 10(c2 + 3)L2(δ) (D.3)

− 2(37 + 18c2 + c4)Li2(δ) +
8(6 + 9c2 + c4)

(1 − c2)
L(

1−c

2
)L(

1+c

2
),

where

S1 =
8(3c2+5)δ3+3(7c2−95)δ2+6(67c2+513)δ

9
+

2

3
(c2 + 3)π2 +

64(11c2 + 7)

3(c2 − 1)

+
32(c3 + 12c2 + 19c + 9)

3(1 − c)(1 + δ + c(1 − δ))
− 32(2c3 − 12c2 + 19c − 9)

3(1 + c)(1 + δ − c(1 − δ))

− 32(c3 + 4c2 + 5c + 2)

3(1 − c)(1 + δ + c(1 − δ))2
+

32(c3 − 4c2 + 5c − 2)

3(1 + c)(1 + δ − c(1 − δ))2
,

S2 = −16

3
(c2 + 1)δ3 + 2(c2 + 19)δ2 − 32(c4 + 6c2 − 5)δ

c2 − 1
+

64(12c2 + 17)

3(c2 − 1)

+
32(c3 + 5c2 + 11c + 7)

(1 − c)(1 + δ + c(1 − δ))
− 32(c3 − 5c2 + 11c − 7)

(1 + c)(1 + δ − c(1 − δ))

− 32(c3 + 4c2 + 5c + 2)

(1 − c)(1 + δ + c(1 − δ))2
+

32(c3 − 4c2 + 5c − 2)

(1 + c)(1 + δ − c(1 − δ))2

+
64(c3 + 3c2 + 3c + 1)

3(1 − c)(1 + δ + c(1 − δ))3
− 64(c3 − 3c2 + 3c − 1)

3(1 + c)(1 + δ − c(1 − δ))3
,

S3 = −8

3
(3c2+5)δ3−(c4+2c2−75)δ2−32(c4+8c2−11)δ

c2 − 1
+

3c6+251c4+2953c2+313

3(c2 − 1)

− 64(c3 − 5c2 + 11c − 7)

(1 + c)(1 + δ − c(1 − δ))
+

64(c3 + 5c2 + 11c + 7)

(1 − c)(1 + δ + c(1 − δ))

+
64(c3 − 4c2 + 5c − 2)

(1 + c)(1 + δ − c(1 − δ))2
− 64(c3 + 4c2 + 5c + 2)

(1 − c)(1 + δ + c(1 − δ))2

+
128(1 + c)3

3(1 − c)(1 + δ + c(1 − δ))3
+

128(1 − c)3

3(1 + c)(1 + δ − c(1 − δ))3
.

f
(−−++−)
Asym (c, δ) =

8(c4 − 6c3 + 24c2 + 6c − 17)

(1 + c)2
L(δ)L(

1 − c

2
)

+
4(3 + c2)2

(1 + c)2
L(

1 − c

2
)L(

1 + δ − c(1 − δ)

2
) (D.4)

− 4(7 + c2)(1 − c)

(1 + c)
L(

1 + c

2
)L(

1 + δ − c(1 − δ)

2
)
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− 8(c4 − 12c3 + 34c2 + 12c − 43)

(1 + c)2
L(1 − δ)L(

1 + δ − c(1 − δ)

2
)

− 2(c4 − 2c3 + 8c2 − 6c + 15)

(1 + c)2
L2(

1 − c

2
)

+ A1L(
1 − c

2
) + A2L(

1 + δ − c(1 − δ)

2
)

− 4 (3c4 − 12c3 + 46c2 + 12c − 33)

(1 + c)2
L(δ)L(

1 + δ − c(1 − δ)

2
)

+
(c6 − 2c5 + 3c4 − 76c3 − 153c2 + 14c + 149)

(1 − c)2
Li2(−

1−c

1+c
δ)

+
8(c4 + 12c3 + 34c2 − 12c − 43)

(1 − c)2

(
Li2(

1−c

2
) − Li2(

(1−δ)(1−c)

2
)

)
,

where

A1 = − 1

6(1 + c)

(
2597 + 240δ − 105δ2 + 24δ3 + 3c5(δ2 − 1) + 3c4(3 + δ2)

−2c3(111 − 24δ + 9δ2 − 4δ3) + 2c2(489+120δ−69δ2+20δ3)

−c(2655−240δ+225δ2−56δ3)
)
,

A2 =
1

6(1+c)

(
3(δ2 − 1)c5 + 3(δ2 + 3)c4 + 2(8δ3 − 3δ2 + 36δ − 111)c3

+6(8δ3 − 17δ2 + 28δ + 163)c2 + 3(16δ3 − 63δ2 + 104δ − 885)c

+16δ3 − 93δ2 + 216δ + 2597
)
.

In the case δ = 1 one gets major simplifications:

f
(−−++−)
Sym (c, 1) =

2257 − 93π2 − 3c4π2 + c2(303 − 48π2)

9

+
8(6 + 9c2 + c4)

1 − c2
L(

1 − c

2
)L(

1 + c

2
), (D.5)

f
(−−++−)
Asym (c, 1) =

A1

1 + c
L(

1 − c

2
) +

A2

(1 + c)2
L2(

1 − c

2
) +

A3

1 − c
Li2(

1 − c

2
) (D.6)

where

A1 = −2

3
(3c4 − 46c3 + 280c2 − 646c + 689),

A2 = −1

2
(c6 + 2c5 + 7c4 + 68c3 − 121c2 − 38c + 209),

A3 = c5 − c4 − 6c3 − 178c2 − 603c − 493.
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((
dσ2→3

dΩ13

)(−−+qq̄)

Real

)

fin

, δ = 1

f
(−−+qq̄)
Sym (c, 1) = −32 (c2+1)

2

(1−c2)
L(

1 − c

2
)L(

1 + c

2
) − 4π2(1 − c4) + 132(c2 + 3)

3
, (D.7)

f
(−−+qq̄)
Asym (c, 1) =

A1

(1 + c)
L(

1 − c

2
) +

A2

(1 + c)
L2(

1 − c

2
) +

A3

(1 − c)
Li2(

1 − c

2
), (D.8)

where

A1 =
8

3
(3c4 − 44c3 + 222c2 − 450c + 277),

A2 = −2(c4 + 2c3 − 2c2 + 50c − 67)(1 − c),

A3 = −4(c4 − 2c3 − 18c2 − 146c − 211)(1 + c).

((
dσ2→3

dΩ13

)(−−+ΛΛ)

Real

)

fin

, δ = 1

f
(−−+ΛΛ)
Sym (c, 1) = −24(c2+1)L(

1−c

2
)L(

1+c

2
) + 6(11c2−3) − π2(1−c2)2, (D.9)

f
(−−+ΛΛ)
Asym (c, 1) = −3(c + 5) (c2 − 2c + 9) (1 − c)2

2(1 + c)
L2(

1 − c

2
) (D.10)

− 2 (3c4 − 47c3 + 213c2 − 369c + 184)

1 + c
L(

1 − c

2
)

+
3 (c3 − 3c2 − 17c − 125) (1 + c)2

(1 − c)
Li2(

1 − c

2
).

((
dσ2→3

dΩ13

)(−−+++)

InSplit

)

fin

, general δ.

f
(−−+++)
Sym (c, δ) = 16

δ(3δ − 4)

(1 − δ)2
+

32(δ − 2)

(1 − δ)2
L(1 − δ) + 8(3 + c2)L2(1 − δ), (D.11)

f
(−−+++)
Asym (c, δ) = 4(c2 + 3)

(
L2(

1 − c

2
) − 2L(

1 − c

2
)L(

1 + δ − c(1 − δ)

2
)

+ L2(
1 + δ − c(1 − δ)

2
) + Li2(

1 − c

2
) − 2Li2(−

(1 − c)(1 − δ)

2
)

+ 2 Li2(−
(1 − c)δ

1 + c
) + 2Li2(

2δ

1 + δ − c(1 − δ)
)

)
. (D.12)
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((
dσ2→3

dΩ13

)(−−++−)

InSplit

)

fin

, general δ.

f
(−−++−)
Sym (c, δ) = S1L(1 − δ) + S2, (D.13)

where

S1 =
16

3
(c2 + 1)δ3 + 8(c2 − 5)δ2 + 16(c2 + 17)δ − 8(27c4 + 378c2 + 59)

3(c2 − 1)

− 64(c3 + 5c2 + 11c + 7)

(1 − c)(1 + δ + c(1 − δ))
+

64(c3 − 5c2 + 11c − 7)

(1 + c)(1 + δ − c(1 − δ))
+

64(c3 + 4c2 + 5c + 2)

(1 − c)(1 + δ + c(1 − δ)2

− 64(c3 − 4c2 + 5c − 2)

(1 + c)(1 + δ − c(1 − δ))2
− 128(c3 + 3c2 + 3c + 1)

3(1 − c)(1+δ+c(1−δ))3
+

128(c3 − 3c2 + 3c − 1)

3(1 + c)(1+δ−c(1−δ))3
,

S2 = −16

9
(c2 + 1)δ3 − 4

3
(5c2 − 13)δ2 − 8

3
(11c2 + 89)δ − 256(2c2 + 1)

3(c2 − 1)

− 32(2c3 + 9c2 + 12c + 5)

3(1 − c)(1 + δ + c(1 − δ))
+

32(2c3 − 9c2 + 12c − 5)

3(1 + c)(1 + δ − c(1 − δ))

+
32(c3 + 3c2 + 3c + 1)

3(1 − c)(1 + δ + c(1 − δ))2
− 32(c3 − 3c2 + 3c − 1)

3(1 + c)(1 + δ − c(1 − δ))2
. (D.14)

f
(−−++−)
Asym (c, δ) =

16(1 − c)(4c2 − 17c + 37)

3(1 + c)

(
L(

1+δ−c(1−δ)

2
) − L(

1 − c

2
)

)

+ 4(3+c2)

(
L(

1+δ−c(1−δ)

2
) − L(

1 − c

2
)

)2

+
8(c3 − 15c2 + 51c − 45)

1 + c
L(1 − δ)L(

1+δ−c(1−δ)

2
) (D.15)

+ 8(3 + c2)

(
Li2(−

1 − c

1 + c
δ) − Li2(

2δ

1 + δ − c(1 − δ)
)

)

+
8 (c3 + 15c2 + 51c + 45)

1 − c

(
Li2(

1 − c

2
) − Li2(

1

2
(1 − c)(1 − δ))

)
.

In the case δ = 1 one gets major simplifications:

f
(−−++−)
Sym (c, 1) =

4

9

(
(6π2 − 49)c2 + 18π2 − 415

)
, (D.16)

f
(−−++−)
Asym (c, 1) =

16(1−c) (4c2−17c+37)

3(1 + c)
L
(
1−c

2

)
+

16(1+c) (c2+6c+21)

1 − c
Li2

(
1−c

2

)
.

(D.17)
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((
dσ2→3

dΩ13

)(−−+qq̄)

InSplit

)

fin

, δ = 1

f
(−−+qq̄)
Sym (c, 1) =

16

3
(9c2 + 23), (D.18)

f
(−−+qq̄)
Asym (c, 1) = −64(4c2 − 17c + 19)(1 − c)

3(1 + c)
L(

1 − c

2
) − 64(c + 3)2(1 + c)

(1 − c)
Li2(

1 − c

2
).

(D.19)

((
dσ2→3

dΩ13

)(−−+ΛΛ)

InSplit

)

fin

, δ = 1

f
(−−+ΛΛ)
Sym (c, 1) = −16(3c2 − 1), (D.20)

f
(−−+ΛΛ)
Asym (c, 1) =

16(13 − 4c)(1 − c)2

(1 + c)
L(

1 − c

2
) +

48(c + 5)(1 + c)2

(1 − c)
Li2(

1 − c

2
). (D.21)
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