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In this paper we give all the details of the calculation that we presented in our previous paper [58],
where the infrared structure of the maximally helicity violating gluon amplitudes in the planar limit for
N = 4 super Yang-Mills theory was considered in the next-to-leading order of perturbation theory.
Explicit cancellation of the infrared divergencies in properly defined inclusive cross sections is demon-
strated first in a toy model example of “conformal QED” and then in the real N' = 4 supersymmetric
Yang-Mills theory. We give the full-length details both for the calculation of the real emission and for the
diagrams with splitting in initial and final states. The finite parts for some inclusive differential cross
sections are presented in an analytical form. In general, contrary to the virtual corrections, they do not
reveal any simple structure. An example of the finite part containing just the log functions is presented.
The dependence of inclusive cross section on the external scale related to the definition of asymptotic

states is discussed.
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I. INTRODUCTION

In recent years remarkable progress in understanding the
structure of the planar limit' of the N" = 4 SYM (super-
symmetric Yang-Mills) theory has been achieved. In the
planar limit this theory seems to be integrable at the
quantum level and its possible solution would be the first
example of a solvable nontrivial four-dimensional quan-
tum field theory. The objects which were in the spotlight
starting from the AdS/CFT (anti—de Sitter/conformal field
theory) correspondence [I] were the local operators,
namely, the spectrum of their anomalous dimensions.
They were calculated on the one hand from the field theory
approach [2] and, on the other hand, as energy levels of a
string in the classical background [3,4] revealing a remark-
able coincidence. This coincidence being part of the gen-
eral conjecture suggests the way toward solution of the
model at the quantum level.

A. Scattering amplitudes at weak coupling

Other quantities of interest are the so-called MHV?
scattering amplitudes. It was realized long ago that in the
planar limit the pure non-Abelian gauge theories do have a
truly simple structure [5]. In papers [6-8], the powerful
tool for calculating the loop expansion for these amplitudes
was suggested which allows one to calculate the loop
contributions to the amplitudes without calculating the

'"Defined as g — 0; N, — 00; A = g2N, fixed.

MHV (maximally helicity violating) amplitudes are the am-
plitudes where all particles are treated as outgoing and the net
helicity is equal to n — 4, where 7 is the number of particles. For
gluon amplitudes MHV amplitudes are defined as the amplitudes
in which all but two gluons have positive helicities.
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usual Feynman diagrams, the number of which grows
exponentially with the growth of the order of perturbation
theory. Even greater simplification occurs in the case of the
N =4 SYM theory, where the loop expansion takes
extremely simple form in comparison with a less super-
symmetric case [9].

To see the hidden symmetries of the MHV amplitudes, it
is useful to consider the color-ordered amplitude defined
through the group structure decomposition
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where A, is the physical amplitude, A, are the partial
color-ordered amplitudes, 70 are the generators of the
gauge group SU(N,), a,; is the color index of the p(i)-th
external particle, and p ;) is its momentum.

To be more precise, it was found that these amplitudes
revealed the iterative structure which was first established
in two loops [10] and then confirmed at the three-loop level
by Bern, Dixon, and Smirnov (BDS), who formulated the
ansatz [11] for the all-loop n-point MHV amplitudes:

o , 2
M, =y > (8 NC)LM;”(e)

tree 2
Al =\167

= exp[i(@)l(ﬂ”(e)w)(le) +c + EEP(e))],

= 1672
(1.2)

where Eﬁf) vanishes as € — 0, C? are some finite constants,

and M\)(le) is the le-regulated one-loop n-point
amplitude.
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It is not surprising that the IR-divergent parts of the
amplitudes factorize and exponentiate [12]. What is less
obvious is that it is also true for the finite part

1SN (Y | 260
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where  yu5p(8) =Zl(fzgg)’y§lu)sp is the so-called cusp
= zl(gzN )IG(I)

anomalous dimension [13] and G,(g) S

the second function (dependent on the IR regularization)

which defines the IR structure of the amplitude.
According to the BDS ansatz, the finite part of the

amplitude is defined by the cusp anomalous dimension

and a function of kinematic parameters specified at one

loop. For a four-gluon amplitude one has

FP(0) = log ( )+ 44, (1.4)

The cusp anomalous dimension is a function of the
gauge coupling, for which four terms of the weak coupling
expansion [2] and three terms of the strong coupling ex-
pansion [3,4,14] are known. Integrability from the both
sides of the AdS/CFT correspondence leads to the all-order
integral equation [15] solution which, being expanded in
the coupling, reproduces both series [16].

For n = 4,5 the BDS ansatz goes through all checks,
namely, the amplitudes were calculated up to four loops for
four gluons [2] for divergent terms (see also [17] for
checking at order 1/€) up to two loops for five gluons
[18] and up to three loops in [19]. However, starting from
n = 6, it fails. The first indication of the problem was the
strong coupling calculation in the limit n — oo [20] where
the authors compute the value of the amplitude for a
particular kinematic configuration for a large number of
gluons and find that the result disagrees with the exact
value of the amplitude from the BDS formula. The second
indication came also from this duality, namely, from the
comparison of hexagonal lightlike Wilson loop and finite
part of the BDS ansatz for the six-gluon amplitude. It was
found that the two expressions differ by a nontrivial func-
tion of the three (dual) conformally invariant variables
[21]. The third indication appeared in [22] where the
analytical structure of the BDS ansatz was analyzed and
starting from n = 6 the Regge limit factorization of the
amplitude in some physical regions failed. Finally, it was
shown by explicit two-loop calculation [23] that the BDS
ansatz is not true and it needs to be modified by some
unknown finite function, which is an open and intriguing
problem. However, from the two-loop calculation for the
six-point amplitude [23] and hexagonal lightlike Wilson
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loop [24], it was shown that the gluon amplitude/Wilson
loop duality [25] is still valid.

B. Strong coupling dual of amplitudes, lightlike Wilson
loops, and dual conformal invariance

In [26], the authors defined the prescription for calculat-
ing the amplitudes at strong coupling. It happens that in
leading order the amplitude is given by the lightlike Wilson
loop living on the boundary of dual AdS space

M, ~exp[—SE] = exp[;/——(area)cl] (1.5)
where S denotes the classical action of classical solution
of the string world-sheet equations in Euclidean space-
time, which is proportional to the area of the string world
sheet.

After this in [25] it was conjectured that duality between
lightlike Wilson loops and MHV scattering amplitudes is
valid at any coupling, which was proved for n-point MHV
amplitudes at one loop [27] and for n = 6 at two loops [24]
(for more details and references, see the review [28]).

Because of the cusps the lightlike Wilson loop is UV
divergent; however, this divergency is under control,
namely, one can write the divergent factor in all orders in
the coupling governed by two functions, one of them being
the cusp anomalous dimension mentioned above. This
allows one to define the finite parts for both the Wilson
loop with n cusps and the n-point MHV amplitude which,
according to the Drummond-Korchemsky-Sokatchev
(DKS) conjecture [25], are equal to each other:

Fin[logM,,] = Fin[log W,,]. (1.6)

In [29] the notion of dual superconformal symmetry was
introduced, which is conformal invariance acting in mo-
mentum space. What is important is that this symmetry has
a non-Lagrangian nature. After this in [30,31] the fermi-
onic T-duality was suggested which maps the dual super-
conformal symmetry of the original theory to the ordinary
superconformal symmetry of the dual model.

For a Wilson loop the conformal invariance is broken
due to the cusps, but one can write the anomalous Ward
identities which allows one to find the finite parts of the
Wilson loop with n = 4 and n = 5 cusps exactly [32]:

Z(Zx}’x d; — x?9¥)Fin[log W, ]
i=1

22
1 l i+2
14
5 Yeusp Z log 5 Xii+1 (1.7)
=1 Xi1i+1
where the connection between the momentum space and its
dual x| =x/"—xf{ = p/ is used. This equation

uniquely fixes the finite parts of the Wilson loop with n =
4 and n =5 cusps; however, starting from n = 6 more
input is needed since the finite part of the Wilson loop in
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this case can be a function of the three conformal invariant
variables. Hopefully, one can find hidden symmetries
which fix the finite part for any n [33].

It is not clear how to derive this duality from the field
theory point of view, and also how to extend it to the
NMHYV case.® At one loop, one can show that finite part
of the so-called two mass easy box which governs the finite
function of MHV amplitudes could be directly mapped to
Wilson loop diagrams through a simple change of variables
in the space of Feynman parameters and also through the
connection between scalar integrals in different dimen-
sions [34].

C. Infrared-safe observables

While all the UV divergences in N =4 SYM are
absent in scattering amplitudes, the IR ones remain and
are supposed to be canceled in properly defined quantities.
By themselves the divergent amplitudes have no sense.
Regularized expressions act like some kind of scaffolding
which has to be removed to obtain eventual physical ob-
servables. It is these quantities that are the aim of our
calculation. And though the Kinoshita-Lee-Nauenberg
[35] theorem in principle tells us how to construct such
quantities, explicit realization of this procedure is not
simple and one can think of various possibilities. The
well-known example is a successful application to observ-
ables in QED [36]. The other suggestion is to consider the
so-called energy flow functions defined in terms of the
energy-momentum tensor correlators introduced earlier
(see for example [37]) and considered in the weak coupling
regime in [38,39] and recently in the strong coupling
regime in [40]. From our side we concentrated on inclusive
cross sections in hope that they reveal some factorization
properties discovered in the regularized amplitudes.
Similar questions were discussed in [41], where the inclu-
sive cross sections like the IR-safe observables based on
on-shell form factors in N" = 4 SYM were constructed.

To perform the procedure of cancellation of the IR
divergences, one should have in mind that in conformal
theory all the masses are zero and one has additional col-
linear divergences which need special care. In this work we
employ the method developed in the QCD parton model
[42-46]. It includes two main ingredients in the cancella-
tion of infrared divergencies coming from the loops: emis-
sion of additional soft real quanta and redefinition of the
asymptotic states resulting in the splitting terms governed
by the kernels of the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equations [47,48]. The latter ones take
care of the collinear divergences.

Typical observables in QCD parton model calculations
are inclusive jet cross sections, where the total energy of

’NMHV (next-to-maximally helicity violating) amplitudes are
the amplitudes where all particles are treated as outgoing and the
net helicity is equal to n — 6, where n is the number of particles.
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scattered partons is not fixed since they are considered to
be parts of the scattered hadrons. In [43], the algorithm for
extracting divergences was developed which allows one to
cancel divergences and apply numerical methods for cal-
culation of the finite part. In our paper we choose as our
observables the inclusive cross sections with fixed initial
energy and get an analytical expression for the finite part of
the differential cross section. We do not assume any con-
finement and consider the scattering of the single parton
based “coherent” states,” being the asymptotic states of
conformal field theory.

There are some attempts to deal with the divergences for
the amplitudes themselves. For example in [49] a defor-
mation of the free superconformal representation by con-
tributions which change the number of external legs was
proposed which looks similar to the procedure that we
apply below considering the inclusive cross sections.
Acting along the same lines the authors of [50] have
observed that the holomorphic anomaly [51] gives an extra
modification of superconformal algebra for the tree-level
scattering amplitudes. They argued that superconformal
symmetry survives regularization and introduced a new
holomorphic anomaly friendly regularization to deal with
the IR divergences.

The paper is organized as follows. In Sec. I, we consider
general issues concerning the construction of the infrared-
finite observables in the massless QFT. We discuss the IR
and collinear divergencies for the scattering amplitudes
and the ways of their cancellation based on the
Kinoshita-Lee-Nauenberg theorem. We introduce the no-
tion of the measurement functions and discuss their prop-
erties. Then the concept of the splitting functions and
splitting counterterms is outlined. We define the IR-finite
inclusive cross sections which are the subject of calcula-
tions in the subsequent sections.

Section III is devoted to the demonstration of the tech-
niques discussed above in practice. In a toy model of
“conformal QED” we consider the «; correction to the
massless electron-quark scattering. We show how the IR
and collinear divergences cancel and calculate analytically
the remaining finite part of the differential cross section.
Because of absence of the identical particles in the final
state this example turns out to be much simpler than gluon
scattering in N' = 4 SYM and serves as a good warm-up
exercise before going to N =4 SYM.

In Sec. IV, we calculate the leading order perturbation
theory (PT) correction to the gluon-gluon scattering inclu-
sive cross section. It includes the one-loop contribution to
the 2 — 2 scattering differential cross section, the tree-
level 2 — 3 scattering with the integration over the phase
space of the fifth gluon, and an account of the splitting of

“The squared perturbative amplitudes used in our calculation
are summed over colors, so in this sense they are colorless and
there is no contradiction with statements that cancellation of IR
divergences occurs only for colorless objects.
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the initial and final states. We consider also the amplitudes
with creation of pairs of the matter fields from the N = 4
supermultiplet.

In Sec. V, using the results of Sec. IV we present the
infrared-finite results for the differential inclusive cross
section in NN =4 SYM theory for different physical
setups.

Section VI contains discussion and concluding remarks.

In appendixes we present the technical details of our
calculations.

II. CONSTRUCTION OF INFRARED-SAFE
OBSERVABLES

The tree-level matrix elements are finite and well de-
fined in perturbation theory. Divergences appear when
integrating over virtual loops or over phase space of real
particles. So the first step is to choose a proper quantity
which is finite in the lowest order of PT prior to calculation
of radiative corrections. For example, the total elastic 2 X
2 cross section is divergent, but the differential cross
section is well defined. The choice of a proper quantity is
performed by imposing conditions on the phase space. This
can be achieved by introducing the concept of the mea-
surement function S,, where n is the number of particles in
the final state. It defines which physical quantity we are
measuring. Typical examples are: a total cross section, a
differential cross section, an n-jet cross section, etc. In the
case of 2 X n scattering the differential cross section is
given by

dUz—»n :l

dQ J

where S, is the measurement function and the n-particle
phase space d¢,, is given by

/ |M2+n|2d¢n8n’

dd, =TT 6* (02 -2 mp
n s pk (27T)D71

X8P(pr+py—ps— "= pusa)  (21)

Here J is the flux factor, p;, p, are the momenta of the
incoming particles, ps, ..., p,+» are the momenta of the
outgoing ones, M,,, is the matrix element of the corre-
sponding process, and we use the dimensional regulariza-
tion with D = 4 — 2e.

Then, for example, choosing the measurement function
to be

S, =672 Qpe — Q13),

one singles out the standard differential cross section for
the scattering of a third particle on a certain solid angle €3
for the 2 — 2 process

doy

= [ IM,2dh,S,. 2.2)
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If one wants to construct the IR finite quantity then,
according to the Kinoshita-Lee-Nauenberg [35] theorem,
it is not sufficient to consider the process with the fixed
number of final particles. One has to include the processes
of the same order of the perturbation theory with emission
of extra soft quanta and integrate over their momenta. This
leads to the notion of inclusive cross section when one fixes
some particles and integrates over all the others allowed by
the conservation laws.

When the number of particles increases, one has to
specify the measurable quantity in a more accurate way
and to distinguish the particle(s) in the final state. Thus,
one can introduce the energy and angular resolution for the
detector and cut the phase space so that the soft quanta with
total energy below the threshold as well as all the particles
within the given solid angle are included. This procedure
requires the corresponding measurement functions and
works well in QED but introduces explicit dependence
on the energy and angular cutoff, thus violating conformal
invariance.

We adopt here a different attitude without introducing
any cutoffs but rather considering the inclusive cross sec-
tion with the emission of particles with all possible mo-
menta allowed by kinematics. Having identical particles in
the final state one has to specify which particles are de-
tected by introducing some measurement function. For
instance, one can detect the given particle scattering on a
given angle while integrating over the phase space of the
other particles. As will be clear later in this case, due to
collinear divergences one still cannot avoid introducing
some scale related to the definition of the asymptotic states
of a theory. Below we show how it works in particular
examples.

To have the cancellation of all the IR divergences,
according to the analysis of Ellis, Kunszt, and Soper
[43], the measurement functions for the processes with a
different number of external particles have to obey the
following conditions:

St A, .. )=8,(....), A—0, (23)

which reflects the insensitivity to the soft quanta, and

St APy (L= N, ) =8y Brn). 24)

Here 0 = A = 1. This condition expresses our insensibility
to collinear quanta.

It should be pointed out that in case of identical particles
one has an additional problem when calculating the differ-
ential cross sections: one has to specify the scattering
angles and to choose the detectable particle. This require-
ment imposes further conditions on the phase space as will
be shown below when considering the gluon scattering.

The additional divergences appearing in the massless
case which come from the integration over angles rather
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than the modulus of momentum, as in the case of the IR
divergences, are related to the collinearity of momenta of
two particles. For this reason they are called the collinear
divergences. To get the cancellation of all divergences, the
observed cross section should include, besides the main
process and emission of the soft quanta, the process of
emission of collinear particles with kinematically allowed
absolute values of momenta. As we will see below, the
leading IR divergences coming from the cross section of
the processes with the virtual loop correction and from the
real emission of the soft quanta cancel. However, the total
cancellation of divergencies does not happen. The remain-
ing divergences in the form of a single pole have the
collinear nature. For the cancellation of the remaining
pole one has to properly define the initial (and final) states.
The reason is that a massless particle can emit a collinear
one which carries part of the initial momentum and, in this
case, it is impossible to distinguish one particle propagat-
ing with the speed of light from the two flying parallel.
This is the common problem for any theory containing the
interacting massless particles.

To deal with this problem, let us consider a particle in
the initial state and introduce the notion of distribution of a
particle with respect to the fraction of the carried momen-
tum z: ¢(z). Then the zero-order distribution corresponds to
q(z) = 6(1 — z) and the emission of a collinear particle
leads to the splitting: the particle i carries the fraction of
momentum equal to z, while the collinear particle j — (1 —
z). The probability of this event is given by the so-called
splitting functions P;;(z) [48]. In case of a particle in a final
state, this corresponds to the fragmentation into a pair of
particles i and j. In the lowest order of perturbation theory
the distribution can be written in the form

2

q,(z,i ) 51— )+ﬁ1<Q—f) SP), (25

J

where the scale Q%, sometimes called factorization scale,
defines the measure of collinearity of the emitted particles,
e., it refers to the definition of the initial state. In fact, in
the massless case one cannot define the initial state that
contains just one particle; it exists together with the set of
collinear particles forming a coherent state.
This leads to the additional terms in the cross section

a 1

27T E(Qf) / dZZPtj(Z)dO'Bom(Zpl, P2 D3, p4)

+ (p1 < p2)s (2.6)

referred to hereafter as the initial splitting contributions or
collinear counterterms.

The same is true for the final states. The corresponding
final state collinear counterterms are
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i l(QQ) f B2 Pl

+ (p3 © pa).

doB®™(py, pa, p3, pa)

2.7

Summarizing all the contributions, we come to the
following set of IR-safe observables that we consider here:

2

. * [ X [ 02
dogs! = Z/; d21Q1<Z1yM—§)[) deQz(Zz, M—ﬁ)
n+2
/ dz;q; (z,, —)

X dUz_’"(lely P2 - -

o , 2

_ _4n4 8
=& Nc (
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where p|, p, are the momenta of the initial particles, p; are
the momenta of the final particles, S, are the measurement
functions which define the measurable quantity, and ¢; are
the initial and final state distributions.

The above expression looks like the parton model cross
section. The difference is that in the parton model one uses
both the parton distributions inside hadrons and fragmen-
tation functions for final-state hadrons while here it be-
longs to the definition of the asymptotic states.

)8, ({z})
Z;) Flmte(s i u, Q2)

(2.8)

III. TOY MODEL: “CONFORMAL QED”

To illustrate the main ideas of the previous chapter, we
study first a toy model example. Let us consider the
electron-quark scattering and put all the masses equal to
zero. We will be interested in the radiative corrections in
the first order with respect to the strong coupling a. The
corresponding diagrams are shown in Fig. 1. We define
the initial electron and quark momenta as p, = p; and
Py = P2 and the final ones as p, = p3 and p, = py,
respectively.

In the chosen process the UV divergences cancel due to
the Ward identities so we are left only with the IR ones. To
handle them, we use dimensional regularization. This situ-
ation exactly imitates the four-dimensional CFT’s like the
N = 4 SYM theory.

Define the measurement function in the following way:

Sy =0+, 8P72(Qper — Qp3),

where 0. ;, means that we detect the third particle with
any helicity, i.e. we are interested in the unpolarized dif-
ferential cross section. Here d 3 = d¢3d cos(6y3),> 015
is the scattering angle of the particle with momentum p;
with respect to the particle with momentum p; in the
center-of-mass frame. In the leading order (LO) we have

>If to be more accurate in dimensional regularization we have
dQlDS72 = dd)l'i Sin(¢l3)725dcos(013) Sin(013)725, D=4 —2e.
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a)

FIG. 1 (color online).
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Ay e &

The process of electron-quark scattering in the first order in «;: (a) the Born diagram, (b)—(d) the corrections

due to the virtual gluons, (e)—(f) the corrections due to the real gluons.

the well-known textbook formula [52]

() -2 )
dQ 13 /Born 2E2 t2 S ’

where E is the total energy of initial particles in the center-
of-mass frame, and s, t, u are the standard Mandelstam
variables. In the c.m. frame s = E?, t = —E?/2(1 — ¢),
u=—FE?/2(1 +c), c = cosbs.

The one-loop correction coming from the diagrams with
virtual gluon, Fig. 1(b)-1(d), has the form

(@)~ (55
dQl3 1-loop dQlB Born

2
o, (L2 3

3.1

helpful definition of the angular measure in the space of
4 — 2€ dimensions and multiplied the standard expression
by I'(1 — €)/(4m)€. Then the constants like vz, log(4m),
and ((2) disappear from the intermediate expressions.
Because of the cancellation of divergences in the final
expressions, this redefinition does not influence the answer.

Now, following the general prescription, we have to
calculate the diagrams with emission of real gluons,
Fig. 1(e) and 1(f). For the measurement function of these
processes we take S; = S,, then all requirements on S,
and Sj are satisfied trivially. Besides the squares of each of
the diagrams one should also take into account the inter-
ference term. After contracting all the indices the phase
integral takes the form [we denote the quark momentum
as py — k and the gluon momentum as k and keep the
standard notation for the Mandelstam variables s = (p; +

G2 p)2t=(p — p)% u=(py— p3)?
In order to avoid the transcendental numbers, we used the
|
d0'2_.3) f + [ de
= 8T (kH)6™ — k)HS; M2 _ o
( ), =5 [P0 [ 558w (s 0SB e,
|M|2 _ €4g2 MO + EM] + €2M2
4 ts+t+u

—8(p1k)> +4Q2s + t)pk —

(352 + 2 + u® + 2s1)

My =4s — 8p 1k — 4prk +

8(p, k)2
My = —4(s + u) + 8pyk + 8pok + SP1K)

P2k
—4(s+t+u)pk+2(s + t + u)? —2(u + )t

) (3.3)

(s+t+u?

>

pa2k

_(s-l—t+u—2p2k)2

M, =4(s +t+u) — 4dpk —

Dpak

P2k

It is useful to pass to the spherical coordinates and use the c.m. frame. After the integration over the phase volume the result

can be represented as

dﬂ'z_,:;) (dO'Z_Q) [ O <M2)5<2 3
= 200, () (S +2+8
(dQ]3 Born dQB Born F47T -t 62 €

where the functions f| and f, in the c.m. frame are

fi— 2 (1-o)c3

+5¢% = 3¢ + 5)log(159) —

(3.4)

)-erfe i (Y () (2 ) 00

(c = 1)%*c+ D(c—11)/4

(1 —¢)*(1 + ¢)? ’

(3.5)
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1

fz:_(l—c)z( c

+ (1 +c)*(c® +2¢c+ 57— 12(9¢% + 2¢ + 5)L12<

As one can see from comparison of the cross sections of
the processes with virtual (3.2) and real gluons (3.4), in the
sum the virtual part completely cancels and the second-
order pole disappears. However, the total cancellation of
divergences does not happen. The remaining divergences
in the form of a single pole have a collinear nature. As was
already mentioned, for their cancellation one has to define
properly the initial states.

Introducing the distribution function for initial quark
state one gets the additional contribution [53] to the cross
section which looks like®

o IR R ()
dzP
(dQB split € 277' Pay2)

d0'2
X
( a0 2(py, zpz))Bm,

where the Born cross section is given by (3.1) with the
replacement of the initial quark momentum p, by p,z.
This means that one should keep the total energy but
replace the Mandelstam variables s, f, u according to
Eq. (4.38) (see below). One should also keep the € term
which gives contributions to the finite part. The splitting
function P, (z) [48] here is

(s

Notice also the change of the momenta conservation con-
dition which now looks like p; + zp, — p3 — ps = 0.
This gives an additional factor of 4z72¢/(1 + z — (1 —

Z))Z(l*e).
One might also have a contribution from the final-state
counterterm; however, since in this case, according to (2.7),
|

3.7)

P,) = C +280 - z)). (3.8)

1+ )2 [(1 - C)(C3 +5¢2 — 3¢ + 5)10g2(1;

+c
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1 1-—
C) + 5(1 — )33 + 15¢2 + 77¢ — 31)10g<TC)

) + %(1 — )1 + 0)(5¢2 — 42¢ — 23)]. (3.6)

the cross section does not depend on the fraction z, one has
to integrate only the splitting function P,,(z). And this
integral equals zero due to the requirement of conservation
of the number of quarks. Therefore, one has no contribu-
tion from the final-state splitting. It will not be the case for
the gluon scattering cross section considered below.

The factorization scale sz, is an arbitrary quantity asso-
ciated with the quark distribution function which may
depend on z. It is quite natural to choose the factorization
scale equal to the characteristic scale of the process of
interest. Thus, in our case this choice corresponds to Q% =
—1, where 7 is the Mandelstam parameter 7 for the process
where p, is replaced by p,z. One has 7 = tm [see
Eq. (4.38) below]. Substituting this value of Q]% into (3.7)
leads to the following result:

dUz—»z) a’ a (MZ)E(M2>E( S )
— o X S (N (- L g,
( dQ 3 Jspiit For? 27 \s —t € /3

(3.9)
where
fi= —ﬁ[%] —o)(c® +c* = 33¢+7)

X 1og(1 - ) 12(9¢2 + 2¢ + 5)L12<1 ”2L c)

— (1 + ¢)%(c? + 2¢ + 5)7?

- %(1 — o+ (11 — 19)]. (3.10)

Gathering all pieces together we finally obtain the IR-
finite answer in the next-to-leading order (NLO) of PT:

() (), () ) ()
dQB IR-safe dQ]S Born dQl3 1-loop dQl3 Born dQB Split

Cr

_a? {cz+2c+5_ a
2E2 (1 —c¢)?

+ - (7c + 19¢2 — 55¢ — 3) log(

This expression is the final answer for the cross section
of the physical process of the electron-quark scattering
where the initial and the final state include the soft and

“We put here (&; 2)5 inside the integration over z since in general
one may con31der Oy to be a function of z.

27 (1 — o)(1 + ¢)?

1 —
I:(c3 +5¢2 =3¢+ 5)10g2(TC)

)—(1 + OB +2lc+2)]} G.11)

|
collinear gluons. It includes also the definition of the initial
state and can be recalculated for the alternative choice of
the factorization scale similar to what happens to the
ultraviolet scale which defines the coupling constant.
Thus, we practically deal with the scattering not of indi-
vidual particles but rather with coherent states with a fixed
total momentum. This process contrary to the scattering of
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individual massless quanta has a physical meaning. The
drawback is the dependence on Q; which reflects the
definition of the asymptotic state. This dependence explic-
itly violates the conformal invariance.

IV. CALCULATION OF THE INCLUSIVE CROSS
SECTIONS IN N = 4 SYM THEORY

Consider now the gluon scattering in the N = 4 SYM
theory. Our aim is to evaluate the NLO correction to the
inclusive differential polarized cross section in the weak
coupling limit in the planar limit in analytical form and to
trace the cancellation of the IR divergences.

We start with the tree level 2 — 2 MHV scattering
amplitude with two incoming positively polarized gluons
and two outgoing positively polarized gluons and consider
the differential cross section do,_,(g gt — g¢7¢™)/dQ
as a function of the scattering solid angle. Treating all
the particles as outgoing this amplitude is denoted as
(= — ++) MHV amplitude. At tree level the differential
cross section is given by

dUz_,z)(77++) 1 [ (tree)
=— [ depo| MS™°|S,,
(dQB (tree) J ¢2 4 :

.1

where J is a flux factor, in our case J = s, and the phase
volume of the two-particle process (we use the FDH
version of the dimensional reduction; see [54] for details)
is

s — d”p38* (p3) d°psd™ (p3)
P eoP Tt emP!

(2m)P

X 8P(py + pa — p3 — pa), 4.2)
and §,, (n = 2) in this particular case is
Sy =8.,62(Qpe — Qp3), (4.3)

where §°72(Qpe, — 2,3) means that our observable is the
differential cross section and & ;. indicates that we detect
a particle with positive helicity.

The squared matrix element is obtained from the color-
ordered amplitudes via summation

| MR = g N2(NZ = 1)

X Z |A£1tree)(pl’ Po(2)) Po(3) p(r(4))|2» (44)

ogEP;

where P, is the set of the permutations of n objects (n = 3
in this case), so that in our case [5,55] (see also Appendix A
for details)

| MR = gdN2(NZ - 1)

4
s
X 12

e, S160)552)r(3)S (o) o)

4.5)

PHYSICAL REVIEW D 81, 105028 (2010)

FIG. 2. Tree-level diagrams for the color-ordered MHV ampli-
tudes.

where we use the notation s;; = (p; + p j)z. The corre-
sponding Feynman diagrams are shown in Fig. 2.

Within the dimensional regularization (reduction) the
cross section in the planar limit looks like

(daz—'2>("++) _ N (f + s + i)(“_z)e (4.6)
dQB (tree) 2E2 t2 llz t2u2 N ’ ’

where s, t, u are the Mandelstam variables, E is the total
energy in the center-of-mass frame, and @ = g>N. /4. So
in the center-of-mass frame the cross section can be re-
written as

(da'z_,z)(——++) _ @’N24(3 +¢?) (Mz)e, @7

dQB (tree) N E2 (1_62)2 T

where ¢ = cosf3. The next step is to calculate the NLO
corrections.

A. Virtual part

To get the one-loop contribution to the differential cross
section, one has to consider the diagrams shown in Fig. 3.
We use the already known one-loop contribution to the
color-ordered amplitude [9]

- - 1 -
M&l IOOP)(E) _ Agl loop)/Aitree) _ _ESZI‘(‘I IOOP)(S, [),

where I{"°P)(s, 1) is the scalar box diagram

1P (g 1) = % ;((%_26):)[_%«%2)5 N <,_L_2[)E)

1 of S w2
+log (—7) + ?] + Oe)

The square of the matrix element summed over colors

|M£‘1—1oop)|2 _ Z (qugree)ﬂgl'l""p)* +c.c.)

colors

has the form

105028-8
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+ permutations

FIG. 3. The one-loop diagrams for the color-ordered MHV amplitude in the N' = 4 SYM theory. Particles running inside the loop
include all the members of the N = 4 supermultiplet. The solid and dashed lines correspond to the fermion and scalar particles,
respectively.

(1-loop)(——++)12 ANT2(AT2 gch st (1-loop) st (1-1loop) st (1-loop)
M, [>?=—g*N2(N? - 1) 62 X W”I“ (s, 7) + msul4 (s, u) — mtuh (—tu |
(4.8)

which gives the one-loop contribution to the cross section in the planar limit
(——+4) 2N2 2\ e 4 2\e 2\e 2Ne 2\ e 2\ e 2\e
(o) =50 () el 2 (&) - G ) () () )+ () + () ))
dQy3 Jvin 2E* \ s 4ar s 2 u? e? —t —u K —t s —u
16 t
+ ?77'2(s2 + 2+ u?) + 4( %log? ( ) + ’log? ( ) + s’log? ( )):”» (4.9)
u u

Rewriting this expression in the center-of-mass frame we have
do,_,\——++)  a’NZ (u’\2€ [« 16 3+c¢*  4(5+2c+c? I1—¢c\ 5-—2c+¢c? 1+c
==\ ) Mozl 2 e T 2y 102 + 22 102
dQ 3 Jvin E s 4 e (1—-¢? e\ (1—-1¢% 2 (1—=1¢? 2
16(3 + ¢2)7? 16 1—c 1+c

+ - 1 1 : 4.10
30— (-7 °g< 2 ) Og( 2 )]} 10
|

It should be stressed that because of the conformal  cles. Here we have to define the process we are interested
invariance of the N =4 SYM theory at the quantum  in. There are several possibilities.

level, there are no UV divergences in (4.10) and all diver- (1) Three gluons with positive helicities: g"g* —
gences have the IR soft or collinear nature. They have to be gtg g™, This is the MHV amplitude.

canceled in properly defined observables. Note also the (2) Two gluons with positive helicities and the third one
simplicity of the finite part which is a consequence of with negative helicity: g*¢* — g*g*g~.” This is
symmetries of N = 4 SYM and the fact that all the terms the anti-MHV amplitude.

in (4.10) have the same transcendentality [15,56].
"There is also a g"g" — g*g g™ helicity configuration.

B. Real emission The partial amplitudes for both cases where the additional gluon

. . . with negative helicity is the second or the third gluon in the final

The next step, as in the toy model considered above, is state are equal. We will use the (— — + + —) notation for both
the calculation of the amplitude with three outgoing parti-  of them.
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FIG. 4. The tree diagrams with three outgoing particles for the color-ordered amplitudes. Permutations are not shown.

(3) One of three final particles is the gluon with positive
helicity and the rest is the quark-antiquark pair®:
gtet —gtq gt orgtgt — gtg"g . Thisis an
anti-MHYV amplitude.

(4) One of three final particles is the gluon with positive
helicity and the rest are two scalars: g" gt —
g " AA. This is an anti-MHYV amplitude.

The corresponding diagrams are shown in Fig. 4.

If one fixes one gluon with positive helicity scattered at
angle 6 and sums over all the other particles then all the
processes mentioned above contribute. In the case when
one fixes two gluons with positive helicity and looks for the
rest, only the first two options are allowed.

The cross section of these processes can be written as

dUz—»3) 1 / (tree)
=_ | d¢s|M 12S,,
( dQy3 Jrea J 31 Ms }

4.11)

()
| MG = gONI(NZ — 1)

where d¢5 is the three-particle phase volume
by — dp38*(p3) d”psd™ (p3) d°psé™ (p3)
3 (27T)D_1 (27T)D_1 (27T)D_1
X 2m)P8P(py + py — ps — P4 — ps),

(4.12)

and S; is the measurement function which constrains the
phase space and defines the particular observable.

The squared matrix element is expressed through the
amplitudes as before:

|ME(py, ..., ps)I?
= ¢NIN2 = 1) Y A (P potrys - Pow)> (4.13)
gEP,

For the processes mentioned above one has the follow-
ing expressions for the matrix elements”:

4
S12 (4.14)

o€P, S1a(1)Sa(1)o(2)S (2o (3)S (3)o(4)S o(4)1 '

Since there are three identical gluons with positive helicity in the final state one has to define which ones are
detected. In case of one detectable particle, one can choose the fastest one; in case of two, the two fastest ones. The
measurement function for detecting only one gluon with momentum p; with positive helicity can be written as

S§ T =5,,.0p) > pYO(p) > pDEL 2 (Qpe — Qi3);

(4.15)

8The N = 4 supermultiplet consists of a gluon g, four fermions (“quarks”) ¢g* and six real scalars A*5; A and B are SU(4),
indices, A is an antisymmetric tensor. It is implied that all squared amplitudes with quarks and scalars are summed over these indices.

It is implied that all squared amplitudes with quarks and scalars are summed over SU(4) indices.
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and for detecting of two gluons with positive helicities as

5(3__+++)’2 = 5+,h35+,h4®(p3 > pNO(pd > pH oL 2 Qpe — Q13),

(4.16)

where we detect the third and the fourth gluons. Analogous measurement function would appear if we would like to

detect the third and the fifth gluons.
2

|M§tree)(77++7)|2 _ gGNg(Nf - 1)

4
534 : (4.17)

EB, 16500 S oS e (Pr @Sl

The measurement function for detecting one gluon with positive helicity and momentum p5 is given by

ST = 5., 008> p)8" Qe — 1)

and for detecting of two gluons with positive helicity by

3)
| MG = SNF(NZ — 1)

The measurement function in this case is simple since we have only one gluon in the final state

@)
| MYV = SNF(NZ 1)

The measurement function is given by the same
formula (4.21) as in the previous case.

(4.18)
SU T = 8,8 00 Qe — Q). (4.19)
534S35(S§4 + 555) : (4.20)

oep, S1a()Sa()o(2)S0(2)o(3)Sr(3)o(4)S o(4)1
SYTT =5, 8P 2 (Qpe — Q). 4.21)
$5a83s . (4.22)

oepy S10()Sa(1)a(2)S (20 3)So(3)a(4)S (41

[
0 1-4 D—2
S3(p3, pa ps) = O p3 — TE P72 (Qper — Q3),

(4.23)

One can check that the measurement functions written
above satisfy the IR and collinear limit conditions (2.3) and
(2.4). Indeed, one has

(1) ps—0, |p4| = |P3|2

S3(p3, Pa, 0) — G)(Pg - P2)5D_2(Q = 03),

(2) p3=—P,py=xP,ps =(1 —x)P:
S3(p3, par ps) — O(1 — x)O(x)6°2(Q — Q).

The latter 6 functions give 0 < x < 1 restricting the
fraction of momenta in a natural way.
Choosing the fastest momentum one has to have in mind
the conservation of momentum and energy

Ips| + Ip4l + |ps| = E.

This means that the three momenta form a triangle with the
perimeter equal to E. Hence the requirement that, say, the
third particle is the fastest one means that p3 > E/3.
Therefore, to simplify the integration, in what follows we
choose the universal measurement function

p3 tps+ps=0,

where we take 8 = 1/3 in the case of identical particles
and 6 = 1 in the other cases. Thus, the registration of one
fastest gluon corresponds to 6 = 1/3 for the MHV and
anti-MHV amplitudes and 6 = 1 for the matter-antimatter
amplitude, while the registration of two fastest gluons
corresponds to 8 = 1/3 for the MHV amplitude and 6 =
1 for the anti-MHYV amplitude.'® In what follows we keep
the value of ¢ arbitrarily and show that the IR and collinear
divergences cancel in observables for any value of 6. We
omit the details of the calculation, which can be found in
Appendix B, and present here only the divergent parts of
the calculated objects. All the finite parts can be found in
Appendix D.

With these definitions the contributions to the 2 — 3
cross sections from the amplitudes that are listed above are

'9These are not precisely the needed requirements but are pretty
close to them. Fulfillment of the exact requirements of the fastest
particles is technically more involved but does not change the
picture.
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(1) Real emission (MHV)

PHYSICAL REVIEW D 81, 105028 (2010)

(da'z_,3)(**+++) a’N? (,u,2)2€ e { 8 3+ c?) N 1 I: 2 ) (1 — c) N 2 i (1 + c)
= —) = - 0 0
eL(1+¢)? 8 (1-1¢)? 82

2
dQ 13 / Real E N m

€ (1—c?)

166(26 — 3) 123 + ¢?) 1-6 .
+ finit tgs 4.24
T ar )|+ e ) @29
notice the singularity in the limit 6 — 1.
(2) Real emission (anti-MHV)
<dazﬁ3)<~++7) _ a’N? (,ﬂ)ze a{ 1 83+¢%) 1 [_ 12(c? + 3)logd = 64(12¢* + 17)
dQ 3 JReal E? \'s mle2 (1 —¢2)? € (1 — 2)? 3(1 — 2
26 2
o (§ (5 + 36282 — (2 + 19)8 +2(5¢2 + 43))
(2(3c2 — 24¢ + 85) o (1 - c) ~ 8(c* — 6¢ +21) o (1 +6—(1—- 8)c)
(1—=0o)(1+¢)P (1—=0o)(1+¢)P 2
3 32(c2 —4c+7) 3212 —¢)
1+c)PA—e)1+86—c(1—=968) (A+c)PA+86—cl—90)>
64(1 — ¢) .
— + (¢ — + finit tt. 4.25
A+ +o—ci—o)y € C)>] e par} (425)
Contrary to the MHV case the limit 6 — 1 is regular here and greatly simplifies the final result.
(3) Fermions (for four fermions in adjoint representation of SU(N..))
(do-z_,3)(——+qt?) _ a’N? (,U«_z)kg{_ E[(79 + 25¢2) 2(3 — ¢)? o (1 - c) N 2(3 + ¢)? o <1 + c)]
A3 Jrea B \s) 7l el30-7 U-ol+c 2\ 2 0-cP0+o0 B\ 2
+ finite part}. (4.26)
(4) Scalars (for six scalars in adjoint representation of SU(N,))
(da’2_,3)(——+AA) _ a’N? (M_Z)zEE{_§[_ 2(10 +7¢?)  3(5—c) o (1 — c) _3(5+0) o (1 + c)]
A3 Jrea B \s) 7l el (-7 a+o° B2 1-cp 8\ 2
+ finite part}. 4.27)

In the last two expressions we chose the parameter 6 =
1 since there are no identical particles in these cases and
there is no need to restrict the phase space. Note also the
absence of the second-order pole in € which means that
there is no IR soft divergency here but only a collinear one.

C. Splitting

Now we have to deal with an additional 1/ € pole coming
from the collinear divergences. As one can see from the toy
model example, taking into account emission of additional
quanta in the initial and final states allows one to cancel the
IR divergences (double poles in €) but leaves the single
poles originating from collinear ones. Indeed, as it has been

discussed earlier, the asymptotic states (both the initial and
final ones) are not well defined since a massless quantum
can split into two parallel ones indistinguishable from the
original. To take this into account, we introduce the distri-
bution of the initial and final particle (gluon or any other
member of the N' = 4 SYM supermultiplet) with respect
to the fraction of the carried momentum z: g;(z, QF/u?).
Also, one has to keep in mind that the particles in this case
are polarized. The corresponding Feynman diagrams are
shown in Fig. 5.

Additional contributions from collinear particles in the
initial or final states to the inclusive gluon cross section
(the collinear counterterms) have the following form, re-
spectively:
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FIG. 5. The initial and final particle splitting diagrams: (a) the initial MHV amplitude, (b)—(c) the initial anti-MHV amplitudes, (d)—
(f) the initial matter amplitudes, (g)—(h) the final MHV and anti-MHYV amplitudes. Permutations are not shown.

.. o 1 2 € 1 ..
daPit = . —(M—z) Z f dz z P, (2)doys(zpi, pjs D3 pOSTM(2), (4.28)
mE Qf i — A
LJ 7] 89,
L fi a 1 ol fi
o = (gz) dosa(pr 2 psipd) [ dz T PSP (4.29)
I=g,q,\

Having particles with different helicities, we have the following set of collinear counterterms. (We use here slightly
different notation for the splitting functions indicating explicitly all three particles like P . (z) to avoid confusion.)

finy,fin,
(1) Initial state splitting MHV amplitude (— — + + +)

da-zﬁz)(~+++) o 1( ) / dos_y\(—— .
dzZPg+ +(Z)( ) (Z , P2 P3» )S i (2) + (p; = py). (4.30)
( dQB InSplit 277' € Qf dQl3 P1> P25 P35 P4)O7 init P1 )2)

Final state splitting MHV amplitude (— — + + +)

dazﬁ2)<~+++> a 1(M2)e<dazﬁ2)<++> / )
=2 —|— y , ) dZP + +(Z)S i Z)~ (431)
(dﬂla Fnsplit e Q]% dQ 3 (P1> P2 P3: P4 2,fin (

(2) Initial state splitting anti-MHV amplitude (— — + + —)

do,_,\(——++-) a 1 € do,_,\(—++-) e
( 2 2) =——(Q) dz2Ps (2 )( 2 2) @p1, P2 Py PSS )
f

dQ 3 Jnsplit 27 €
a 1 do,_,\——++) L
+77(i> de2Py, (Z)( ) 2) (@1, P2 3 PSS @ + (1= po). (432)
27 € Qf dQ

Final state splitting anti-MHYV amplitude (— — + + —)

d0'2_,2)(__++_) o 1 (Mz)e(do'z_,z)(__++) [1 - (——++-)
_,a b - dzP%, (St . 433
( 4013 s 27 e\o2) Lan,, (P12 Py pa) | d2Py (S5 () (4.33)

One has also the collinear counterterms containing the other members of the N = 4 supermultiplet.

105028-13



BORK et al.

(3) Initial state splitting into a fermion-antifermion pair

daz_a)(wwq) a ny (,ﬂ)e ]1 [ - (
=— —|—= dz| 2P%_ . (z
<d913 InSplit 27 € Q? 0 74 @

(q—+q)
) (zp1, P2 3 P4)S

% (daz—»z
d€Q3

(4) Initial state splitting into a scalar pair

d0'2_}2><__+AA) a ng (,U,z)f [1 - (da'z_,z
=——\|—= dz2P% \ (z
(dQIS InSplit 27 € szc 0 @) dQ 3

where n; and n, is the number of fermions and
scalars, respectively. One should put n; =4 and
ny = 6 in our case.

The explicit form of the Born cross sections and the
splitting functions P;k(z) can be found in Appendixes A
and C, respectively. Notice that when changing the mo-
mentum p; — zp; one has to modify the Mandelstam
variables according to Eq. (4.38) and take into account
the additional factor from the phase space in full analogy
with the QED case (see the comment after Eq. (3.7)).

Note that there is no final state splitting counterterms for
fermions and scalars. The reason is that one has to take into
account only those final splittings where the original state
(gluon in our case) survives with momentum multiplied by
fraction z.

The measurement functions here are the same as in the
case of real emission but depend now on fraction z and
restrict the integration region over z. They take the form

SZPI’I(Z) =8, 1,0°7HQ = Q13)0E — Zyin)  (4.36)
for detecting of one gluon and
SZPI’Z(Z) = 8+,h36+,h4v§ BD_Z(Q = Q13)0(z = Zyin)
4.37)

for detecting of two gluons.
|

doy

)(A—+A)

PHYSICAL REVIEW D 81, 105028 (2010)

(g—+79) o ,

) (zp1, P2 D3 P4)S(2,mit+qq)(z) + 2P‘Z+q_ (2)
S D@1+ (p1 < po). (4.34)
(zp1 P2 P3PSy M@+ (pr o py), (4.35)

[

The values of z.,;, can be calculated from the require-
ment pJ > (1 — 8)E/2 in different kinematics. Indeed, for
the initial splitting process one has to change the momen-
tum of the ingoing particle, for example, p; to zp; which
gives in the c.m. frame

2z
TE T "
272 0 2z E
Clii—c-2" P ii—ci-202
(4.38)

At the same time, for the final splitting one has to substitute
p3 — z%. This leads to the values of z,;,, respectively,

. (1=86)1—-c¢) fn (] — g),

| , | 43
i T s —c(1-9)  me (4-39)

Taking into account the splitting of the initial states and
the fragmentation of the final states we get the following
contribution to the inclusive cross sections:

(1) The initial and final splitting for the MHV amplitude

1—-96

doy\—+++)  a®N? fu*\e/u>\e a [I[  4(c* + 3) 1—c¢ 1+c\ 8(c*+3)
(o~ 2 () (@) Sl maplor s v oes) -G e
dQ 3 Jnsplit E s/ \Q3) mlel (1 —¢7) 2 2 (1—2¢c?) )

166(26 — 3)

— ] + finite part},

(1= -8y

(da'z_,3)(——+++) _a’N? (,u_2)(
dQ 3 /Fasplit E* \s

o

(4.40)

2\ e 2
)g{_14(c + 3) @Al

1 1—5}
7l e (1—c?)? s T

(2) The initial and final splitting for the anti-MHYV amplitude
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(da'z_,3)(**++*) a’N? (,ﬂ)e(;ﬁ)e a {1 [S(c2 +3) 64(12¢* + 17)
dQl3 Q}zp € (1 - C2)2 3(1 - C2)3

N

InSplit E2 m

46 2
- m%u + ¢2)8% + (¢ —5)8 + 2(c* + 17))
4(c3 —15¢2+51c—45), 1—c 8(c*—6¢c+21). 1+86—c(1-9)
( -2 +c0F 22 " (U-—ol+ecp 8 2
32(c2 —4c+17) B 3212 —¢)
1+c)PA—e)1+8—c(1=968) (A+c)P1+86—c(l—25)>?
64(1 — ¢) -
30+ U+ 6=l = 8) + (¢~ —c))] + finite part}, (4.42)
doy 3 \—=++7) _ a’N2 (pu*\e/u*\e a [1 4(c* + 3) (1 3
()~ 2 () (Q—;) Hea—apee o330 43) |} (443

(3) The initial splitting for the fermion final states (6 = 1)

() - Y L 2 5 )]

+ finite part}. (4.44)

(4) The initial splitting for the scalar final states (6 = 1)

(da'z_,3)(ff+AA) _ a’N? (M_2>6<M_2)6E{§[_ 2(10 + 7¢2%) ~305-0¢) o (1 - c) _3(5+0) o (1 + c)]
dQ 13 syl B \s)\@) wlel - G+of N2 ) -0 A\ 2

+ finite part}. (4.45)

V. IR-SAFE OBSERVABLES IN A" = 4 SYM (i1) Pure gluonic anti-MHYV amplitude

In the NLO there are two sets of amplitudes, namely, the Bnti-MHV — l(da-zﬁz)( o + (daz_,3)( o
MHYV and anti-MHV amplitudes which contribute to the 2\ dQu3 Jvin A3 Jrea
observables. The leading order four-gluon amplitude is n (dU' 2—»2)(__++_)
both MHYV and anti-MHV and we split it into two parts. d€ 3 J1msplit
Then one can construct three types of infrared finite quan- doyy\(——++-)
tities in the NLO of perturbation theory, namely, ( ) (5.2)

d€ 3 /rasplit

(1) Pure gluonic MHV amplitude

(iii)) Anti-MHV amplitude with fermions or scalars
forming the full N = 4 supermultiplet

1/do (—=++) do (——+++)
AMHY _( 2~2) n ( 2—»3) . o
2 dQB Virt dQB Real (CMatter — ( da(-i—G) 94
n (daz_,2>(——+++) N (dg'z_'z)(——+++) d13 Rea(l o
: 09\~ +4ad
dQ 3 Jnsplit dQ 3 Jrnsplit +< 2 2) . (53)
5.1 dQ 3 Jimsplit

We would like to stress once more that in each expression
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(5.1), (5.2), and (5.3) all IR divergencies cancel for arbi-
trary & and only the finite part is left.

Two comments are in order. First, this decomposition is
valid only in the leading order in «. In the next orders the
inclusive cross section requires extra emitted particles that
take us away from the class of the MHV amplitudes. It is
not clear whether in this case one has separate IR-safe sets
or everything is mixed together and only the total cross
section is finite. In the latter case one probably faces the
complication that the non-MHYV amplitudes are not known
to possess a simple structure as the MHV ones, though the
origin of this simplicity is unclear. The second comment
concerns the contribution of the matter fields. In the lead-
ing order we singled it out in the class C. At the same time,
in general, there is their contribution to the virtual part and
to the splitting one via the gluon distribution function.
They contain the 1/e terms. However, the matter field
contribution to the virtual part is proportional to the tree-
level 2 X 2 cross section with the coefficient Gn, + {ny)
[57] and the contribution to the splitting function comes
with the $ function, i.e. with the same coefficient but with
the opposite sign. Thus, these contributions have the same
structure and completely cancel each other. So, in the
leading order our separation becomes possible.

Defining now the physical condition for the observation

we get several infrared-safe inclusive cross sections
|

(da') _4a2N3{3+c2 _a[2
dQ 3/ ani-Mav E? (1 —c?)? 4m

(c* = 2¢> + 4c? — 6c + 19)log? (59 (c + 1) log(159) log(15¢

+2
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(i) Registration of two fastest gluons of positive helicity

AMHV|6:1/3 + Bami_MHV'SZl' (54)

(i) Registration of one fastest gluon of positive helicity

AMHV|5:1/3 + Bami_MHVlé:lﬁ + CMatterl(S:l.

(5.5)

(ii1) Anti-MHYV cross section

Banti-MHV|5=] + CMatterl(S:]‘ (56)

Relative simplicity of the virtual contribution (4.10)
which contains logarithms and no other special functions
suggests a similar structure of the real part. However, this is
not the case. While the singular terms are simple enough
and cancel completely, the finite parts are usually cumber-
some and contain polylogarithms. The only expression
where they cancel corresponds to the 6 = 1 case which
is possible only for the last set of observables, namely, for
the anti-MHV cross section (5.6). Choosing the factoriza-
tion scale to be O, = E we get

(c* +2¢ +4c* + 6¢ + 19)log*(159)

(1—=0¢)*(1+0)*

2

(1 —o)*(1 + ¢)?

(1 — ¢?)?

N 672(3¢? +13) — 5(61c¢2 +99) 2(11c3 —31¢* — 47¢ — 133)log(}59)

9(1 — ¢?)?

31+ ¢)3(1 — ¢)?

2

(11¢3 + 31¢% — 47¢ + 133) log(”“):l}
3(1 — ¢)*(1 + ¢)? '

One can see that even this expression does not repeat the
form of the Born amplitude and does not have any simple
structure. While the dependence on the parameter u of
dimensional reduction is completely canceled, the finite
answer, as in the toy model example, depends on the
factorization scale. This dependence comes from the
asymptotic states which violate conformal invariance of
the Lagrangian. This dependence seems to be unavoidable
and reflects the act of measurement. Construction of ob-
servables which do not contain any external scale remains
an open question.

VI. DISCUSSION

Remarkable factorization properties of the MHV ampli-
tudes accumulated in the BDS ansatz (with the so-far
unknown modification) and duality with the string ampli-

(5.7)

I

tudes via the AdS/CFT correspondence seem to suggest the
way to get the exact solution of the N" = 4 SYM theory.
However, “to solve the model” might have a different
meaning. Calculation of divergences and understanding
of their structure is very useful but surely not enough—it
is the finite part that we are really looking for. The knowl-
edge of the S-matrix would be the final goal, though the
definition of the S-matrix in conformal theory is a problem.
Even in the absence of the UV divergences there are severe
IR problems and matrix elements do not exist after removal
of regularization.

The purpose of this paper is to present all the details of
the calculation with explicit cancellation of the infrared
divergencies in properly defined cross sections in the pla-
nar limit for N = 4 SYM. The main results were sum-
marized in our short letter [58]. We do obtain IR-safe
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observables in the weak coupling regime in the next-to-
leading order of PT which are calculated analytically. The
same procedure can also be applied to JN' = 8 supergrav-
ity [59].

Unfortunately, our calculation has demonstrated that the
simple structure of the amplitudes governed by the cusp
anomalous dimension has been totally washed out by
complexity of the real emission matrix elements integrated
over the phase space. This means that either the N = 4
SYM theory does not allow such a simple factorizable
solution or that we considered the inappropriate observ-
ables that do not bear the impact of the N' = 4 symmetry.
One can obviously see the presence of N = 4 supermul-
tiplet in the virtual part but not in the real emission. It
would be of great importance to find such quantities.

Another unfortunate feature of inclusive cross sections is
the dependence on the factorization scale. The experience
of QCD, which is very similar to the N' = 4 SYM theory
from the point of view of the IR problems, tells us that in
inclusive cross sections the IR divergences cancel and one
has finite physical observables. However, in QCD one has
confinement and considers the scattering of the bound
states (hadrons, glueballs) rather than the individual parti-
cles. In this case, one usually factorizes the hard part from
the soft part introducing the factorization scale. The de-
pendence on this scale is canceled between the hard and
soft parts contrary to our case where only the hard part is
present. But in QCD one also has an additional scale. The
parton distributions are defined experimentally at some
scale Q, and the dependence on this scale is left. This
dependence is governed by the same DGLAP equations as
the dependence on the factorization scale, so from this
point of view the situation in QCD is not better than in
our case.

In both cases, one has to introduce some parton distri-
butions which are the functions of a fraction of momenta
and, in higher orders, of momenta transferred. This leads to
the appearance of an additional scale which breaks the
conformal invariance. One might think of some observ-
ables where this scale dependence is canceled, like the
ratio of some cross sections, etc. We have not found such
quantities so far, though the construction of such truly
conformal observables is of great interest. Probably, they
might have the desired simple structure.

There is an interesting duality between the MHV ampli-
tudes and the Wilson loop, between the weak and the
strong coupling regime [25,26,29]. Perhaps, it would be
possible, using the AdS/CFT correspondence, to construct
the IR-safe observables in the strong coupling limit (simi-
larly to what we did here) and to shed some light on the true
calculable objects in conformal theories.
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APPENDIX A. COMPUTATION OF PARTIAL
AMPLITUDES

To calculate the cross section we need the squared
matrix elements summed over helicities and color. They
can be expressed in terms of the corresponding partial
amplitudes [5]

> A

colors

2 21
— 2n—dATn—2( N2 gN
- ()

-1
X Z |A£l Oop)(pl)prr(Z)’""prr(n))lz'

ogE€EP,

2N N2
M, (prre p)l2 = 2"*4(—5’ )
M, (p1,....p)IP =g o

(AD)

For the massless partial helicity amplitudes it is conve-
nient to use the so-called spinor helicity formalism initially
introduced in [60-62] (for a review see [63]). In this
formalism the on-shell momenta of every i-th external
massless particle pi? pWr =0 is represented in terms of
a pair of massless commuting spinors A% and X(a-i) of
positive and negative chirality in the following way:

P = o = P (0 = MR (AD)
The spinor inner product is defined by:
e AN = (AOAD) = Gij), A
P APX) = [ADR0] = [if],
thus the complex conjugation of the product is
@) =Lijl (A4)

The scalar product of the two lightlike momenta can be
represented in terms of these products as

y ) Lo
prOp =S G (AS)

or equivalently
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aplijl = s, (A)

where the standard notation (p; + p j)2 = s;j is used.

All the tree-level partial MHV amplitudes can be com-
bined into a single N = 4 supersymmetric expression,
first suggested by Nair [64],

Z.’]\f AMHV _ 58(2 /\a (A)> (A7)

[1- 1<’

where n( ) are the Grassmannian coordinates, A = 1, ..., 4
is the SU(4)p fundamental representation index.
ZN=4MHV i¢ invariant under SU(4); transformations of
nE-A) and under the cyclic permutations of momentum
labels i. In the product [T’_,{i, i + 1) one has to identify
i + n with i. The Grassmannian-valued delta function is
defined in the usual way:

58(i /\?nf-A)) = ﬁ 1 (Z A “”)(i A miA))
i=1 A= k=1

1 4 n
= [1 X @} (A8)
A=1ik=1
So one can rewrite ZN =4MHV g
1
N=4MHV _
Z; 6, Z (lk)<lm>(ab>(dc>
1
% (77(1)7721)77(2)77(2)77(3)77573)77(4)77(4))
(A9)
where
=[G i+ (A10)
i=1
Using the Taylor expansion of ZN=*MHV in powers of

n“W one gets the sum of ("("71))4 terms each involving a

product of eight distinct n ). One can identify the coeffi-
cient of the product of eight n’s in each term in the
expansion with a particular tree component partial ampli-
tude. It is very useful to define the following differential
operators with the self-explanatory notation:

PHYSICAL REVIEW D 81, 105028 (2010)

gri) =1,
1 o*
87 (i) = — eBCD
41 a7 an®an©an®
64
1 2 3 4
677( Van@an®an®’
Ad (s ad
qr () =—x
aon;
i (A1)
5 (i) 1 93
q \)A = —57€ABCD 3y~ )’
31 anPanOan®’
A 92
A = ————
an®an®’
1 92
A(l)CD =MD —— .
21 aﬂ(A)aﬂ(B)

Taking various combinations of products of these operators
one can construct a set of eighth order differential opera-
tors. These eighth order differential operators act as pro-
jectors on the component partial amplitudes: §*(i)*
corresponds to the fermion g** of the N = 4 supermul-
tiplet, 45 to gy, A*2(i) to A8, and A,p(i) to A g

For example, the Parke-Taylor n-gluon amplitude can be
written as:

ArgTeTgT 8 = & (D2 (27() .87 ()
1
X ZN=4MHV = (12)4 ,
; (12 5
(A12)
and the squared partial amplitude |A{™ (g~ g~ g* ... g™

then takes the simple form (it is implemented that mo-
menta are ordered as py, pa, p3, ---» Pn)

AV (g7 g g ... g P = AV (g7g g ... gT)
XA (g g g ... 8")"

<12>4[12]4 s‘l‘2
P, P:

$12823 - nl '
(A13)

To extract from (A1) some specific helicity configuration
for the MHV amplitude, one has to sum over the permuta-
tions only in the denominator of (A13) [55]. So, for ex-
ample, for the Parke-Taylor n-gluon amplitude one has

M (g g g ...
1

o€P,  S10(2)5a(2)o(3) - - -

2n 4NnS12 (A14)

So(n)o(1)

The anti-MHV amplitudes also needed for our compu-
tation can be obtained from the corresponding conjugated
MHYV amplitudes. For example the anti-MHV amplitude
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As(g g gtg g™") can be obtained from the MHV ampli-
tude As(g* g g ¢ ¢~ ) by making a complex conjugation.

Below we present the list of four- and five-point tree
amplitudes which are relevant to our calculation. The four-
point amplitudes are

A(g7g g g") = & (1§~ (2)g* (3)g™ (4)Z—mmv

= <12>4i

P, (A15)

A (g g g7g") = g (1)g" (2)g~ (3)g™ (4)Z ™MV

= <13>4i

P, (Al6)

AP et gs) = & (1094 (2)57 (3)q; (4) ZN—4MHY

— (12)(14Y

P, (A17)

AL (g™ qag  q") = & (14, ()8 +(3)gh* (4) Z =i

1
== 3 p—_—
1412 -, (A18)
Agtree)(g—AABg‘*— AAB) = g_(l)]A\AB(Z)§+(3)
X A up(4) Z oMY
 (12)%(14)2
-2 (A19)

For the computation of the real emission we need the five-
point tree amplitudes

Agtree)(g7g7g+g+g+) = g*(l)§*(2)g+(3)§+(4)
X g+ (5)ZN=AMHY — <12>4?L5,

(A20)

Agtree)(g*g*g+g7g+) = (§+(1)§+(2)§7(3)§+(4)

X g (5) 20y ~ [3s]

Py’
(A21)

Agtree)(g7g7g+g+g7) = (g+(1)§+(2)§7(3)§7(4)§+(5)
1
?;,
(A22)

X ZSJ\f=4MHV)* — [35]4
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Al (g= g7 g g ga) = (8T (1)37 (202~ ()G (4)g; (5)

B [347[35]

-202,
(A23)

X Zsj\f =4MHV)*

AT(g g gt qaq") = (8T (DT (22~ (3G, Wa** (5)
_ [34]35F
P:
(A24)

X Zsj\f =4MHV)*

AT (g8 g AP A) = (27 (12T (8 B)A™ ()
X Apa(5)Z3V =Y

_ [34F[3sF

i (A25)

We also provide the list of the Born cross sections used
in Sec. IV:

doyo\—=+) _ a?N2 (s* + 12 + u?\(u?
( () 2) _a Ye Sz(s L u )<,u_)€ (A26)
dQ 3 ) (iree) 2F “u S

doy_)\—+=+) _ a®?N? (s> + 1> + u”\(u?
( 0 2) _ Ve tz(s - u )(,u_)é (A27)
dQl3 (tree) 2F s°u K

(da’z_,z)(—++—) a’N? 2<s2 + 12+ u2)(,u2)6
= u —_— ,
dQlS (tree) 2F? 252 s

(A28)

(da'z_,z)(*qw) a2N3| |<s2 + 1 + uz)(,uz
- u ~

° (A2
dQl3 2E2 t2s S ) ’ ( 9)

(tree)

doy ,\—a+ta)  a?N? (s + 12 + u?\(pu?\e
(frs) o0 (P Y
dQl3 (tree) 2E t |l/l| S

doys\-A+N)  a?NZ (57 + 2 + u?\ (e
( oy 2) _«a 2c (S i u )(,u_) (A3
dQ 3 ) (tree) 2E t s

These cross sections are written down for the set of mo-
menta (py, ps, p3, pa) With the conservation law p; +
P> = p3 + py. In the case of initial splitting, according to
(4.28), one should use the cross sections calculated for the
set (zp1, P2, P3, P4) With a new conservation law zp, +
p» = p3 + ps. To get them, one should substitute the
modified values for the Mandelstam variables (4.38) into
(A26)-(A31) and multiply the cross sections by the factor
4/(1 + z — ¢(1 — z))*> which comes from the modified
delta function 8”(zp, + p, — p3 — p4). The same proce-
dure but with the replacement ¢ < —c refers to the p; <
D> case.
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APPENDIX B. CALCULATION OF PHASE SPACE The integral we are interested in is
INTEGRALS

Consider the structure of the matrix elements in detail.
First of all it is convenient to rewrite the standard three-
particle phase space

f | M5PS3(ps, &, ps — K)debs, (B3)

where the matrix element |Ms|? for the five-point ampli-
tude consists of 12 terms with identical numerator but

dP p4 dP ps different denominators. The typical integrand looks like
d — 6+ 2 + + 2
X (27T)D5D(P1 + P2 = P3— Pa—DPs) (BI)

in the following form:

D
5 (ps — k) L4 5+2)

dps = 8+(P%) (2 )D 1 (z,n_)Dfl

dPk
e —5=52mP6%(py + py — p3 — ps).  (B2)

oy

= 2S4112 _ 2((])1 + p2)2)4 (B4)
$1382553584514  (p1 — p3)*(pa — (= p3 — k)2 (py — [ps — kD*(py — [ps — kD*

Our strategy is to use the on-shell conditions to simplify all the terms in the sum so that the integral over d”k can be
calculated exactly. For the remaining integrals we evaluate the necessary terms of the € expansion.
Taking into account the conservation of the momentum p; + p, = p3 + p4 and the on-shell conditions

P=0 pE=0 pi=0 =0 (k=0

one can rewrite the integrand (B4) as

4
| = (p1, P2) , (B5)
(P1, P3)(P2, K)(p3, k) (P2, P4 — K)(p1, Py — K)
where we use the notation (p, k) = pk for the scalar product.
The next step is to use the partial fraction with respect to k
I— (p1, p2)* 1 ( Lo )
(P1, P3)(P3, K)(p1, Py — k) (P2, ) \(P2, k) (P2, Py — k)
_ (p1, p2)* 1 (p1, p2)* 1
(P1, P3)(P2, P4) (p3, k) (P2, K)(P1, pa — k) (P1, P3)(P2, Pa) (p3, k) (P2, ps — K) (1, ps — )
_ (pup)? 1 ( 1 _ 1 n 1 )
(P1 P3)(P2. Pa) (1, Pa) = (P4, Pa)/2\(p3, k)2 k) (p3, K)(P1, pa — k) (P2, K)(p1, pa — k)
(p1, o)’ 1 ( I . !
(P1, P3)(P2, P4) (D1, Pa) + (P2, Pa) = (P4, P4)/2\(p3, K) (P2, ps — k) (p3, K)(p1, ps — k)
o)
(B6)
(P2 P4 — K)(p1, ps — k)

so that one gets at most two brackets with momentum k in the denominator.
In the case of momentum k in the numerator, this procedure also works but with some variation. For example, one has
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J = (pl)k)

PHYSICAL REVIEW D 81, 105028 (2010)
1 (p3. k) + p3/2 — (pa k)

(P10 03P Pa — (P K py — k)

1 (3, Pa) — (P3, P4

(p1. P2)(p1, P3)(P3/2)
— k) + p3/2 = (p2 k)

(P2, K)(p3, ps — k)

" (00 )1, p3)(P2/2) (P2 (p3 pa — b

(p3, pa) + p3/2

1 1

~ (00 )1 P P22 (02, )P, pa — k)

Since we usually have (p;, k)* in the numerator this proce-
dure has to be applied several times. This way we increase
the number of terms in the integrand but drastically sim-
plify the integration.

The resulting integrals over k have the standard form

[ dPk8* ((py — K26 ()Y (BS)
where
B 1 v. 1
L (4 (py 0P 2 (po Dpj ps — Y
1

Y3=

(Pi» pa — K)*(pjr ps — B)P’

(p3/4)~c
Dy s+ — ST (KA)Y, = 4
[d ko7 ((py = B7)STUDY; (Pip4)a(17jp4)h

D
X, Fila b;,— —
2 1(a 3

where

(P> P))(Pas Pa) o _ (pip)(ps ps)
2(pi, PA)(pj Pa)’ 2(pi, Pa)(Pj Ps)’
v _ 1 (pup)(ps pa)
’ 2(pi pa)(pj Pa)’

=21

1 =1-

Removing the integral over d” p, with the help of the
delta function we are left with the last integration over
dP p;. Using 67 (p3) one can take the integral over p3 and

going to the spherical coordinates dP lpy =
,01\ . P3
A "."‘
I k
p-k
RA Th Py

FIG. 6. The box diagram corresponding to the integral (B9).

(P1, P2)(p1, P3)(P3/2)(Pa k)

O(p2m2-a—t

(1, P2)(P1, P%)(P /2)(p3, ps — k)’
(B7)

[
and can be calculated by the method of unitarity. They
correspond to the box-type diagrams and one can perform
the cuts and then take the imaginary part. For example, the
integral

dPks* (k*)8* ((py — k)?)
(p1 + k)X (py — ps + K)*’

(B9)

where p? = p3 = p3 =0 and p3 # 0 can be obtained
from the box diagram shown in Fig. 6.

For the first time this integral was calculated by
van Neerven [65] and the answer is given by

(D —3T(D/2— 1 - a)(D/2—1—b)
2(D/2— )I(D -2 —a — b)

(B10)

|p31P2d|p;|dQ,5 arrive to the single integration over the
modulus of |p;].

Here we face the problem of singularity at |p;| = 0. It
comes from the delta function in the integration over p9
and in some cases is not compensated by the matrix
element. For two matrix elements corresponding to the
MHV (gtgt — gTgtg?) and anti-MHV (g*g*
gt g"¢™) amplitudes, the first case is singular while the
second is not. However, as we explained earlier, we cut the
integral over |ps| at (1 — 8)E/2 and no singularity appears.

Let us now turn to the calculation of the last integral.
Since p; is a dimensionful parameter, it is appropriate to
change the variable to a dimensionless one using

E
[psl =5(1 - x). (B11)

Then the integral over x goes from 0 to 6.
The typical integral to be calculated is of the form

xa=1(] — x)B-1
f dx i ( x) CF (1, —e;1 — €; gx™(1 — x)"),

(B12)
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where m and n take the values
(m,n) ={(1,0),(0,2), (1, =2), (—1,2)}.

For our purposes we need to calculate this integral to the
order O(e). The source of divergence is the singularity at
x = 0. When 6 # 1, one can expand the hypergeometric

|

PHYSICAL REVIEW D 81, 105028 (2010)

function in € up to the order € and then calculate the
integral. Then for the configurations (1, 0), (0, 2), and
(1, —2) the calculation is straightforward while for the
case of (—1,2) one first makes the transformation of the
argument of the hypergeometric function from z to 1/z

I'(ce)['(—a + b) ( 1) _
Fi(a, b; — o F +lLa—b+1|-)(—27¢
> 1(“ C|Z) T(c — a)l'(b) 2 - C a |Z (—2)
I'(c)I'(a — b) 1 _
—— L F||b—ct+b+1l;—a+b+1=)(—2)7° B13
AN ( c a lz)( 2) (B13)
and then apply the expansion.
For example, consider the integral
B
L = f dxx '7€(1 — x) 72, F (1, —€;1 — € gx 1(1 — x)?). (B14)
0
After applying the transformation (B13), it is reduced to the following form:
s g(1 — x)2> (=1 —el'(1 —e),F(1,1+ €2+ € — e x)Z))
I, = dx[T(1 —e)l'(1 + B15
2= [y as{ra - ora+ o A1 — TP B

Performing the expansion over € one gets to the order of O(e)

1
l,=——+(logd —
2 2e (og

Io
§q) + [—1log?8 + logglogd — log((6 — 1)*q) logs — 10g(

2(6 —1)g — /1T —4qg + 1)10g5
2q

20— g+ J1T—4g+1 log? m?
- log( (6= 1g . 4 >log8 + log(¢82 — 2¢8 + 6 + ¢) logd — % ~2Li(1 - 8) - =
q
2—1—\/1— +1 2 2 2g +J1—4qg—1
log( q q )log(— q )—log( q )10g<— q q )
—2qg+ 1 —4q+1 2g + 1 —4g—1 2q
2 20 —1)g — /1 —4g + 1 2
+10g( Sq )log< G )a 4 )-i—log(— o4 )
2g + 1 —4qg— 1 2q —2g+ 1 —4qg+1

(2(5—1)q+\/T‘1“‘+1) 2(2(5_—2q1)f\4;1\/___1__—::;rl) Li2<_

Note the singularity when 6 — 1 in this expression.

The case of 6 =1 is more tricky. Here one has the
overlapping of two singularities. The argument of the
hypergeometric function goes to the edge of the circle of
convergence and it is convenient to use the integral repre-
sentation

JFy(a, b, c,2) = F(C)m’)f it 1(1 — 1) b=1(1 — 12)7a.

(B16)
As a result, one has a two-fold integral
L@r'®) - b1 e _
ddl‘tbll—thlall— B—1
o . dxant = e
X (1 = tgx™(1 — x)")79, (B17)

where parameters a, b, and c take the values a = 1, b =

25q+2q+«/1—4q—1):|
€.
2g + 1 —4qg — 1

I
—€, ¢ = 1 — €. Choosing particular values of «, B, m, n

one can observe the overlapping divergencies. Consider,
for example, the integral

1

1
[ dxdit™ e E (1 = )2
0 1 — gri=t ;x)

1
=[ dxdtt™ ' "ex"€(1 — x) %€ (B18)
0

x — qt(1 — x)*’
where we see in the last term that the denominator equals
zero at t = 0 and x = 0. The divergence, which occurs in
this case, is the overlapping IR divergence and to handle it
we use the following trick: we insert in the integral a unity

1=0x—1+ 06t —x),

which splits the integral into two parts. The first # function
gives
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1 1
dxdzz '\ 7ex7172¢(1 — x) 72— (B19
/0 ( s gz(1 — x)? (B19)
while the other leads to
1
dzdtt™ 17277 ¢(1 —zt) 2¢—— . (B20
[0 (=) s (B20)

The calculation now is straightforward. One has to ex-
tract a few terms of the € expansion.

For example, the first three terms of the € expansion for
the integral (B14) when 6 = 1 are

1
f dxx'7¢(1 —x)72,F (1, —; 1 — €,gx (1 — x)?)
0

2 2
)6 +2TE 0(€?).
2

(B21)

APPENDIX C: SPLITTING FUNCTIONS

The splitting functions P;; which we use to calculate the
splitting contribution to the cross section can be obtained
from the collinear limit of the color-ordered tree-level
partial amplitudes. Suppose one has an n-point partial
tree amplitude in 0 = N = 4 supersymmetric gauge the-

ory

(tree) A; Ay
An"* (pa(l), s Pliy - Pl

where a(i) is the color index of i-th particle and A; is its
helicity.

It can be shown [5,6] that the MHV amplitudes have the
following universal behavior in the collinear limit when
momenta of two particles i and i + 1 become collinear
illi +1:
i+1

A illi+ .
L pasp, ) = Z split_ (a?
Ac

xAlreel( ‘!pc)‘"--')y

Azree(' . i bAHl’ Z)

(ChH
where the two momenta satisfy

pi = p Piv1 =1 —2)p,

p being some arbitrary momentum. The sum goes over
all possible helicities and particle types for which Al
is nonvanishing. The function split_,(a*, b+, 7) depends
on p and z. Notice the flip of helicity in split_ ,(a’, b*+1, 7)
which comes from considering all particles as outgoing
ones.

Then the polarized version of the splitting function P;;
can be obtained from split_, up to the terms proportional
to 8(1 — z) by means of

PHYSICAL REVIEW D 81, 105028 (2010)

A

PZA,- phisl (pi + Pz+1)2|SPht ).(a brin, Z)lz (C2)
and corresponds to the process ¢ — i, i + 1 when the
particle ¢ with momentum p and helicity A splits into
collinear particles i and i + 1 with momenta zp and (1 —
z)p and helicities A; and A, , respectively.

For example, the splitting function P§+g+ can be ob-

tained from the partial amplitude AY**(g~ ¢~ g g g ™") tak-
ing the limit 4(|5 (py, = zp, ps = (1 — z)p) in
_ (12)*
Atree + ot oT) — . C3
s g8 ) = iyaaaaasey (Y
One has
a5 1 1 (12)*

AT T s T @Gl

Thus, the only one term in the sum (C1) survives and A,
in this case is A§*(g~ ¢ g"¢"). This gives

split _(g*,¢",2) = (C4)
<45> \/z(l - 2)
so that, according to (C2),
- 1 1
P, =t C5
§8 z (1—-2)4 ()

All the splitting functions necessary for our computation
can be obtained in a similar fashion. They look like

- 1 1 - 3
P&#,*:_—i_ ’ P%+,7:7Z ,
8z (I—2) 8 (I—2)s
pe (=2 P o2 (C6)
g—g+ z > q+q— ’

P =(1—-27 P§, =z(1 —2).

The contributions proportional to (1 — z) are calculated
separately from the requirement of conservation of mo-
menta and are absent in our case since they are propor-
tional to the B function which vanishes in the N =4
SYM theory.

The “plus” prescription in the expression = 1n (Co6)
should be understood in the usual way:
f(2) f2) — f()
dz = dz . C7
f 1 - Z)+ 0 (1 ) ( )

When f(z) contains the theta function like in the splitting
counterterm
f(Z) = ®(Z - Zmin)g(z)»

one has

105028-23



BORK et al.

[l dz f(Z) zmm)g(z) - g(l)
0 (I—2),

_[d@)(z (1-2)

[ g0 e g
- medz (1—-2) /0 dZI—Z

_ [ 4 8%

Zmin (1 - Z)+

+ IOg(l - Zmin)g(l)-

(C8)

The splitting function P, (z) (3.8) used in our toy model
example can be obtained from the polarized splitting func-
tions

2
pro—_ 1 opr T
s (I—-2)4 v (1 -2
by summation over helicities. The term proportional to
8(1 — z) is obtained from the requirement of conservation
of the number of quarks

(€9

At gy = ST S,L(1 — &) + S;L(6)
Tsym (1-26)?
— 45 + CZ)L(l ; C)L(l er ¢

where

S, = 2(3 + )7 (1 — 8)> + 32(4 — 39)5,

) “ 1603 + )L — 8) — 4(9¢? + 35)Li(8),
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! 2 2\ — ! —
fo dzq(z, QF/pn?) = 1 =>j; dzP . (z) = 0

APPENDIX D: FINITE PARTS OF AMPLITUDES

In general all finite parts have the following structure:

1
finite part = 72)2[fsym(c, 8) + (fasym(c, &)
—c

(1
+ fAsym(_C: 6))1

where the functions fgy, and faem contain log'" and
polylog functions of ¢ and 6. Below we present the ex-
pressions for fgyy(c, §) and fagym(c, 6).

doy, +++
(=)™ s

general §.

—4(13 + 3¢?)L(8)L(1 — 8) + 10(3 + c*)L2(5)

(D)

S, = 4(3c*(1 — §)* + 37 — 2658 + 5582),

S; = —48(c*(6 — 1)+ 1186 — 15).

(——+++)
fAs m ( 5) (1 _ 5)2

— 83+ 2¢ + D)L — 6)L(

) + 16cL(6)L(

! (;4 L(lz )+ﬂl2 (1+6_C(1_8)))—2(—1+4c+c2)L2(%)

+ iV} e
) 1+ )2L< 2c) <1+5 2c(1 5))

41+ L1~ f>‘)L(1 LA 5)) — (1 + c>2L<5)L(1 ros s 5>)
+ 801+ c)Li2<1 > C) +4(5+ 2 + CZ)L12< 5(11 - CC)) 4(5+ 2¢ + cz)Liz(W)’

where

A =431 = 82 —6c(1 —8)*+5+25 — 382,

Aoy (—— 44—
(( d(;il33)§2eal++ ))fina general 6.

fom e 8) =

Sym

./,lez

S| + S,L(8) + S;L(1 — 8) + 10(c?

(D2)

—4(c*(1 — 8)> —2c(3— 46 + 6% + 5+ 25 — 387).

+3)L2(8) — 2(37 + 18¢2 + ¢H)Li,y(8)

8(6 +9¢% + ¢*) (1 —c

(1—¢?) 2

)(27)

(D3)

""To make the expressions more compact we use L for the logarithms.
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where
s — 8(3c? +5)8° + 3(7¢? — 95)8% + 6(67¢% + 513)6 N %(cZ 3+ 64(11c¢2 +7) N 32(c3 + 12¢2 + 19¢ + 9)
9 3 3(c*—1) 3(1—c)(1+ 6+ c(1—9))
3223 — 12¢2 + 19¢ — 9) 32(c3 4+ 4¢% + 5¢ +2) 32(c3 — 4¢% + 5¢ — 2)
30 +0(1+6—-c(1-9) 30-c)(1+6+c(1—6)2 30+)1+6—c(l—6)>
16 32(c* + 6¢2 —5)8  64(12¢% + 17 32(c3 +5¢2+ 11c+ 7
S, = —?(c2 +1)8% + 2(c? + 19)8% — ( o ) ;(02 m— ) a _(c)(l ST o= 3)))
B 32(c? = 5¢2 4+ 11c — 7) B 32(c3 4+ 4¢% + 5¢ + 2) N 32(c3 — 4¢% + 5¢ — 2)
I+ +6—c(1—-98) Q-1 +6+c(1=68) (A+c)1+8—-c(l1—295))?
64(c3 +3c2+3c+ 1) 64(c3 —3¢2+3c—1)
31— +6+c1-8) 301+c)1+6—c(l-205)
Sim B 55 (¢ 4202 755 2T BE TIN5 3¢+ 251! +2053¢ + 313
3 -1 3(c*—1)
64(c> = 5¢2 + 11c —7) 64(c3 + 5¢ + 11c + 7) 64(c® — 4¢* + 5¢ — 2)
_(1+c)(1+6—c(1—5)) 1-c)1+86+c(1—=98) (A+c)1+86—c(l—295))>
64(c3 + 4¢* + 5¢ + 2) 128(1 + ¢)? 128(1 — ¢)?

-0 +6+c1=-0)2 30-c(1+6+c(1-6)° 30+ +6—c(—20)

4 _ .3 2 _ _ 2y2 _ _ _
fﬁ;;;m++i)(0, 5) — 8(c* — 6¢° + 24c% + 6¢ — 17) L(5)L(1 . c) N 43 + ¢?) (1 C)L(l +6—c(1 5))

(1+¢)? (1+¢)? 2 2
4T+ A ) (1 + c) (1 +6—c(l — 5)) ~8(c* = 1267 + 34¢? + 12¢ — 43)L(1 S
(1+¢) 2 2 (1+ ¢)?
I1+8—c(1—=6)\ 20c*—23+82—6c+15 (1l —c¢ 1—c

X - L? + AL

( 2 ) (1+¢)? (2)ﬂ1(2)

14+6—c(1—8)\ 4Bc*—12¢3 +46¢% + 12¢ — 33) 14+6—c(1—29)

+ A,L — L(8)L

A2 ( 2 ) (1+¢)? ) ( 2 )
N (c® —2¢> + 3¢* — 7663 —215362 + 14c¢ + 149) Liz<— 1—c 5)

(I—=2¢) 1+c¢

8(c* + 12¢3 +34¢2 —12¢ —43) (. . (1 — ¢ (1 =8)(1—¢)

+ L — Li,( —————)), D4
(- o7 (12< 2 ) 12( 2 )) (4)
where
1
A, = —6(17”(2597 + 2406 — 1056% + 2483 + 3c7(8% — 1) + 3¢*(3 + 82) — 2c3(111 — 2468 + 982 — 487)
C
+ 2¢2(489 + 1208 — 69862 + 2083) — ¢(2655 — 2406 + 2258% — 5683)),
1
A, (3(8% — 1) + 3(8% + 3)c* +2(88% — 382 + 366 — 111)c* + 6(88% — 1782 + 288 + 163)c?

T 6(1+0)
+ 3(168° — 636 + 1048 — 885)c + 168° — 9352 + 21656 + 2597).
In the case 6 = 1 one gets major simplifications:

2257 — 937 — 3ctm? + 2(303 — 4877 9+ ¢%) (1—c\, (1+
57 — 93 36797' c*(303 87T)+8(6 19c - c*) ( 2C)L( 2C), DS5)
—c

fom e D) =

e A l—c¢ A l-c¢ A l—c
(——++-) _ 1 2 12 3 Li
fAsym (c, 1) I CL( > )+ i+ C)ZL ( 3 ) + I CL12< > ), (D6)

where
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2 1
A, = —§(3c4 — 46¢° + 280c? — 646¢ + 689), A, = _5(06 +2¢% + 7c* + 68¢3 — 121¢? — 38¢ + 209),

Ay =0 —c*—6c¢% —178¢2 — 603¢ — 493.

doy_\(——+qq _
(( d(i]; g%ea] qq))ﬁn’ 0=1

(——+q4) _ 32(c? + 1)? <1 — c) (1 + c) B 472(1 — ¢*) + 132(c* + 3)
fSym (C; 1) (1 _ cz) L 2 L 2 3 > (D7)
(-~ +ad) (. 1) = A, L(l - c) N A, L2<1 - c) N As Li (1 - c) DS
Fasm e D =G5 ) Yoot ) Tas gl ) (D8)
where
8
A, = §(3c4 — 443 4+ 222¢2 — 450c¢ + 277), A, = =2(c* +2¢3 —2c% + 50c — 67)(1 — ¢),
Ay = —4(c* — 2¢% — 18¢? — 146¢ — 211)(1 + ¢).
(ke im0 = 1.
(——+AA) — 2 l—c\, (1+c 2 2 2y2
Fsym (c, 1) = —24(c* + 1)L 5 L 3 + 6(11c? — 3) — 7%(1 — ¢?)?, (DY)
f(,,JrAA)(C - 3(c +5)(c?—2c+9)(1 —¢)? Lz(l - c) B 2(3¢* — 47¢3 + 213¢% — 369c¢ + 184) L(l - c)
Asym ' 2(1 + ¢) 2 1+c 2
3 -3¢ = 17c — 125)(1 + 0> . (1 —
N 3(c? — 3¢ Tc 51 +¢) Liz< c). (D10)
(1—o¢) 2
(5 o gomeral 5.
__ 6(36 — 4 2(6 — 2
fsm e 8) =16 G ) | 32 )L(l —8) + 83 + A)L(1 — 9), (D11)

(1-9672 (1-9y

Foam e, 8) = (e + 3)(L2(1 ; C) - 2L(1 ; C)L<1 9 —2c(1 - 5)) + L2(1 0 _26(1 - 5)) + Liz(1 ; C)

- 2L12(— W) + 2Li2<— (11—+c25) + 2Li2<1 — _2(:(1 - 5))). (D12)

((da’z;,:;)(_ —+

+-)
26 n split )iin> general .

fom e 8) = SIL(1—8) + S, (D13)

where
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8(27¢* + 378¢* +59) _

PHYSICAL REVIEW D 81, 105028 (2010)
64(c3 +5¢* + 11c + 7)

1
S, = ?6(02 +1)83 + 8(c? — 5)8% + 16(c* + 17)6 —

64(c> = 5¢* + 11c —17)

64(c3 + 4¢* + 5¢ +2)

3(c?2 1) (I=0o)(1+86+c(l—9)

64(c® —4c? + 5¢ —2)

(1+c)(1+686—c(1—9))
128(c® + 3¢2 + 3¢+ 1)

(1-—c)1+86+c(l—5)>
128(c* = 3c¢2 +3¢c— 1)

U+l +6—cl—o)

30— +6+c(l—5)
S, = —%(& +1)8° — g(sc2 - 13)82

3223 = 9¢2 + 12¢ — 5)

8
- g(11c2 +89)8 —

32(c3+ 3¢+ 3¢+ 1)

31+c)1+8—c(1—298)>

32(2¢3 +9¢% + 12¢ + 5)
30— + 6+l =)
32(c3 =3¢+ 3¢c—1)

256(2¢2 + 1)
3(c2—1)

30+ 00 +6—cll—9)

31 =c)(1+ 6+ c(l —8))>

T30+ 00 +6—c(l=8)

(—=++7) (o §) =
Fasgm —(e:) 31+ ¢)

16(1 — ¢)(4c* — 17¢ + 37) (L(l +6—c(l — 5)) L(l - c))

2
8(c3 — 15¢% + 51¢ — 45)

+4(3+c2)< (1 + 5—c(1 - 5))
(1 +6 —2c(1 - 5))

X

+ 8(3 + 2)(L12

Zl
(1

N

1+c¢ La =o)L

) aa)

+ +51c +
8(c ISi 51c 45)( ( c) le( (1 o)1 - 8))) DI15)
- C
In the case 6 = 1 one gets major simplifications:
i 4
fom e = 5 (67 = 49)c? + 1877 — 415) (D16)
__ 16(1 — ¢)@c* —17¢+37) (1 —¢ 16(1 + c)(c*+6c+21) . (1—c
++-)
1) = + L . D17
e O 301+ 0) ( 2 ) I—c 12( 2 ) (D17)
(B9 spi s 8 =1
(——+4d) _16,2
Fsm e 1) = 59 +23), (D18)
64(4c> = 17¢+19)(1 —¢) (1 —c\ 64(c+3)*(1+c¢c),. (l—c
D (e, 1) = — L( )— L ( ) DI
fAsy (e 1) 3(1 + ¢) 2 (1—-2¢) 2\ ) (D19)
(CFDspe Drno =1
Foom Ve 1) = =163 — 1), (D20)
16(13 —4e)(1—¢)* (1 —¢\ 48(c+5(1+c).  (1—c¢
+AA)
1) = L L . D21
o *Vle ) = S = () e () (020
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