arXiv:0910.5944v2 [hep-th] 1 Nov 2009

AEI-2009-106

ELLIPTIC HYPERGEOMETRY OF
SUPERSYMMETRIC DUALITIES
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ABSTRACT. We give a full list of known A/ = 1 supersymmetric quantum field theories related
by the Seiberg duality conjectures for the SU(N), SP(2N) and G gauge groups. Many of
the presented dualities are new, not considered earlier in the literature. For all these theo-
ries we construct superconformal indices and express them in terms of elliptic hypergeometric
integrals. This gives a systematic extension of the related Romelsberger and Dolan-Osborn re-
sults. Equality of indices in dual theories leads to various identities for elliptic hypergeometric
integrals. About half of them was proven earlier, and another half represents new challenging
conjectures. In particular, we conjecture a dozen of new elliptic beta integrals on root systems,
extending the univariate elliptic beta integral discovered by the first author.
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1. INTRODUCTION

The main goal of this work consists in merging of two fields of recent active research in
mathematical physics — the Seiberg duality in supersymmetric field theories [70, 71] and the
theory of elliptic hypergeometric functions [80]. Seiberg duality is an electric-magnetic duality
of certain four dimensional quantum field theories with the symmetry group Gy x G X F', where
the superconformal group G = SU(2,2|1) describes properties of the space-time, G is a local
gauge invariance group, and F' is a global symmetry flavor group. Conjecturally, such theories
are equivalent to each other at their infrared fixed points, existence of which follows from a
deeply nontrivial nonperturbative dynamics [43, 74].

The simplest topological characteristics of supersymmetric theories is the Witten index [92].
Its highly nontrivial superconformal generalization was proposed recently by Romelsberger
(67, 68] (for N/ = 1 theories) and Kinney et al [45] (for extended supersymmetric theories).
These superconformal indices describe the structure of BPS states protected by one supercharge
and its conjugate. They can be considered as a kind of partition functions in the corresponding
space. Starting from early work [75, 88], it is known that such partition functions are described
by matrix integrals over the classical groups. The central conjecture of Romelsberger [68] is
the equality of superconformal indices in the Seiberg dual theories. In an interesting work
23], Dolan and Osborn have found explicit form of these indices for a number of theories and
discovered that they coincide with particular examples of the elliptic hypergeometric integrals
[84]. This identification allowed them to prove Romelsberger’s conjecture for several dualities
either on the basis of known exact computability of these integrals or on the existence of non-
trivial symmetry transformations for them.

The general notion of elliptic hypergeometric integrals was introduced by the first author
in [76, 78]. First example of such integrals, discovered in [76], formed a new class of exactly
computable integrals of hypergeometric type called elliptic beta integrals. Such a name was
chosen because these integrals can be considered as a top level generalization of the well-known
Euler beta integral [1]:

s _ [(a)I'(5)
a—1 ps-1 _
/0 (1 —x) dx_f‘(omtﬁ)’ Rea, Ref > 0. (1.1)
Elliptic hypergeometric functions generalize known plain hypergeometric functions and their
g-analogues [1]. Moreover, their properties have clarified the origins of many old notions of the
hypergeometric world [77]. The limits of the elliptic hypergeometric integrals (or of the elliptic
hypergeometric series hidden behind them), corresponding to degenerations of the elliptic curve,
brought to light new types of ¢-hypergeometric functions as well [62, 63, §].
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In the present work (which was started in August of 2008 when the first author has occa-
sionally known on [23]), we extend systematically the Rémelsberger and Dolan-Osborn results.
More precisely, we present a full list of known A = 1 superconformal field theories related by
the duality conjecture for simple gauge groups G = SU(N), SP(2N),G5. For all of them we
express superconformal indices in terms of the elliptic hypergeometric integrals. Using Seiberg
dualities established earlier in the literature (see references below) we come to a large number
of identities for elliptic hypergeometric integrals. About half of them were proven earlier, which
yields a justification of the corresponding dualities. A part of the appearing relations for indices
were described in [23], and we prove equalities of superconformal indices for many other duali-
ties. Another half of the constructed identities represents new challenging conjectures requiring
rigorous mathematical proof. We give some indications on how some of them can be proved
with the help of “hypergeometric” techniques.

Moreover, from some known relations for elliptic hypergeometric integrals we find many
new dualities not considered earlier in the literature. Thus, we describe both new elliptic
hypergeometric identities and new N = 1 supersymmetric theories obeying electric-magnetic
duality. In particular, we conjecture more than ten new elliptic beta integrals on root systems,
extending the univariate elliptic beta integral of [76].

Analyzing general structure of all relations for integrals in this paper, we formulate two
conjectures. Namely, we argue that for the existence of a non-trivial identity for elliptic hy-
pergeometric integrals it is necessary and sufficient to construct the so-called totally elliptic
hypergeometric terms [77, 81] (equal in the examples below to ratios of the kernels of ellip-
tic hypergeometric integrals). The second conjecture claims that the same total ellipticity
(and related modular invariance) is responsible for the validity of 't Hooft anomaly matching
conditions [36], which are fulfilled for all our dualities (the old and new ones).

The detailed consideration of the multiple duality phenomenon for the G = SP(2N) group
case and a brief announcement of other results of this work were given in paper [86]. Our results
were reported also at IV-th Sakharov conference on physics (Lebedev Institute, Moscow, May
2009), Conformal field theory workshop (Landau Institute, Chernogolovka, June 2009), XVI-th
International congress on mathematical physics (Prague, August 2009), and about ten seminars
at different institutes. We thank the organizers of these meetings and seminars for invitations
and kind hospitality.

2. GENERAL STRUCTURE OF THE ELLIPTIC HYPERGEOMETRIC INTEGRALS

We start our consideration from reviewing the general structure of the elliptic hypergeometric
integrals. For any x € C and the base p € C, |p| < 1, we define the infinite product

o0

(#;p)ee = [ [(1 = p)).

=0
Then the theta function is defined as
0(x;p) = (:9)oc(Pr™" D)oo
where z € C*. This function has symmetry properties
0(z7Y p) = O(pw; p) = —27"0(x; p).
It is related to the standard theta series by the Jacobi triple product identity
> P TV = (pip)ect(—a; p).

neL
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For arbitrary ¢ € C and n € Z, we introduce the elliptic shifted factorials

H@__Ol O(zq’;p), for n>0
0(x;q;p)n = I
(z:¢;p) {H —L_ for n<0

7=1 0(zq=7:p)’
with the normalization 6(z; q;p)o = 1. For p = 0 we have 6(z;0) = 1 — x and
0(z:q;0)p = (:¢)n = (1 — 2)(1 — qz) ... (1 — ¢" '),

the standard ¢-Pochhammer symbol [1].
We use the conventions

k
O(z1,...,T85p) = H 0(xj;p), O(tx*t;p) = O(tx, ta ™" p).
=1

The addition law for f-functions can be written now as

O(zw™, yz""p) — 0(xz™ yw™sp) = yw™ ' O(ay™ w2t p),
where x,y,w, z € C*.
For arbitrary m € Z, we have the quasiperiodicity relations
m —m __m(m—1)
0p"x;p) = (—x)""p~ = O(x;p),
m —m __mk(k—=1) _ km(m—1)
0"z q;p)e = (—2)"™ g™ = p= 2 O(wig;p)ks
m _mk(k=1) _ mk(k=1)(2k—1) _ mk(k—1) ;m(2k—1)
O(z;p"q;p)k = (—2)” 2 g ST 0w g5 )
We relate bases p, ¢ and r with three complex numbers w; 23 € C in the following way

o 27ri§ o 27ri§ o 27ri?
g=¢e"%, p=¢ e, r=¢c .
Their modular transformed (7 — —1/7) partners are

—omiZ2 ~ —2mi¥2

Gg=e o1, p=e W, F=e ez,
Elliptic gamma functions are defined as appropriate meromorphic solutions of the following
finite difference equation '
flu+w) = 0(™ 2 p) f(u). (2.1)

Its particular solution, called the (standard) elliptic gamma function, is

oy >~ 1 _ Z—lpj+1qk+1
f(u) — F(e miufwa, Q)u F(Z§pa Q) = H T (2.2)
3,k=0

where |q|,|p] < 1,z € C* (note that the equation itself does not demand |¢q| < 1). For in-
commensurate wi 23, it can be defined uniquely as the meromorphic solution of (2.1) satisfying
simultaneously two more equations:

flutws)=flu),  flutws) =02 q) f (u)

with the normalization condition f(37r_, wi/2) = 1.
The modified elliptic gamma function has the form

Glusw) = T(e™%;p,q)0(re"™515 G, 7). (2.3)
It defines the unique simultaneous solution of equation (2.1) and two other equations:
6(e* 1)

u+wy) =0 2’”“/“’1;7" u), U+ ws) = —————a0——
) =0, flus) = o

f(u)
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with the same normalization condition f (Zi:l wi/2) = 1. Here the third equation can be
simplified using the modular transformation for theta functions

U

9(6_27”;7”1 7 q) — 6”iB2'2(u|w1’w2)9(e2muJ2 7 q>’ (24)

where

wi+wl  wiwy
6 2 ’

is the second Bernoulli polynomial. These statements are based on the Jacobi theorem stating
that if a meromorphic ¢(u) satisfies the system of equations

1
32,2(u\w1,w2) = o (u2 — (Wl + WQ)U -+
1w2

ou+wr) = p(u+ws) = @(u+w;s) = p(u)

for w23 € C linearly independent over Z, then ¢(u) = const. The restricted values of bases
p" = q¢™, n,m € Z (or, equivalently, r" = ¢"™ or 7" = p") may be called the torsion points,
since the Jacobi theorem fails for them.

The function .

Glu;w) = = 3 PP (720 5 ), (2.5)
where |p|, |7| < 1,

1 3u?
Bg,g(u|w1, W, W3) = <u3 - — Zwk

W1Wows 2 1
U i 1 5
it (Setr o) -4 (D) S
k=1 J<k k=1 J<k

is the third Bernoulli polynomial, satisfies the same three equations and normalization as (2.3).
Hence, they coincide and this fact yields one of the SL(3;Z)-group modular transformation
laws for the elliptic gamma function. From the expression (2.5) it is easy to see that G(u;w) is
a meromorphic function of u for w;/wy > 0, i.e. when |g| = 1. The region |¢| > 1 is similar to
lg| < 1, it can be reached by a symmetry transformation.

In this picture one has 3 elliptic curves with the modular parameters 7 = wy /we, T2 = w3/ws,
T3 = ws/wi, satisfying the constraint 73 = 75/71. The theory of generalized gamma functions
was built by Barnes [2]. Implicitly, the function I'(z; p, q) appeared in the free energy per site
of Baxter’s eight vertex model [3] (see also [89] and [25]) — exactly in the form which will be
used below in the superconformal indices context. Systematic investigation of its properties was
launched in [69]. Its relation to the SL(3, Z)-group of modular transformation was described in
[25]. The modified (“unit circle”) elliptic gamma function G(u;w) was introduced in [78] (see
also [19]). Both elliptic gamma functions are directly related to the Barnes multiple gamma
function of the third order [28, 78§].

In terms of the I'(z; p, ¢)-function one can write

oy Dleg"pg)
M = )
The short-hand conventions

L(ty, . teip, @) = T(tspq) - Tltes ps q),
L(t=*4p,q) =T (tzip, )Ttz p,q), T(z*%p,q) =T (% p, T (272 p, )
are used below. The simplest properties of I'(z; p, q) are:
o the symmetry I(2:p,q) = I(2:4,p),
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the finite difference equations of the first order

I'(gz;p,q) = 0(z;0)T(20,9), T'(pzip,q) =0(2; )T (20, 9),

the reflection equation

L(z;p, )L (pg/zp,q) =1,

e the duplication formula
D(2%p,q) =Tz, =242, —¢"?2,p" %2, —p'*2, (p9) 2, —(pg) 2 p, q),
e and the limiting relations
1 1
im I'(2;p, q) = ;o lim(1 =)0 (zp,q) =
p—0 (21 @)oo =1 (13 P)oo (€3 @)oo
Definition 1. [77] A meromorphic function f(z1,..., x,;p) of n variables x; € C*, which

together with p compose all indeterminates of this function, is called totally p-elliptic if
fpzr, - xnip) = o= f(on, . paasp) = fan, ..o 203 D).

Positions of zeros and poles of all elliptic functions are considered as indeterminates, that is
the arguments of f(z1,...,z,;p) include these variables. Note that there are no totally elliptic
functions of one or two indeterminates x;.

Consider n-dimensional integrals

I(y177ym):/ A(xh"'v'rn;ylw"aym) —-7
zeD

j=1
where D C C" is some domain of integration and A(zy,...,Zu; Y1, .., Ym) is @& meromorphic
function of x;, yx, and y; denote the “external” parameters.

Definition 2. [78] The integral I(yi,...,Ym;p,q) is called the elliptic hypergeometric inte-
gral if there are two distinguished complex parameters p and q such that I’s kernel A(xq, ...,
Tni Yy - Ymi Py q) Satisfies the following system of linear first order q-difference equations in
the integration variables x;:

AL gy Y1 YmiDs )
A1, Tai Yty Ymi D Q)
where hj are some p-elliptic functions of the variables x;,

=hj(z1, .. T Y1, Ymi D),

Ri(coopxi 3y, Yms D) = hi(@1, o T Y, - Y G D).

The kernel A is called then the elliptic hypergeometric term, and the functions hj(z1,...,
Tni Yy - Ym; @ D) — the certificates.

This definition is not the most general possible one, but it is sufficient for the purposes of
the present paper. The elliptic hypergeometric series can be introduced as sums of residues of
particular sequences of poles in the elliptic hypergeometric integrals kernels [17] and, because
of the convergence difficulties, are less general than the integrals. In the one-dimensional case,
n = 1, the structure of admissible elliptic hypergeometric terms A can be described explicitly.
Indeed, any meromorphic p-elliptic function f(pz) = f(x) can be written in the form

O(tr; p) ! !
DI C N (5 O
0( k=1 k=1

wkff p)
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where z,t1,...,ty,wq,...,wy are arbitrary complex parameters. The positive integer N is
called the order of the elliptic function, and the linear constraint on parameters — the balancing
condition. From the identity
0(zx, px; p)

~ O(pzz, z;p)
we see that z is not a distinguished parameter — it can be obtained from ¢, and w;, by appropriate
reduction without spoiling the balancing condition. Therefore we set z = 1.

Now, for |g| < 1, the general solution of the equation A(qz) = f,(x)A(z) is

N M M M
I'(trz; p, 0(agx;
Llwipa) =y - Qawesa) Lo = 0.

-2 I(wi; p, q) Pt bq)’ Pt

>
&

!
S
&
—

where p(qz) = ¢(x) is an arbitrary g-elliptic function. However, we can write

M
['(payz, byx; p, q)
o) =]

=+ D(agz, pby; p, q)

and see that such a function can be obtained after replacing N by N + 2M appropriate specifi-
cation of the original parameters ¢; and wy with the balancing condition preserved. Therefore
we can drop ¢(z) function and find that the general elliptic hypergeometric term for n = 1 has
the form:

N C(tgz;p, q) N

k& Py k
A(x;tlv'"7tN7w17"'7wN;p7q):HW, Hw_zl

k=1 kLD, 4 — k

This functions is symmetric in p and ¢, i.e. we can repeat the above considerations with these
parameters permuted. Note that for incommensurate p and ¢ (i.e., when p’ # ¢*, j,k € Z) the
equations
Algr) = fp(z)Az),  Alpr) = fo(x)A(x)
determine A(x) up to a multiplicative constant.
For |g| > 1,

ST o p g T b
A(z;ty, ..ty W, WNG P, Q) = = , — =1.
g I(q"tew;p, g7 ,El W

For |q| = 1, the requirement of meromorphicity in x is too strong. In this case one has to use
the modified elliptic gamma function G(u;w), or modular transformations, which we skip for
brevity.

In analogy with the series case, considered in [77], it is natural to extend the notion of total
ellipticity to elliptic hypergeometric terms entering integrals [78].

Definition 3. An elliptic hypergeometric integral
o dx;
I(y1, - Ymip @) = / A(@r, s ity Ymi 2 0) | |
xeD 7=1 J
is called totally elliptic if all its kernel’s certificates hj(z1, ..., Tp; Y1, - Ym; D), J = 1,...,n+
m, are totally elliptic functions, i.e. they are p-elliptic in all variables x1, ..., Tp, Y1, .-, Ym and
q. In particular,

hi(z1, .. 205 Y1, Ymi PG D) = hy(@1, . T Y1, -, Y G D)



8 V. P. SPIRIDONOV AND G. S. VARTANOV

Theorem 1 (Rains, Spiridonov, 2004). Given maps e(m(®) = e(mga), . ..,me”)) AR/
a=1,..., M, with finite support, define the meromorphic function

(a) (a) (a) (@
A(xy,..., 03D, Q) HF 7p,q)( ), (2.6)

Suppose A is a totally elliptic hypergeometmc term, 1.e. its certificates are p-elliptic functions
of q and x4, ...,x,. Then these certificates are also modular invariant.

The proof is elementary. The certificates have the explicit form

A...q:c-...;p, (a) (@)
hi(; 45 p) = Aéscl pd H9 ")
VAR ny )

The conditions for h; to be elliptic in z; yield the constraints

M
Ze(m( ))m(a)m( 'm{@ =0, (2.7)
a=1
M
Z e(m(“))mga)mga) =0 (2.8)
a=1

> e(m@)mi” = 0. (2.9)
a=1
The latter equation guarantees that h; have an equal number of theta functions in their nu-
merators and denominators. The modular invariance of h; follows then automatically from the
transformation property (2.4). Such a direct relation between total ellipticity and modularity
was conjectured to be true in general in [77].

The simplest known nontrivial totally elliptic hypergeometric term corresponds to n =
6, M = 29 and has the form [81]:

Awsty, ... te;ip,q) =

[T5- D(t2% 5 p, q) ﬁt- B
I'(@®25p, @) [Ticicjee Dtitsip, @)’ ’
or, after plugging in ts = pq/ H?Zl ti,

[T, T(ta® 5 Ty tisp.q)
D(a®2, [Ty ts 2% 0, 0)) [T cieyes D(itsi000)
Theorem 2. [76] Elliptic beta integral. For |p|,|ql, |t;| < 1,

T

Ax;ty, ... t5;p,q) =

4

where T is the unit circle with positive orientation.

At the bottom of this relation one finds the Euler beta integral (1.1). It served as an entry
ticket to the large class of new exactly computable integrals discussed in [17, 18, 19, 61, 78, 87],
which is essentially extended by the conjectures presented in this paper.

In [78, 80, 82] the integral standing on the left hand side of (2.10) was generalized to an
elliptic analogue of the Gauss hypergeometric function obeying many classical properties. It
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also admits generalizations to elliptic hypergeometric functions of higher orders and integrals
of higher dimensions on root systems (for a list, see [84]).

Two totally elliptic hypergeometric terms associated with the multidimensional elliptic beta
integrals of type I on root systems BC,, [18] and A,, [78] were constructed in [81]. One more
similar example for the root system A,, was built in [87]. Some time ago, using the combination
of tricks introduced in [81] and [65], the first author has further generalized the former two
terms to arbitrary number of parameters [85]. For instance, define the kernel

n TT2n+2m+4 +1
1 IT5 [(tiz; ", q)
An(z,t;p, Q) = H F(Zilzil' ) H F(ziz' ])
1§z<]§n 7 ] 7p7q ]:1 J 7p7q
and the type I multivariable elliptic hypergeometric integral for the BC,, root system:
cn 7 . \n n dz;
I(m)t,---,tn m :w/ A, (2t p, _]’
n ( 1 2n+2 +4) 2”72,'(27‘(‘7,)” . ( P Q) z;

where |t;| < 1 and H?ZJ{zmH t; = (pg)" .

Theorem 3. [61] For |[pq|"/? < |t;| < 1, the integrals I{™ satisfy the relation

m n) [ VP4 v P4
IT(L )(tla'-->t2n+2m+4) = H F(trtsvpaq) I( ) ( ). ) .

m t * t
1<r<s<2n+2m+4 1 2n+2m+4

This is an elliptic analogue of the symmetry transformation for some plain hypergeometric
integrals established by Dixon in [21].

Theorem 4. [85] The ratio

Ay (z:tip,q)
p(z,y;tp,q) = 11 Tt p,q) " : '
1<r<s<2n+2m+4 Am(y/ VP4, qu/t7p, Q)

is the totally elliptic hypergeometric term. ILe., all ratios p(...,qu,...)/p(...,v,...) forv €
{21,y Zns YLy o s Ymy t1y oo tonaomaa} are p-elliptic functions of all variables z;, yi, t;, and q.

This term p(z,y;t;p,q) contains elliptic gamma functions with the non-removable integer
powers of pq in the arguments. Therefore the ansatz (2.6) does not cover all interesting totally
elliptic hypergeometric terms. As we shall show below, there are also examples of terms having
fractional powers of pq. For them the total ellipticity condition is slightly modified: it is
necessary to consider dilatations of the parameter ¢ by appropriate powers of p. Introducing
the variable zy = (pq)"/, K = 1,2, ... and adding to arguments of the elliptic gamma functions

in (2.6) the terms with z( in integer powers m((]a), it is not difficult to find the general form of

constraints on integers m§»a) and ¢(m?) guaranteeing total ellipticity (with special p®-ellipticity
condition for the variable ¢). However, these constraints look much less beautiful than the
Diophantine equations described above. Moreover, at the moment it is not clear which part
of the modular transformation group survives because of the presence of fractional parts of
modular variables in the arguments of respective elliptic functions-certificates.

In the present work, we have checked that all nontrivial relations for elliptic hypergeometric
integrals described below define totally elliptic hypergeometric terms through the ratios of the
corresponding integral kernels. Namely, we have verified this property for relations

e the initial Seiberg dualities (4.6) and (4.7); (5.1) and (5.2);
e multiple dualities for SP(2N) gauge group (6.1), (6.2), (6.3) and (6.4);
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e duality for SP(2N) case (7.1) and (7.2);

e multiple dualities for SU gauge group (8.1), (8.2), (8.3) and (8.4); (9.1), (9.2), (9.3) and
(9.4);

e KS type of dualities for SU gauge group (10.2) and (10.3) (see Appendix D for a detailed
consideration of this case); (10.5) and (10.6); (10.8) and (10.9); (10.11) and (10.12);
(10.14) and (10.15); (10.17) and (10.18); (10.20) and (10.21); (10.23) and (10.24);

e KS type of dualities for SP gauge group (11.2) and (11.3); (11.5) and (11.6); (11.8) and
(11.9); (11.11) and (11.12);

e confinement for SU theories (13.1) and (13.2); (13.6) and (13.7); (13.8) and (13.9);
(13.10) and (13.11); (13.12) and (13 13) (13. 30) and (13.31); (13.32) and (13.33); (13.34)
and (13.35); (13.36) and (13.37); (13.38) and (13.39); (13.40) and (13.41); (13.42) and
(13.43);

e confinement for SP theories (13.44) and (13.45); (13.46) and (13.47); (13.48) and
(13.49);

e dualities for Gy gauge group (14.1) and (14.2); (14.3).

On the basis of this large amount of computational work (our auxiliary file with its details
takes more than 100 pages), we put forward the following

Conjecture. The condition of total ellipticity for the elliptic hypergeometric terms is necessary
and sufficient for the existence of the exact integration formulas for elliptic beta integrals or of
the nontrivial Weyl group symmetry transformations for the elliptic hypergeometric integrals.

It is known that behind each elliptic hypergeometric integral there is a terminating elliptic
hypergeometric series appearing from the residue calculus for restricted values of parameters
[17]. The above conjecture has a natural meaning in terms of such series — it simply demands
that the summation or transformation identities for them involve ratios of Jacobi forms with
appropriate quasiperiodicity and modular properties in the sense of Eichler and Zagier [24].
Already this fact is sufficient (when there are no fractional powers of pq) for the confirmation
of the series identities to rather high powers of small log ¢ expansions [17].

It should be noted that for a given interesting elliptic hypergeometric integral there may
exist more than one totally elliptic hypergeometric term. In the examples of [81, 87| the totally
elliptic hypergeometric terms were supplemented with particular difference equations with the
totally elliptic function coefficients. Therefore analysis of the sufficiency condition looks much
more neat — it should address the non-uniqueness questions and the list of admissible technical
tools.

3. SUPERCONFORMAL INDEX

3.1. N =1 Superconformal Algebra. In 4 dimensions the conformal algebra SO(4,2) is
formed by the generators of translations P,, generators of special conformal transformations
K,, generators of the Lorentz group SO(3,1), My, = —My,, and the generator of dilations H.
The commutation relations have the form

[Mabv Pc] = i(nach - nbcPa>7 [Mabv Kc] = i(nach - ncha)v
[May, Mea) = 1(Nac Mya — Moe Mag — NaaMpe + MpaMac), (3.1)
[H, Pa] = Pa> [H, Ka] = _Km [Kaa Pb] = _27;Mab - 2nabH>
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where 1., = diag(—1,1,1,1) and all indices take values a = 0,1,2,3. In terms of the matrix
Map

Mab _%(Pa_Ka) _%(Pa—i_Ka)
Mup = %(Pb — Kp) 0 H , (3.2)
5(Py + Ky) —H 0
where A, B =0,1,2,3,4,5, the commutation relations are rewritten in simpler form
[Map, Mcp] = i(nacMpp — neMap — napMpc +nepMac), (3.3)
with nap = diag(—1,1,1,1,1, —1).
In the spinorial basis one defines
Pad - (0a>adpa7 Kda = (Ea)daKav
U, a —a U0 g
Mg = —Z(a ab)gMab, M, = —Z(O' ab)B abs (3.4)

where ' '
o = (I,0"), @ = (I,—0")
and ¢* are the usual Pauli matrices

pe (V) e (UY) e (3 0) e

Using the standard angular momentum generators, we set
Js J —a Js J
M8 — 3 + M = 2% £
o ( J_o —Js )’ p ( J_ =Js )’

[e]+, J_] - 2J3, [7+,7_] == 273
Then the tensor M, is expressed through these operators as

with

0 LUy +T-—Jy—J) Uy +T-o—Ty—Jo) i(J3 — J3)
My = | 3T =T =) 0 —(J3 +J3) O )
ab — Ty + T =T —Jo) (J3 4+ J3) 0 U+ I+ T+ o)
—i(jg—J;g) —%(J++j+—J7—jf) %(J++J,+j++j,) 0

The conformal algebra (3.1) can be rewritten now as
(M), M) =65M,0 — oM., [M 5, M5 = 5;;M“5 — 0§
1 — & 1 .
(M,P, Pl =06°P;— =65P ; (M5, Pl = =03 Py + 505 P,

a7fy6] 'ya6_20c'y67 7

. . 1 . — . . . 1 .. .
B g0 — SO B8 o Z SBrYe . ¥01 _ SV prGd T sépmyo
[Ma , K ] = 5aK + 25aK , [M B’K ] = %K 255K

[Ma67H] = Oa [Mdﬁ', H] = 0
[H> PaB] = PaBa [H> Kdﬁ] = _Kdﬁ' (36)

In four dimensions the conformal group can be extended by introducing supercharges Qa, @
and their superconformal partners S, §°, where o, & = 1, 2. Supercharges satisfy the relations
[90]

{Qom Qd} = 2Pad> {Qaa Qﬁ} = {an Qﬁ} =0 (37)

while their superconformal partners obey

(5%, 521 — 2K, (55" = {5, 5%} — 0. (3.8)
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The cross-anti-commutators of the (), and S, have the form

{Qu, 5"} =0, {5%Q.} =0, (3.9)

while
{Qa, 5"} = 4 (Maﬁ + %55}[ + ZéﬁR) :
—6 —= —a 1., 3

where R is the R-charge generating U(1)g-symmetry group.
The bosonic and fermionic generators cross-commute as

1 _
[Maﬁa Q'y] - 55@& - 555Q7> [Maﬁ> ny] = 0,
(M, S] = 515" + %5@57, M, 5] =0,
— —& —= . 1 4=
[M gan] =0, [M BaQA,] = _5¢Q5 + 555' A9

— —& = R R
(M ﬁ,S'y] =0, (M 5,5]25%5 _5565 ,

[P, 87 = 6@, P, S] = 61Qu,
(K%, Q,] = 675", (K%, Q] = 6457,
1 _ 1
[H> Qa] — 5@00 [H> Qd] = §Qda
[H, 5% = —%Sa, [H,5%] = —%?d. (3.11)

The R-charge commutes with all bosonic generators and has non-trivial commutators only
with the supercharges and their superconformal partners

[Rv Qa] = —Qa, [Rv.@d] = @dv
[R, S = S, R, S"]=-S". (3.12)

Let us now simplify the shape of the N' = 1 superconformal algebra by introducing the
notations

M+ 108H sP.s Q. 5 _
Mf=( ot ) = (F) =8 @) 6w

Then the (anti)commutators (3.6),(3.7),(3.8),(3.9),(3.11),(3.12) combine to
(ML M) = EML = SZME,
1 — — 1
MG, Qc] = 66Qu — 1551907 ML, QC] = _5JC4QB + ZéﬁQC’
[R7 Q.A] - _QA7 [R7@B] == @Ba
{04 T} =aME+305R,  {Qa.Qs}=0. {2'T}=0. (314

0
s (%),
A 0 56'

where



ELLIPTIC HYPERGEOMETRY OF SUPERSYMMETRIC DUALITIES 13

3.2. The index. Suppose there exist a supercharge () and its Hermitean conjugate Q' satis-
fying the relation

{Q.e}=0. {Q.Q"}=0, {QQ"%=2H (3.15)

where H is the Hamiltonian of a taken system (= P,). This is a universal situation valid down
to non-relativistic quantum mechanics. The Witten index [92] defined as

Tr(—1)*
tells (under certain conditions) whether the supersymmetry is broken spontaneously or not. By
definition the operator (—1)% is
(=1 = exp(2mids),  {Q,(-1)7} =0, (3.16)
where in the spinorial basis Js = —(J5 4+ J3). It distinguishes bosonic states |b) from the

fermionic ones |f),

=DF)y =10, (DI =—1f)-
Because of the cancellation of contributions of states with positive energies to Tr(—1)%, this
trace formally can be evaluated using the zero-energy states

Tr(—1)F =nk=" — nk=" (3.17)

E= E=0

where n£=% and n%=° are the numbers of bosonic and fermionic ground states. Therefore,
if Tr(—1) # 0, supersymmetry is not broken. However, because of the presence of infin-
itely many states one needs a regulator commuting with @ (to save cancellations). Then the
regularized Witten index is defined as

Ind = Tr((—1)Fe "), (3.18)
and formally it does not depend on the parameter (.
As to N' = 1 superconformal theories, there are different possibilities to realize relation (3.15),

because of the presence of the operators Se 8% — superconformal partners of supercharges
Qu, Q4. Namely, one takes a pair of generators Q with adjoint QF, such that

{Q,Q"} =2H, (3.19)

where H does not coincide with the Hamiltonian. Still, one can consider the subspace of the
Hilbert space composed of the states |¢) annihilated by H, H|¢) = 0, and define the Witten
index Ind = Tr((—=1)"e #"). However, the space of BPS states |¢) is infinite dimensional
and one has to introduce other regulators, which leads to nontrivial generalization of the index
itself.

In N = 1 superconformal algebra there are four non-trivial possibilities to choose super-
charges Q, QT for constructing the superconformal index

{Q, 5"} =2 (H +2J5 + gR) ,
{Q,, 8%} =2 <H —2J5 + gR) ,
(01, -5'1=2 (H 97, — gR) ,

{@. -5} =2 (H + 275 — gR) : (3.20)
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The generators commuting with the corresponding pair of supercharges written above for
each case are

7a 1 a2
M57H+§R7P2Q7K 9
Vi 1 al
MB>H+§R>P1¢5¢’K )

1 .
M H — 53, P, K*,

and for the last pair

1 .
M/} H— 53, P, K,

respectively (see the commutation relations (3.14)).
Let us stick to the choice of generators
_ i _ 3
Q=Qi, Q'=-5, H=H-2];-R

Now to simplify the commutation relations for the algebra the following matrix is introduced

1
M ( M5 ;;5572 _RP: » ) | (3.21)
where P, = P, P’ = %Kiﬁ, and
R=H— %R.
We obtain the SU(2, 1) Lie algebra with the relations
MPZ ME)=6GML —65MF. (3.22)

To regularize the trace over the infinite dimensional space of zero modes of H, one needs
regulators commuting with the distinguished supercharges Q and QF. In the described situation
an additional regulator is t® for some arbitrary complex variable ¢ restricted as [t| < 1 to ensure

damping. Since M_? commutes with Q; and Fl, there is one more regulator 2?2 |z| < 1,
resolving the degeneracy ensured by M_°. Finally, one has [67, 68]

ind(t,r) = Tr(—1)"z*3¢%. (3.23)

This index depends on the chemical potentials x and ¢, in difference from the chemical
potential 3 of the omitted regulator exp(—GH).

In the presence of internal symmetries, one can introduce more regulators to resolve the
degeneracies. For U(1); x U(1)g X ... x U(1)x global symmetry group, one introduces chemical

potentials 2u1, 2ps, . . ., 25 and extends the superconformal index in the following way
ind(t, z, ;) = Tr(—l)F$2J3tRe2Z?:l‘”qi, (3.24)
where ¢; is the generator of U(1);’s group. For a non-abelian local gauge invariance group G
with generators G,j = 1,..., rank GG, and a non-abelian flavor group F' with the generators
F;,5=1,..., rank F, the superconformal index is
ind(t,z,2,y) = Tr ((—1)Fx2J3tRe et Ii’f”fiFi) , (3.25)

where g; and f; are the chemical potentials for groups G and F' correspondingly. For brevity
we shall assume that abelian U(1)-factors enter the flavor group contributions as well. From
the representation theory it is known that 77 exp(321“"" % 9,G%) = x¢(2) is the character of the

corresponding representation of the gauge group GG, where z is the set of complex eigenvalues of
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matrices realizing G. The same is valid for the flavor group F: T'r exp(zzng LiF) = xr(y)
is the character of the representations forming the space of free fields states, and y is the set of
complex eigenvalues of matrices realizing F'.

Since all physical observables are gauge invariant, one is interested in the index for gauge
singlet operators. Therefore formula (3.25) is averaged over the gauge group, which yields the

matrix integral
I(t,2,y) = / du(g) Tr ((—1)%1’3#@2?2?”%@6 ?i’f”fiF"), (3.26)
G

where du(g) is the G-invariant matrix measure. This is the superconformal index — the key
object for our purposes. By construction, it has the meaning of a particular SU(2,2[1) x G x F
group character naturally restricted to the space of BPS states and integrated over the gauge

group.

3.3. Calculation of the index. Explicit computation of the superconformal index was per-

formed by Romelsberger [68]. According to his prescription one should first compute the trace

in index (3.25) over the single particle states, which yields the formula'

202 —t(x +271)

0=t s

n Z " X R i ()X Ra,i(9) = 7 X i (/)X R i(9)
- (1 —ta)(1 —tx1) ’

ind(t,x, z,y) =

(3.27)

where the first term represents contribution of the gauge fields belonging to the adjoint represen-
tation of the group GG, and the sum over ¢ corresponds to the chiral matter fields ¢; transforming
as the gauge group representations R¢; and flavor symmetry representations Rp;. The func-
tions Xadj(9), Xre,i(f) and xg.i(g) are the corresponding characters — their general forms for
major classical groups are described in the Appendix A.

For the U(1)x-group generated by the R-charge the terms proportional to t?# and 22"
result from a chiral scalar field with the R-charge 2r; and the fermion partner of the conjugate
anti-chiral fields whose R-charge is —2r;. For several U(1) groups U(1); x ... x U(1)y x U(1)g
variables r; should have the form

K
rp = R+ Z%’jﬂja
=1

where 2R; is the R-charge of the i-th matter field, ¢;; are the normalized hypercharges of the
i-th matter field for the U(1); group and 2y; is the chemical potential for the latter U(1);
group.

In order to obtain the full superconformal index, this single particle index is inserted into
the “plethystic” exponential with the subsequent averaging over the gauge group:

1

I(t,z,y) = / du(g) exp (Z —ind(t",x",z",y")). (3.28)
G n=1 n

Similar objects appeared in computation of partition functions of different statistical mechanics

models and quantum field theories, see, e.g., [75, 88, 54, 45, 53, 4, 26, 22].

'In Romelsberger’s prescription in the denominator there stands the term (1 — tXsu@)p,f (V) + t2), where
XsuU(2)r,f(7) is the character for the fundamental representation of the SU(2) group discussed above. If we
parameterize this group characters by x then we have formula (3.27).
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Clearly, there are qualitatively different contributions to superconformal indices — from the
matter fields and the gauge fields. The generic form of a matter field single particle states
contribution to the index ind(t,x, z,y) in the presence of some global U(1) symmetry group
looks as follows
t2rz _ t2—2rz—1
1—tx)(1 —tz 1)’
where t, x are the same variables as in (3.27) and z = €% is the chemical potential for the U(1)
group. It is convenient to introduce new variables

-part

i (p,q,y) = ( (3.29)

p=tr, q= tx_l, Yy = tQT’z,

where p and ¢ are in general complex variables satisfying the constraints |q|,[p| < 1. As a
result, %" (p, ¢,y) = (y — pq/y)/((1 — p)(1 — q)). Then the described index building algorithm
yields the elliptic gamma function [68] (cf. [3])

i 1 . ﬁ 1— y—lpj+1qk+1
D(y;p,q) = eXP( —ig" (p",q",y")> - — (3.30)
=1 ji=o TP

For the gauge field part one can set
2t — t(x +x71) p q
1 to)(1 - tx_l)Xadj(g) 1= 1y Xadi ()

For the SU(2) group one has x.qi(g) = 2> + 272 + 1. Substituting pieces of this expression in
the corresponding places of the index, we have the following characteristic building blocks

ivip,q) = (

V2

exp (i% <_1 ﬁpn 7 fnqn) (2 + z‘”‘)) = Q(Zil;p_)i(f;; 2

n=1
1

(1—22)(1 = 272)0(z*%p,q)

V2

exp (i% <—1 ﬁpn ~ 1 fnqn) ) = (P P)oo(@; @) o-

n=1

Similar expressions are found for the higher rank gauge groups.

4. SEIBERG DUALITY FOR UNITARY GAUGE GROUPS

First we consider the usual A/ = 1 supersymmetric quantum chromodynamics (SQCD) as an
electric theory with the internal symmetry groups [71]

G = SU(N), F=SU(N;)x SU(Ny)x U(1),

where U(1)p is generated by the baryon number charge (the U(1)g group generated by the R-
charge enters the superconformal group). For such supersymmetric versions of QCD there are
two chiral scalar multiplets Q and ) belonging to the fundamental f and anti-fundamental f
representations of SU(N..) respectively, each carrying a baryon number, and the vector multiplet
V' in the adjoint represantation. The field content of the electric theory is given by the following
table

)

U(l)s UL

qB = 1 2RQ = N/Nf

gs =—1 |2Rg = N/N;
0 2Ry =1

N
kh\khS
=

W
}—kHKhS
S

N
}—kthS

|
S

= OO

&
&
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Here ¢, ¢p denote the baryonic charge and 2Ry, 2R, 2Ry are R-charges of the fields.
The dual magnetic theory has the symmetry groups

G = SU(N), F =SU(N;)xSU(N;s)xU(1)g,
where N = N ¢+ — N. The field content of the dual theory is fixed in the table

Field | SU(N) | SU(Ny) | SU(Ny) U(1)p U(1)g
g ! f 1 a5 = N/N_ | 2R, = N/N;
q f 1 f qp = —N/N | 2Rz = N/Ny
1% adj 1 1 0 2Ry =1
M 1 f f 0 2Ry = 2N /Ny

It should be stressed here that this duality works only in the so-called conformal window

3
§N<Nf<3N.

The first inequality is obtained from the condition that the magnetic theory is asymptotically

free in one-loop approximation, and the other inequality is a consequence of the demand that
the electric theory has the asymptotic freedom?.

We define the r-charges for the R-current and the baryonic U(1)p current in the electric
theory

rq = Ro+qgsr, rz = Rz+gse,
Where z is the U(1)g-group chemical potential. In the magnetic theory we set
rq = Rq+qpa, rg = Rz + g, rvy = R
Then the single particle states index for the electric theory is

. p q
ir(p,q 2, 8,t)=— (m + 1——q> XSU(N).adi (2) (4.1)
1 , —r
1 . e
————— ( (pq) *Xsu(N ),?(t)XSU(N),?(Z) - (pQ)l QXSU(Nf)vf(t)XSU(N),f(Z) .
(1-p)1—-0q) d

For the magnetic theory we have

+

. P q
in(p: g, z,8,t) = — (?p + 1—_q) XSU(N),adj(Z) (4.2)
1 T —T
+ m ((pQ) qXSU(Nf),?(S)XSU(ﬁ),f(Z) — (pg)* qXSU(Nf),f(S)XSU(N)}(Z)>
1 — e
g (0w (Osum 7(2) = 00 Xsuon 7OX s (2))

1

+ 1-p)(1—q) ((pQ)TMXSU(Nf),f(S)XSU(Nf),T(t) - (pQ)1_TMXSU(Nf)j(S)XSU(Nf),f(t)) .

The one-loop beta function for the gauge coupling [52] is given by By =
3
g

—2 (T (adj) — 2T(F) — £T(S)), where T(F) is the sum of coefficients T'(r) (see the Appendix C

for more details) over all fermions, T'(S) is the sum over all scalars and T'(adj) is T(r) for the adjoint
representation.
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The superconformal indices take the form (see the invariant measures in the Appendix B)

(rp) gl
Iy = N (4.3)
y [T T T((pa) @sizy, (pa) et 7 p.g) Yo dz,
TN-1 HISKJ.SNF(zizj_l,z;lzj;p, q) ey 2miz;
and
N-1 N-1
PPl \4549)x r _
By = WP E0x T p(pgmtip.g) (4.4
N! 1<i,j<Nf
y [T T D((pa) s 25, (pg)"tizy ,p, =
TR-1 H1§i<j§1\7 F(zizj Lt 2i3Dsq ey 2miz;’
Let us renormalize the variables
— (pq)~"?s;, ti_l — (pq)_réti_l, i=1,...,Ny. (4.5)
Then the superconformal indices are rewritten as
(rp)% Nl
Ig = N (4.6)
Nt <N 1 _
1L j=1 L'(sizj, t; lzj L, q) ]ﬁ dz;
TN-1 HISKJ.SNF(zizj_l,zi_lzj;p, q) e 2miz;’
and
o \N—=1(,. \N—1
Iy = PP ff’7q>°° [T rsitibpa) (4.7)
Nl 1<i,7<Ny
[ L, (S V72, TR ) Y,
TR -1 H1<Z<]<NF(z,z ! V2 z],p, q) ey 2miz;’
where

Ny Ny
= HS,’, T_l = th_l

i=1 i=1

and the balancing condition reads
ST~ = (pg)™ ¥
As discussed by Dolan and Osborn [23], the equality I = I, follows from the A, < A,,

root systems symmetry transformation® established by Rains [61]. For N = N = 2 this
identity is a simple consequence of the symmetry transformation for an elliptic analogue of the
Gauss hypergeometric function discovered earlier by the first author in [78].

To be rigorous, it should me mentioned that the needed equality between elliptic hyperge-
ometric integrals takes place only under certain constraints on the parameters. Namely, the

31t should be stressed here that this transformation is valid for any IN¢ while the Seiberg duality is expected to
exist only in the conformal window, where we have appropriate R—charges yielding an anomaly free theory. One
cannot extrapolate this duality outside of this window except of the boundary points Ny = %N and Ny = 3N,
although the relation between integrals remains true. We thank A. Schwimmer and S. Theisen for a discussion
on this point.
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kernels of the integrals are meromorphic functions of integration variables z; € C*. There are
two qualitatively different geometric sequences of poles of these kernels — some of them con-
verge to zero z; = 0 and others go to infinity. So, the equality I = Iy with the integration
contours T on both sides is true provided T separates these two types of pole sequences. In the
present situation, this is guaranteed for | S|/~ < |s;| < 1 and 1 < |t;| < TYN. All the relations
for superconformal indices described below have similar constraints on the parameters, but we
shall not describe them in detail for brevity, assuming that the separability conditions for pole
sequences are satisfied by the contour T.

5. SYMPLECTIC GAUGE GROUPS

The electric theory we consider [39] has the overall symmetry group
G = SP(2N), F =SU(2Ny) x U(1)r,

and the following field content

Field | SP(2N) | SU(2Ny) Ul)g
Q f f 1= (N+1)/Ny
V adj 1 1

The dual magnetic theory has the overall symmetry group
G =SP(2N), F=SU@2N;) x U(1)g,

where N = N # — N — 2. And the field content is described in the table

Field | SP(2N) | SU(2N;) U(1)r
q f f (N +1)/Ny
V adj 1 1
M 1 Ty 2(N +1)/N;

The conformal window for this duality is

;(N+1) < Ny < 3(N +1).

For these theories we have the following indices (in the renormalized variables) [23]

(p;p)évo(q;q)évo

2N
/ [L2 TS Ttz p,q) ﬂ dz;
H1<z<]<N ( o ilupv )H] 1F< Zj 7p7 ) = QWZZ]

and

)@l .
Iy = oA H L(tity;p,q) (5.2)
1<i<j<2N;

1Y TI, D((pg) /28 %5p,q) N
X/T Jj= H J

N H1§i<jgﬁr( - ilapa )HJ 1F( Z; %ip,q) 5= 27”2]
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with the balancing condition

[It = o)™

i=1
For N = N = 1, equality Ip = Iy is a consequence of the symmetry transformation
established in [78]. Arbitrary ranks N, N identity was proven by Rains in [61].

6. MULTIPLE DUALITY FOR SP(2N) GAUGE GROUP

There exists a multiple duality phenomenon, when one theory has many dual theories for
different gauge groups. In this chapter we describe briefly such a situation for theories with
SP(2N) gauge group. The key group responsible for the corresponding multiple duality is
W (E7) — the Weyl group for the exceptional root system E;. However, here we skip description
of its structure, for corresponding details see our previous paper [86].

Let us take N' =1 SQCD electric theory with the overall internal symmetry group G x F,
where

G = SP(2N), F =5U@®) xU(1).
This theory has one chiral scalar multiplet ) belonging to the fundamental representations of

G and F'| a vector multiplet V' in the adjoint representation, and the antisymmetric SP(2N)-
tensor field X. The field content of the theory is fixed in the table

SPN) [SU®) [ UQ) [U)x

Q / -5 3
X| Ta 1 1 0
V1 adj 1 0 1

For N =1 the field X is absent and U(1)-group is completely decoupled.

This electric theory and its particular magnetic dual (with N > 1) were considered in [11].
However, as we described in [86] there are other dualities. In a special section below we show
that the 't Hooft anomaly matching conditions are fulfilled for all our new dualities.

The electric superconformal index is

ERCOMUEN o N1 L((pg)*z" 2" p.q)
Ip = WF((PQ) ) T(E .

: TN 1<i<j<N (Zz Zj 7p>q)

ST Tl(pg) ewiz i p,q) d;

X H +2 R (61)
j=1 F(’Zj 7p7q) 27T'&Zj
where

rqo = Rg+egs, rx = exs,

and 2Rg = 1/2 is the R-charge of the Q-field, eg = —(/N —1)/4 and ex = 1 are the U(1)-group
hypercharges with s being its chemical potential.
The first (new) class of magnetic theories has the symmetry groups

G = SP(2N), F = SU(4) x SU(4) x U(1)p x U(1).

It contains two chiral scalar multiplets ¢ and g belonging to the fundamental representations of
SP(2N), gauge field in the adjoint representation V', the anti-symmetric tensor representation
Y, and the singlets M; and M.
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SP(2N)|SU4) | SUM4) UML) | UA) |U1)r
q f f 1 -1 [ -] 3
q f 1 f 1 | -5 ] 3
Y Tx 1 1 0 1 0
M 1 Ty 1 2 % 1
M, 1 1 Ty —2 |2
% adj 1 1 0 0 1
In this and other tables of this section describing properties of the fields the capital index J
takes values 0, ..., N — 1, which is not mentioned for brevity.
The superconformal index in this magnetic theory is
N-1
iy =11 II two™vyir.a) T] T(we) o yysip.q)
J=0 1<i<j<4 5<z'<j<8
s £l j:l
MU pq) : D, q)
x ((pg)*; p, )" / A j:l
2NN' ™ | itien D q)
y H I1i_ T((pg) v 2y;25 ,p, )I_L s T((pa) 70?yi2 "5 p, q) dz;  62)
where N1 N1
= R, — 4_ s, 17 = Rz— 4_ s, Ty = 8,

1 1
T™M; = RMJ - §(N -1- 2J)5> TMJ - RMJ - §(N —1- 2J)S.
and v = Yy1y2Y3Ya1.-

The second (new) class of dual magnetic theories has the same symmetries as in the previous
case, but different representation content. Their field content is described in the following table

SP(2N)|SU4) | SUM4) UML) | UA) |U1)r
¢ | f fol1 L | -] 3
A I A e =N
Y Tx 1 1 0 1 0
M, 1 f f 0 [P 1
V adj 1 1 0 0 1
The index for this magnetic theory is given by
N-1 4
17 =T ((pg)*;p, )N~ 1HHHF ((PQ)™ 4y 1, q)
J=0 i=1 j=5
/ H 8 :l:l :l:l’p’ q)
TN NT j:l j:l
2 N‘ 1<i<j<N b Q)
Hz 1I‘(<pq)7"q,u Yi ;! y:t17p7 )Hz SF((pQ) v yz ;! ]:tlapu q) dzj
9 H (63)
F( j 7p7 Q) 27-”.2’/]"
where N1 e
Ty =Tg - 4_ s, Ty =S5, T‘MJ:§—§(N—1—2J)S.
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Finally, the third type of magnetic theories, which was constructed originally in [11], has the
symmetry groups

G = SP(2N), F = SU(8) xU(1),
and its fields content is
SP(2N) | SU®)| U(1) |UQ)gr
q f fol -3
Y Ty 1 1 0
M, 1 T, 2J—év+1 1
V adj 1 0 1

The magnetic superconformal index has the form

N-1
Iﬁ)zf((pq)’"y;p,q)N_ln IT (o)™ yiysip.q)

J=0 1<i<j<8

pq)"”zi1 )
2NNI /T Leisien j:l i1’p7q)
y HHZ 1F((pQ)’"‘Iy, ' fl,p, ?) _dz |
ey I(zF z; 2:p,q) 2miz;
where
Tq = w, ry =S, Ty, = SJ—I—#.

The SP(2) gauge group case can be obtained from the tables above by substituting N = 1
and deleting fields X in the electric theory and Y in the magnetic theories, which decouple
completely. The number of mesons in dual theories is reduced as well. Equality of supercon-
formal indices for N = 1 follows from the results of [78], and the needed identities for elliptic
hypergeometric integrals for N > 1 were established in [61]. As argued in [86], there should be
in total 72 theories dual to each other — this number equals to the dimension of the coset group
W (E7)/Ss responsible for the dualities (in this respect, see also [51]).

7. A NEW SP(2N) < SP(2M) GROUPS DUALITY
We take as the electric theory SQCD based on the symmetry groups

G=SP(2M), F=5U(4)xSP2(M+ N))xU(1)
with the fields content fixed in the table below
SP(2M) | SU(4) | SP(2(M + N)) U(1l U(l)r
Q| f / 1 sl B
Q2 / 1 f -3 1
X Ty 1 1 1 0
VI adj 1 1 0 1

The dual magnetic theory has the symmetries

G = SP(2N),

and the fields content is described below

F = SU(4) x SP(2(M + N)) x U(1)
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SP2N) [ SU(4) [ SP(2(M + N)) U(1) U)r
‘i / / 1 s 0
02 / 1 / —2 1
M 1 ? ¥ _M-N 1
N; 1 T4 1 g2 0
Y T 1 1 1 0
1% adj 1 1 0 1

where j =0,...,M — N — 1. We assume also that either N = M (in this case the fields N;
are absent) or M > N. Then a simple analysis shows that the conformal window reads now as
N<M<N +2.

The superconformal indices for these theories are easily found from the group-representation
content described in the tables

1+
;o (g a)x Lt p )V L(tz" 2" p.q)
= "oumpyn P H == j:l )
1<z<]<1\/[ P g
y HHk (Dt 2, q) vaﬁMF( : *l;p,q) dz; 1)
D(z%p,q) [ Titsizftip g 2miz
and
M+N
Iy = (p p) ( )oortp NH Ftsytk Ny )
QNN' 4 tksjup7q>

k=1 j=1
M—-N-1

< [T TI reg't e (7.2)

=0 1<k<r<4

/ H iR il,p, )ﬁni ! <tkz ;D) HN+ F(Sy Z50,q) dz
j:l oA N7 -’
1<i<j<N ipq) 1 D", q) [T UM (s pq)  2miz

where the balancing condition is Hle t, = t2M=N,

We have checked that the anomalies of these two theories match (see below), which is a very
strong indication that the theories are dual to each other. This is another new duality that
we describe in this paper. The elliptic hypergeometric identity I = I,;, which would give
another argument supporting duality, is a special case of the Rains Conjecture 1 in [64]. We
have found also the duality corresponding to general form of this conjecture, but its analysis is
not complete yet.

8. MULTIPLE DUALITY FOR SU(4) GAUGE GROUP
The electric theory of interest was considered in [14]. It has the symmetries
G=SU4), F=SU2)xSU(4)xSUM4)xU(1); xU(1),.
The field content is presented in the table

SUM) [SUR)[SUM) [SU@) [UM): [UM) [UM)g
Ql f 1 f 1 -1 :
Q| f 1 1 f -1 -1 :
Al T, f 1 1 0 2 0
V] adj 1 1 1 0 0 1
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Its superconformal index is (in the renormalized variables)

2
(75 )36 (43 92 [T=1 D(sjzez5 0, q)
Ip = = = -
£ T% | <h<i<a F<Zk ORI IRy & Q>
- S dz
J
X H F(tkzjvukzj Py q H 27TZZJ
kal ]:1
where
2 4
S = HSJ, T = Htj, U ]‘_[uJ
J=1 Jj=1 j=1

and the balancing condition is
S*TU = (pg)*.
The first duality corresponds to the theory described in the table below

SU@) [ SUR)[SUM@) [ SUM@)[UM), [U)2 [U)g
q| f 1 f 1 -1 -1 3
qal f 1 1 f 1 -1 :
a| Ty f 1 1 0 2 0
B| 1 f Ty 1 -2 0 1
B| 1 f 1 Ty -2 0 1
V| adj 1 1 1 0 0 1

The resulting superconformal index is given by the integral

(8.1)

co\3 (e 32 5., T(sj221; 0, Q)
]}\}I):MH H P(Sjtktl,sjukul;p,(n/ H Jj=1 J

(8.2)

| -1 —1.
4 7=11<k<i<4 T3 1<k<i<4 F(Zk Rl ZkZp 3 Py Q)
3
de
X kﬂlr (VU/Ttyz;, /T /Uugz; ' p, )H1 Tmin
J j=

The second dual theory is described in the table

SUM4) [ SUR)[SUA) [SUM@) [U), [U)2 [U()g
q f 1 f 1 1 -1 z
q f 1 1 f -1 -1 :
a | Ty f 1 1 0 2 0
My| 1 1 f f 0 -2 1
My| 1 1 f f 0 2 1
V| adj 1 1 1 0 0 1

with the superconformal index

1 T2, T(s;ze2: 0, q)
]](\3) _ M H [ (tpuy, Strug; p, C.I)/ H = :

| -1 -1,
4! it T | pcica (2 21, 202 50, q)

4 3

d
X H F(\/Ttglzj,\/ﬁu,glzj_l;p, H 5
k,j=1 j=1

The third dual theory has the field content

(8.3)
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SU4) | SU(2) | SU4) | SUM4) |U1), U |U(1)r
q f 1 f 1 -1 -1 :
q f 1 1 f 1 -1 2
a | Ts 7 1 1 0 2 0
My | 1 1 7 7 0 2 1
My 1 1 f f 0 2 1
B 1 f Ta 1 2 0 1
B 1 f 1 Tx -2 0 1
\% adj 1 1 1 0 0 1
and the superconformal index
2
]1(\3) = % H L (trwg, Stug; p, q H H [ (sjtity, sjuru; p, q) (8.4)
kl=1 j=11<k<

3

2 4

I'(s; zkzz,p, da:

X/ 11 L H VTUtzlej7V4TUulle;1;p,q)||i.
T3 1<k<I<4 F(Zk Zl,ZkZl qu k=1 e} 27TZZ]'

The equalities Iy = ]1(\}) = I](é = J(V?}) are new transformation identities requiring a rigorous

proof. Note that we do not have here the structure of the full W(E7) group, but instead the
set of its discrete Weyl reflections without Sg-permutational symmetry.

9. MULTIPLE DUALITY FOR ARBITRARY RANK SU(2N) GAUGE GROUP

In this section the multiple SU(4) dualities are generalized to the higher rank G = SU(2N)
gauge group which was also considered in [14]. The overall flavor symmetry group of the theories
is rather unusual

The field content of the electric theory is shown in the table

SU@2N) | SU4) | SUM@) |U)1|U)| U(l)s |U)g
Q f f 1 0 1 2N —2 %
Q f 1 f 0 -1 |2N-2] 1
A Ty 1 1 1 0 -4 0
A T4 1 1 -1 0 -4 0
Vv adj 1 1 0 0 0 1
The corresponding superconformal index is
I, - P P2 q; )2 ! / T(Uzjz, Vzi 'z p,q)
(2N)! TN ity F(zj_lzk, 220D, q)
2N 4 | 2N-1 dz,
X Jl;[l kl:[l [(sk2j,trz; 305 q) Jl:[l Dmiz;’ (9.1)

where
4 4
= H Sk, T = H tk,
k=1 k=1
and the balancing condition reads
(UV)* 28T = (pg)*.
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This is the two-parameter (higher order) extension of the type II elliptic beta integral for the
root system Agy_; introduced in [78].

Magnetic dual theories have the same gauge and global symmetry groups. The field content
of the first theory is given in the table

SUQN) [ SU4) [ SUA) [U), | U(1), U(1)s U(l)g
a Ta 1 1 1 0 4 0
a Ta 1 1 -1 0 -4 0
q f f 1 0 -1 2N — 2 z
q f 1 f 0 1 2N — 2 :
H,, 1 Ty 1 0 2 [AN—4—-8m| 1
H,, 1 1 Ty 0 2 AN —4—-8m| 1
Vv adj 1 1 0 0 0 1

where m = 0,..., N — 1. This leads to the magnetic index

I]%) (p; p)21\7(2;\([‘§q)2]v 1H H C((UV)"spst, (UV)™ttr; 0, q)

m=0 1<k<i<4

D(Uzz, V2 tz b p,
x/ H ( ]_1]C ’ —1k .1 (9:2)
TN <jck<an F(ZJ' 2k 2% 3P, 4)
oN 4 N1
X HHF VT /Sskzj, /S/T thj P, q H 27”]2
j=1k=1 = g

Second dual theory is described in the table

SU(2N) | SU4) | SUA) |[U(1): |UM)2|  UM)s  [UM)r
a Tx 1 1 1 0 -4 0
a Ta 1 1 -1 0 -4 0
q f f 1 0 1 2N —2 2
7 f 1 f 0 -1 2N —2 :
M, 1 7 7 0 0 |4N—4—-8k| 1
74 adj 1 1 0 0 0 1
where kK =0,..., N — 1. Its superconformal index has the form
2N—1 aN—1 V-1 4
1@ = PP 8 Do C((UV)™sti; p, ) (9.3)
vy LI
/ r Uzjzk,Vz 25 p,q)
X
T2N-1 1<j<k<2N F(Z] 12]672]219 y Dy q)
2N 4 N1
-1 J
XHIHF Ss;. zj,ftk Z; Lp,q) 1:[1 dmiz;’

Third duality corresponds to the theory
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SU(2N) | SU4) | SUM) | U(1)y | U(), U(l)s U)r
a Ty 1 1 1 0 -4 0
a T4 1 1 -1 0 -4 0
q f f 1 0 -1 2N —2 :
7 f 1 f 0 1 2N —2 I
My, 1 f f 0 0 AN — 4 — 8k 1
H,, 1 Ta 1 0 2 AN —4 —8m 1
H,, 1 1 Ta 0 -2 |4N —4—8m 1
V adj 1 1 0 0 0 1
where k,m =0,..., N — 1. The corresponding index is
2N-1 oN—1 V-1 4
P;P)o 4;9) m
1 = B G Do T T rwv)sitep.g
(2N)! m=0 k,I=1
N—-1
<IT TI Ty ss. V) titiip,q)
m=01<k<I<4
D(Uzz, Vztz b p,
T2N-1 i Ck<aN F(Zj 2k, 22 5 D5 )
2N 4 2N-1
4 -1 4 —1_-1, J
X HHF(VSTSk zj, VSTt 2;7p, q) H Driz;’
j=1k=1 j=1
From the duality analysis for field theories we conjecture that Ip = ]](Vl[) = ](V?) = ](V?}) under

certain constraints on the parameters of the integrals. These are new identities for the described
elliptic hypergeometric integrals.

Note that similarly constructed candidates of dual theories for the SU(2N + 1) gauge group
fail to match the global anomalies, see [14]. This does not close, however, the opportunity to
find similar identities for integrals defined over SU(2N + 1)-group as well.

10. KUTASOV-SCHWIMMER TYPE DUALITIES FOR UNITARY GAUGE GROUP

Now we would like to discuss generalizations of the Seiberg dualities for SU and SP groups
discovered by Kutasov and Schwimmer (KS) [47, 48] and studied in detail in [49] and other
papers. For brevity we skip separate global symmetry group descriptions since it can be read
off straightforwardly from the field contents of the theories given in the tables. The first column
in the tables describes types of gauge group representations for the fields, while other columns,
except of the last one, describe field representations and the hypercharges for the subgroups
of the flavor group F. Also, we skip the detailed description of single particle states indices
writing out directly the integrals for the superconformal indices together with the balancing
condition, if there is any. In this section we describe such dualities for the unitary SU(N)

gauge group.

10.1. SU(N) gauge group with the adjoint field. The following electric-magnetic duality
is described in [48]. The field content of the electric theory is given in the table
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SUN) [SUN) [SUNA [ UWs ] U
— IN
7 7 ~_ 2N
V| adj 1 1 0 1
And the magnetic theory ingredients are described in the table
SU(N) | SU(Ny) | SU(Ny) U(l)ig U(l)r
q f f 1 N/N~ ' =1— ﬁ
q f. 1 f ~N/N 2% =1 — (éﬁiﬁvwf
. Y adj 1 1 0 254; 7S] _—
M;,j=1,...,K 1 f f 0 27‘Mj:2—(K+1)Nf—|—K+1(j—1)
V adj 1 1 0 1
Here the dual gauge group dimension is
N = KN;—N, K=12,..., (10.1)

with the constraint Ny > 3N/(K + 1).
Defining U = (pq)* = (pq)*/E+Y for these theories we find the following indices

) Uz U iy
]E:(p,p) (o) I(U:p.q Nl/ 11 a2y Uz 25, q)

v " 1<i<j<N ZZzJ Y2tz q)
Ny N N-1 0z,
< [TTIT szt 2750 0) T i (10.2)
i=1 j=1 e g
and
()Y g )X K
Iy = 2 % PUp, H H LU st p, q) (10.3)
N! Pty
X/ H F(Uz,-z._ UZ-_ zj;p7q)
_ - -
™ 1<i<j<N F(ZZZJ )2 Zj7p> Q)
A K N-1 dz
XHHF(U(ST)zﬁs L, U(ST) v 2 b pyg HQﬂ'zzj
=1 j=1 ey
where

Ny Ny
= H Si, T_l = H ti_l,
i=1 i=1
and the balancing condition is
UPNST! = (pg)™

An important fact is that these theories contain matter fields in the adjoint representation
of the gauge group. The conjecture that I = I, (under appropriate contour-separability
constraints mentioned earlier) represents a new type of the elliptic hypergeometric identities,
not described earlier [84]. Therefore we present in the Appendix D the analysis of the total
ellipticity condition hidden behind this identity.
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10.2. Two adjoint matter fields case. This duality was considered in [6, 7]. The electric
theory is

SUN) [SUN) [SUND [0 | U(Ux
Q f f 1 1 [1- ﬁ
Q f 1 f -1 |1- %
X | adj 1 1 0 KLH
Y| adj 1 1 0 o
V| adj 1 1 0 1
The magnetic theory has the following field content
SUN) [ SUN,) [ SUN) [ U5 U(D)a
q f f 1 Z 1~ 7w
AR
X adj 1 1 0 o]
Y | adj 1 1 0 e
My, 1 f 7 0 2 - Nf(2[1¥+1) + 2?(++I§J
V | adj 1 1 0 1
where
N =3KN; — N, (10.4)

Kisodd, 0 <L <K —1,and J =0,1,2 with the constraint Ny > N/(3K — 1).
The corresponding superconformal indices are

I (rp) Q)N 1/ H D(Uziz; LUz 250,97 (UK/QZ'Z-Z]-_I,UK/2zi_lzj;p,q)
E =
TN 1<z<]<N F(ZZZ] 7Zz Zj;p,C_I)
Ny N N-1 dz;
X HHF Szzj7tz Zj 7p7 q) 27_(_1-2'7 (105)
i=1 j=1 j=1 J
and
(p p N 1 K-1 2
I]\/[ HHHFUL+KJ/2StJ ‘D, q )
L=0 J=014,j=1

D(Uzizy ' Uz 25 p, ) UUR P22 URP 2 255p, q)

i 10.6
/TN 1 H NG b= zj;p,q) ( )

1<i<j<N g

Ny N N-1
XHHF “KAD/2(GTYaN 571y, UKD/ (ST 2Ntzj 'D,q H

=1 j=1 7j=1

dz;

27mzj

where U = (pq)KL+1 and the balancing condition reads
UNST™ = (pg)™f

Again, the conjectured equality Ir = I, is a new type of identities requiring a rigorous proof.

10.3. Generalized KS type dualities. These dualities were considered in paper [38].
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10.3.1. First pair of dual theories. Electric theory:

SUN) [SUN,) [SUNA [U [UWs]  U(0a
1 N+2K
Q f f 1 0 N |r=1- (Kj—rl)Nf
Q f 1 f 0 5 |2r=1- (g:f)i{vf
X | Ta 1 1 1 = 25 =
o 2 — 1
X TA 1 1 -1 -N 2s K+l
V] adj 1 1 0 0 1
Magnetic theory:
SUM) [SUN) [SUNY | U [Ums] U@
¢ | f i 1 | EEEA L o= -
= = = KN | L _1_ Nt2K
q f 1 f - X 2r=1 LS
Y TA 1 1 — = 28 = ——
= . N K+1
Y A 1 1 -~ | % 25 = gy
N—N+(2j+1)N
Ml 1 f / 0 0 | —muwm
N—N+(2r+2)N
Bl 1 1 Ty 1 0 R
s i +
V| adj 1 1 0 0 1

Here N
N = 2K+1)N;—-4K - N, K=0,1,2,...,
j=0,....,Kandr=0,..., K — 1.
The electric index is

()X Q! Uzzzp (PC.I)K“2 z'ip,q)
Ip = . H — )

Z ZJ,ZZ] apvq

1<z<]<N
N Nf —
~1. dz;
X | | | | [(sk2j, trz; 305 q) | | .
, Ll 2miz
Jj=1k=1 J=1

The magnetic index is

Co\N-1(,. \N-1 K Ny ;
1, = PP (@9 T II T(wa) = sitiip,a)

NI j=0k, I=1
K-1 1
_ r+ _r_

<IT I T '(pa)= sisi,Upg) ©5itit;p, q)

r=0 1<k<I<Ny

F(?ziz-,U Pq K+1z z i D,

% /Kf1 H ( ;’(z 12( Z) . p q) p q)

T cici<n i@ g P

N Ny N-1 &

~o1 ~ 1

< [TTIr(WU)2s:" 2, (UD) 2 (pq) <tz 7 hip.g HQW

j=1k=1 j=1 J

(10.7)

(10.8)

(10.9)
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where S = vazfl s;, T = vazfl t;, the balancing condition looks as

N+2K

ST — (pq)Nf_ K+1

N—N+F

and U = U%(ST—l)%(pq) 2N (K1)

10.3.2. Second pair of dual theories. Electric theory:

SUN) [ SUN,) [ SUINA) [U(M) [T(1)s YOr

Q f f 1 0 ~ |2r=1- %
a7 vy o g e g
X Tg 1 1 1 Z 25 = 2

X | Tg 1 1 1] -2 25 =

V1 adj 1 1 0 0 1

Magnetic theory:

SUN) [SUN,) [SUN, ] U@) |UM)s U()n

g | f T 1 I e =
il 7 1 7 =82 L o =1 -
Y | T 1 1 o 2z 25 =

Yy | Tg 1 1 X ;va 2 25 = 2y
M| 1 f f 0 0 e
Pl 1 Ts 1 -1 0 e
B 1 1 Ts 1 0 e
V| adj 1 1 0 1

Here
N = 2K+1)N;+4K - N, K=0,1,2,...,

7=0,...,Kandr=0,..., K — 1.
The electric index is given by the integral

4 _
- eI e q)évo_I/ L(Uziz, U (pa) 72 ' 27 p, q)
E — = =
N! TN-1 1<i<j<N F(ZZ 1Zjazizj l;pv q)
N ) Ny N
2 71100 N\ gkt -2 -1 J
xHF(Uzj,U (pg)®+12; % p, Q)HF(Sijij ) H omiz;

j=1 k=1 j=1

31

(10.10)

(10.11)
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The magnetic index is given by the integral

Iy = (vip) N(q T H H q) % sit4: p, q) (10.12)

X H IT rw e )5 sisi, U (pq) * bty p, q)

r=0 1<k<I<Ny
1

K—
<1
r=0

Uzzz, pg) T2 5 q) A 1
X/N 11 f [[0@=.07 (a) 2% p,q)
T 1

(2725, 225 'y p,q)

Ny
[0 (a) %5 53, Upa) = £, q)
k=1

1<i<j<N Jj=1
N Ny N-1 dz;
~1 ~ 1
< [TTIr(wu)2s:t2, (UD) 2 (pg) ®F it 2k pog )11 2m
j=1k=1 j=1 J
where S = H;V:fl s, T = vazfl t;, the balancing condition looks as

N—-2K

ST = (pg)Nr~ =1,

N—N+F

and U =U ~ (ST )ﬁ(pq)%’(”“)

10.3.3. Third pair of dual theories. In comparison with the dualities described in previous two
subsections, this case involves non-abelian flavor subgroups of different ranks.
The electric theory:

SU(N) | SU(Ny) | SU(N; —8) U(1) U(L)s U)r
2(4K+3) _ N+2(4K+3)
Ql f f 1 —QE+1)+ 352§ | =-S5
- (4K+3) ~ N—-2(4K+3)
X| Ts 1 1 -1 — 25 = 3R
V] adj 1 1 0 0 1

The magnetic theory:



ELLIPTIC HYPERGEOMETRY OF SUPERSYMMETRIC DUALITIES 33

SU(N) [ SU(N,) | SU(N; —8) U(1) U(l)p U(1)r
q f Fi 1 2K + 1 — 2K Lo 2= U
i N 2(K+1)Ny
= = — 2(4K +3) ~ _ N—-2(4K+3)
q f 1 f —Q2K+1) - =55 —2% 2 =1- AW, =5
Y ZA 1 1 -1 ﬁ 25 = m
Y Tg 1 1 1 _% 25 = 2(K1+1)
M; 1 f f 2(4K +3) (5 +%8) 0 20r +7) + 2
Py, 1 Ts 1 Ik —3+ 4Kf+3) 0 Ar + S
Poyir| 1 Ty 1 —4K — 34 5 0 dr + S E
Py | 1 1 Ty IK 3+ 2<4K+3> 0 47+ st
~ 2(4K+3) M
Poryr |1 1 Ts AK +3+ =55 0 4+ 5ty
1% adj 1 1 0 0 1
Here J =0,....,2K+1, L=0,..., K, M =0,...,K —1, and
N = (4K +3)(Ny—4)—N, K=0,1,2,.... (10.13)
The electric index is
1 4 _
: B (p;p)ﬁ_l(q; Q)évo_l / F(Uzizj, U_l(pq) 2(K+1) Z; 12], l;pa Q) (10 14)
E = — — .
NI V=1 <i<i<n (2%, Zizj 'ip,q)
Ny N-1 d
X HF Y(pq) 2(K+1)Z %:p,q IHF SKZji D, q H I'( tlzJ D, q jl:[l 2m’zj'

The magnetic 1ndex is
_1 2K+1 Ny Ny—8

IJ\/[ _ (p7p) (q Q) H H H F pq 2<K+1)8t37p, ) (1015)

N' J=0 i=1 j=1
K Ny
20+1 4141 1 9
XH [T (o™ u v sissip, ) [T T ((00) ™ 0 u™ 0" 57 p, q)
=0 1<i<j<Ny =0 i=1
2K K—-1Ny—8
2m+41 4m—+3
[T 1II T(po™ 5 uvtit;pq) [[ [] Cpe) =T uvt?;p,q)
m=01<i<j<N;—8 m=0 =1

[(Uzz;, U (pq)2<K“>z z7hip,q)
o e
TR-1 ['(z )

Zi Zjuzz i 7p7q

1<2<3<N
N N Ny
XHF Y(pq) 2<K+1>z %p,q HHF UU) 2sk Y20, q)
j=1 7=1k=1
N N;—8 o, N-1 d
5 2(K+1)
% 31:[1 1 I (pg) a ZJ g 31:[1 27rzz]

where
N

U = uv(pg) ™, U =u""w¥ (pg) T



34 V. P. SPIRIDONOV AND G. S. VARTANOV

= HNf t; and the balancing condition is

STu v~ = (pg)V'~* =,

10.4. Adjoint, symmetric and conjugate symmetric tensor matter fields.

was constructed by Brodie and Strassler [7]. The electric theory is

This duality

SUN) [ SUN,) [SUN) [U() [U(a]_ U(x
Ql f f 1 0 ¥ |- N(FT)
7 7 1 —2
Q f 1 f 0 -~ |1- Ny (K+1)
g 2
Y T 1 1 1 ~ yzam)
e 2 K
Y Tg 1 1 -1 - Yol
V| adj 1 1 0 0 1
The magnetic theory is
SUM [SUN) [SUN) [ U0)_U(Us U(L)r
¢ | ] L = % e
— — KJJ\\cf-i-Q N1 f]ff—;_ )
q f 1 f N | N 1- Ny(K+1)
X adj 1 1 0 0 1
Y Ts 1 1 LWELOTN K
v T T N RN 2 a
S - N N K+1 —
Ny 1 f [ 0 0 K—+1 + K—+1 +2 -2 el 1)
M 1 f f 0 0 2J+f+1 +2-— 2fo(V '2”&
Py 1 Ty 1 -1 0 2K+1+K—+1+2 2Nf(1;+1)
o J N—
Py | 1 1 Ta 1 0 225+ 5542 2Nf(z<i1>
o2 J
Py 1 1 Ts 1 0 2K2+1+K—+1+2 2Nf( 21)
V ady 1 1 0 0 1
Here
N =3KN;+4—N, (10.16)
Kisodd, I =0,1,....,K—1,J=0,1,...., 5 and 2J + 1 # K.
The indices are
IE (p p N ! / H UZZ UZ Z]apv Q)
Y <icj<N ZJ ’ZZ Zj’p’ q)
H D(URPXY 225, U2 (XY) 2 'z, q) (10.17)

1<i<j<N
N
< [[ P Xy 22, US2(XY) 2% p, q)

Ny N N-1

><1_[1_[Fszj,tZ Lp,q

i=1 j=1 j:l

dz;

27mzJ
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and

1K1Nf

Iy = (pp H HF UL+Kst ! ULst Lp,q)

L=0 i,5=1

X H [ Txy) U2, XYUHPE Y pg)
J=0 1<i<j<Ny
,1 Nf

X HHF (XY)T'UPHER2 XY U822 p q)

J=0 =1

/ H UZZ UZ Zjap7 q)
TN-1

1<i<j<N Z] ’Z’ Zj’p’ 9)

K)2 NN

H I( zj,U (X8 YN) 2 25 p,q)
1<z<]<N
N N*KNf N

xHr Uk/? ¥22, (X~ % Y&)%2p.9) (10.18)
=1
Ny N

KN ¢+2 3KN¢+4
XHHF(U(—K+2)/2X NJ; Y 21% si_lzj;p,q)

i=1 j=1

Nf N Nf+2 SKNf+4 N 1 d

< [TT[T@ 5 2Px= 5 Y™ e tiz;hip,g

=1 j=1

.y 27rzz]

.

where U = (pg)/&+D) | v = (ST)VNr 8 = M, s, T7' = [[Y, ¢, X is an arbitrary
chemical potential associated with the U(1)-group and the balancing condition reads

UNT2ST™ = (pg)™

10.5. Adjoint, anti-symmetric and conjugate anti-symmetric tensor matter fields.
This duality was considered in [7]. The electric theory is

SU(N) | SU(Ny) | SUWNy) |UQ) |[U(D)p | Uk
Q| 1 / L0 & [T men
Q ? 1 ? 0 _% 1_Nf]zfl—{’_-2i-l)
X | ad 1 1 0 0 KLH
Y Ty 1 1 1 % KLH
Y| Ty 1 1 1| -3 Ve,
V adj 1 1 0 0 1

The magnetic theory is
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SUN) [ SUN) [SUN) | UMW) [U(1)s U(L)r
- KN;—2 N
¢ | f I L e i B 1~ m
~ T KNy—2 1 N+2
q / 1 e e L ey
X adj 1 1 0 0 o]
el N—-KN 2 K
Y Ta 1 l N : N K41 —
N; 1 f f 0 0 K—+1+K+1+2 2 (;+1)
r N 2
M, 1 i i 0 0 _ f“H_QNf(;“)v 2
Py | 1 Ts 1 -1 0 |23+ Kt +2 - 25kt
2J N+2
Py 1 Ta 1 1 0 [225+ K——i-l +2 - 2y
sl 2J+1 N+2
P2J_|_1 1 1 TS 1 0 2 K-—:-_l _|_ K—-i-l _|_ 2 2%
sl N+2
Py 1 1 Ta 0 2K+1+K—+1+2 2%
% adj 1 1 0 0 1
Here
N =3KN;—4—N, (10.19)

Kisodd, I =0,1,....,K—1,J=0,1,..., 5 and 2J + 1 # K.
The superconformal indices are

; (i p) V" (g )N~ 1/ 1 Uzz LUz 25p,9)
E —
TN— 1<2<j<N ZJ 722 ZjquQ)
H F(UK/2XYzizj,UK/2(XY)_ 2 'z hp,q)
1<i<j<N
Nf N N-1

dz;

27mzJ

><1_[1_[Fszj,tZ Ln,q

i=1 j=1 j:l

(10.20)
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and

NV =
Iy = H H DU st Ursithip, q)

L=0 i,j=1

K—-1
% H H F((XY)_IUJJFK/zSiSj,XYUJ+K/2t lt 17P7Q)
J=0 1<i<j<N;
557Ny
% H HF((XY)_1U2J+1+K/2S?,XYU2J+1+K/2ti_2;p, q)
J=0 =1

/ H UZZ UZ Zjap7 q)
']TN 1

1<i<j<N Z] ’Z’ Zj’p’ 9)

KNf N

zj,UK/Q(X N Yﬁ)_lzi_lz;l;p,q)(lo.Ql)

1§z<j§N

Nf N Nf72 3KNf74

K
< [TT[T @ 22X =5y o s7'2:p,q)

i=1 j=1

Ny N N-1

KNg—2 3KN,s—4
Iy 5 ) TT 22

2mz
i=1j=1 j:l J

where U = (pg)/&+D) | v = (STVVNr 8 = M, s, T~' = [[Y, ¢, X is an arbitrary
parameter and the balancing condition reads

UN+2ST_1 — (pq)Nf

10.6. Adjoint, anti-symmetric and conjugate symmetric tensor matter fields. This
duality was discussed in [7]. The electric theory is?

SUNY[SUN;) [SUN; —=8)| U(1) [U)s UDr

o f ! il I M i)
| J | 1! NS =Rl W B =51 €2
X| adj 1 1 0 0 =

Y| Ta 1 1 1 Z B

Y| Ts 1 1 -1 % e,

V] adj 1 1 0 0 1

The magnetic theory is

“In the original paper [7] there were misprints for the values of U(1)-group hypercharges which were corrected
in [46].
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SU(N) | SU(Ny) | SU(Ny —38) U(l) U(l)p U(1)r
7 N+6K
q f f 1 - N% % 1— Nf(J;<6+1)
~ T T 6 1 N—6K
q f 1 f = | — & s
- 2
Y Ty 1 1 1 I K+1
7 2 K
Y Ts 1 1 -1 —< K+1
NJ 1 f f .T1+l’2 0 K+1+K—+1+2T1+2T2
MJ 1 f f 1+ X9 0 K+1—|—27“1—|—27“2
Py 1 Ts 1 21 — 1 0 ot ra T2 28R
Pyl 1 1 Tx P 0 |Z5+twn T2 2misnm
Vv ady 1 1 0 0 1
Here J =0,1,..., K — 1 and
N = 3K(N;—4) — N. (10.22)
The superconformal indices are
q)N! Uzz LUz 25p,9)
Iy — ;)% / 11 j
Y <icj<N ZJ ’ZZ Zj’p’ q)
H F(UK/zXYzizj,UK/z(XY)_ z; zj_l;p, q)
1<i<j<N
N
X HF(UK/Z(XY)_lzi_z;p, q)
i=1
N Ny N;—8 N-—1 d
['(s;z5p, (¢ D, 10.23
X 31:[111 (sizj;p,q) kl:[l (trzj im0 j:l zmzj (10.23)
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and

(p: )X g @)Y

I =

1 K=1 Ny Ny—8
HHHFULJ’Kst],ULstJ,p, q)
L=0

i=1 j=1

T

X [T rTxy)y U™ 2ss5p.q)
J=0 1<i<j<Ny
K-1

X

=

H F(XYU”K/Qtitj; 9, q)
J<N

1<i<

=

Ny
< [T TIT(xY)" U/t 52s3:p,q)

=1

/ H UZZ UZ Z]7p7 q)
TN 1

1<i<j<N z’ LA i)

IIr UK/2XY%ZiZj7 URP(XY %) 5 p,g)

1<i<j<N

F
()

DURP(XY™) 2% p.q) (10.24)

':22

@
Il
—_

SK(Nf —4)

D(UCE D2y 3 57120 p, q)

&%
iz

134
N

1

.
Il

-8
(Nf 4) N-1

PUCRRYy = o) T

1 j=1

[y

X
:Zz

1k

where U = (pg)/ %, S = T[Y s, T = 1"t

<.
Il

1
and the balancing condition reads

UNXYIST = (pg)™Nr !

The equalities I = Iy, for all the dualities described in this section require a rigorous
mathematical confirmation. For the moment we have only one justifying argument coming
from the total ellipticity condition associated with the kernels of the corresponding pairs of
integrals.

11. KS TYPE DUALITIES FOR SYMPLECTIC GAUGE GROUPS

11.1. The anti-symmetric tensor matter field. For SP(2N) group the following electric-
magnetic duality was discovered in [37]. The electric theory:
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40
SP(2N) | SU(2Ny) U(l)r
NTK)
Q S S 2r=1- (K+1)N;
X TA 1 25 = KL—H
V adj 1 1
The magnetic theory:
SP(2N) | SU(2Ny) U(l)r
- ~_ 2(No+k)
q f f 2r =1 - Geow,
Y T, ] %5 = o
; K Net K
M, j=1...K 1 Ta | 2r =25 — 4
% adj 1 1
Here
N = K(Nj—2)—N, K=12,..., (11.1)
with the constraint Ny > N/K.
Defining U = (pq)® = (pq)K;H, for these theories we find the following indices
( ) ( )OOF q N 1/ Uz:tl :I:l)qu)
QNN‘ T 1<i<j<N
Ny N
xH “FS” ’p’Q)H az (11.2)
] qu q) j=1 27TZZj
and
N K
DiP)c\q54) 0
Iy = % I'(Us;p, q H DU sis5:p,q) (11.3)
2N N P it
x/ I LUz 27" p,q) ﬁ L5 T(Us; Jﬂ,p, ﬁ dz;
_ ES| j:l
™ 1§Z<]§j\7 F( D, Q) j=1 F( 7 Dy q j=1 27T7'Z]
where S = H?ivlf s; and the balancing condition reads

U2(N+K)S — (pq)Nf

11.2. Symmetric tensor matter field. Another electric-magnetic duality is described in [50].

The electric theory:

SP(2N) | SU(2Ny) U(l)r
el 7 | 7 7l ook
X ladj =Ts 1 28 = ﬁ
V adj 1 1

The magnetic theory:
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SP(2N) | SU(2Ny) U(l)r
- ~_ N+l
q f / =1 g
Y adj 1 25 = ﬁ
My, j=0,.... K 1 Ta 2ry; = 2 — A
Mojir, j=0,..., K —1| 1 Ts | 2ryp =2 — TN
% adj 1 1
Here
N = 2K+1)Ny—-N-2, K=0,1,2,..., (11.4)
with the constraint Ny > (N + 1)/(2K +1).
Defining U = (pq)° = (pq) 2<K+1>, we have the following superconformal indices for these
theories
(1 p)X (49 %27, q)
Ig = N °°r U:p,q H (11.5)
| ’ j:l j:l
2V NI 1<Z<j<N b q)
N +2. 2Nf N N
Uz iD,q dz
) Y F ; 1. ¥l
AT HH (sma) ] g
J= 1 -7 1= 1] 1 j:l
and
Iy = —F=—TUpq H [I rWsisipq) (11.6)
2 N 1=0 1<i<j<2Ny
K—12Ny (Uzjzl +1
;D,q)
« H HF U21+1 2,p, )/N H F(z:l:lz:tl D q)
=0 =1 T 1§i<j§j\7 y
N (22 2Nf N N
Uz D, q dz
Py D(Us; 123 j
XH 2n.q HH i Zj b Hsz]
7j=1 J =1 j=1 Jj=1
where S = H?ivlf s; and the balancing condition reads

U2(N+1)S — (pq)Nf

11.3. Two anti-symmetric tensor matter fields. This duality was investigated in [7]. The

electric theory:

SP(2N) | SU(2Ny) Ul)r
9 7 | J [i-waw
X Ta 1 K31
Y Tx 1 s
V adj 1 1

The magnetic theory:
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SP(2N) | SU(2Ny) U(l)g
q ! f 1 — (R
X Ta 1 e
Y Ta 1 s
My, J=0,...,K —1 1 Ta 2 - Boow T Bl
Myy 1, J=0,... B2 1 Ta 2 — NECL T 4 K
Myyir1, J=0,.., 53] 1 Ty |2t + L+
My, J=0,...,K —1 1 Tx 2- iy, toa T Ra
\% adj 1 1
Here K is odd and
N = 3KN;—4K —2—N. (11.7)

For these theories we have the following superconformal indices

()X N1
Ip = WF(U U27p> q) (11.8)
2N
/ H G U ﬂ,p, fﬁF( i j»El;p,q)ﬁ dz;
j:l j:l 12, ™
1<i<j<N b4 i=1 j=1 F<ZJ ,p,q) j=1 27”'23
and
(i p)X (3 9) N1
Iy = ——==X22T(U, U= 11.9
M oN NI ( P> q ) ( )
K-1 2 - A32 2Ny B
<ITII I TW*=ssipo) [[[TW0> " 2s%p09)
J=0 L=0 1<i<j<2N; J=0 j=1
(Uzjzl +1 UQZ:I:I :l:17p7 2Ny N Ul_?s 1 chlm7 N dz;
X H j:l = HH
TN ~ F( D, q 7p7q 27TZZJ
1<i<j<N i=1 j=1 ] =1
where S = Hfivlf si, U= (pq)% %1 and the balancing condition reads

UN+2K+IS — (pq)Nf

11.4. Symmetric and anti-symmetric tensor matter fields. This duality was found in
[7]. The electric theory:

SPRN)[SU2N,)| U)a
Q| f IR
X| T 1 e
Y| Ts 1 e
V adj 1 1

The magnetic theory:



ELLIPTIC HYPERGEOMETRY OF SUPERSYMMETRIC DUALITIES 43

SP(2N) | SU(2Ny) U(1)g
q ! f vesy:
X Ta 1 e
Y Ts 1 s
My, J=0,...,K —1 1 Ta 2 - Boow T Bl
Myy 1, J=0,... B2 1 Ts 2 — NECL T 4 K
Myyir1, J=0,.., 53] 1 Ty |2+ B
My, J=0,...,K —1 1 Tx 2- iy, toa T Ra
\% adj 1 1
Here K is odd and N
N = 3KN; —4K 42— N. (11.10)

For these theories we have the following superconformal indices

I = PP D, 3w p g (11.11)
2N K
X/ (UZil SLUE 2 ) l—IfﬂF(sizfl,UI;Zfz;p,q)ﬁ dz;

and

R (g )N
i) (e 9)% V1S )Y 2
far= %F(U;p,qw TOEp" [T II T sisspa

E=Lon, +1 +1 pr¥ 41 _+1
DUz 27, U227 2775 p,q)
2J+& 7 7 7 i
X H HF U 28];p7 )/v~ H F(Z:tlz:tlp q) (1112)
J=0 j=1 1<i<j<N i %3
2Nf N

Ul—— -1 :I:l U2Z:t27

D, q il dz;
le_[131_[1 ] ,p,q EQ?TZZJ

where S = Hlef sy, U = (pq)W and the balancing condition reads
UN+2K—1S — (pq)Nf

The equalities I = I, for all the dualities described in this section represent new elliptic
hypergeometric identities requiring a rigorous mathematical confirmation.

12. SOME OTHER NEW DUALITIES

Let us denote
(p; )5 (g 0K
(N +1)!
N+1 N3 N
H " H + (t Ziy Urz; 7p7q) H dZ]

— —
TN H1gz’<j§N+1F(Zi iR '2jip.q) J=1 2miz;

Tay(ti, o stngs, ur, ..., UNs3; P, Q) = (12.1)

X
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with the balancing condition [[}* t;u; = (pg)?, and
(P P)oo (45 )2
Ipcy(tis- - tani6i Py @) = T oNNT (12.2)
N [12N+6
% Hi:l Hr:1+ F(trziﬂ%% q) H dz;
™ HlSi<j§N F(Ziilzjﬂ%p; q) vazl F(Zjﬁ;p, q) =1 2miz;

2N+6

with the balancing condition [[[Z,;" ¢, =

(pq)?.

12.1. SU < SP groups duality. For the first new duality the electric gauge group is G =

SU(N+1), but the dual gauge group is of the different type G = SP(2N). The flavor symmetry
group in both cases is

F=SU(N+3)xSUN+3)xU(1)p.
The field content of dual theories is given in the tables below

SUN+1) | SUN+3) | SUN+3)|U)p |U1)r
Q 7 f 1 2 |~
Qo f 1 f 2 | ¥
Vv adj 1 1 0 1
SP(2N) | SU(N +3) | SU(N + 3) U(l)p U(l)r
¢ / f 1 —(V+1) Ni3
72 / B f N+1 Ni3
X, 1 T4 1 2IN+1) | 2453
X, 1 1 Ta —2(N +1) | 24
Vv adj 1 1 0 1
The superconformal indices are
IE':IAN<t17"'7tN+37u17"'7U‘N+3;p7q)7 (123>
Iv= ] T@/tt;, Ufuusip,q)Isc, (... (U/T) o (T/U) ;. ip.g),
1<i<j<N+3
where
1<i<N+3 1<i<N+3
The equality I = I, represents the mixed elliptic hypergeometric integrals transformation

proven in [61]. We used this identity as a starting point for finding the described new Seiberg
pair of field theories.

12.2. SU < SU groups duality. Again, we use consequences of the mixed transformations

derived in [61]. Corresponding dualities have the flavor symmetry groups
F=SUK)xSUN+3—-K)xU(1); x SU(K) x SUIN+3—-K)xU(1); x U(1)g,

for arbitrary 0 < K < N + 3. The field content of the initial field theory is given in the table

SUN+1) | SUN+3) | SUN+3) | UL)s |U(L)r
Qi i i 1 I | v3
Q> f 1 f 1| ¥
Vv adj 1 1 0 1
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In order to verify the 't Hooft anomalies matching conditions for relevant flavor symmetry
subgroups, it is useful to rewrite the latter table as

SUN +1) | SU(K) | SUM) [U(L):1 | SUE) [SUG) [UD)2 | UW)s | UL

n f f 1 M 1 1 0 1 3

P J 1 f —-K 1 1 0 1 3

a3 f 1 1 0 f 1 M -1 3

qu f 1 1 0 1 f -K -1 3

% adj 1 1 0 1 1 0 0 1

where M = N 4+ 3 — K. The dual theory content is described in the following table

SU(N + 1) | SU(K) | SU(M) U(1)1 SU(K) | SU(M) U(1)2 Uz [ U()r
@ f f 1 %ﬁiu—(i;r M| o1 1 HE 1-M | 325
q2 f 1 f T T N+1 1 1 — éij\%—illi 1-K Niﬁ
@ s 1 1 MK f 1 (§V+;);;1§+M M-1 | 25
L ! ! (1) ) i e S
X1 1 7 1 M 1 7 -K 0 JuEs
Xo 1 1 f -K f 1 M 0 ﬁ
Y1 1 T T K—M 1 1 0 N +1 2 E
Y 1 1 1 0 K f K-—M —(N+1) | 2882
v adj 1 1 0 1 1 0 0 1

The superconformal indices have the form
Ip = Iay(t, - tngs, Uty - UNE3; D, ), (12.4)
Iy = H L (trus, toty, T/tsty, Ufupug) Ty (B, .o Ehig Uy, - Uy D5 Q),
1<r<K,K<s<N+3
where N1k
th = (T/U)2050) (T U )YV Dy, 1 <r < K +1,
r_ e 1/(N+1)
t, = (U/T)2(N+1)(TK/UK) tr, K+1<r<N+3,
N —K
W = (U)T)ZN (U JT) M40, 1<r<K+1,

(T/U) 77 (U Tie) Y/ VD,

K K
T::QLW U::QUW n<:[ym UKzllm

The equality Ig Iy for K = 1 was suggested in [78] and the general relation with the
complete proof for arbitrary K is given in [61].

K+1<r<N+3,

N+3 N+3

13. S-CONFINEMENT

Following [12, 13, 71] by s-confinement we mean smooth confinement without chiral symmetry
breaking and with a non-vanishing confining superpotential. We call a theory confining when
its infrared physics can be described completely in terms of gauge invariant composite fields and
their interactions. This description has to be valid everywhere on the moduli space of vacua.
The definition of s-confinement requires also that the theory dynamically generates a confining
superpotential. Furthermore, the phase without chiral symmetry breaking implies that the
origin of the classical moduli space serves also as a vacuum in the quantum theory. In this
vacuum all the global symmetries present in the ultraviolet regime remain unbroken. Finally,
the confining superpotential is a holomorphic function of the confined degrees of freedom and
couplings, which describes all the interactions in the extreme infrared. From the point of view
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of elliptic hypergeometric functions the s-confinement means that the dual theory possesses the
trivial gauge group and the integrals describing superconformal indices are computable exactly,
defining highly non-trivial elliptic beta integrals [76].

13.1. SU(N) gauge group. In this section we present known examples of the confining theo-
ries with the unitary gauge group.

For brevity we combine the electric and magnetic theories in a single table separating them
by the double line. The magnetic theory fields are denoted using the conventions of [12].

13.1.1. SU(N) with (N +1)(f + f). [71]

SUN)[SUN+D[SUN+D[UQ)[UD)g
Ql 7 f 1 1 | 5y
Q1 7 1 f 1| 5
V adj 1 1 1
QQ f f ues]
QN T 1 N | &
QN 1 f -N | #5

The superconformal indices for this theory are equal to, after appropriate renormalization of
the parameters (as explained at the beginning of this paper and in the next section)

/ ()X g N / 1
E
'H*Nfl

a e NCEE R )
N N+1 N—1 dz
-1, J
x H I Csmzitmz i 0) H Tmir (13.1)
j=1m=1 j=1
and
NA+1 N+1
Ly = [[ 0(Ss, . Tt pea) T Tlsutmip, a), (13.2)
m=1 k,m=1
where
N+1 N+1
m=1 m=1

and the balancing condition reads ST = pq.

The exact computation of the integral Ir = I, was conjectured and partially confirmed in
[78]. Its complete proofs are given in [61, 81]. In the simplest p — 0 limit it is reduced to one
of the Gustafson integrals [31].

13.1.2. SU(2N) with Ta + 2N f + 4f. The theory with G = SU(2N) gauge group and flavor
group
F=S8SU2N) x SUM4) xU(1); x U(1)y

was considered in [58, 60]. The field content of both theories is described in the table below
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SU(2N) [SU@N) [ SU@) | U(1); UM, UMDz

Q f 1 f —2N | —2N +2 :

Q f f 1 4 —2N +2 0

A T4 1 1 0 2N + 4 0

1% ady 1 1 0 0 1
QQ f f |4—2N| —4N+4 .
AQ? Ty 1 8 —2N + 8 0
AN 1 1 0 2N? + 4N 0
ANI0? 1 T, | —4N | 2N? —2N 1
ANTIQT 1 1 —8N | 2N? —8N 2
Q¥ 1 1 8N | —4AN%?+4N| 0

This theory was found to be s-confining. We would like to describe computation of the
corresponding indices in more detail. As explained at the beginning of the paper, first we
should write the single particle states index containing hypercharges of the fields for the U(1)g
and other U(1)-groups. In the present case we write

rq = Rqg+ qiox + ¢2qV,

where ¢1g = —2N, g2 = —2N +2 and x and y are chemical potentials for the U(1); and U(1)y
groups. Using this prescription, from the general formulas (3.27) and (3.28), we find the full
superconformal index of the electric theory

(pip)2Y Mg 20! / L((pq) N *2z;21: p, q)
(2N)! TNl oy F(z;lzj, zizj_l;p, q)

2N 2N 4 2N—-1

T — _Nx—(N— 1 dz;
XHHF ((pg)** =Nz, g) [ [T ()N as1250,0) [] 522
=1 j

ey 2miz;

Iy = (13.3)

The index in the magnetic side is written as

2N 4
CNVz—2(N—1)yt L o (N—
Ly = [T T(g) M 2N g s:p.q) [ D) N4t p, q)

j=1k=1 1<j<k<2N

9Nz ERTI
[T Tpg) NN a5 p, )T ((pg) V5 p, q) (13.4)
1<j<k<d

X T((pg)' NN =D; p g)T((pg) ™M —2N =D, ).
Now change of variables

tj — (pq)‘z“w‘”ytj, j=1,...,2N, (13.5)
ﬁ
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Using these relations, we come to the following integrals

2N-1 2N-—1 T (tz;2::
1, = Bl (69 / (fzmlp, q) (13.6)
(2N) T2N-1 1<j<k<2N F(ZZZJ y %5 gy Dy q)
2N 2N 4 R L
. J
XHHFth N HF(SiZj7p>Q) H 2miz;
7j=1k=1 =1 j=1
and
2N 4
F(tN T;p,q)
IJ\/[ = H tt tk,p, HHF tkslap7 (tNT p )
1<j<k<2N k=1 i=1 ’
[I r¢* sismip.a). (13.7)
1<i<m<4

where the balancing condition reads
tN2ST =

Equality Iy = I defines the elliptic beta integral introduced in [78]. It represents an elliptic
extension of the Gustafson-Rakha g-beta integral for odd number of integration variables [33].

13.1.3. SU(2N + 1) with Ta + (2N + 1) f +4f. [58, 60]

SU(QN + 1) SU(QN + 1) SU(4) U(1)1 U(1)2 U(l)R
Q f 1 f —2N —1 —2N +1 %
Q 7 f 1 4 —2N +1 0
A Ta 1 1 0 2N +5 0
\%4 adj 1 1 0 0 1
QQ f f 3—2N —4N + 2 :
AQ2 T 1 8 —2N +7 0
ANQ 1 f | 2N-1]2N*+3N+1| 3
ANTIQ3 1 f |-6N-3|2N?*-3N-2| 3
QN+ 1 8N + 4 —4N% +1 0
The indices have the form
(2N - 1)' TN <jck<an+1 P(ziz; 27 23p.0)
2N+12N+1 4 2N d=
—1. . J
X H H F tkzj Ny Q>HF<SZZJJp7 q) H 27TiZj
j=1 k=1 =1 7=1
and
2N+1 4 4

L(tVsi;p, q)

Iy = ttt F tLSi; D, T7 , ——— (13.

M . H kD, q H H kSis D, q p q)HF(tNTS“p, q) ( 39)
1<j<k<2N+1 k=1 =1 i=1
where
2N+1

4
H tk, S = H Sk
k=1 k=1
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and the balancing condition reads
NEIST =

The equality Ir = I was also suggested in [78] as an elliptic extension of the Gustafson-
Rakha g-beta integral with an even number of integrations.

13.1.4. SU(2N + 1) with Ta +T 4 + 3f + 3f. Models [13]:

SURN +1)[SUB)[SUBR)] U1), [U1); U(1)s Ul)x
Q f f 1 0 1 2N —1 1
Q f 1 f 0 -1 2N —1 :
A Ty 1 1 1 0 -3 0
A T, 1 1 -1 0 -3 0
% adj 1 1 0 0 0 1
Q(AA)FQ f f 0 0 |4N-2-6k| 2
A(AAkQ? Ty 1 -1 2 |AN-5-6k| 2
A(AA)*Q? 1 Ty 1 2 |AN-5-6k| 2
ANQ f 1 N 1 —-N -1 3
ANQ 1 f -N -1 -N -1 1
ANIO3 1 1 N -1 3 3N 1
AN=13 1 1 |-N+1| -3 3N 1
(AA)™ 1 1 0 0 —6m 0

where k=0,...,N—landm=1,..., N.
The superconformal indices are written as

( 2N / F(tZiZ], SZ Z apv Q)
[ =
E= 2N+1 ToN H (227t 2

1<i<j<2N+1 j o F zj7p,q)
IN+1 3 2N
j
X H HF tkz],skz D, )HQWiZj (13.10)
=1 k=1 7j=1
and
3
Iy = HF(tNti, sV sip, )T (Y tataty, s 5182835, q) (13.11)
i=1
N 3
< [[T((ts)ip.q) [] T(tsY " tisiipg) [ T 'sotite, /s sisiip.a),
Jj=1 i,k=1 1<i<k<3

where the balancing condition reads

3
(t5)2N_1Htk3k = Pq
k=1

The equality Ir = Iy was derived in [78] by purely algebraic means as a consequence of
other elliptic beta integrals. In the simplest p — 0 limit it reduces to a Gustafson’s g-beta
integral for the root system A,y [32].



50 V. P. SPIRIDONOV AND G. S. VARTANOV

13.1.5. SU(2N) with Ta +Ta + 3f + 3f. Models [13]:

SURN)|[SUB)[SUB)| U1); [U1), Ul)s; (UM
Q f f 1 0 1 2N —2 1
Q f 1 f 0 -1 2N —2 3
A Ty 1 1 1 0 -3 0
A Ta 1 1 -1 0 -3 0
V adj 1 1 0 0 0 1
Q(AAQ f f 0 0 |4N—-2-6k| 2
A(AA)kQ? Ty 1 -1 2 |AN-5-6k| 2
A(AA)RQ? 1 Ta 1 2 |AN-5-6k| 2
AN f 1 N 1 —-N -1 :
AN 1 f —N -1 -N -1 3
AN=IQ? 1 1 N -1 3 3N 1
AN=1Q? 1 1 |-N+1] -3 3N 1
(AA)™ 1 1 0 0 —6m 0

where k=0,....,.N—-1,m=0,....N—2andn=1,...,N — 1.
The expressions for the superconformal indices are

2N— 1 2N 1 I'(tziz;, sz, z by
@ p) / 11 (tzi2; p4) (13.12)
T2N—

1
1<< <2N F(ZZZ] 7’27, Z]7p7q>

2N—-1

2N 3
_ dz;
<L e ) 1T 5
j=1k=1 j=1 J

and

’,:]2

3
Ly =T(t"s"ip,q) [ T 'titw,s" 'sisispoq) [T [] T((ts) tises p, q)(13.13)

1<i<k<3 ]:1 i,k=1
N-1
X (T((tS)j;p, q) [ TW's'tits, s sisisp, q)) :
7=1 1<i<k<3

where the balancing condition reads

3
(tS)zN_2Htk8k = pq.
k=1

The equality I = I, was also derived in [78] as a consequence of some other elliptic beta
integrals. It reduces to one of Gustafson’s integrals for the root system Asy_; [32] in the
simplest p — 0 limit.

13.1.6. SU(KN;—1) with N;f + N; f +ladj. Taking N = KN;—1in (10.1) (or, N =1), we
find the s-confining dual theory discussed in [16]. The field content of these theories is easily
found from the tables given in that section. Namely, in the electric theory one should fix NV as
described. On the magnetic side one should keep all the mesons and baryons, and set N = 1
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in the gauge group part. Therefore for this case we write directly the superconformal indices

. F UZ -_I,U j '_1; ’
Iy = VNN T(U;p.q )N—l/ H ( “i%j 2% 3P,4) (13.14)
TN

N! 1SN F(ZiZ;17z;IZj;p, q)
Ny N N-1 d
X HHP(SiZjati_l y Py q H 27”2
i=1 j=1 j=1 J
and
- -1 -1 . K _q _K
e =] DU sit; s p,q) [[TW(ST) 77, U(ST) = ti;p,q), (13.15)

1=1 1<ij<N —

where U = (pg)®+1 and the balancing condition reads

Ny
UZKNf—2HSiti—1 _ (pq)Nf

1=1

For K = 1 one obtains the known Ax-root systems integral of type I from section 13.1.1.
The conjecture Ip = Iy, for K > 1 represents a new elliptic beta integral requiring rigorous
mathematical justification.

13.1.7. SUBKN; —1) with Ny f + Ny f +2adj. If we take N = 3KN;—1in (10.4) we obtain
the s-confinement in the magnetic theory discussed in [46]. The superconformal indices look as
follows

Iy — ;)X g )~ 1/ 1T D(Uziz ' Uz 25 p, )U(UR P22 UK 250 p, q)
TN = 1<z<]<N F(ZZZ] 1722 1Zj;p7 Q)
Ny N N-1 d
X F T 7t ] ) . bl 1316
HH SZ] 2 zj P )j:1 27TZZj ( )
K-1 2
Ly =[] [JT@ 572t p.q)
L=0 J=0
Ny
3K 3K
x [[R@ R 22(ST)2n s, UCK2(ST)  anty5p, ), (13.17)

i=1
where U = (pq)KL+1 and the balancing condition reads
UNST = (pg)™

The equality Ig = I; is a new conjectural elliptic beta integral.

13.1.8. SU((2K+1)N;—4K —1) with Ny f+ Ny f+2T4. If we take N = (2K+1)N;—4K —1in
(10.7) we obtain the s-confinement in the magnetic theory discussed in [46]. The corresponding
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superconformal indices are

5 = PP @i 1/ I Uzzzya l(pQ)K“z 25 1p.q)
TNy <ici<n (225,225 311 q)
N Ny N-1 g
X HHF(skzj,tkzj_l;p, q) H 2m,;, (13.18)
j=1k=1 j=1 J
where S = H;Vf 185, T = H;V:fl t; and the balancing condition is

NA2K

ST = (pg)™ %+t

The magnetic index is found to be

K Ny
v =[] T((pg) ©5 siti; p, q)

j=0k, I=1
K-1 B .

X DU (pg) %+ sy.s1, Ulpg) =t p, q) (13.19)
r=0 1<k<I<Nj
Ny

< [IT(WO)2 s, (UT) 2 (pg) <1t p. q),
k=1

~ lfKNf+2K
where U = U?ENs=4E=19T7=1(pq)~®+T  and U is an arbitrary parameter.

For K = 0 and any parameter U one obtains the integral discussed in section 13.1.1, while
the general conjecture Ir = I, represents another new elliptic beta integral.

13.1.9. SU((2K +1)N;+4K —1) with Ny f + Ny f+2Ts. If we take N = (2K +1)N;+4K —1
in (10.10) we obtain again the s-confinement in magnetic theory [46]. Corresponding electric
index is

. N-1 FUYZZ'Z',[]_1 K+1Z Z » s
;= PP ('q,q) / (Uziz; _ ()72 % s 4) (13.20)
N! TN-1 1<i<j<N P(Zl Zjazz j 7p7Q)
N 1 Ny No1
< [T Wz, U (pg) 252 p, ) [ [ Tsvzso tezs p.0) [ | 5
j

j=1 k=1 j=1
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The magnetic index is

K Ny v
Ly = D00 o) p. ) [[ ] D(ea) = sitiip.q) (13.21)
7=0 k,il=1

r+l _r_
X H H LU (pg) T sy, U(pq) T bty p, q)

r=0 1<k<I<N;
K-1 Ny X
r+l _r
< [T TIT W (pg) s}, Ulpg) K51 835 p, q)
r=0 k=1
Ny
~ ~ 1
< [[ (W02, (U0) 2 (o) =8, 0),
k=1
where S = vazfl s, T = vazfl t;, the balancing condition reads

N—-2K

ST = (pg)Nr~ =1,

17KNf72K

and U = U2K]\/f+4K—1ST—1(pq)Ki+1
Presently, the conjecture Ig = I, is confirmed only for K = 0 and any U, which reduces
again to the integral of section 13.1.1.

13.1.10. SU((4K 4+ 3)(Ny—4) — 1) with Nyf + (N; —8)f +Ta + Ts. If we take N = (4K +
3)(Ny —4) — 1 in (10.13) we obtain the s-confinement in magnetic theory [46]. The electric
index is

. N-1 . N-1 F UZZZ7U 2(K+1)Z Z 3D,
o - A0k / W2, U pa) 02250 0) g0
N! TN-1 1<i<j<N F(le Rjy Ri% j 7p7 q)
Ny Ny-8 N-1 dz;
1.
X HF pq Q(KH)Z 7p7 IHF SkZ5, P> q H F(tle P4 I[ 27TZZJ
= Jj=

The magnetic 1ndex is

2K+1 Ny Ny—8

Ly = [T II TI (a0 sits;p.0) (13.23)

J=0 =1 j=1

K Ny
41+1
><H I ()™ (wo) " siszip.q) [T [T ((00) 50 (wo) s p, q)

1=0 1<i<j<Nj 1—0 i—1
2K K—-1N s
[T TI Twa & utit;pq) ] H T((pg) &0 uvt?; p, q)
m=01<i<j<N;—8 m=0 i=1
Ny
x D(U Y (pg)*= ;5 p,q) [[T(UT) 2559, )
k=1

X H L((UT)" (pg) ™5t p, q),
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where S = vazfl sj, T = Hjjvifl t;,
U = uw(pg) ™, U = u K0 =01 (g s,
and the balancing condition reads
uw ST = (pq)Nf_4_m.

The equality I = I, is the conjecture defining one more new elliptic beta integral.

13.1.11. SU(3KN;+3) with Nyf+N;f+adj+Ts+Ts. If wetake N = 3K N;+3 for K-odd
in (10.16) we obtain again the s-confinement in magnetic theory [46]. The electric index is

P ()N C Q)évo_lf D(Uzz ', Uz 2p,q)
o
N' TN-1 1<i<j<N F(ZZZ] 1722 Zj;p7 q)

[T TW2XYz2, US(XY) 27 2 p,q) (13.24)

1<i<j<N

N
X H D(URPXY 2, UN(XY) ™25 p, q)

Nf N N-1 das

XHHFSZJ?tz Z] 7p7Q) 2 ~]

- 2miz;

=1 j=1 j=1
and
K—1 Ny
Iy = H HF UL+Kst ! ULst Lp,q)

L=0 ¢,5=1

K-1

< [T TI TEY)U T Pss;, XYUTTRPE T p )
J=0 1<i<j<Ny
A3t Ny

< [T [Ir(xy) v+ 522, xy v +52:2:p q)

J=0 i=1
% F(UK/2XN_KNfYN, UK/2(XN_KNfYN)_1;p, q)

SKNf+4

X HF —K+2) /ZXKNf-i-QYi s; 1’p7 q) (1325)

3KNf+4

x H D(UERDR XNy ==—=—¢,:p q),

where U = (pg)V/E+D Y = (ST)YNs, S = Hf\;fl s, T71 = HZN:fl t;1, X is an arbitrary
parameter and the balancing condition reads

UNT2ST ™ = (pg)™f

Again, the proof of the general equality Iz = I, is absent.
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13.1.12. SU(BBKN;—5) with Ny f+N;f+adj+Ta+T 4. If we take N = 3KN;—5 for K-odd
in (10.19) we obtain again the s-confinement in magnetic theory [46]. The electric index is

PR (7 PN U Q)évo‘lf D(Uzz; " Uz_lzj;p, q)
o
TN

N - 1<i<j<N P(ZZZ] ’Zz Zj; b, Q)

H P(UK/zXYZZ’Zj,UK/2(XY)_ ZZ_ Zj_l;pv Q)
1<i<j<N
Ny N N—-1 d
-1,
X HHr(sizj,t,. Lp,q H 27% (13.26)
=1 j=1 7j=1
and
K—-1 Ny
IM: H H I UL+K$t ! ULSt 17p7q)
L—Oij—l
X H [T DY) U sy, XYUTHEPE Y p g)
J=0 1<i<j<Ny
532 Ny
< [] [Ir(xXy)- o562 Xy u2/+i+k2:2, ), g) (13.27)
J=0 i=1

% 1_[p(U(—K+2)/2XKNf—2Y’gmzvfi4 siip,q)

3KN

X HF —K+2)/2 x —(KNy=2)y — 2f74ti;p> q),

where U = (pg)VE+) Y = (ST)Ns, 8§ = [[, s, T = [, 7", X is an arbitrary
parameter and the balancing condition reads

UNT2ST™ = (pg)™.

No proof of the equality I = I; is known at present.

13.1.13. SU(N) with Nyf + (N; —8)f +adj + Ta + Ts. If we take N = 3K(N;—4)—1in
(10.22) we obtain again the s-confinement in magnetic theory [46]. The superconformal indices
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are
I (p p N 1/ H Uzl UZ Z],p,q)
TN— 1<<<N Z] 7ZZ Zj7p7q>
N
x [Tr@™*(xy) "2 p,q)
i=1
H F(UK/2XYZZ‘Z]', UK/2(XY)_1ZZ-_1Z]-_1;]9, Q)
1<i<j<N
N
x [Tr@"(xy) "2 p,q)
i=1
N Nf Nf—8 N—-1 d
XHHF(SiZJ'?pa(J) | RGN | 27”% (13.28)
Jj=11i=1 k=1 j:1
and
K-1 Ny Ny—8
1T I] rw™ " sit;, U"sit;;p,q)
L=0 =1 j=1
K-1
<[ ] TUXY)'U* 2ss5p.9)
J=0 1<i<j<Ny
K-1
y D(XYU ™ 2t;t:p,q)
J=0 1<i<j<N;—8
K—1 Ny
< IT T T((xy)~'u7 83 p, q) (13.29)
J=0 i=1
x D(US2(XYN) ™Y p,q)
Ns 3K (Nf 1)
< [[r@-r+2r2y s; 0, q)
1=1
Ny—8 SK(Nf 4)
x [ rwsRy- te'ips ),
k=1
where U = (pg)VE+) & = [[Y, s, T = J[ °t;, the balancing condition reads

UNXAY ST = (pg)Nr=* and

1
Vo= (ST (pg) )T
Equality of indices defines one more unproven elliptic beta integral.

13.1.14. New confining duality. Let us take the electric and magnetic N' = 1 superconformal
field theories described by the table below
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SUNN+1)[SP2N)[SUN +3)[ UQ) [U(1)x
1 f 1 f 1 0
Q2 f f 1 —NET
X T4 1 1 N+3| 0
V adj 1 1 0 1
q =" 1 T4 N +1 0
QIQQ f f _N;rl 1
The dynamically generated potential in this case is
1
Wayn = A U (Q1Q2)%
The indices read
L(Sz 'z "p.q)
Iy = N+1 / 11 T(z2; ) 0
™ 1<i<j<N+1 ZZZ] 7ZZ Z]ﬂpvq
=1 Hff:l I(Stez; ' p, q) o 2z
and
AR C(tkSm; p,q
nv=1] H Ui, [T TSs's.bipa), (13.31)
k=1m=1 Stks l’p’ Q) 1<l<m<N+3
with the balancing condition
N+3
5 = I s
m=1

The elliptic beta integral described by the equality Ip = I; was discovered by the first
author and Warnaar in [87]. Here it defines a new pair of N’ = 1 supersymmetric quantum field
theories dual to each other, which was not considered earlier in the literature. Conjecturally,
there should exist a symmetry transformation for a higher order generalization of Ir depending
on the bigger number of parameters. Correspondingly, there should exist a more complicated
Seiberg duality as well.

13.2. Exceptional cases for the unitary gauge group.

13.2.1. SU(4) with 3f + 3f. The dual theories are described in the table below [13].

SU@) [SUR)[SUB)[SUB) UM, [U1): | UDx
Q f 1 f 1 1 2 i
Q f 1 1 f -1 2 1
A T4 f 1 1 0 -3 0
1% adj 1 1 1 0 0 1
= QQ 1 f f 0 4 :
= QA*Q 1 f f 0 -2 2
H = AQ? f f 1 2 1 2
H = AQ? f 1 f -2 1 2
T = A? Ts 1 1 0 -6 1
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The superconformal indices are given by formulas

. 3 . 3 2 PV
]E — (pJP)OO(q? q)oo / Hk 1 (SkZZZJJZ)? q) (1332)
T

| ‘ 1 -
4. 3 1§Z<j§4 F(ZZZ] 7ZZ Z])p7 Q)

4 3 3
_ dz;
< [TTIT ez w0 0) [ ] 5
j=1k=1 j J

7j=1
and
2 3
IJ\/[ = F(S7p7 q)HF japa H F tkUl,StkUl;p, q) (1333>
j=1 k, =1
2 3
< [TTIT(Tseti ", Usiu ', ).
k=11=1
where
2 3 3
S = Hsk, T = Htk, U = Huk
k=1 k=1 k=1

and the balancing condition reads
S*TU =

The duality conjecture requires that Iy = Ip;, which defines a new elliptic beta integral
requiring a rigorous proof. This relation and others given below carry an exceptional character
because they are not generalizable to arbitrary rank gauge groups.

13.2.2. SU(6) with 4f 4+ 4f. The following pair of models was constructed in [13]:

SU6) | SU4) | SUM4) [U1), |U)e | UMk
Q f f 1 1 3 1
Q f 1 f -1 3 1
A T34 1 1 0 -4 -1
i% adj 1 1 0 0 1
My = QQ / / 0 6 2
My = QA*Q / / 0 -2 0
= AQ? f 1 3 5 2
= AQ? 1 f -3 5 2
By = A3Q° b 1 -3 0
By = A3Q)? 1 f -3 -3 0
T 1 1 0 -16 4
Their superconformal indices are
I — (p;p)io(q;Q)io/ [(Uzizi2:p.0) (13.34)
6! T 1<icj<k<6 F<ZZZJ 'Zi 25D 4)

6 4
X H H I'(skzj, tkz D, q H Qfmz
j=1k=1 J

J=1
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and
4
Iy = II D(st, Usity; p, ) (13.35)
k, I=1

4

H (SUSk ,SUgsk 7TUtk 7TU3tk P4 )7

k=1
where

4 4
S = H Sk, T = H tk
k=1 k=1
and the balancing condition reads
STUS = pq.
We come once again to a new conjectured computable elliptic hypergeometric integral: Ip =
Iy
13.2.3. SU(5) with 3T4 + 3f. Models [13]:
SU() | SU@3) | S

J( UB) | UQ) [ UD)r
Q / 1 / -3 2
A Ty f 1 1 0
\%4 adj 1 1 0 1
AQ N EERE
AQ Tas / 0 3
A° Ts 1 5 0
Indices:
AV BV 3 .
IE — (p7p)00$q7Q)oo/ Hk 1 1(3]62;2‘7’])7 q) (1336)
o! T 1 ili<s F(Zzzy V2 25305 q)
5 dz;
-1, J
X H H F<tkzy Py q H 27T’LZJ
Jj=1k=1 J=1
and
3
Ly =[] T(Tsit;tspo0) [ T(Ssisesp.q) (13.37)
k=1 1<j<k<3
3 3 3
X HF<SS§7P7 q) H F(stjtl;p7 HF Stlupa 9
j=1 k,jl=1:k#j =1
where

3 3
= H Sk, T = Htk
k=1 k=1
and the balancing condition reads
S3T = pq.
The equality Ir = I, yields a new elliptic beta integral, which is conjectured to hold for

parameter values guaranteeing that only sequences of poles of the integrand in Iz converging
to zero are located inside the contour T.
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13.2.4. SU(5) with 2Tx + 4f + 2f. Models [13]:

SU(B) | SU(2) | SU4) | SUR2) |U(1), U |U(1)r
Q f I 1 fl -2 3
Q f 1 f 1 1 3
A Ta f 1 1 0 -1 0
Vv adj 1 1 1 0 1
QQ 1 f folo-t :
AQ? f T 1 2 1 2
A%Q Ty 1 f -2 -1 %
1
A3Q f f 1 1 -2 3
A2Q%Q 1 f 1 -3 1 1
Indices:
oV (e )4 2 I o
IE — (p7p>oo<q7Q>oo / Hk:l_l(sk_Z;Z]’Z% C]) (1338)
5! T s D(ziz; 7, 2 250, 9)
5 4 4 Ao
< [TTITte " wezip o) [ ] 5
L. L L 2miz;
j=1k=1 Jj=1
and
4 4 2 2
k=1 k=1 1=1 k::l
2 2
H Sluk7p7 H H P Sktltmapv )7
k=1 k=11<l<m<4
where

2 4 2
= H Sk, T = H tk, U = H Uk,
k=1 k=1 k=1
and the balancing condition reads
STU =

The equality Iy = I, defines a new elliptic beta integral requiring a rigorous proof.

13.2.5. SU(6) with 2T4 + f + 5f. Models [13]:

SU(6) | SU(2) | SUB) |U), | UML) | Uk
Q f 1 1 -5 -4 0
Q f 1 f 1 -4 0
A Ty f 1 0 3 :
1% adj 1 1 0 0 1
QQ 1 f -4 -8 0
AQ? f Ty 2 -5 :
A3 Tss 1 0 9 3
A*QQ f f -4 1 :
A*Q? 1 T, 2 4 1
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Indices:
I (p;p)2(4:0)% / UZiZjQPaQ)
E 6' —1 .
T5 1<2<]<6 ] 727, Zj7p7 Q)
6 5 5 4.
) ~1, J
X H H F(SleZk,p, q) H Hr(tkzj D, q H 27_”2]
=1 1<j<k<6 j=1k=1 j=1
and
5 2 5 2
Ly = [[T0tsp. o) [T TIT(SUstsso. ) [T T] T(ststiip.a)
k k=1j=1 k=11<j<I<5
2
H F(Sztjtk;p, HF .S535, q)
1<j<k<5 7=1
where

2 5
= H Sk, T = H tk
k=1 k=1
and the balancing condition reads
STU =

The unproven equality Ir = I, defines a new elliptic beta integral.

13.2.6. SU(7) with 2Ta + 6 f. Models [13]:
SUMSUR)[SU6) [UM)[U

J( (Dr

Q / 1 / -5 :
A Ta f 1 3 0
V adj 1 1 0 1

AQ? f Ty -7 2

A*Q Ts f 7 %

Indices:
(p;2)%(4: 0)% 1
Ig = —
7 T 1<Z<j<7 ] 7Z7, Z]7p7q)
6
dz;
. —1. J

X H H F<Skzizj7p7 q) H H F(tkzj D, q H 271_22

k=1 1<i<5<7 k=1 j=1 7j=1
and
6 2 2
IM HF S2tk7p7 HHF(Sslztkapv Q)H H F(Sktltm7p7 q)7
k=11=1 k=1 1<l<m<6
where

2 6
= H Sk, T = H tk
k=1 k=1
and the balancing condition reads

S°T = pq.
The conjecture I = I, gives us a new exact integration formula.
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(13.40)

(13.41)

(13.42)

(13.43)
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13.3. Symplectic gauge group.

13.3.1. SP(2N) with (2N +4)f. Models [39]:

SP(2N) | SU(2N + 4) U(l)R
Q / f 2r = N—+2
V adj 1 1
@7 | Th =55
Indices:
Ip = / H JESpES]
2NN' 1<z<j<N ci %5 P, Q)
y ﬁ iy Tj(émzy P Q) Lp dz;
ey (257 p,q Pl 2miz;
and
IJ\/[ = H F(tmtmpu Q>7
1<m<s<2N+4

where the balancing condition reads

2N+4

IT tn = pa
m=1

(13.44)

(13.45)

The equality I = I, defines a BC'y elliptic integral of type I representing an elliptic analogue
of the computable Dixon integral [21]. It was introduced and partially justified by van Diejen
and the first author in [17] and completely proven in [61] and [78]. Its simplest p — 0 limit

yields one of the Gustafson g-beta integrals [31].

13.3.2. SP(2N) with 6f and T4. This duality was considered in [9, 11]. The flavor symmetry

group is
F=5U0(6)xU(1)
and the field content is

SP(2NY [ SU(6) U

S
—~
—_
~—

R
Q f f N -1 2r = %
A Tx 1 -3 0
V adj 1 0 1
AF 1 -3k 0
QA™Q Ty [2(N—1)—3m é
where k =2,..., Nand m=0,...,N — 1.
The electric superconformal index is given by the integral
tzj:lzjj’ 7
[E_( ;NE\H )Oortp’ Nl/ 2 ipo)
TN 1<z<]<N y D, Q)

7p7
XH m 1 H27rzz]

Z7%p.q)

(13.46)
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and the magnetic index is

N

Ly =[r@po]]

j=2 7=11<m<s<6

Dt ntssp, q), (13.47)

where the balancing condition reads

6
N2 I tm = pa.
m=1

The equality Ig = I, is the elliptic Selberg integral introduced by van Diejen and the first
author [17] and proven in [18] as a consequence of the BC,-elliptic beta integral of type I (its
direct proof is given also in [61]). The Selberg integral plays a fundamental role in mathematics
and mathematical physics because of a large number of applications [27]. Note that for N; = 3,
K = N this exactly computable integral gives a confirmation of the KS duality for these special
values of parameters.

13.3.3. SP(2M) +4f +2M f + T4. This new confining duality is obtained from the results of
section 7 by formal setting N = 0. The models are described in the table

SP(2M) SU_(4) SP2M)| U(l) |UQ1)r
O f f 1 L0
Q2 f 1 f —3 1
X Ta 1 1 1 0
v adj 1 1 0 1
M = 1@ I f -4 1
= QiX/ Ty 1 j—2=21 0
where j =0,..., M — 1.
Conjecturally equal superconformal indices look as
1 _ )@ 9T (P q) %270, q)
E = oM [ H ¢1 1. P q)
l<z<]<M “i J i

ttkl i, )Hj_lf(sji Lp,q) dz

Hkl
H

: (13.48)
Fip ) TIL Tltsyzispg)  2miz
and
C(ts;t, ";p,q M !
HH t”f’ ’ H [T ree't ), (13.49)
1 (trsjipsq i=0 1<k<r<4

where the balancing condition is [[;_; t

13.3.4. SP(2K(Ny — 2)) with Nyf +T4. This duality was considered in [16, 46]. Looking at

(11.1) we see that the choice N = K (N;—2) yields N = 0, and the dual theory is s-confining.
The field content of the electric and magnetic theories is easily found from the table given in
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that section. For brevity we present only the superconformal indices

(p; p) N2 (g ) VP
2K =2 (K (Ny — 2))!

x 11
']TK(Nf72)

Ip = L(Usp,q) =27

L(Uz"2"p.q)

+1 j:l
1<i<j<K(Ny-2) Tz P:4)
K(Nj—2) 12N K(Nj—2
al )H fr(sz] 7p7Q> (2 =2) de
< |1 1T I (13.50)
j=1 F( j 7p7 q) 27TZZj
where U = (pq)KL+1 and
K
IM = F(Uapv Q)_ln H F(Ul_lsisj;p> q)a (1351)
=1 1<i<j<2N;
where the balancing condition reads
2N
U2KNf_2KH8i — (pq)Nf
i=1

The conjecture Iy = Ij; is a new elliptic beta integral. For K = 1 it reduces to the special
case discussed in section 13.3.1.

13.3.5. SP(2(Ny—2+42KNy)) with Ny f+Ts. Looking at (11.4) and fixing N = N;—2+2K Ny
we obtain the s-confining theory which was considered in [16, 46]. The superconformal indices
are

2 :|:1

(P P)5o (43 05 1D, q
[E QNNI FUp, H :|:1 :|:1 D, q H F i 7p> )
l<z< <N 1D 1<i<N
2N
o H fH1<g<Nf 2+2KNf F(Sizj 'D, q) H dz; (13.52)
ngjgNF( r %p,4q) 1<j<N 2miz;
K
=11 T(U'sis5;p,q) (13.53)
1=0 1<i<j<2N;
K- 2Ny
H H F(U(2l+1’/2sisj;p, ) [[T @258 p,q).
=0 1<i<j<2N i=1
where U = (pq)% and the balancing condition reads
2N
U2Nf—2+4KNf H Si — (pQ)Nf
i=1
The equality Ir = I, represents the final new conjecture for elliptic beta integrals for

arbitrary rank symplectic groups which we were able to find.
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13.3.6. SP(2(3K Ny—4K—-2)) with N;f+2T4. Looking at (11.7) and fixing N = 3K Ny—4K—
2 for K odd we obtain the s-confining theory which was considered in [46]. The superconformal
indices are

(p;0) 5 (g 0%

% N H F(il jE1p H 'p Hsz
TV 1<icj<n P g i=1 j=1 J e j=1 J
and
K—-1 2 KL ong
KL K
Li=TW.U=p.) ' TII] I TW*%sisipa) [] [0 % s%p,q). (13.55)
J=0 L=01<i<j<2N; J=0 j=1

where S = Hfivlf si, U= (pq)ﬁ and the balancing condition reads
U3KNf—2K—IS — (pQ)Nf

The conjectural equality Ir = I, is an exceptional relation, similar to the ones we considered
above for unitary groups.

13.3.7. SP(2(3K Ny — 4K + 2)) with Nyf + Tg + T4. Looking at (11.10) and fixing N =
3K Ny —4K +2 for K odd we obtain the s-confining theory which was considered in [46]. The
superconformal indices are

PiP)oo\454)
Ie = %F(UZ )N DU s p, )N (13.56)
/ j:l :tl Ulz(zj:lzj:l’n ﬁﬂr :tl U2Zi2,p,q)lj—vl dz;
j:l j:l .
™ 1<i<j<N F D, g i=1 j=1 ] 7p,q) =1 27T7,Zj
and
K—-1 2 KL ang
KL K
Ly =T(Usp,q)™" H H DU 5850, q) H HF(Uz‘”?S?;p, q), (13.57)
J=0 L=01<i<j<2N J=0 j=1
1

where S = Hfivlf si, U = (pg)®+1 and the balancing condition reads

U3KNf—2K+IS — (pQ)Nf

The conjectural equality Ir = I, is our last new elliptic beta integral.
14. EXCEPTIONAL (G5 GROUP

Go with 5 flavors. This duality was discussed in [30, 56]. The upper table describes
the electric theory, its magnetic dual, presented in the lower table, does not have local gauge
symmetry (s-confinement).

G, [SUG)

<
]
—_
~—]

R

Q1|7 f 2r = <
V | adj 1 1
2 2
A 5
Q' f 5
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The superconformal indices are

3 5 +1 2
mZy 3D, dz;
IE' _ ( oo HF i D q Hk:le:l ( 2 D4 H (141>

223 T2 H1§j<k§3 F(zilzkﬂ,p, e 27rzz]
and
5
H ((pg) T/L;f, 2>9 i, 1 r<<§§f5’5?:lf’ ?; q) (142)
m=1 M A 1<1<m<5 m b
where
212923 = 1, ltm| < 1,

and the balancing condition reads

5
I1tm = wa)'
m=1

The conjecture Ip = I, describes the first elliptic beta integral for an exceptional root
systems (it was mentioned in [86] and proposed also earlier by M. Ito).

G5 with 5 < Ny < 12 flavors. This duality was discovered in [57]. The electric theory has
gauge group G, but its magnetic dual has SU(N; — 3) gauge group. Their field content is
presented in the tables below.

Gy SU(Ny) ULk

Q 7 f 2r=1-— Nif
V adj 1 1

SUN, —3) | SUO,) o
q f ! 2rg = Nif( - ﬁ)
% f 1 2ry, = 1 — f_g
s Ty 1 2r, = Nf2_3
M 1 Ts 2ry =2 — N%
V adj 1 1

Corresponding superconformal indices are described by the integrals

;i OOH [l Tl Dtz s, >ﬁ2dzk (143)

m7p> 1 ’
223 T2 H1<j<k<3r(zilzkﬂﬂp7 q) ooy 2mizk
) Ny—4
pvp oo q q
e = )(N £3)) I Thra HF (t5:p.q) (14.4)
f : 1<]<k;<Nf

L'((pq)"z;zk; p, Q)
R

1<j<k<N;—3 F(’Z] Rky 252, 7p7q)
Ny—3
<[] T(wa)23ip.q) [] D)2 p.q)
= =

Ny—4
de

XHF pg)' R ) [ 55
j=1 !
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where
2129723 = 1, |tm| < 1,
and the balancing condition reads

Ht q) N2,

The equality Iz = I, represents a new symmetry transformation formula for general elliptic
hypergeometric integral on the G5 root system. Independently it was also considered earlier by
F. A. Dolan.

For N; = 5 the integral I), takes the form

5
Iy = (pp = 1] Tt®tspo [[TE:pq (14.5)
7j=1

1<j<k<5

y / L((pg) 20, ) [Ty T((pg) 4, 255 pq) dz
T I'(=*%p,q) 2miz’

Using the univariate elliptic beta integral, one can compute this I;; and find the index
coinciding with I,; described at the beginning of this section. As to the proof of the general
Gs-transformation Iy = Iy, it should be a subcase of the original Seiberg duality relation for
the SU(3)-gauge group. Indeed, let us take N = 3 and t; ' = s; in the electric index (4.6). If
we set then sy, = pg, we obtain the Go-group electric index (14.3) with N; and ¢; replaced by
Ny — 1 and s;, respectively. Therefore it is expected that Gy-magnetic index can be obtained
after appropriate restrictions in I, (4.6). The difficult part consists in computing the limit
SNy — DPg, since it leads to a diverging integral multiplied by a vanishing coefficient. This limit
is currently under investigation.

15. T HOOFT ANOMALY MATCHING CONDITIONS

In this section we check the standard 't Hooft anomaly matching conditions [36, 90] for some
of new dualities. The needed Casimir operators for SU and SP groups can be found in the
Appendix C. There are also the discrete anomalies matching conditions [16], but we skipped
their consideration in the present work.

Multiple SP(2N) duality. Let us begin with the multiple duality for SP(2N) gauge group
discussed in section 6. To check the matching of anomalies we should do it for the smaller
flavor groups present in all theories. The subgroup SU(4) x SU(4) x U(1)g x U(1) x U(1)g of
the electric theory has the following anomalies

SU*(4), 2N
SU*(4), xU(l)r  —2N?*+1
SU%(4), x U(1) il _;N -1
SU*(4), xU(l)g 2N
Ul)g  —(@2N*4+ 7N +1)
U1  —@N?+N+1)
U(1)p x U(1)g 0
AR x U)ot (15.1)

2
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We have verified that all three dual magnetic theories have the same anomalies. Also it is
easy to check that the real anomaly is equal to zero in the electric and magnetic theories. The
calculation in the electric theory is

1
2N +2- 38— (2N~2) = 0.

SP < SP groups duality. Here we discuss the duality of section 7. In the electric theory
we have found the following anomalies for SU(4) x SP(2(M + N)) x U(1) x U(1)g global
symmetry group

SU%(4)  —2M
SU(4) x U(1) —%M(M _N-2)
SP*2(M+N))xU(1) —-M
SU*(4) x U()g ~ —2M
SP*2(M+N))xU(l)g 0
Ul 1-6M
Ui  1-6M
U(1)? x U(1)g 1 (=M® +2NM? — MN? —4MN —2M +2) (15.2)

2

coinciding with the anomalies in the magnetic duals.
Calculation of the real anomaly yields

—4—(2M —2)+2M +2 = 0.

New confining duality. Now we discuss the duality of section 13.1.14. In the electric theory
we have found the following anomalies for SP(2N) x SU(N +3) x U(1); x U(1)2 x U(1) g global
symmetry group

SUP(N+3) N+1
SP*2N)xU(l)g 0
)

SU*N+3)xU(l)g  —(N+1)
sp2an) xu) - 1)2(N +3)
SU*N+3)xU(l) N+1
Ve —5(N+2)(N +3)
Uy —%(N +2)(N +3)
U1)? xU()r —%(N+ 12(N +2)(N +3) (15.3)

and the same picture holds for the magnetic partner.
Calculation of the real anomaly yields

~(N+3)—(N—-1)+2(N+1) = 0.
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SU < SP groups duality. The anomalies matching for the common global group SU(N +
3) x SU(N +3) xU(1)g x U(1)g of the duality described in section 12.1 is checked and yields:

SUP(N+3), N+1

SU2(N+3)LXU(1)R —%
SU*(N +3), xU(l)g  2(N+1)
Ul)g  —(N*+2N +2)
5 N* —9N? — 10N + 2
Ve - (N +3)2
UD%L xU(l)g  —8(N +1)2% (15.4)

SU « SU groups duality. Here we consider the dualities presented in section 12.2. The
anomalies matching is checked for the global group SU(K ), x SU(N +3 — K); x U(1); X
SU(K)R X SU(N+3 — K)R X U(].)Q X U(l)B X U(].)R yleldmg

SU*(K)p, N+1
(N +1)°
N +3
SU(K)p, xU(l)p (N +1)
SU*(K), xU(1)1 (N+1)(N+3-K)

SU2(K)L><U(1)R —
)

Ul)rg  —(N*+2N+2)
5 N* —9N? — 10N +2
Ve - (N +3)?
UL xU(l)g  —2(N +1)2% (15.5)

Comparing the 't Hooft anomaly matching conditions for all dualities described in this pa-
per and the analysis of total ellipticity of the elliptic hypergeometric terms lying behind the
equalities of superconformal indices, we come to the

Conjecture. The condition of total ellipticity for an elliptic hypergeometric term is necessary
and sufficient for validity of the 't Hooft anomaly matching conditions for dual superconformal
field theories whose superconformal indices are determined by this term.

For proving this hypothesis it is necessary to take formal mathematical definition of anomalies
as cocycles of the gauge groups (see, e.g., [66]). For dual theories we have two, in general
different, gauge groups. Therefore anomaly matching condition looks as an equality of Chern
classes of dual theories, and the conditions of total ellipticity — as a condition of vanishing of
the combined Chern classes. These questions will be discussed in more detail separately.

16. CONCLUSION

To be clear, this paper does not contain a description of all known dual superconformal
theories. We have limited ourselves only to simple gauge groups G = SU(N),SP(2N), Gs.
First, there are other simple groups G = SO(N), Fy, Eg, E7, Eg consideration of which we
skipped. The situation with the dualities for the exceptional groups [20, 44] is not clear in
general (except of the Ga-cases described above) due to the complexity of the invariants of
these groups [10, 59]. There are very many dualities involving orthogonal groups SO(N).
Originally we hoped to tackle them as well, but their amount is very big, and it was decided to



70 V. P. SPIRIDONOV AND G. S. VARTANOV

consider them separately. It is known that many group-theoretical structures for SO(N) group
can be obtained as reductions of the SP(2N)-group structures. Some of such reductions were
considered by Dolan and Osborn at the level of superconformal indices [23]. However, there
are much more cases that they have considered. Many elliptic hypergeometric integrals for the
By (i.e., groups SO(2N + 1)) and Dy (i.e., groups SO(2N)) root systems can be obtained by
special restriction of the BCy-integrals (cf. the forms of the corresponding invariant measures
given in the Appendix B). However, it is not clear at the moment whether superconformal
indices of all known SO(N)-group theories and their duals can be obtained in this way.

Second, we deliberately skipped consideration of the superconformal indices for extended
N > 1 supersymmetric field theories [45]. The best known examples correspond to the Seiberg-
Witten N = 2 theories [72, 73]. Consider the following electric and magnetic theories

SOB) [SUG) [UMa] | 50f(4> 50%3> U(él)R
Q| f f P :
A B N B S e

As discussed by Intriligator and Seiberg [40, 41, 42] (see also [29]), the SO(3) Seiberg dual-
ity electric model becomes the SU(2) group N = 4 super-Yang-Mills theory in the infrared
region after taking the tree level superpotential Wi, = v2det @ in the electric theory. The
superconformal indices then are

(D)oo q 7)o 173 /H L((pg)' 225 p,q) dz
Ip = 2222 T D((pg)"/ = . 16.1
5 H ((pg)s;:p,q T g 5 (16.1)
and
3
b3 p 2 2
Iy = (PiP)oo(8; Do = [ Twa)sisiip.a) [[T((pa)3s7:p.q)
1<i<j<3 i=1
Hz 1F pq 1/6 7, ! ;t17p7 q) de
H ey ) (16.2)
T2 Z5 0, q) 2miz;

By a change of integration variables in I,;, one of the integrations can be taken with the help
of univariate elliptic beta integral, which shows that (16.2) is equal to (16.1) . This equality
can be obtained as a reduction of the BCy-relations as well [23]. We suppose therefore that
it is necessary to consider first all possible SP(2N)-group identities for integrals and then try
to reduce them to the relations for superconformal indices of extended supersymmetric dual
theories.

Third, we skipped the quiver gauge group cases, when there are more than one simple
gauge group (or the deconfinement phenomenon [5]). Is is expected that equalities of the
superconformal indices for them are mere consequences of the so-called Bailey-type chains
(forming a tree) of symmetry transformations discovered by the first author in [79] and extended
in [87] to root systems. Within this context the duality transformation acquires a simple
meaning of the integral transformation for functions obeying many properties of the classical
Fourier transformation (see [87]).

Let us list some other possible applications of our results. Counting of the gauge invariant
operators for a number of supersymmetric gauge theories was considered in detail in [34, 35].
It is not difficult to see that the corresponding generating functions are obtained from our
superconformal indices by taking the limits p,g — 0. To take the limit p — 0 one needs
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first to get rid off the balancing conditions by multiplying a number of parameters by integer
powers of p and application of the reflection formula for the elliptic gamma function, see [84].
However, in this work we have a much larger list of theories where this gauge invariant operators
counting technique is applicable (in particular, this concerns the theories described in chapters
7, 8,9, 10.2-10.6, 11.2-11.4, 12, 13 and 14). The limit p — 0 in the simplest cases leads to
g-hypergeometric functions, the meaning of which is not clarified yet from the superconformal
index point of view. The subsequent limit ¢ — 0 can be replaced by ¢ — 1, which yields the
plain hypergeometric functions, which also should have thus some meaning within the gauge
field theories. Similar clarification is needed for the situations when elliptic hypergeometric
integrals are reduced to terminating elliptic hypergeometric series by some special choices of
the parameters.

In [78, 83| the first author has constructed biorthognal functions associated with the elliptic
beta integral. Naturally, it was conjectured there that some multivariable biorthogonal func-
tions exist for all known elliptic beta integrals (which serve as the orthogonality measures).
First family of such functions was constructed by Rains in [61, 62]. So, the expected number
of such families of biorthogonal functions has now increased essentially.

In [82] it was shown that some of the BC,, elliptic hypergeometric integrals can be associated
with the relativistic Calogero-Sutherland type models, and it was conjectured that other models
of such type can be built out of all other existing elliptic beta integrals and their appropriate
generalizations. Because we have now interpretation of the elliptic hypergeometric integrals as
superconformal indices of supersymmetric field theories, we, naturally, come to the conjecture
that behind each N' = 1 superconformal field theory there is a Calogero-Sutherland type
model for which these integrals serve either as the topological indices or the wave functions
normalizations, respectively. In particular, we would like to mention in this context appearance
of the usual elliptic Calogero-Sutherland models within the A" = 2 Seiberg-Witten theories [55].

The group-theoretical interpretation of the elliptic hypergeometric integrals discussed in
(68, 23, 86] and this paper opens possibilities for general structural theorems on the integrals
themselves. Namely, it may play a key role in the classification of such integrals on root systems.
All the questions mentioned above deserve detailed investigation either in relation to the super-
symmetric dualities or on their own. As to the proofs of many new hypergeometric identities
conjectured in this paper we refer to known methods described in [17, 18, 61, 65, 76, 78, 79, 87]
(or indicated above in some cases) which are available for their treating. We plan to consider
them case by case depending on their tractability.
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APPENDIX A. CHARACTERS OF REPRESENTATIONS OF CLASSICAL GROUPS

Here we present general results for characters of the Lie groups discussed in the paper.
For SU(N) group the characters, depending on x = (x1,...,z,) subject to the constraint
[T, z; = 1, are the well known Schur polynomials

det [2}77]

where A is the partition ordered so that \y > Ao > --- > \,. They obey the property
SO, () = S0ue,. i) (T), Where ¢ € Z. Therefore one can assume that A, = 0 without
loss of gnerality.

Characters of the fundamental and antifundamental representations of SU(N) group are

- [SCW_J} (A.1)

sx(z) = spu,am(@) =

Xsums (@) = s00..0@) = > T XsuwnF = S10)(®) = Xsums@).

The character for the adjoint representation is
XSU(N),adj(x) = 5(2,1,...,1,0)(36) = Z :ci:c;l —
1<ij<N

The character for the absolutely anti-symmetric tensor representation of rank two for SU(N)
group is
_ _ _ -1
Xsumza (@) = Sar0..0(@) = Y wiTi,  Xspoma = Xsumyza (@),
1<i<j<N

The characters for symmetric representations of SU(N) are

XSU(N),TS(x> = 8(2,0,...,0)(35) = Z SCZSCJ+ZSC“ XSU(N)TS(I) = XSU(N)IS(SC_I)-

1<i<j<N
The character for the absolutely anti-symmetric tensor representation of rank three for SU(N)
group is
XSU(N),TSA(x) = 3(1,1,1,0,...,0)(93) = Z TiT Xy,
1<i<j<k<N
For the absolutely symmetric tensor representation of rank three for SU(N) the character has
the form

XSUN),T5s () = S@o0,.0(T) = Z ;X + Z x; :L']+Z:)33.

1<i<j<k<N i, j=1,1#]

In the mixed case, we have

N
XSU(N),TAs(if) = 5(2,1,0,...,0)(93) =2 Z T;Txy + Z

1<i<j<k<N iy j=1lsij
The Weyl characters for SP(2N) group are given by the determinant

det [ Aj+n—j+1 xi—)\j—n+j—1:|
S(Alv"'vAn)(z) = —n+j—1] ) (A2)

det [z 7H! — a;
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with Ay > Ay > --- > )\, > 0. Characters of the fundamental and antifundamental representa-
tions of SP(2N) group have the form

Xsp(en),f(T) :Xsp(2N),?($) = So,.0(@) = Z(xi+xi_1)7

The character for the adjoint SP(2N) representation

XSPeN)adi (T) = S(20,..0)(T)
N
C S Gt ) 3 Y N
1<i<j<N p
For the absolutely anti-symmetric representation of SP(2N) we have the character
Xspenra(®) = Sare.0@) = Y (ww;+wma; o 4 a eyt + (N - 1),
1<i<j<N

As to the exceptional G5 group, its fundamental representation has the character

3
X(z1, 22,23) = 1+Z(zi+zi_1),

i=1
where z12923 = 1. The character for the adjoint representation of G5 group is
X(z1,20,23) = 2+ Z (zizj + Zz_lzj + zizj—l + zi_lzj_l) :
1<i<j<3

where, again, 212023 = 1.

APPENDIX B. INVARIANT MATRIX GROUP MEASURES

Here we would like to present the invariant measures for the integrals over classical Lie groups
and over the exceptional group G5. The invariant measure for the unitary group SU(N) with
any symmetric function f(z), where z = (z1,..., zx), has the following form

1 Nt dZZ'

/ IRZCHORSE [ seaese I (B.1)

where A(z) is the Vandermonde determinant
Az) = ] (zi—2)
1<i<j<N

The invariant measure for the symplectic group SP(2N) with any symmetric function f(z), z =
(z1,...,2n), has the form

N
dZZ'

gy
/SP@N) d,U(Z)f(Z) T 9NN /TN E(Zz -z ) A(Z—l—z ) f(z)H iz (B.Q)

For the invariant measures over the orthogonal group SO(N) and any symmetric function

f(2), z=(#,...,2n), one has to distinguish the cases of odd and even N:
1 M dz
= — A —1\2 7 B.
/SO<2N> W) = s /]TN (z+27) ﬂz)g omiz;’ (B.3)
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and
= (D% 3 > -1)? - al dz;
/ oy W) = / H( PG FC) | C Y]

For the invariant measure for the exceptional group G5 and any symmetric function f(z), z =
(21, 29, 23), where z12923 = 1, we have

1 —1\2 -
L)) = g [ A+l

dZZ'

)
2miz;

(B.5)

APPENDIX C. RELEVANT CASIMIR OPERATORS

Commutators of the generators T of some classical Lie group are defined with the help of
structure constants f°
[T T = ifTe. (C.1)
Then it is straightforward to obtain the Casimir operators [90]

> (THTTE), = Colx)y,

a,l
> (TR, = T(r)6™, (C.2)

where r is some irreducible representation. The Casimir operators and the dimension of the
representation d(r) are connected through the adjoint representation adj

d(r)Cy(r) = d(adj)T(r). (C.3)

For checking the t’Hooft anomaly matching conditions we need the triple Casimir operator
which comes from

A% = Tr[T{T" T°]. (C.4)
Then it is convenient to define this operator A(r) relative to the fundamental one
A%e(r) = A(r)A®e, (C.5)

where A% = Tr[Te{T%, T¢}] and T% are the generators in the fundamental representation.

In the tables below we give the dimensions d(r), the Casimir operators 27'(r) and A(r) for
the unitary group® and the dimensions d(r), the Casimir operators T(r) for symplectic and Gs
groups.

SU(N) group

Irrep r d(r) 2T (r) A(r)
i N 1 1
adj N2 -1 2N 0
Ty IN(N —1) N -2 N—4
Ts %N(N+1) N+2 N+4
Tsa | sN(N—=1)(N—=2) | 2(N=3)(N—=2) | 2(N —6)(N —3)
Ty %N(N SOV +2) | TV 3V +2) | TV 4 6)(V + 3)
Tas | IN(N —1)(N+1) N2 -3 N2 -9

®Note that in verification of the anomaly matchings for unitary groups we use 27'(r)
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SP(2N) group
Irrep r d(r) T(r)
7 N 1
adj=Ts| N(@2N+1) |2N+2
Ty |N@N-1)-1|2N -2

G5 group
Irrep r | d(r) | T(r)
f 7 2
adj 14 | 8

APPENDIX D. TOTAL ELLIPTICITY FOR THE KS DUALITY INTEGRALS
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In order to illustrate the work hidden behind our first conjecture we briefly describe in
this Appendix verification of the total ellipticity for the transformation identity for elliptic
hypergeometric integrals associated with the Kutasov-Schwimmer duality from section 10.1.

First, we change the variables z in (10.3) to z = U‘l(ST)_%g. Then the equality of integrals

(10.2) and (10.3) is rewritten in the following form

N-1
/{N/ Ag(z,t,s) H dz; ~/ AM(y,t,s)Hd_yj’
TN—1 ey 27rzzj TN-1 = 2miy;

where N = KNy — N and

(pip)3 N('q Nt P(U:p. )V,

The kernels for the elliptic hypergeometric integrals are

RN —

L(Uziz; LUzt zj,p,

AE(&)L§): H 1 HHPSZjatz 7p7Q)7
1<i<j<N F<Z@Zﬂ P
K Ny —1 g7, -1, .
r Ul 18 ) F(Uyly] 7Uyz yjanQ)
A C(yay; ' s 'y psq)
=11,5=1 1<i<j<N 1d5 rJdi I
Ny N

XHHF y]7U2 Zyj 7p7 )

=1 j=1
The balancing condition reads now as

UPNST™H = (pg)™
. . N N N+NK M ok
together with other constraints [[._; 2, =1 and [[,._, v; = U T (pg)~ 72~ S™.
Theorem 5. The function
p(z,y,t,8) =

1s the totally elliptic hypergeometric kernel.

(D.1)

(D.2)
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Ellipticity of the z-variables certificates. As described in the first section, we should
consider the ratios

p(ga Y L §) |Za_’qzayzN_’q71ZN

p(2, ;L 5) (D3)

hi(z,y.t,8,q) =

-1

]ﬁ Uza UZ]ZNaq 24 Zjaq Z ZNap)

im1ia ( Uq_lza_lzj,Uq Lo 1zN,zaz- 1,2’ij )

o OWazazy' Uzazy' g 722 oy, 0tz Zva H O(siza;p)  O(t;]'zy';p)
Q(Uq_lz 1ZN’Uq 2Z 1ZN’CJIZGZN >ZaZN 7p =1 18 iZN; P Q(q—lt 12;17]3)

and check that these are totally elliptic functions. Indeed, hZ(z,y,1, s, ¢) functions are automati-
cally invariant under the transformations 1) s, — pse, Sn;, — p~'sn;, 2) by — pty, tn, — p~ ',
3) y» — DY, Y5 — P Yx. Whereas the invariance with respect to the substitutions 4) z. —
Pze, 2y — ptzy for ¢ # a and 5) 2, — pz,, 2y — p~Lzy uses the balancing condition. Similarly,
one checks the invariance with respect to the mixed transformations s, — ps, t;! — p~1t;!
and yg — p*ya.

The most complicated part of the work consists in establishing ellipticity in the variable q.
The nontrivial fact is that we have fractional powers of ¢ entering (D.3) through the variable
U. Therefore one should scale ¢ by such a power of p that there will be a match with the
periods of elliptic function hZ(z,y,t,s,q). Simultaneously, we should preserve the balancing
condition and all other constraints on the parameters we have. This is reached by the following
transformation of the parameters

(K+1)Nf—2NtX[1 N+NK—N;K(K+1)/2
f7

6) ¢—p"Tq, ty, —p Yy =P U (D.4)
which guarantees that U — pU, as required. It is a matter of a neat computation (at the
intermediate steps there appears a very cumbersome expression) to show that h7(z,y,t, s, q) do
not change under these substitutions.

Ellipticity of the y-variables certificates. Now we consider the ratios

P(éa Y, t, §) |ya—>qya,yﬁ—>q*1yﬁ

p(2,y,t,8) (D.5)

hY(z,y,t,8,q) =

ﬁ O(Uq " ya s, Ua™y; s vay; yjijl;p)

O(Uyay; ' Uyt 072 Y5, a7y yss p

j=1jta p)
N
H(Uq ya vaUq ya vaqyayN 7yayN 7]9) d (9 q_ ;ly]v?p) 9(U2q—1t1y;1’p)
0Uqyays' Uvays' a7 2a Ui e Uip) iy Osi 'waip)  O(UPtiy ' p)

Again these are totally elliptic functions. They are automatically invariant under the trans-
formations 1) s, — psy, sy, — P~ sn,, 2) ty — ply,tn, — Py, 3) 2 — Pz, 2N — Pl
The invariance with respect to the substitutions 4) y, — pyp,y5 — P 'Yz, b # a, and 5)
Yo — DYa, Yy — P Yz uses the balancing condition. Again the most difficult part is the
verification of the invariance with respect to the transformations

N+NK—N;K(K+1)/2

1_>p(K+1)Nf—2NtX[}” g — D V-

6) ¢—p" g, U—pU, ty
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Ellipticity of the t-parameters certificates. Now we need to investigate the functions

P(éyai, §)|ta—> tatn,—q 1t
B (2,9t 5,q) = —— S (D.6)
= p(z,y,t,5)

B H LU g st ) ﬁ H(t;,;zj—l;p) ﬁ O(U2q e, y7 5 p)
H(Ul_lsitj_\fjc;p) i Q(q—ltglzj—l;p) P 9(U2tay]_1,p)

and show that they are totally elliptic. Again, invariance under 1) y, — py, Yz — P Uw,
2) s, — PSbs SN, — p‘lst, and 3) z, — pzp,2nv — p~lzy transformations is automatic.
The balancing condition is needed for symmetries 4) t. — pt.,tn, — p‘lth, ¢ # a, and 5)
ta = pla,tn, — p‘lth The computations for the transformations

N+NEK—-N;K(K+1)/

6) ¢ —p g, U—pU, ty = p"IN2NE gy = uy

are very lengthy and require a lot of attention for reaching the needed statement. Consideration
of the s-parameters certificates is equivalent to the t-case because of the symmetries of initial
integrals’ kernels.
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