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We describe the first axisymmetric numerical code based on the generalized harmonic formulation of

the Einstein equations, which is regular at the axis. We test the code by investigating gravitational collapse

of distributions of complex scalar field in a Kaluza-Klein spacetime. One of the key issues of the harmonic

formulation is the choice of the gauge source functions, and we conclude that a damped-wave gauge is

remarkably robust in this case. Our preliminary study indicates that evolution of regular initial data leads

to formation both of black holes with spherical and cylindrical horizon topologies. Intriguingly, we find

evidence that near threshold for black hole formation the number of outcomes proliferates. Specifically,

the collapsing matter splits into individual pulses, two of which travel in the opposite directions along the

compact dimension and one which is ejected radially from the axis. Depending on the initial conditions, a

curvature singularity develops inside the pulses.
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I. INTRODUCTION

In general, a detailed investigation of fully nonlinear
gravitational dynamics is impossible by other than numeri-
cal means. Luckily, the numerical methods have recently
reached the level of maturity that finally allows addressing
many long-standing puzzles. Perhaps the most remarkable
is the progress achieved in solving a general-relativistic
two-body problem—the coalescence of black holes [1–7].
Driven by the gravitational-wave detection prospects, the
problem of the collision of two black holes or neutron stars
continues to be the central front where an overwhelming
majority of numerical relativity research is done.
Fortunately, the computational methods employed there
are portable and—as demonstrated below—can readily
be applied on other problems of interest.

The success of the numerical simulations was backed up
by a parallel development of the software and the hard-
ware, which provided the necessary computational resour-
ces. The rapid hardware evolution combined with the
persisting regularity problems in axial symmetry eventu-
ally led to a direct transition from highly symmetrical
spherical configurations to fully general 3D situations
without any symmetries at all, essentially bypassing the
intermediate axisymmetric case. However, here we argue
that important theoretical and practical reasons exist to
explore axisymmetry better, and we describe a new regular
numerical code that, we believe, will be capable of achiev-
ing this.1

Before describing any concrete setup wewould point out
one important possible use of an axisymmetric code, spe-
cifically, that it can be regarded as an efficient ‘‘calibration
tool’’ for more general 3D codes.2 Indeed, we expect that

an intrinsically axisymmetric code applied to, say, the
head-on collision of two black holes would be capable of
following the evolution and the resulting gravitational
radiation more accurately compared to Cartesian 3D nu-
merical implementations, both because of explicit use of
the symmetry and since higher numerical resolution can be
employed for given hardware resources.
Several interesting open problems arise in axisymmetric

gravitational collapse situations. In particular, it remains
unclear whether or not the weak cosmic censorship is
violated in collapse of prolate Brill waves [10,13]. An
independent observation of universality in critical collapse
of gravitational waves [14] is pending, as well as further
investigation of the nonspherical unstable mode that ap-
parently shows up at threshold for black hole formation in
axisymmetric collapse of a scalar field [15]. A basic prob-
lem of mathematical relativity concerning the stability of
black holes with respect to nonlinear axisymmetric pertur-
bations can be equivalently addressed in a collapse situ-
ation by computing how fast a newly formed black hole
radiates away higher multipole moments.
In addition, we shall mention other, rarely cited in the

context of numerical relativity, axisymmetric systems that
are of great interest in theoretical work on higher-
dimensional gravity. One of the most basic motivations
for studying higher-dimensional spacetimes relies on the
observation that the Einstein equations, describing classi-
cal general relativity (GR), are independent of the space-
time dimension. Nevertheless, certain properties of the
solutions to these equations vary dramatically with the
dimension. A striking example is that axisymmetric black
holes in dimensions greater than four do not necessarily
have spherical horizons, but also admit horizons of toroidal
topology [16]. Moreover, and in sharp contrast to their
four-dimensional counterparts, higher-dimensional black
holes do not respect the Kerr limit [17], and they are
unstable in certain range of parameters [18]. One of the
fundamental unresolved puzzles [19,20] is whether or not
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1See [8–11] for alternative approaches.
2And it can be regarded as a probe of reliability of the cartoon

methods [2,12] used to effectively simulate axisymmetric space-
times in 3D.
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the instability leads to fragmentation of the horizon and
exposition of the inner singularity, hence violating the
cosmic censorship hypothesis.

Since it is unlikely that any of these problems can be
addressed analytically in a systematic manner, we turn to
computational methods. However, solving the Einstein
equations numerically is notoriously difficult and depends
crucially on the way these equations are formulated and
evolved. In this paper we focus on the generalized-
harmonic (GH) formulation [21–23] that has recently
gained popularity because of its great success in the simu-
lations of black hole binaries [1–3,7,24].

In a nutshell, the GH approach is a way to write the field
equations such that the resulting system is manifestly
hyperbolic, taking the form of a set of quasilinear wave
equations for the metric components. As the name sug-
gests, the GH method generalizes the harmonic approach,
which achieves strong hyperbolicity by choosing the har-
monic spacetime coordinates. In the GH approach much of
the coordinate freedom is regained through the introduc-
tion of certain gauge source functions, which also main-
tains the desirable property of strong hyperbolicity of the
field equations. In fact, the source functions can be thought
of as representing the coordinate freedom of the Einstein
equations, and when constructing solutions of the equa-
tions, via an initial value approach, for example, they must
be completely specified in some fashion. Choosing the
source functions in a controlled way is a key issue of the
GH technique and after testing several recent prescriptions,
we conclude that a damped-wave gauge [25] is remarkably
robust in collapse situations.

Applications of the GH approach in spherically sym-
metric situations were studied in [26] and here we employ
the method in axisymmetry. In both cases it is natural to
use coordinates in which the symmetries of the spacetime
are explicit. However, these coordinates are formally sin-
gular: at the origin in spherical symmetry and on the axis in
axial symmetry. Thus, the field equations have to be regu-
larized in numerical implementations; here we describe a
regularization procedure that is compatible with the GH
formulation.

Our numerical implementation of the GH system is a
free evolution code that advances initial data by solving a
set of wave equations. In addition, there are also constraint
equations that must be satisfied during the evolution.
Although the constraints are consistently preserved in the
GH approach in the continuum limit, in numerical compu-
tations at finite resolution, constraint violations generically
develop. In order to maintain stability these deviations
must be damped, and we discuss an effective method that
achieves this.

Having in mind implications for higher-dimensional
GR, we test our new code by studying gravitational col-
lapse of a complex scalar field in a D-dimensional Kaluza-
Klein (KK) spacetime. This background, which has a

single compact extra dimension curled into a circle, is a
classical example of a higher-dimensional compactified
spacetime that in certain limits can appear four dimen-
sional, for example, when the size of the compact dimen-
sion is small.3 Assuming spherical symmetry in the infinite
(D� 2)-dimensional portion of the space makes the prob-
lem 2þ 1 that depends on time and two spatial coordi-
nates: one in the radial direction, and one along the KK
circle.
We perform a series of numerical simulations where the

initial distribution of the scalar matter is freely specified
and the outcome of the evolution depends on the
‘‘strength’’ of the initial data as well as on its topology.
The weak data correspond to the dispersion of relatively
dilute pulses, while a typical strong data configuration
leads to black hole formation or nearly does so. Our
preliminary results indicate a wide range of the black
hole forming scenarios, including how many holes form
and of what topology. For instance, a static distribution of
matter centered at the axis and localized in the KK direc-
tion with the energy density above certain threshold col-
lapses to form a black hole with a quasicylindrical horizon,
smeared along the extra dimension. Data with the energy
density below this threshold evolve to form a quasispher-
ical horizon centered around the initial matter distribution.
By further reducing the density we find that resulting black
holes become progressively smaller, and at some critical
density a pulse of matter is emitted radially away from the
axis and a curvature singularity develops inside it. We find
that for slightly lower initial densities the evolving matter
splits into several pulses and two of them individually
collapse to form the singularities moving apart along the
KK dimension. Finally, when the initial matter distribution
becomes dilute below a certain limit, no black holes or
curvature singularities are created.
In the next section we describe the class of effectively

(2þ 1)-dimensional models where our code can currently
be applied. In Sec. III we present the basic formulas of the
GH formulation and discuss the constraints and a method
to damp their violations. We describe an axis regularization
in Sec. III A and boundary conditions in Sec. III B.
Although in this work we integrate full D-dimensional
equations, in the Appendix we describe an alternative
approach—one that uses a dimensional reduction on the
symmetry and integrates the reduced 2þ 1 equations—
and compare its performance with ours. Coordinate con-
ditions and the initial data problem are formulated in
Secs. III C and III D respectively. We use several diagnos-
tics to probe the spacetimes that we construct, including
computation of asymptotic measurables and apparent ho-
rizons, and describe that in Sec. III E. After elaborating on
our numerical algorithm in Sec. IV, we test its performance
in Sec. V, giving detailed accounts of various aspects, such

3In this paper, however, the size of the KK circle is arbitrary.
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as specific coordinate choices, constraint damping, nu-
merical dissipation, and convergence. We conclude in
Sec. VD, outline possibilities of improvement, and discuss
some future prospects.

II. THE SETUP

We consider a D-dimensional spacetime that possesses
the OðD� 2Þ isometry group. We will further assume that
the corresponding Killing vectors are orthogonal to the
closed hypersurface they generate. The symmetry reduces
the problem to effectively 2þ 1, which depends on time, t,
and two spatial dimensions that we denote by r and z. The
spatial coordinates can be either infinite or finite. For
instance, taking D ¼ 4 and assuming asymptotic flatness
correspond to the usual four-dimensional axially symmet-
ric situation without angular momentum, while setting
D ¼ 5 and assuming periodic z and infinite r can describe
dynamics in a five-dimensional Kaluza-Klein background.

The most generalD-dimensional line element with these
isometries can be written as

ds2 ¼ g��dx
�dx� ¼ gabdx

adxb þ e2Sr2d�2
n: (1)

Here g�� is the D-dimensional metric, d�2
n is the metric

on a unit n sphere, n � D� 3, a, b ¼ 0, 1, 2 running over
ft; r; zg, and the 3-metric gab and scalar S are functions of t,
r, and z, alone.

We take a complex, minimally coupled to gravity scalar
field to represent the matter of the theory and write the total
action of the system as

S ¼ SEH þ S�

¼ 1

16�GN

Z ffiffiffiffiffiffiffiffiffiffi�gD
p ½RD � g��@ð��@�Þ��

þ 2Vðj�jÞ�dxD;

(2)

where GN is the D-dimensional Newton constant.
In the next section we will describe our strategy to

solving the equations derived from this action. We will
focus on asymptotically flat spacetimes times a circle
(having the topology RD�2;1 � S1) but remark that asymp-
totically de Sitter and anti–de Sitter (AdS) spacetime are
also included in our model (2) when the potential of the
scalar field satisfies Vð0Þ ! � with positive and negative
�, respectively.

III. GENERALIZED-HARMONIC FORMULATION
AND ITS REDUCTION TO 2D CASE

In order to numerically solve the Einstein equations
derived from (2), we use the generalized harmonic formu-
lation. To make the description as self-contained as pos-
sible, we summarize below basic facts regarding the
approach (more details can be found in e.g. [2,24,26])
and adapt it to the 2þ 1 situation of interest.

We begin by noting that whenever isometries are present
one could perform a Kaluza-Klein reduction on them, and
in our case (2) the reduction yields lower-dimensional, 2þ
1 Einstein equations coupled to the scalar, which is related
to the size of the n sphere, and the matter. Initially, we had
indeed performed such a reduction and coded the reduced
equations; see the Appendix for details and comparison of
the methods. However, after experimenting with the re-
duced and the full D-dimensional versions of the equa-
tions, we found that numerical solution of the latter is
generically more stable. Therefore, in what follows we
adopt the unreduced approach.
The Einstein equations on a D-dimensional spacetime

obtained by varying the action (2) can be written in the
form

R�� ¼ 8�GN
�T�� � 8�GN

�
T�� � 1

D� 2
g��T

�
; (3)

where R�� is the Ricci tensor, T�� ¼ @ð��@�Þ�� �
ð1=2Þg��ðj@�j2 þ 2VÞ is the energy-momentum tensor

of the matter with trace T. Hereafter we use units in which
the D-dimensional Newton constant satisfies 8�GN ¼ 1.
The Ricci tensor that appears in the left-hand side of (3)

contains various second derivatives of the metric compo-
nents g��: these second derivatives collectively constitute

the principal part of R��, viewed as an operator on g��.

This principal part can be decomposed into a term
g��@��g��, plus mixed derivatives of the form

g��@��g��. Without the mixed derivatives, (3) would

represent manifestly (and strongly) hyperbolic wave equa-
tions for the g�� [22]. One can view the GH formulation

of general relativity as a particular method that eliminates
the mixed second derivatives appearing in (3); see
[2,3,21,23,24].
One requires that the coordinates satisfy

hx� ¼ ��� ¼ H�; (4)

where H� � g��H
� are arbitrary ‘‘gauge source func-

tions,’’ which are to be viewed as specified quantities,
and ��� � ��

��g
�� are the contracted Christoffel sym-

bols. One defines the GH constraint

C� � H� �hx�; (5)

which clearly must vanish provided (4) holds, and then
modifies the Einstein equations as follows:

R�� � Cð�;�Þ ¼ �T��: (6)

This last equation can be written more explicitly as

� 1

2
g��g��;�� � g��ð;�g�Þ�;� �Hð�;�Þ þH��

�
��

� ��
���

�
�� ¼ @ða�@bÞ�� þ 2

D� 2
gabV: (7)

Now, provided thatH� are functions of the coordinates and
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the metric only, but not of the metric derivatives—namely,
H� ¼ H�ðx�; gÞ—the field Eqs. (7) form a manifestly
hyperbolic system. The source functions H� are arbitrary
at this stage, and their specification is equivalent to choos-
ing the coordinate system (‘‘fixing the gauge’’).
Determining an effective prescription for the source func-
tions is thus crucial for the efficacy of the GH approach,
and our strategies for fixing the H� are discussed in
Sec. III C.

After the coordinates have been chosen, we integrate the
equations forward in time. Consistency of the scheme
requires that the GH constraint (5) be preserved in time.
The contracted Bianchi identities guarantee that this is
indeed the case, since, using those identities, one can
show [2,24] that C� itself satisfies a wave equation,

hC� þ R�
�C

� ¼ 0: (8)

Thus, assuming that the evolution is generated from an
initial hypersurface on which C� ¼ @tC

� ¼ 0, and con-
straint preserving boundary conditions are used during the
evolution, (8) guarantees that C� ¼ 0 for all future (or
past) times.

Although the GH constraint is preserved at the contin-
uum level, in numerical calculations, where equations are
discretized on a lattice, the constraint cannot be expected to
hold exactly. It appears that numerical solutions of (7) can
admit ‘‘constraint violating modes,’’ with the result that the
desired continuum solution is not obtained in the limit of
vanishing mesh size. However, an effective way of pre-
venting the development of such modes in numerical cal-
culations exists: one adds terms to the field equations that
are explicitly designed to damp constraint violations (see
e.g. [27]). Following the approach of Pretorius [2,3] that
builds on earlier works [28,29], we define the constraint-
damping terms

Z�� � �ðnð�C�Þ � 1
2g��n

�C�Þ; (9)

and solve the modified equations of the form

R�� � Cð�;�Þ þ Z�� ¼ �T��: (10)

Here, n� is the unit timelike vector normal to the t ¼ const

hypersurfaces, that can be written as

n� � �ð1=
ffiffiffiffiffiffiffiffiffiffiffi
�g00

q
Þ@�t; (11)

and � is an adjustable parameter that controls the damping
time scale. Specifically, it is shown in [29] that small
constraint perturbations about Minkowski background de-
cay exponentially with a characteristic time scale of order
�. We note that the constraint-damping term contains only
first derivatives of the metric and hence does not affect the
principal (hyperbolic) part of the equations.

A. Regularization of the axis, r ¼ 0

Having described the GH formulation, we now special-
ize to the symmetric case. We note first that in our coor-
dinates (1) adapted to the symmetry the line element of the
flat spacetime becomes

ds2 ¼ �dt2 þ dr2 þ dz2 þ r2d�2
n; (12)

and that in this case the source function (4) does not vanish
but becomes

HMink
� ¼ ��Mink

�

¼
�
0;
n

r
; 0; ðn� 1Þ cot�1; . . . ; cot�n�1; 0

�
; (13)

where �i are angular coordinates of the sphere’s line ele-
ment d�2

n. Since near the axis a general spacetime is
locally flat, the radial component of the source function
is generically singular at r ¼ 0, diverging as n=r. To
regularize this radial component, we thus subtract the
singular background contribution by transforming

H� ! H� þ 	1
�H

Mink
1 (14)

and prescribe gauge conditions using the regular sources.
Invariance of the line element (1) under the reflection

r ! �r in our case implies that the metric components g01
and g12 are odd functions of r, while g00, g11, g22, g02, S,
and � are even in r. The GH constraint (4) then dictates
that H1, regularized via (14) is an odd function of r, while
H0 and H2 are even in r.
Moreover, the requirement that the surface area of an n

sphere must vanish at the axis4 implies g11ðt; 0; zÞ ¼
exp½2Sðt; 0; zÞ�. We note that this is an extra condition on
S, which thus has to satisfy both this relation, as well as the
constraint that it have vanishing radial derivative at
r ¼ 0—specifically that g11 � expð2SÞ ¼ Oðr2Þ. There-
fore, at r ¼ 0 we essentially have three conditions on the
two fields S and g11. In the continuum, and given regular
initial data, the evolution equations will preserve regular-
ity; however, in a finite-differencing numerical code this
will be true only up to discretization errors. As a general
rule of thumb, the number of boundary conditions should
be equal to the number of evolved variables in order to
avoid regularity problems and divergences of a numerical
implementation.
An elegant way to deal with this regularity issue in-

volves definition of a new variable, 
,5:


 � g11 � e2S

r
: (15)

At the axis one then has 
�OðrÞ. Therefore, after chang-

4That is, the radial and areal coordinates coincide at the axis,
to avoid a conical singularity there.

5We note that a similar variable was introduced in [30], also
for the purpose of regularization.
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ing variables from S to 
 by using S ¼ ð1=2Þ logðg11 � r
Þ
in all equations, and imposing 
ðt; 0; zÞ ¼ 0 at the axis, one
ends up with a system where there is no overconstraining
due to the demand of regularity at r ¼ 0. Crucially, we note
that the hyperbolicity of the GH system is not affected by
the change of variables.

While we note that a more straightforward regulariza-
tion method that maintains S as a fundamental dynamical
variable and employs analytical Taylor-series expansion of
the equations in the vicinity of r ¼ 0 can also be used in
simulations, its reliability degrades in the strong field
regime, where the regularization that uses 
 remains con-
sistently accurate.6

B. The field equations and Kaluza-Klein boundary
conditions

With the metric ansatz (1) and the regularized source
function (14), our equations become 8 equations for 8
variables: six components of the 3-metric gab, and real
and complex scalars 
 and � correspondingly.
Schematically the system can be written as

� 1

2
gcdgab;cd �Hða;bÞ þ � � � ¼ @ða�@bÞ�� þ 2

D� 2
gabV;

(16)

� 1

2
gcd
;cd � 1

2

@rH1

r
þ � � � ¼ 2

D� 2
V
þ j@r�j2

r
;

(17)

gcd�;cd þ � � � ¼ @V=@��: (18)

Here ellipses denote terms that may contain the metric and
its derivatives and/or the source functions, in various com-
binations. These equations are to be evolved forward in
time starting from the initial (t ¼ 0) time slice, where
values for the fields and their first time derivatives must
be prescribed.

In order to completely specify the problem, we have to
provide boundary conditions that the above equations are
subject to. In this paper we will be interested in a
D-dimensional Kaluza-Klein spacetime of topology
RD�2;1 � S1z , where the z direction is considered periodic

with asymptotic length L̂, namely that z� zþ L̂, and for

the future use we also define half-period L � L̂=2.
Asymptotically, this spacetime becomes Minkowski times
the compact circle and the corresponding boundary con-
ditions are

gab ! �ab; 
 ! 0; � ! 0; Ha ! 0: (19)

C. Coordinate conditions

As we have already mentioned, fixing the coordinates in
the GH approach amounts to specifying the source func-
tions Ha. The choice that we find to perform best in our
case is a variant of the damped-wave gauge (DWG) con-
dition proposed recently in [25] (see also [32])

Fa ¼ 2�1 log

�
�p

�

�
na � 2�2�

�1�ai�
i; (20)

where �ab ¼ gab þ nanb is the spatial metric whose de-
terminant � � det�ij ¼ ðg11g22 � g212Þ expðnSÞ has the

factor rn removed in accordance with the regularization
(14), and �1;2 and p are free parameters.7 Since the gauge

function (20) depends only on the metric, we can simply
set Ha ¼ Fa without destroying hyperbolicity of our sys-
tem. Below we refer to this approach as the algebraic DWG
condition.
An alternative method that preserves the hyperbolicity

was originally devised by Pretorius for binary black hole
simulations [1,3] and has also proven useful in the studies
of the gravitational collapse of scalar field in spherical
symmetry [26]. This strategy elevates the status of the
Ha to independent dynamical variables that satisfy time-
dependent partial differential equations. The evolution
equations for the Ha are designed so that the Arnowitt-
Deser-Misner (ADM) kinematic variables—lapse � and
shift �i that (implicitly) result from the time develop-
ment—have certain desirable properties. For example,
the equation for H0 is tailored in an attempt to keep the
value of the lapse function of order unity everywhere—
including near the surfaces of the black holes—during the
evolution.
One specific prescription for achieving this type of

control evolves the gauge source functions according to

hHt ¼ ��1

�� �0

�q þ �2Ht;�n
�; Hi ¼ 0; (21)

whereh is the covariant wave operator, and�0, �1, �2, and
q are adjustable constants.8 Thus the temporal source
function satisfies a wave equation similar to those that
govern the metric components in the system (10). The first
term on the right-hand side of (21) is designed to ‘‘drive’’
Ht to a value that results in a lapse that is approximately
�0. The second, ‘‘frictional’’ term tends to confine Ht to
this value. For the case of the spatial coordinates, Pretorius
found that the simplest choice of spatially harmonic gauge,
Hi ¼ 0, was sufficient in simulations of binary black hole

6See, however, [26,31] for accurate simulations of the strong
gravity regime in spherical symmetry where the Taylor-series
approach is used.

7We note that the spatial part of DWG is essentially a version
of the popular �-driver condition [25,33].

8In certain situations it is convenient to assume that �1 and �2
are given functions of space and time rather than mere constants.
For example, one might require that the gauge driver is switched
on gradually in time, or that it be active only in certain regions,
e.g. in the vicinity of a black hole, and that its effect vanish
asymptotically.
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collisions. A slight generalization of this technique was
considered in [34] where instead of using Hi ¼ 0, the
spatial components of the source functions are evolved
according to

hHi ¼ ��3

�i

�2
þ �2Hi;�n

�; (22)

where �3 is an additional parameter.
Variants of gauge drivers were further investigated in the

recent [25,26,35]. Specifically in [25] the following hyper-
bolic first-order drivers were proposed:

@tHa � �i@iHa ¼ ��ðHa � FaÞ þWa;

@tWa þ �Wa ¼ ���i@iHa;
(23)

such that all time-independent solutions of this system
satisfy Ha ¼ Fa, where Fa are certain predetermined tar-
get gauge functions, for instance, (20), and the parameters
� and � are freely specified.

In Sec. VA we compare the performance of these strat-
egies and argue that in collapse situations the algebraic
DWG approach is the most robust of all. Namely, it does
not require an extensive fine-tuning of parameters, and it is
long-term stable.

D. Initial data

We now consider specification of initial data, which are
values for the fields and their first time derivatives at t ¼ 0.
For simplicity we restrict attention to time-symmetric ini-
tial conditions for the metric and j�j.

Given this assumption, initial data for the scalar field
reduces to the specification of �ð0; r; zÞ, which we take to
have the form of a generalized Gaussian,

�ð0; r; zÞ ¼ �0e
�½ð1�e2r Þðr�r0Þ2þð1�e2z Þðz�z0Þ2�=�2

; (24)

where �0 ¼ j�0j expði’Þ is a complex amplitude and r0,
z0, er, ez, �, and ’ are real adjustable parameters, supple-
mented by the choice

@t�ð0; r; zÞ ¼ i!�ð0; r; zÞ; (25)

which satisfies @tj�jt¼0 ¼ 0, where ! is another
parameter.

The momentum constraint is satisfied for our initial data,
and writing the initial metric as

ds2 ¼ ��2dt2 þ c 4ðdr2 þ dz2 þ r2d�2
nÞ; (26)

one can show that the Hamiltonian constraint becomes an
elliptic equation for c ð0; r; zÞ

@2rc þ @2zc þ n

r
@rc þ n� 1

c

�
ð@rc Þ2 þ ð@zc Þ2

�

þ c

2ðnþ 1Þ
�
1

2
ðj@r�j2 þ j@z�j2 þ ��2c 4!2j�j2Þ

þ c 4V

�
¼ 0; (27)

that is subject to the boundary conditions, @rc jr¼0 ¼
0; @zc jz¼0 ¼ @zc jz¼L ¼ 0 and c jr!1 ¼ 1.
We will assume initial harmonic coordinates, which

implies [see (4)] that the lapse can be determined in terms
of c as

�ð0; r; zÞ ¼ c 2n: (28)

After substituting this into Eq. (27) we solve for c and
initialize our basic variables and their derivatives:

gijð0; r; zÞ ¼ c 4	ij; 
ð0; r; zÞ ¼ 0;

@tgijð0; r; zÞ ¼ @t
ð0; r; zÞ ¼ 0:
(29)

We finally note that in order to use the DWG conditions
correctly, we have to smooth out the transition from ini-
tially harmonic to later DWG coordinates. As described in
Sec. VA this can be done stably by multiplying Fa in (20)
by a time-dependent factor that gradually grows from 0 to
1. For the driver version of DWG we also initialize @tW ¼
W ¼ 0 at t ¼ 0.

E. Spacetime diagnostics

We employ several diagnostics in order to probe the
geometry of the spacetimes we construct.

1. Asymptotic charges: Mass and tension

Far away from an isolated system a natural radial coor-
dinate is well defined by comparison with the flat back-
ground, and the charges that characterize the solution can
be found from the asymptotic radial behavior of the metric
functions. In asymptotically flat spacetimes with no angu-
lar momentum there is exactly one charge: the ADMmass.
However, in our system with the extra compact dimension,
the tension, associated with varying the length of the
compact direction, can also be defined. A derivation of
this result can be found in [36,37], but here we note why the
appearance of an additional charge could be expected.
Asymptotically the metric becomes z independent since
from the lower-dimensional perspective the z-dependent
Kaluza-Klein modes are massive (with the discrete masses
mn ¼ 2�n=L, n > 0) and decay exponentially
� expð�mnrÞ. In this situation asymptotic Kaluza-Klein
reduction is possible with the result that gzz behaves effec-
tively as a scalar field that carries an (unconserved) charge.
Designating the asymptotic falloff of the metric functions
gtt and gzz as

gtt ¼ �1þ 2a

rD�4
; gzz ¼ 1þ 2b

rD�4
; (30)

the mass and tension of the solutions are defined as [36,37]

m

L̂

� �
¼ �n

8�ðGD=L̂Þ
n �1
1 �n

� �
a
b

� �
; (31)

where �n ¼ 2�ððnþ1Þ=2Þ=�½ðnþ 1Þ=2� is the surface area
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of a unit n sphere, and L̂ is the asymptotic length of the KK
circle.

2. Apparent horizons

It is well known that a process that concentrates suffi-
cient mass-energy within a small enough volume can lead
to the formation of a black hole. In numerical calculations
based on a space-plus-time split, black hole formation is
often inferred by the appearance of apparent horizons. An
apparent horizon is defined as the outermost of the mar-
ginally trapped surfaces, on which future-directed null
geodesics have zero divergence. Specifically, in our case
we will be searching for simply connected horizons of two
categories (see Fig. 1): (i) Quasispherical horizons of
topology Sn, in which case the surface describing the
horizon can be taken as

fð�; �Þ ¼ �� Rð�Þ; (32)

where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� r0Þ2 þ ðz� z0Þ2

q
; r� r0 ¼ � sin�;

z� z0 ¼ � cos�;
(33)

where ðr0; z0Þ is the point where the horizon is centered,
and (ii) horizons of topology Sn�1 � S1 smeared along the
z direction, which do not intersect the axis. In this case a
convenient parametrization is

fðr; zÞ ¼ r� RðzÞ: (34)

In either case we define an outward-pointing spacelike unit
normal to the surface f ¼ 0,

s� ¼ ���f;�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
���f;�f;�

p : (35)

The vanishing of the divergence, �, of the outgoing null
rays defined by l� ¼ s� þ n� can be expressed as

� ¼ ð��� � s�s�Þr�l� ¼ 0: (36)

Substituting the expressions (32) or (34) into (36) yields
ordinary second-order differential equations for Rð�Þ or
RðzÞ correspondingly. The equations could be solved by
‘‘shooting,’’ subject to appropriate boundary conditions;
however, here we instead use the following pointwise
relaxation method, which is more suitable for parallel
numerical implementations. We start with supplying an
initial guess for the entire function R and iterate the para-
bolic equation

@R

@

¼ ��ðR00; R0; R; gab; @gab; xaÞ; (37)

in unphysical ‘‘time’’ 
 until a solution is found. This
equation implies that depending on whether Rð
Þ is inside
or outside the horizon at any given moment, it will expand
or shrink in the next instant. In numerical simulations the
hope is that the initial R will ‘‘flow’’ to the apparent
horizon in finite time. We find that in our case this indeed
happens when the initial guess is ‘‘reasonably close’’ to the
final solution.

IV. NUMERICAL APPROACH

Here we describe our strategy for the numerical solution
of the GH system (with a scalar matter source) in Kaluza-
Klein spacetime.

A. The numerical grid and the algorithm

We cover the t-r-z space by a discrete lattice denoted by
ðtn; ri; zjÞ ¼ ðn�t; i�r; j�zÞ, where n, i, and j are integers

and�t,�r, and�z define the grid spacings in the temporal
and two spatial directions, respectively. As described in the
next section, the spatial domain is compactified, and hence
a grid of finite sizeNr � Nz extends from the axis to spatial
infinity. Approximations to the dynamical fields, collec-
tively denoted here by Y, are evaluated at each grid point,
yielding the discrete unknowns Yn

i;j � Yðtn; ri; zjÞ ¼
Yðn�t; i�r; j�zÞ. In the interior of the domain, the GH
equations and the gauge-driver equations are discretized
using9 Oðh2Þ finite-difference approximations (FDAs),
which replace continuous derivatives with the discrete
counterparts, examples of which are given in Table I. As
in [1,2,26] our scheme directly integrates the second-order-
in-time equations.
Following discretization, we thus obtain finite-

difference equations at every mesh point for each dynami-
cal variable. Denoting any single such equation as

L Yjni;j ¼ 0: (38)

We then iteratively solve the entire system of algebraic
equations as follows.

R(  )χ

8

z=0

R(z)

ρ

χ

r=r=
0

z=L

FIG. 1 (color online). We are locating apparent horizons of
two types: one, having a spherical topology, is conveniently
parametrized by � ¼ Rð�Þ [plotted here as centered at ð0; 0Þ],
and another, having a cylindrical topology, is parametrized by
r ¼ RðzÞ.

9Here h stands for any of the mesh-spacings �t, �r, and �z
that define our numerical grid.
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First, we note that for those variables that are governed
by equations of motion that are second order in time, our
Oðh2Þ discretization of the equations of motion results in a
three level scheme that couples advanced-time unknowns
at tnþ1 to known values at retarded times tn and tn�1. In
order to determine the advanced-time values for such
variables, we employ a pointwise Newton-Gauss-Seidel
scheme: starting with a guess for Ynþ1

i;j (typically, we take

Ynþ1
i;j ¼ Yn

i;j) we update the unknown using

Ynþ1
i;j ! Ynþ1

i;j �RYjni;j
J Yjni;j

: (39)

Here, RY is the residual of the finite-difference Eq. (38),
evaluated using the current approximation to Ynþ1

i;j , and the

diagonal Jacobian element is defined by

J Yjni;j �
@LYjni;j
@Ynþ1

i;j

: (40)

In the cases where we used gauge drivers (23) we found
that an iteration based on the Crank-Nicholson discretiza-
tion scheme of the corresponding first-order equations
performed well. Specifically, writing any such equation
schematically as _Y ¼ fYðY; @Y; . . .Þ, we update using

Ynþ1
i;j ! Yn

i;j þ 1
2�tðfYjnþ1

i;j þ fYjni;jÞ: (41)

We iterate (39) and (41) over all equations until the total
residual norm [see (49)] falls below a desired threshold.

In order to inhibit high-frequency10 instabilities that
often plague FDA equations, our scheme incorporates ex-
plicit numerical dissipation of the Kreiss-Oliger (KO) type
[38]. Following [2], at the interior grid points, fði; jÞj2 �
i � Nr � 2; 2 � j � Nz � 2g, and for each dynamical
variable we apply a low-pass KO filter by making the

replacement

Yi;j ! Yi;j � �KOdi;j;

di;j � 1

16
ðYi�2;j � 4Yi�1;j � 4Yiþ1;j þ Yiþ2;j þ Yi;j�2

� 4Yi;j�1 � 4Yi;jþ1 þ Yi;jþ2 þ 12Yi;jÞ; (42)

at both the tn�1 and tn time levels before updating the tnþ1

unknowns. Here �KO is a positive parameter satisfying 0 �
�KO � 1 that controls the amount of dissipation. An ex-
tension of the dissipation to the boundaries [2] was also
tried, but this has not resulted in any significant improve-
ment of the performance of the code.

B. Coordinates and boundary conditions

While the physical, asymptotically flat (times a circle, in
our case) spacetime extends to spatial infinity, in a numeri-
cal code one can only use grids of finite size. Instead of
using a standard strategy that deals with this issue by
introducing an outer boundary at some finite radius where
approximate boundary conditions are imposed, we adopt
another technique—proven successful in previous work in
numerical relativity (see e.g. [1,20,26])—and compactify
the spatial domain. We find that compactifying the radial
direction and imposing the (exact) Dirichlet conditions
(19) at the edge of the domain works well, provided that
we use sufficient dissipation. In particular, it is known that
due to the loss of resolution near the compactified outer
boundary (assuming a fixed mesh spacing in the compac-
tified coordinates), outgoing waves generated by the dy-
namics in the interior will be partially reflected as they
propagate toward the edge of the computational domain,
and these reflections will then tend to corrupt the interior
solution. By adding sufficient dissipation one can damp the
waves in the outer region, attenuating any unphysical
influx of radiation. This enables one to use the compacti-
fication meaningfully.
The results presented in this paper were obtained using

the compactification of the form

~r ¼ r

1þ r
; (43)

where the compactified ~r ranges from 0 to 1 for values of
the original radial coordinate r 2 ½0;1Þ. In practice, we
define a uniform grid in the compactified ~r and use chain
rule to replace derivatives with respect to r with the de-
rivatives with respect to ~r in all dynamical equations. The
asymptotic boundary conditions (19) at ~r ¼ 1 are then

imposed exactly: gab ¼ �ð3Þ
ab , 
 ¼ 0, � ¼ 0, and Ha ¼

Wa ¼ 0.
We have previously described the boundary (regularity)

conditions at ~r ¼ r ¼ 0 in Sec. III A. Denoting by Ynþ1
1;j ,

for j ¼ 2; . . . ; Nz � 1, the advanced-time value at the axis
for any of the variables, g00, g11, g22, g02, H0, and H2 that
have vanishing derivative at r ¼ 0, we use the update

TABLE I. Examples of second-order finite-differencing ap-
proximation to derivatives calculated at a grid point ðn; i; jÞ
that we use in our discretization scheme in the interior of the
domain (centered stencil), and at the excision boundary (back-
ward stencil) of the numerical grid.

Centered derivatives

@tY ðYnþ1
i;j � Yn�1

i;j Þ=ð2�tÞ
@rY ðYn

iþ1;j � Yn
i�1;jÞ=ð2�rÞ

@2t Y ðYnþ1
i;j � 2Yn

i;j þ Yn�1
i;j Þ=ð�tÞ2

@2rY ðYn
iþ1;j � 2Yn

i;j þ Yn
i�1;jÞ=ð�rÞ2

@2trY ðYnþ1
iþ1;j � Ynþ1

i�1;j � Yn�1
iþ1;j þ Yn�1

i�1;jÞ=ð4�t�rÞ
@2rzY ðYn

iþ1;jþ1 � Yn
i�1;jþ1 � Yn

iþ1;j�1 þ Yn
i�1;j�1Þ=ð4�r�zÞ

Backward derivatives

@rY ð4Yn
iþ1;j � 3Yn

i;j þ Yn
iþ2;jÞ=ð2�rÞ

@2rY ð2Yn
i;j � 5Yn

iþ1;j þ 4Yn
iþ2;j � Yn

iþ3;jÞ=ð�rÞ2

10‘‘High-frequency’’ refers to modes having a wavelength of
order of the mesh spacings, �r and �z.
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Ynþ1
1;j ¼ ð4Ynþ1

2;j � Ynþ1
3;j Þ=3, which is based on a second-

order backwards difference approximation (see Table I) of
@rY ¼ @~rY ¼ 0. For the quantities g01, g12, 
, and H1,
which are odd in r as r ! 0, we simply use Ynþ1

1;j ¼ 0.

For simplicity, in this paper we consider only configu-
rations that have reflection symmetry about z ¼ 0, which
together with periodicity in z, implies

@zYjz¼0 ¼ @zYjz¼L ¼ 0: (44)

We update points at z ¼ 0 and z ¼ L using backward
difference approximation similar to that in Table I. In
particular, for i ¼ 2; . . . ; Nr � 1, we use Ynþ1

i;1 ¼ ð4Ynþ1
i;2 �

Ynþ1
i;3 Þ=3 at z ¼ 0, and Ynþ1

i;Nz
¼ ð4Ynþ1

i;Nz�1 � Ynþ1
i;Nz�2Þ=3 at

z ¼ L.

C. The elliptic equation of initial data

It turns out that generally Eq. (27) for the conformal
factor is ill posed, namely, that the linear equation govern-
ing small perturbations about a solution of (27) does not
admit a unique solution for given boundary conditions
[39]. Therefore, an attempt to solve (27) using standard
relaxation methods will generically fail, as the relaxation is
not guaranteed to converge. However, a method circum-
venting this difficulty exists [39], and this is through a

rescaling � ¼ �̂c s that transforms the Hamiltonian con-
straint (27) into

@2rc þ @2zc þ n

r
@rc þ n� 1

c
½ð@rc Þ2 þ ð@zc Þ2�

þ s2c 2ðs�1=2Þ

4ðnþ 1Þ j�̂j2½ð@rc Þ2 þ ð@zc Þ2�

þ sc 2s

4ðnþ 1Þ ð@rj�̂j2@rc þ @zj�̂j2@zc Þ

þ c 2ðsþ1=2Þ

4ðnþ 1Þ ðj@r�̂j2 þ j@z�̂j2Þ þ!2c 2ðs�2nþ5=2Þ

4ðnþ 1Þ j�̂j2

þ c 5

2ðnþ 1ÞVðj�jc sÞ ¼ 0: (45)

By choosing the power s such that terms in this equation
that are proportional to c pi have only nonpositive pi’s one
renders the problem well posed [39]. In the case of a free
scalar field having the potential V / j�j2, which we as-
sume here, this implies that s <�5=2; see a related dis-
cussion in [40].

Note that the physical data are �, not �̂, and therefore
we solve Eq. (45) in an iterative manner where we start
with an initial guess c ¼ c 0ðr; zÞ and at each iteration i >
1 update �̂iþ1 ¼ �c�s

i that is then used in (45) in order to
solve for c iþ1. Most of the results obtained in this paper
were generated using c 0 ¼ 1 and s ¼ �3. Interestingly, it
turns out that provided the initial guess is not too distant
from the solution, the original Eq. (27) is numerically
stable without the rescaling. This happens, for instance,

in the weak-field regimewhere the guess�0 ¼ 1 relaxes to
the solution without any trouble.

D. Excision

We use excision to dynamically exclude from the com-
putational domain a region interior to the apparent horizon
that would eventually contain the black hole singularity.
This approach relies on the observation that in spacetimes
that satisfy the null energy condition and assuming the
cosmic censorship holds, the apparent horizon is contained
within the event horizon. This ensures that the excluded
region is causally disconnected from the rest of the domain
(see [41] and the references therein for further discussion).
Operationally, once an apparent horizon is found, we in-
troduce an excision surface, REX, contained within the
apparent horizon, and such that all characteristics at R ¼
REX are pointing inwards. This specific characteristic
structure eliminates the need for boundary conditions at
REX: rather, advanced-time unknowns located on the ex-
cision surface are computed using finite-difference approx-
imations to the interior evolution equations, but where
centered difference formulas are replaced with the appro-
priate one-sided expressions given in Table I.
Currently our apparent horizon finder is only capable of

locating horizons of the shapes depicted in Fig. 1. In this
case the radius of the excision surface typically satisfies
REX & 0:7RAH, where R is the coordinate radius.

V. PERFORMANCE OF THE CODE

In this section we investigate the performance of the
code in series of simulations that evolve regular initial
distribution of complex scalar field in five and six dimen-
sional Kaluza-Klein spacetime. The code uses pamr/amrd
infrastructure [42] where our suitably interfaced numerical
routines are called by the amrd driver. All our results are
generated using an initial scalar field profile of the
Gaussian form (24), with fixed values r0 ¼ z0 ¼ 0 and
� ¼ 0:25, so that the scalar pulse is always initially cen-
tered at the axis; see Fig. 2. In addition, we set er ¼ 0 and
use ez ¼ 0, unless otherwise specified. We choose the
initial frequency in (25) to be ! ¼ 20, and the asymptotic

size of the KK circle, L̂ ¼ 2. The scalar field potential used
here is taken to be of the form Vð�Þ ¼ m2

�j�j2, where
without much loss of generality we set m� ¼ 1.
Because we mostly use a time-explicit finite-difference

scheme, we expect restrictions on the ratio 
C � �t=h (the
Courant factor) that can be used while maintaining numeri-
cal stability. In the results discussed below we chose 0:2 &

C & 0:5 in the weak-field regime, and 0:05 & 
C & 0:25
for evolving the strong data. Taking larger 
C usually leads
to amplification and dominance of numerical errors near
the axis, which shows up as diverging high-frequency
oscillations. In most cases we use uniform grids of the
same size in both spatial directions, h � �r ¼ �z, and our
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lowest and highest-resolution simulations have h ¼ 1=16
and h ¼ 1=256, respectively. The highest-resolution runs
generally required 
C � 0:2 for stability.

As expected, the outcome of the collapse depends on the
strength of the initial data. Low density distributions de-
scribe weakly gravitating scalar pulses, which completely
disperse in all instances. Strong data generate spacetimes
in which black holes form, or almost form. For fixed �, er,

ez, m�, L̂, and ! a single free parameter that controls the

strength of the pulse—and hence, the outcome of the
evolution—is the initial amplitude�0. In this case ‘‘strong
initial data’’ will refer to situations when an increase of the
initial amplitude by less than 10% leads to formation of a
curvature singularity, and the other data will be called
‘‘weak.’’ The critical amplitude is at the threshold for the
singularity formation.

For each spacetime that we construct, the asymptotic
mass and tension are computed using (31), where the
constants a and b are found by fitting the metric compo-
nents gtt and gzz with the functions of the form gðrÞ ¼
g1 þ g1=r

n þ g2=r
nþ1 in the asymptotic region. The er-

rors in the constants are determined by the fitting uncer-
tainty, which in our case is �1%–2% (larger for weaker
data). We find that our initial data sets usually have a ’ nb,
and it follows from (31) that 
 ’ 0, within the numerical
accuracy of our method.

A useful quantity that illustrates energy-momentum dis-
tribution is the density � ¼ Tabn

anb. Figure 3 depicts � at
several moments during the 5D evolution of weak initial
data defined by �0 ¼ 0:35ð1� iÞ, using algebraic DWG;
see (20). Figure 3 shows that in the early stages of the

evolution the pulse [initially localized around the center
ðr; zÞ ¼ ð0; 0Þ] undergoes a gravitational collapse that is
accompanied by a growth of the central energy density. At
a later time, however, the pulse bounces off while forming
several shells and disperses. The distribution of the energy
density is anisotropic inside the shells, with a higher con-
centration of energy occurring along the axis, r ¼ 0, and at
the equator, z ¼ 0. The matter waves that travel along the
compact KK circle collide to form a typical interference
picture (see Figure 3), and the pattern becomes increas-
ingly complicated in the course of time, when more and
more waves undergo interaction. As expected in the KK
background the z dependence of solutions vanishes in the
asymptotic region, since the z-dependent modes are mas-
sive and fall off exponentially fast.
In order to obtain more quantitative insight into the

process, we plot in Fig. 4 the evolution of the logarithm
of � at the center. During the highly dynamical early
epoch, lasting until�Oð10ÞM, the field collapses, bounces
off the center, spreads along the z direction, and starts
dispersing to infinity. In the first stage of the dispersion,
lasting until �Oð100ÞM, the decay of � follows a power
law, and in the late times the decay is exponential with a

FIG. 2 (color online). We choose the initial distribution of the
scalar field as a generalized Gaussian (24) and assume that the
initial time derivative is given by (25). We mostly consider
localized initial pulses (such as the one shown here) that are
obtained by setting er ¼ ez ¼ 0 in (24). The radial direction is
compactified, and the hypersurfaces z ¼ 1 and z ¼ �1 identi-
fied in a Kaluza-Klein spacetime under consideration.
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FIG. 3 (color online). Snapshots of the evolution of energy-
momentum density � ¼ nanbTab in the simulation of the initial
data defined by �0 ¼ 0:35ð1� iÞ in 5D, using algebraic DWG.
The horizontal axis represents the compactified radial direction,
and the vertical axis is along the periodic z direction. The lapse
of time is measured in units of the total mass. The initial collapse
of the pulse around the center ðr; zÞ ¼ ð0; 0Þ is accompanied by a
growth of the amplitude of � by about an order of magnitude.
The pulse then bounces off and several outgoing shells form. The
shells propagate along the periodic z direction and interact,
creating a typical interference pattern. As expected, the
z dependence vanishes in the asymptotic regions. In the later
stages of the evolution � is small, and the frequency spectrum of
the oscillations along z is dominated by a few lowest eigenfre-
quencies associated with the compact KK circle.
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characteristic time scale of a few hundreds of M. The
maximal scalar curvature is attained during the initial
collapse phase; in the shown simulation the curvature
reaches the magnitude of order of �Oð100Þ (in units of
M�2). The discrete spectrum of the high-frequency oscil-
lations consists of the normal frequencies fn � n=L, n ¼
1; 2; . . . , defined by the size of the KK circle. We observe
that the higher frequency modes decay faster, and the late-
time spectrum is dominated by a few lowest frequency
modes; see also bottom right panel of Fig. 3.

When the initial amplitude of the scalar field increases,
the maximal curvature achieved during the collapse grows,
and when j�0j surpasses a certain threshold, the curvature
diverges, signaling the appearance of a singularity; see
Fig. 5. Currently we are able to estimate the critical am-
plitude with a relatively low precession of approximately 1
part in 800. In five dimensions the amplitude is between
1.0946 and 1.096 such that initial data with j�0j � 1:0946
completely disperses, and the data j�0j 	 1:096 gives rise
to curvature singularities and black holes.

A covariant way to illustrate the distribution of matter
and the geometry of the spacetime is provided by the
Ricci11 scalar, and Fig. 6 shows its evolution computed

in the evolution of our strongest subcritical data set,
j�0j ¼ j0:774ð1� iÞj ’ 1:0946. The initial pulse collap-
ses, bounces off, and forms several shells that start dispers-
ing after t� 0:2M. While the anisotropy of the energy
distribution inside the shells is small for weak data, it is
obvious in the strong field regime. Some matter is ejected
along the equator, z ¼ 0, and two distinctive pulses, mov-
ing in the opposite directions, form at the axis. The pulses
collide and interact, which results in smearing of the
energy density along the axis; see bottom right panel of
Fig. 6. The distribution is not stationary; rather the matter is
continuously leaking to infinity, and the late-time behavior
is qualitatively similar to the weak-field case, shown in
Fig. 3.
It turns out that for higher initial amplitudes, j�0j *

1:096, the pulses that form at the axis are able to individu-
ally collapse and develop curvature singularities, indicated
by diverging scalar curvature and energy-momentum den-
sity while the lapse remains finite (of order one) every-
where. Presently, our horizon finder is not designed to
locate the moving apparent horizons that may arise in
this case around the singularities, and it would be very
interesting to verify whether or not such engulfing horizons
indeed form. The time when the curvature singularities
appear depends on the strength of the initial data in the
manner that the closer to threshold we are the later into the
evolution the curvature diverges. For instance, in the case
of j�0j ¼ 1:096 the pulses collapse and become singular
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FIG. 4 (color online). The logarithm of the central energy
density, �, in a five-dimensional weak-field simulation defined
by j�0j ¼ 0:55 that uses algebraic DWG. The resulting space-
time has the mass M ¼ 0:67
 0:03, and the tension is zero
within the numerical accuracy. In the early stages of the evolu-
tion, the pulse collapses and � grows. Subsequently, the energy
density decreases following a power-law dependence during the
period lasting from t�Oð10ÞM until t�Oð100ÞM. After that �
decays exponentially exp½�t=ð800MÞ�. The high-frequency os-
cillations are associated with the eigenmodes of the compact KK
circle.
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FIG. 5 (color online). A log-log plot of the Ricci scalar (in
units of M�2) as a function of the proper time, tprop �
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both evaluated at the center, in several simulations in 5D. The
first peak in the curves corresponds to the initial collapse phase,
and for stronger data the Ricci scalar diverges in finite time,
signaling a curvature singularity (case j�0j ¼ 1:2021). In sub-
critical cases, the curvature decreases after the initial growth, and
the secondary peaks correspond to collisions of the shells trav-
eling along the KK circle and arriving back at ð0; 0Þ.

11In this and other figures the Ricci scalar is measured in units
of M�2.
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as they cross the circle and collide at z ’ 1; see Fig. 7.
However, for j�0j ¼ 1:0975, the curvature inside each
pulse blows up earlier, when they reach z� 1=2.

Intriguingly, we observe that for even stronger initial
data formation of the curvature singularity ensues differ-
ently. Specifically, the pulse of matter that is usually emit-
ted during the initial collapse-bounce stage outwards along
the equator is now seen to also be able to collapse and
develop a singularity. Snapshots of the process are shown
in Fig. 8, which was obtained in the evolution of the data
defined by j�0j ¼ 1:099. Since all our attempts to detect
an apparent horizon, engulfing the singular region and the
center, have failed, we believe that the horizon, if it forms
in this case, must be localized around the moving curvature
singularity.

In Fig. 9 we plot the Ricci scalar along the equator at
t� 0:37M, shortly before the appearance of a singularity
at ~r� 0:21 causes the code to break down. Figure 9 shows
that the maximal value of the Ricci scalar along this slice is
determined by the numerical resolution: the finer meshes
we use, the larger the values attained. This signals emer-
gence of a curvature rather than a coordinate singularity.

Figure 10 shows snapshots of the energy-density distri-
bution obtained in a supercritical simulation initiated by

�0 ¼ 0:8ð1� iÞ. The resulting spacetime has the total
mass M ¼ 2:40
 0:06 and the tension 
 ’ 0. The initial
stages of this evolution are qualitatively similar to those of

FIG. 6 (color online). The Ricci scalar at several instants of the
evolution of the initial data characterized by �0 ¼ 0:774ð1� iÞ,
currently our strongest subcritical data set. The numerical reso-
lution used in this simulation is 129� 129. After the initial
collapse stage an expanding shell of matter forms. The energy-
density distribution inside the shell quickly becomes anisotropic
with most of the energy localized within individual pulses
traveling along the axis and inside the pulse emitted radially
along the equator, z ¼ 0. The pulses at the axis undergo inter-
actions and spread the energy density along r ¼ 0. In late stages
of the evolution, all the matter is radiated away to infinity.

FIG. 7 (color online). Snapshots of the Ricci scalar at several
instants of the evolution of the initial data characterized by�0 ¼
0:775ð1� iÞ at the resolution of 257� 257. The matter distrib-
utes anisotropically inside the bouncing shells such that two
localized pulses, traveling along the axis, form. When the pulses
collide at z ¼ 1, a curvature singularity appears.

FIG. 8 (color online). The Ricci scalar at several instants
during the evolution defined by �0 ¼ 0:777ð1� iÞ. A curvature
singularity forms along the equator, inside the lump of matter
emitted in the radial direction during the initial collapse-bounce
process. This simulation uses the resolution of 257� 257.
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weaker data; however, after the first bounce off the center
(at t ’ 0:19M) the pulse recollapses and a black hole forms
as indicated by the appearance of an apparent horizon. The
energy-density � and scalar curvature both blow up in the
vicinity of ðr; zÞ ¼ ð0; 0Þ in finite time, while the lapse and
shift remain finite.

In order to locate apparent horizons we solve (37) iter-
atively starting with some initial guess for the entire func-
tion that parametrizes the horizon. In the case of
� ¼ 0:8ð1� iÞ we are searching for a horizon that has
spherical topology. We use the parametrization (32) with
r0 ¼ z0 ¼ 0 and solve (37) initialized by R ¼ 0:1. Setting
the target accuracy to �10�3 and using 100 grid points to
represent the horizon, we are able to solve the equation in
�1000 iterations. The resulting horizon is shown in bottom
panels in Fig. 10.

After an apparent horizon is found, we use excision to
remove a region inside the horizon that contains curvature
singularity. However, it turns out that regardless of our
specific gauge choice the lapse keeps evolving inside the
horizon and continuously decreases until it is reaching the
magnitudes of order �10�5 near the excision boundary. In
this situation truncation errors in quantities near REX occa-
sionally cause the computation of nonpositive values for
the lapse, which immediately leads to code failure.
Unfortunately, this happens when the apparent horizon is
still fairly dynamical and continues to change its shape and

size. Therefore, we are currently not able to determine the
stationary black hole state in the end of the evolution.
Having described the low mass configurations, we will

now briefly discuss more massive solutions of certain type.
One initial configuration that we have evolved consisted of
a nearly uniform along z distribution of the matter—
achieved by setting ez ¼ 0:995 in (24)—with the initial
amplitude of �0 ¼ 1:2ð1� iÞ. The Ricci scalar and the
energy density computed in this evolution are shown in
Fig. 11 together with the resulting apparent horizon that
appears at t� 0:55 and has a cylindrical topology. In this
simulation we used the algebraic DWG condition, and in
this case we were not able to locate a surface on which all
characteristics will point inwards. Therefore, no excision
was employed in this evolution, and the eventual failure of
the code was caused by collapse of the lapse at the axis.
While the total mass of this spacetime, M ’ 24:5, is

determined by the asymptotic falloff (31), the mass of
the ‘‘black string’’ (a black hole with the smeared horizon)
can be estimated from the average size of its horizon. The
last moment of the evolution before the code had crashed is
shown in bottom panels of Fig. 11. The horizon is nearly
uniform along z and is located at ~rAH � 0:3, which yields

the mass of MBS ¼ 0:5RAH=ðGN=L̂Þ ’ 12, where RAH �
0:49 is the uncompactified average areal radius of the
horizon. This value is below the critical mass, Mc ’ 14,
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FIG. 9 (color online). The Ricci scalar (in units of M�2) along
the equator at t� 0:37M, shortly before the evolution defined by
�0 ¼ 0:777ð1� iÞ develops a singularity at ~r� 0:21. The maxi-
mal value that the Ricci scalar attains in this evolution depends
on the resolution (here h ¼ 1=256), being larger on finer nu-
merical meshes, which indicates the geometrical nature of the
emerging singularity.
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FIG. 10 (color online). The distribution of energy density in
the evolution of the initial data, defined by �0 ¼ 0:8ð1� iÞ in a
simulation that uses the resolution of 201� 201. A strong
gravitational interaction in this case precludes any significant
amount of matter from escaping to infinity and leads to forma-
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centered around ð0; 0Þ and is signaled by the appearance of an
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needed for stability of the extended solutions of this type
[18]. Therefore, at this stage the system is probably far
from approaching stationarity. Since the total available
mass is higher than Mc, several scenarios for subsequent
dynamics can be imagined. If the black hole accretes
enough matter and increases its mass above critical, it
can reach the uniform black-string end state. Otherwise,
the evolution would probably have to proceed via forming
a localized black hole in the first place. This black hole
then may or may not accrete additional matter, and as a
result either to grow and become a black string or to settle
down to a stationary solution of spherical topology. While
further investigation of the process is clearly needed,
Fig. 11 shows a developing progressive localization of
energy density and curvature around ð0; 0Þ, indicating
that formation of a localized black hole first is more
probable in this specific case.

We turn now to a detailed description of the performance
of the code. Since we have implemented a free evolution
scheme, we can assess the convergence of our numerical
solutions by monitoring discrete versions of the Hamil-
tonian and momentum constraints, which are defined by
contracting the Einstein equations with the unit normal
vector to the t ¼ const hypersurfaces, i.e.Ma � naðGab �
TabÞ, where Gab is the Einstein tensor. One way of doing

this involves evaluation of the following L2 norm of finite-
differencing variables:

kYkL2
¼ 1

NrNz

� XNr;Nz

i;j¼1

jYi;jj2
�
1=2

: (46)

In the next section, we compute the L2 norms of the
constraints at each time step and examine their behavior
as a function of various parameters of the problem.

A. Coordinate conditions

In the weak-gravity regime where an initial pulse of
matter completely disperses to infinity, we find clear ad-
vantage of the algebraic DWG conditions. They are robust,
almost do not require fine-tuning, and are extremely stable.
Additionally, as described in the next section, the con-
straints remain well preserved in this case, such that only
very small damping [controlled by the parameter �; see
(9)] needs to be added to the equations.
Since at t ¼ 0, we assume harmonic conditionsHa ¼ 0,

choosing the source functions according to (20) at t > 0
will create discontinuity in the temporal component of the
gauge source function. Therefore, we multiply the sources
Fa in (20) by a time-dependent function ð1�
expð�t=t0ÞÞð1þ s expð�t=t1ÞÞ, where t0, t1, and s are
parameters. While the first factor is used to gradually
turn the sources on, the second factor is introduced in order
to improve late-time stability. For instance, while we found
that weak data defined by j�0j & 0:35 can be simulated
using t0 � 0–1 and s ¼ 0, the parameters t0 � 0–0:2, s�
0:1–0:5, and t1 � 10 were required in order to maintain
regularity during evolution of stronger data. In addition, we
found that long-term stability of the strong data evolutions
improves when the factor expðnSÞ is removed from the

definition of the determinant � ¼ ðg11g22 � g212Þ1=2 �
expðnSÞ used in (20).
The simulations that employ algebraic DWG are stable

for a range of the parameters �1 and �2. Basically, any
values of these parameters of order one can be successfully
used in the collapse situations. Nevertheless, we still find
that certain choices of �1;2 perform better than others and

preserve the constraints with a greater accuracy. This is
illustrated in Fig. 12 where we show norms (46) of the
constraints as a function of time. Although the norms
decrease in all the instances, the constraint violations are
the smallest for �1 ¼ �2 ’ 2.
After experimenting with the driver version of DWG

condition (23), we find that it performs comparably to the
algebraic DWG in early stages of the evolution until t�
10M. However, late-time behavior is fairly sensitive to the
driver parameters and generically develops coordinate sin-
gularities on a time scale t� 30M–100M. A considerable
constraint damping was usually required in these cases. In
comparison, a DWG-driver simulation with parameters
identical to the algebraic DWG evolution shown in Fig. 4

FIG. 11 (color online). Distributions of the energy density (on
the right) and the Ricci scalar (on the left) computed in the
evolution of a nearly uniform along z initial data defined by
�0 ¼ 1:2ð1� iÞ, and er ¼ 0, ez ¼ 0:995, which uses the reso-
lution of 101� 33. A strong gravitational interaction leads to a
rapid formation of a black string, signaled by the appearance of
an apparent horizon of cylindrical topology (shown as a thick
dashed line). Note that the matter and the curvature inside the
horizon are strongly localized around the center r ¼ z ¼ 0.
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had required at least 50 times stronger damping in order
not to diverge immediately, but even then the evolution
remained stable only until t� 100M.

The performance of the gauge drivers (21) and (22) is
similar to that. It was already reported in [26] that those
drivers—known to perform well in Cartesian implementa-
tions [1,3]—are considerably less stable in spherical sym-
metry, and here we notice the same. Specifically, we find
that pure harmonic coordinates are useful only for simu-
lating the dynamics of very weak initial data with the scalar
amplitude j�0j & 10�3 (and the corresponding massM &
10�4). For larger values of j�0j the lapse function collap-
ses in the locus of maximal matter concentration and
coordinate singularity forms. Although we were able to
delay the pathology by using one of the drivers (21) and
(22), in no instance was it possible to eliminate it com-
pletely. Generically, the coordinates in these simulations
become singular after a time of approximately a few tens of
M. An extensive fine-tuning of the driver parameters to-
gether with stronger constraint damping and the numerical
dissipation enables one to extend somewhat the duration of
the regular evolution up to t� 100M. For example, a
parameter setting that kept the evolution of the j�0j ¼

0:5 data regular until t� 100M consisted of �KO ¼ 0:34,

C ¼ 0:1, �1 ¼ 0:6, �2 ¼ 0:8, �3 ¼ 0,�0 ¼ 1, q ¼ 3, and
Nr � Nz ¼ 41� 41.
Our preliminary experiments in supercritical regimes

indicate that the algebraic DWG still outperforms the
driver conditions. While in all our simulations where a
black hole forms the coordinates eventually become sin-
gular near the excision surface, the simulations employing
algebraic DWG remain stable for longer. It is presently
unclear whether the coordinate pathology is caused by the
strong gravitational field or by the introduction of the
excision surface. More experiments are required and will
be reported elsewhere.

B. Dissipation and constraint damping

The explicit numerical dissipation that we add to our
scheme in (42) is an important ingredient affecting the
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long-term stability, and Fig. 13 illustrates this. There we fix
�0 ¼ 0:3ð1� iÞ exp½�ðr2 þ z2Þ=0:252�, use resolution of
33� 33 and algebraic DWG conditions with�1;2 ¼ 2, and
q ¼ 1=2 in a 6D simulation. We find that without the
dissipation the constraints quickly diverge. However, for
�KO above a certain minimal value (�KO > 0:04 in this
case) the evolution stabilizes. The specific threshold value
increases slightly when denser grids and stronger initial
data are used; however, taking �KO ’ 0:15–0:4 was usually
a safe choice for the simulations described in this paper.

In Fig. 14 we depict the lapse �ðt; 0; 0Þ and the matter
energy density �ðt; 0; zÞ, averaged along the axis, as func-
tions of time for several choices of �KO in 5D simulations
of weak scalar pulse with �0 ¼ 0:4ð1� iÞ using algebraic
DWG. The simulations converge for a wide range of the

values of the dissipation parameter, provided �KO * 0:08.
Figure 14 demonstrates that in this case the specific values
of �KO have only a marginal effect on the early dynamics,
until approximately 1000M. However, after that time the
variables computed in the simulations using unequal dis-
sipation parameters begin to differ, and stronger dissipation
generically implies smaller late-time amplitudes. The ab-
solute values of the amplitudes are usually small at this
stage (typically below �10�4).
Another factor influencing stability is the constraint-

damping term (9), which we add to the Einstein equations
in (10). We find that quite generically the long-term stabil-
ity improves when the damping of the constraints vanishes
in the asymptotic regions. For this reason we multiply � by
a factor (R0=R) in the regions where the areal radius
satisfies R> R0 for some large R0 (typically R0 � 20) in
order to gradually turn the damping off.
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Figures 15 and 16 illustrate the effect of the damping in
the case �ð0; r; zÞ ¼ 0:3ð1� iÞ exp½�ðr2 þ z2Þ=0:252�,
�KO ¼ 0:5 in 6D simulations that use algebraic DWG
with �1;2 ¼ 1 and q ¼ 1=2, and the resolution of 33�
33. In this configuration the evolution is stable for rather
small values of � including that of � ¼ 0; however, the
quickest asymptotic decrease of the constraint violations is
achieved for � ¼ 0:05=ð1þ 0:05tÞ. For the values of �
greater than a certain value—� > 0:25 in this specific
simulation—the code diverges. The time-dependent factor
1=ð1þ 0:05tÞ is less crucial in shorter subcritical simula-
tions, but it helps to improve stability on the long time
scales of t * 2000M.

Interestingly, typical values of the damping parameter �
in algebraic DWG evolution are small compared to the
inverse of any typical length scales of the problem (set e.g.
by the initial width of the scalar pulse, �, by the size of the
KK circle, or by the size of the black hole). Moreover,
certain weaker initial data can even be simulated without
the damping at all. This is in sharp contrast to the typical
values of the damping parameter, � ’ 1=�, required in
simulations that employ the driver gauge conditions (23),
(21), or (22).

C. Convergence

One of the crucial tests of numerical FDA schemes, such
as one that we use here, involves the investigation of the
convergence of the generated numerical solutions as a
function of resolution. We perform convergence tests based
on the assumption [43] that for any of the unknown func-
tions, Yðt; r; zÞ, appearing in our system, the corresponding
discrete quantity, Yhðt; r; zÞ in the limit h ! 0, admits an
asymptotic expansion of the form

Yhðt; r; zÞ ¼ Yðt; r; zÞ þ hpepðt; r; zÞ þ � � � ; (47)

where h is the spatial mesh size, epðt; r; zÞ is an

h-independent error function, and p is an integer that
defines the order of convergence of the scheme. We con-
sider sequences of three calculations performed with iden-
tical initial conditions, but with varying resolutions, h, h=2,
and h=4, and compute

log 2

�
Yh � Yh=2

Yh=2 � Yh=4

�
� p; (48)

for a grid function Y.
We fix �0 ¼ 0:4ð1� iÞ and use algebraic DWG evolu-

tion in 5D with the parameters �1;2 ¼ 3, q ¼ 1=2, � ¼
0:07, � ¼ 0:125, and show in Fig. 17 several plots illus-
trating the convergence. The top left panel shows the radial
dependence of the metric function 
 along z ¼ 0 at t� 2M
obtained in simulations using 3 different resolutions, h,
h=2, and h=4, with h ¼ 1=32. The decreasing dif-
ferences between solutions obtained using increasing res-
olutions indicate convergence. The top right panel in
Figure 17 shows that the convergence rate (48) is mostly
quadratic, except in the asymptotic region where the am-
plitude of the field is small and the computation is unreli-
able. The bottom left panel depicts the Hamiltonian
constraint at a late moment of the evolution: violations of
the constraint are small and decrease further when the grid
is refined. Finally, the bottom right panel illustrates the
time variation of the logarithm of the matter energy density
at ð~r; zÞ � ð0:5; 0Þ. Again, a convergence is evident and is
compatible with p * 1:5 in the regions where a non-
negligible amount of matter is present.
An additional measure of accuracy of the scheme can be

obtained by monitoring the total normalized residual of our
equations that can be defined as

R ¼ 1

NrNz

ðPNr;Nz

i;j¼1

P
Y jRYi;jj2Þ1=2P
Y 1

; (49)

whereRYi;j is the residual of the FDA equation governing

the variable Y at a grid point ði; jÞ. We show the logarithm
of the residual in Fig. 18 for three resolutions h, h=2, and
h=4, with h ¼ 1=32 in the 6D simulation using algebraic
DWG and the initial scalar pulse amplitude �0 ¼
1:0 expð�ðr2 þ z2Þ=0:125Þ. Evidently, the residual quickly
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decreases as a function of the numerical resolution, again
indicating convergence of the scheme.

D. Conclusion

We have described a generalized harmonic formulation
of the Einstein equations in axial symmetry in D dimen-
sions and constructed the first numerical code based on it.
We chose the coordinates in which the background sym-
metries are explicit. This, however, resulted in a coordinate
singularity on the axis, r ¼ 0. While at the continuum level
the equations of motion ensure regularity of a solution on
the axis, extra care must be exercised so that this remains
true in discrete numerical calculations. We have devised a
regularization procedure that achieves that, while preserv-
ing the hyperbolicity of the evolution system. In our im-
plementation we integrate the full D-dimensional
equations and find that this approach is smoother at the
axis and is generically more stable compared to the ap-
proach that solves the 2þ 1 equations, obtained by a
dimensional reduction on the symmetry.
We expect that our new code will enable systematic

investigation of many problems of interest in axisymmetry.
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that in the regions where a non-negligible amount of matter is present the convergence rate (48) of the metric function 
 is essentially
p� 2. Other functions, such as energy density, depicted in the bottom right panel, have similar convergence trends. The bottom left
panel illustrates that the constraint violations consistently decrease with increasing resolution.
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FIG. 18 (color online). The total residual (49) of the system of
our FDA equations at the hypersurfaces z ¼ 0, z ¼ 1=2, and z ¼
1 for 3 resolutions, with the coarsest one h ¼ 1=32. The residual
quickly decreases as a function of the numerical resolution.
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As a first application we tested the performance of the code
in the context of fully nonlinear gravitational collapse of a
complex, self-interacting scalar field propagating in a
D-dimensional Kaluza-Klein spacetime. We assumed
spherical symmetry in the (D� 1)-dimensional noncom-
pact portion of the spacetime, which effectively reduced
the problem to 2þ 1. The scenarios that we have consid-
ered ranged from the dispersion of dilute pulses to the
collapse of strongly gravitating pulses that lead to black
hole formation. One of the aspects of our code was the use
of radial compactification which, in conjunction with suf-
ficient Kreiss-Oliger–type dissipation, provided a viable
alternative to the truncation of the spatial domain and the
use of approximate outer boundary conditions. Another
ingredient of our algorithm that in some regimes was vital
for long-term stability was the addition of constraint-
damping terms to the evolution equations.

We described several strategies to fixing the coordinate
freedom that are compatible with the GH approach and
experimented with those. Our studies of evolutions using
damped-wave gauge that was enforced algebraically indi-
cate robustness of this choice, its weak dependence on
parameter settings, and stability. On the other hand, our
experiments with various drivers—described in detail in
Sec. III C—reveal that in the case of symmetries these
drivers are considerably less effective relative to the 3þ
1 simulations that use Cartesian coordinates, a conclusion
similar to that drawn in [26]. However, it would be inter-
esting to examine performance of the drivers in additional
axisymmetric situations, other than collapse.

One can consider several ways to improve the code.
Specifically, it seems natural to use hyperboloidal slicing,
similar to one suggested in [44], instead of the spatial
compactification that we presently employ. We expect
this will allow calculating asymptotic quantities and emit-
ted gravity wave with a greater accuracy, and will help to
improve late-time stability of the evolution that is ad-
versely affected by the unphysical radiation caused by
the loss of numerical resolution near the outer boundary.
One possible extension of our code, which will broaden
significantly the spectrum of possible axisymmetric con-
figurations accessible with it, would be an addition of
rotation. In addition, coupling the gravity dynamics to
evolution of more general matter, such as fluid, will enable
studying certain situations relevant in astrophysics.

Although the main purpose of this work was to describe
the code and test its performance in a nontrivial highly
dynamical setting, our preliminary study of collapse in a
Kaluza-Klein background indicates rich and distinctive
phenomenology, deserving further investigation. Among
interesting questions, which will be addressed elsewhere,
is determining what classes of initial data lead to formation
of black holes of specific topology and constructing a
phase diagram of the solutions (see [45] for some predic-
tions concerning the diagram). In addition, a detailed in-

vestigation of the situation near threshold for black hole
formation12 and classification of possible outcomes is nec-
essary. In particular, in this regime the fields typically
oscillate, creating several outgoing shells. We found that
the matter distributes anisotropically within the shells,
forming separate bounded systems, and that curvature
singularities can develop inside those. We expect that the
effect will be more pronounced in higher dimensions
where many more shells can form near threshold [31],
and since the gravitational field of an isolated system is
increasingly localized in higher dimensions, the shells have
a greater chance to separately become bounded systems
capable of collapsing and forming black holes. It is worth
exploring to which extent the expectations are true.
However, such a study will require an improved horizon
finder that will be able to locate several moving horizons,
and we are working in this direction.
Finally, it would be very interesting to compute the

detailed gravitational-wave signal emitted in various re-
gimes. While from the perspective of a four-dimensional
observer all our solutions appear spherical that are not
expected to emit any gravitational radiation, the waves
are certainly produced and carry energy away. The ‘‘miss-
ing’’ energy, as it would be seen in 4D, will then provide a
circumferential evidence in favor of the extra dimensions.
In addition, the spectrum of the gravitational waves must
contain frequencies associated with the length scale of the
extra dimensions. Therefore, by measuring the signal di-
rectly one can, in principle, probe the dimension and the
topology of the spacetime.
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APPENDIX: DIMENSIONALLY REDUCED
EQUATIONS AND BOUNDARY CONDITIONS

Here we describe the approach that uses the Kaluza-
Klein reduction of the D-dimensional equations on the
OðD� 2Þ symmetry and integrates the resulting three-
dimensional equations.
The most general D-dimensional line element that is

invariant under action of the group of rotational symme-
tries OðD� 2Þ can be written as

ds2 ¼ e2�Ŝds23 þ e2�Ŝd�2
n

¼ e2�Ŝgð3Þabdx
adxb þ e2�Ŝd�2

n; (A1)

12This is exactly where we expect the adaptive mesh refinement
(AMR) feature provided by the pamr/amrd infrastructure, will be
crucial.
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where the metric components are functions of three-
dimensional coordinates xa alone, and �, � are constants,
chosen for convenience below.

We define the conformally rescaled metric ~gð3Þab �
e2�Ŝgð3Þab and write the dimensional reduction of the

Einstein-Hilbert Lagrangian as

LEH � ffiffiffiffiffiffiffiffiffiffi�gD
p

RD

¼ ffiffiffiffiffiffiffiffiffiffi�~g3
p

en�Ŝ½ ~R3 þ nðn� 1Þe�2�Ŝ

� 2n� ~h Ŝ�nðnþ 1Þ�2ð~@ ŜÞ2�; (A2)

where derivatives are computed using ~gð3Þab: ~h Ŝ �
ð�~g3Þ�1=2@að~gð3Þabð�~g3Þ1=2@bŜÞ, and ð~@ ŜÞ2 �
~gð3Þab@aŜ@bŜ.
Substituting the nontilded metric and using the relations

between conformally related quantities [46],

~R3 ¼ e�2�Ŝ½R3 � 4�hŜ� 2�2ð@ŜÞ2�;
~h Ŝ ¼ e�2�Ŝ½�ð@ŜÞ2 þhŜ�; ð~@ ŜÞ2 ¼ e�2�Ŝð@ŜÞ2;

(A3)

where the derivatives in the right-hand side are now com-
puted with the nontilded metric, we arrive at

ffiffiffiffiffiffiffiffiffiffi�gD
p

RD ¼ ffiffiffiffiffiffiffiffiffiffi�g3
p

eð�þn�ÞŜ½R3 � ð4�þ 2n�ÞhŜ

� ð2�2 þ 2n��þ nðnþ 1Þ�2Þð@ŜÞ2
þ nðn� 1Þe�2�Ŝþ2�Ŝ�: (A4)

By choosing � ¼ �n�, we convert the lower-dimensional
action into Einstein-Hilbert form, L ¼ ffiffiffiffiffiffiffiffiffiffi�g3

p
R3. Since in

this case hŜ is multiplied by a constant factor, it does not
contribute to the equations of motion and can be omitted.

In addition, fixing � ¼ ½nðnþ 1Þ��1=2 ensures the canoni-

cal normalization of the kinetic term of the scalar Ŝ. After
these manipulations the Lagrangian becomes

L EH ¼ ffiffiffiffiffiffiffiffiffiffi�g3
p ½R3 � ð@ŜÞ2 þ nðn� 1Þe�2cnŜ�; (A5)

where we have defined cn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 1Þ=np

. This Lagrangian
describes three-dimensional gravity coupled to the self-
interacting13 scalar field S. The components of the original
D-dimensional metric g�� (A1) are given in terms of the

lower-dimensional fields as

gðDÞ
ab ¼ e�ð2=cnÞŜgð3Þab; gðDÞ

�� ¼ exp

�
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðnþ 1Þp Ŝ

�
g�:

(A6)

A reduction of the matter Lagrangian of our model (2)
takes the form

L� ¼ 1
2

ffiffiffiffiffiffiffiffiffiffi�g3
p ½j@�j2 þ 2Vðj�jÞe�ð2=cnÞŜ�; (A7)

yielding the total action of the system,

S ¼ SEH þ S�

¼ � 1

2

Z ffiffiffiffiffiffiffiffiffiffi�g3
p ½R3 � j@�j2 � ð@ŜÞ2 þ nðn� 1Þe�2cnŜ

� 2Vðj�jÞe�ð2=cnÞŜ�; (A8)

which describes two interacting scalar fields minimally
coupled to gravity in three dimensions. Varying the action
with respect to the 3-metric and the fields, one obtains the
equations of motion,

Rab ¼ �Tab � Tab � gabT

¼ @ða�@bÞ�� þ @aŜ@bŜ� gabð�2Ve�ð2=cnÞŜ

þ nðn� 1Þe�2cnŜÞ;
hŜ� cnnðn� 1Þe�2cnŜ þ 2

cn
Ve�ð2=cnÞŜ ¼ 0;

h�� @V

@�� e
�ð2=cnÞŜ ¼ 0: (A9)

Next, we bring the Einstein equations in this system into
the GH form using the transformations analogous to (5)
and (7) but applied to the 3-metric, and add a constraint-
damping term similar to (9). The resulting hyperbolic
system is evolved in time.
We are interested in asymptotically Minkowski times a

circle, RD�2;1 � S1 solutions of (A9), satisfying gðDÞ
ab !

�ab, gðDÞ
�� ! r2, and � ! 0. Using (A6) we find that

asymptotic boundary conditions obeyed by the reduced

fields in this case are gð3Þab ! �abr
2n and Ŝ !ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðnþ 1Þp
logðrÞ. Since it is difficult to handle blowing-

up conditions of this sort in numerical implementations,
we redefine our variables by factoring out this singular

behavior: gab ! gabr
2n and S ¼ Ŝþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðnþ 1Þp
logðrÞ.

However, as a result of this transformation, the radial
component of the GH source functions defined in (4)
acquires a term singular at the axis H1 ¼ n=rþ � � � ,
where ellipses designate regular at r ¼ 0 terms. This be-
havior is similar to what happens in the unreduced system,
and in analogy to that case we regularize the source func-
tions by subtracting off this singular flat-background con-
tribution; see Sec. III A. The gauge conditions are then
applied to the regularized source functions.
Regularity conditions at the center r ¼ 0 are again

analogous to those in the unreduced case. Specifically

gð3Þ00 , g
ð3Þ
11 , g

ð3Þ
02 , g

ð3Þ
22 , and S are even functions in r as r !

0, while gð3Þ01 and gð3Þ12 are odd. Moreover, requiring the

absence of conical singularity at r ¼ 0 places an additional

condition that gð3Þ11 � expð�cnSÞ ¼ Oðr2Þ as r ! 0. Since
it is desirable to have a number of boundary conditions
matching the number of dynamical variables, one might

13Note that the potential term of the scalar Ŝ is proportional to
the curvature of the n sphere, and hence the scalar Ŝ is massless
in axisymmetry in 4D.
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consider a regularization similar to (15) that achieves this
by defining 
 ¼ ðg11 � ecnSÞ=r that behaves as 
�OðrÞ
near r ¼ 0, one than eliminates S from the scheme and
uses 
 as a fundamental variable instead. However, a closer
examination of the equation governing 
 reveals that the
regularization does not work in this case because the
equation is not automatically regular at r ¼ 0 as it was in
the unreduced approach. Rather the equations contain
terms proportional to 1=r, which are regular only if the
constraints are explicitly satisfied. Namely, not only the
number of boundary conditions exceeds that of the dy-
namical fields—as it was before the regularization—but
now the extra condition is also algebraically more compli-
cated. Hence, instead of introducing 
 we opted to imple-

ment a more straightforward regularization method that
maintains S as a fundamental dynamical variable and
uses analytical Taylor-series expansion to compute its
value near the axis; see [26] for more details.
A comparison of the dimensionally reduced approach

and the full D-dimensional method described in the main
text shows that both methods perform comparably in the
weak-field regime when M & 0:5. However, for stronger
initial data the dimensionally reduced approach is consid-
erably less stable and prone to developing coordinate
singularities, regardless of the gauge conditions that we
use. We do not fully understand the reason for this, a
further investigation is required, and we hope to report
on this puzzling issue elsewhere.
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