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Abstract

We identify the gauge theory dual of a spinning string of minimal energy with spins S1, S2

on AdS5 and charge J on S5. For this purpose we focus on a certain set of local operators
with two different types of covariant derivatives acting on complex scalar fields. We analyse
the corresponding nested Bethe equations for the ground states in the limit of large spins.
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enable us to derive integral equations for the leading and sub-leading contribution to the
anomalous dimension. The results can be expressed through the observables of the sl(2)
sub-sector, i.e. the cusp anomaly f(g) and the virtual scaling function BL(g), rendering the
strong-coupling analysis straightforward. Furthermore, we also study a particular sub-class
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and strong coupling.
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1 Introduction and Summary

Twist operators have so far played a major role in dynamical tests of the AdS/CFT corre-
spondence in the planar limit. The main reason is their special scaling property at large values
of the Lorentz spin. In particular, the anomalous dimension grows logarithmically with the
spin, cf. [1]. This scaling behaviour is not a unique feature of the maximally supersymmet-
ric Yang-Mills theory in four dimensions, but rather a special case of the so-called Sudakov
scaling [2] common to many gauge theories.

A typical representative of these operators in the sl(2) sector of N = 4 SYM is built from
L complex scalar fields, Z, and M covariant light-cone derivatives, D, acting on the scalar
background fields within the trace

trDMZL + . . . . (1.1)

The anomalous dimension of these operators occupy a band [3]. A distinguished sub-set
among these is formed by the ground states, i.e. the lowest operators in the band, which
enjoy several additional symmetry properties. For the two lowest possible values of the length,
L = 2 and for the ground state of L = 3 , analytic expressions for the anomalous dimensions
can be found at high orders in perturbation theory [4, 5].

For twist-two operators these coincide with the maximal transcendental terms [6] of the
known QCD results up to three-loop order, see [7] and references therein. At four-loop order
the splitting functions of QCD are unknown, nevertheless the anomalous dimension of these
operators may be determined [8, 9]. The result agrees with constraints from the BFKL
equation [6]. Moreover, the result for M = 2 coincides with the explicit Feynman diagram
computations of [10].

The ground states for L = 3 enjoy a similar solvability and the leading wrapping correction
may be explicitly found [11]. In the special case of two excitations, the result is confirmed by
the super-graph computation of [12].

For L > 3 it is unknown whether closed expressions for the anomalous dimensions can be
found, even for the ground states. Nevertheless, the anomalous dimensions of the latter enjoy
very interesting scaling properties in the limit M → ∞,

γsl(2)(L,M) = f(g)(logM + γE − (L− 2) log 2) +BL(g) + O
(

1
log M

)
. (1.2)

The function f(g) is also referred to as the cusp anomalous dimension. It is conjectured to
be independent of the length L and consequently not influenced by wrapping interactions.
Thus, one can use the asymptotic Bethe equations to derive an integral equation [13], which
allows to compute f(g) to arbitrary loop order. The scaling function resulting from the
weak-coupling solution of this equation coincides up to four-loop order with the explicit
perturbative computations of [14]. At strong coupling, the solution to this integral equation
[15, 16] leads to a remarkable agreement with the corresponding string theory results, see
[17, 18, 19]. Hence f(g) embodies the first known interpolating function of AdS/CFT. A
special phenomenological interest in this object is due to its appearance in multi-loop gluon
scattering amplitudes as well as in expectation values of certain Wilson lines. That is, the
scaling function f(g) determines the leading 1/ǫ2 pole structure of the logarithm of gluon
amplitudes [14] as well as the logarithmic growth of the anomalous dimension of light-like
Wilson loops with a cusp [20], as first noted in the strong coupling limit [21].

The virtual scaling function, BL(g), appearing in (1.2) explicitly depends on the twist L
and it is less obvious that it remains unaffected by wrapping effects. The integral equation
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corresponding to BL(g) has been derived in [22], see also [23]. Interestingly, the solution
to this equation may be related to the solution of the integral equation determining f(g).
This intertwines the strong coupling analysis of both functions and the methods developed
for the cusp anomalous dimension may be directly applied also to the case of the virtual
scaling function. The resulting strong-coupling expansion [22] is in perfect agreement with
the string theory predictions at leading and next-to-leading order in λ, see [24], suggesting
that the wrapping interactions can be neglected also for the first finite-spin corrections. Also
this quantity appears in the context of gluon amplitudes and Wilson loops. It enters the
sub-leading 1/ǫ poles as part of the collinear anomalous dimension, see [25].

In this paper we will go beyond the sl(2) sector. We introduce and investigate a gauge
theory dual of a minimal energy spinning string configuration with two spins, S1 and S2,
in AdS5 and charge J in S5. The field content of these operators can be schematically
represented by

trDn+m ˙̄DmZL . (1.3)

The charges of the string are related to m and n through the identification

S1 = n+m− 1
2 , S2 = m− 1

2 , J = L . (1.4)

At weak coupling we extensively examine the limit m,n→ ∞ with n/m = α fixed, in which
S1, S2 → ∞ with S1/S2 = 1+α fixed. We start with the analysis of the corresponding nested
one-loop Bethe equations. Surprisingly, the states with minimal length, L = 3, are again
solvable and the respective Baxter functions may be found. While we extensively use this
analytic solution for a numerical study of the behaviour of the one-loop Bethe roots in the
large m,n limit, we defer its derivation to Appendix A. We find that the auxiliary roots may
be decoupled at the first two orders in m,n ≫ 1, leaving a remainder in the main equation.
Upon introducing the density of roots, this effective equation may be turned into a solvable
integral equation. Subsequently, we use its leading one-loop solution as the starting point for
the derivation of the all-loop integral equation for the density. The solution to this all-loop
equation allows to determine the corresponding anomalous dimension. For the first two orders
in m,n, we find

γ(L,m,α) =
3

2
γsl(2)(

2
3 L,m) +

f(g)

2
log
(1

2
(1 + α)(2 + α)

)
+ O

( 1

logm

)
. (1.5)

This result is very surprising, since it suggests a deep relation between the one-spin and
two-spin solutions at the first two leading orders. This unexpected link calls for further
investigation on the string theory side.

At leading order in spin the result ∼ 3
2f(g) agrees with the energy scaling of spiky-strings

[26, 27] that consist of three arcs, each of them contributing a factor of 1
2 , see [28, 29]. At

finite order the results differ [24, 30].
Very recently it was shown by A. Tirziu and A. Tseytlin that in the case of α = 0 the

string theory calculation agrees with the formula (1.5) at leading order in λ, see [31]. This
gives strong evidence for the absence of wrapping effects in our gauge theory calculation and
justifies the use of the asymptotic Bethe equations.

We furthermore examine the large n limit of (1.3) for arbitrary finite values of m ≥ 2.
The strong coupling solution cannot be expressed in terms of known observables. However,
the same methodology as in [22] can be used, to solve the corresponding integral equation at
strong coupling. At leading order in n this solution resembles the folded string configuration.
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Figure 1: Dynkin diagrams of su(2, 2|4) with different gradings [32].

2 Definitions and the string theory dual

The highest-weight states corresponding to operators (1.3) have the following Dynkin labels
with respect to the upper Dynkin diagram in figure 1, cf. [32],

(∆0, s1, s2, q1, p, q2, B, L) = (L + 2m+ n− 3
2 , 2m + n− 1, n, 1, L − 3, 2, 1

2 , L) . (2.1)

This suggests that the string theory dual of these operators is a spinning string with two
spins S1, S2 on AdS5 and charge L on the S5. Upon the usual SO(4) rotation, we can read
of the spins directly from (2.1)

S1 = m+ n− 1
2 , S2 = m− 1

2 . (2.2)

In view of the comparison with the string results, we will consider large values of m and n
while fixing their ratio to n

m = α. For finite values of α both spins become large and

S1

S2
= 1 + α . (2.3)

In particular, the case of α = 0 corresponds to the symmetric case of the spinning string
with equal spins. The well-studied case of the folded string with one large spin, on the other
hand, corresponds to α = ∞. In this publication, we will only study the gauge theory states
with minimal anomalous dimension, which correspond to minimal energy states on the string
theory side.

In contradistinction to the sl(2) sub-sector, the Bethe equations corresponding to the op-
erators (1.3) are nested. The number of nesting levels depends on the choice of representation.
The minimal number of levels is equal to three. However, for the sake of convenience, we
will mostly use a non-minimal representation corresponding to the lower Dynkin diagram in
figure 1.

A subset of (1.3) with L = 3 has already been studied in the literature, cf. [33]. It was
found experimentally that the corresponding one-loop anomalous dimension is given by the
following closed formula

γn,m = 4H1

(
m
2 − 1

2

)
+ 4H1

(
m+ n

2

)
+ 4H1

(
m
2 + n

2

)
− 4H1

(
−1

2

)
. (2.4)

Here, H1(N) denotes N -th harmonic number. We will prove this formula in Appendix A,
by constructing an explicit one-loop solution for L = 3. This is a counterpart of the L = 2
solution found in the sl(2) sector [34]. The corresponding Baxter functions (see (A.28), (A.29)
and (A.34)) become quite complicated and are not hypergeometric orthogonal polynomials
anymore. Nevertheless, the explicit one-loop solution enormously facilitates numerical studies
of the Bethe solutions at large values of m and n.
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3 Large spins solution at one-loop order

In this section we will analyse the operators (1.3) in the limit m,n→ ∞ and n/m = α = fixed
at leading order in perturbation theory. As in the case of the sl(2) operators [34], the leading
solution does not depend on the length L. The minimal set of equations at one-loop consists
of two coupled nesting levels

(
u4,k + i

2

u4,k − i
2

)L

=
n+2m∏

j=1
j 6=k

u4,k − u4,j − i

u4,k − u4,j + i

m∏

j=1

u4,k − u5,j + i
2

u4,k − u5,j − i
2

(3.1)

1 =
m∏

j=1
j 6=k

u5,k − u5,j − i

u5,k − u5,j + i

n+2m∏

j=1

u5,k − u4,j + i
2

u5,k − u4,j − i
2

. (3.2)

From the numerical studies of the analytic solution for L = 3 presented in Appendix A we
infer that the roots u5 form strings

u5 →±i/2,±3i/2,± . . . m even,

u5 → 0,±i,±2i,± . . . m odd. (3.3)

However, it is incorrect to assume, even at the leading order, that all u5 will exhibit this
behaviour. We thus introduce an effective cut-off c(α) such that

u5 →±i/2,±3i/2, . . . ,±i(m/c(α) − 1/2) m even,

u5 → 0,±i,±2i, . . . ,±i(m/c(α) − 1/2) m odd. (3.4)

In the following we will explicitly fix c(α) in the limits m,n → ∞. We have also checked
numerically that the remaining roots, i.e. not belonging to the effective strings (3.4), scale
as ∼ m2 at large values of m and thus are not relevant for the leading and the sub-leading
order. In the large n limit and for finite values of m the strings (3.3), as we will show in what
follows, become exact and c(∞) = 2 as expected. In either case, one can completely decouple
the u5 roots. The effective equation for the middle-node roots thus takes the following form

(
u4,k + i

2

u4,k − i
2

)L

=

(
u4,k + i m

c(α)

u4,k − i m
c(α)

)
m(α+2)∏

j=1
j 6=k

u4,k − u4,j − i

u4,k − u4,j + i
. (3.5)

In the large m and/or n limit this equation may be turned into an integral equation along
the lines presented in [34]. Explicitly, one obtains

2L

m(α+ 2)
arctan(2uk) =

2π

m(α+ 2)
ñ(u) − 2

∫ b(α)

−b(α)
du′ρ(u′) arctan(u− u′)

+
2

m(α+ 2)
arctan( c(α) uk

m ) . (3.6)

Here, ñ(u) is the function for the mode numbers. It is related to the density ρ0(u) through

ñ(u) =
L− 3

2
sgn(u) − m(α+ 2)

2
+

∫ u

−b(α)
du′ρ(u′) . (3.7)
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3.1 The α = 0 solution

Upon rescaling the momentum-carrying roots u4 = 2mū4 and the corresponding density
ρ̄0(ū) = 2mρ0(u), the leading part of the equation (3.6) is given by

3π sgn(ū) − 2 arctan(2 c ū) + 2 −
∫ b̄(0)

−b̄(0)
dū′

ρ̄0(ū′)

(ū− ū′)
= 0 . (3.8)

The solution to this equation is given by

ρ̄0(ū) =
3

2
ρ̄K

( ū

2 b̄(0)

)
− 1

2π
log




√
1 − ū2

b̄(0)2
+

√
4b̄(0)2 c2+1

2b̄(0)c√
4b̄(0)2c2+1

2b̄(0)c
−
√

1 − ū2

b̄(0)2


 . (3.9)

Here, with ρK(u) we have denoted the one-loop density of the Bethe roots corresponding to
the ground state of twist-L operators in sl(2). The normalisation condition

1 =

∫ b̄(0)

−b̄(0)
dū ρ̄0(ū) , (3.10)

relates the boundary of the root distribution to the dimension of the effective strings c.
Explicitly, one finds

b̄(0) =
1

16 c
(
√

9 − 4 c+ 4 c2 + 6 c − 3) . (3.11)

To determine the constant c we proceed as follows. The density ρ0(u) has the following large
m expansion

ρ0(u) =
3

4m

(
2

π
logm+C − 2

π2
log(u2)

)
+ . . . , (3.12)

with the constant term C given by

C =
2

π
log
(
4 b̄(0)

)
− 2

3π
log

(
2 b̄(0) c +

√
4 b̄(0)2 c2 + 1

)
. (3.13)

One may thus split the density in (3.6) as follows

ρ(u) = ρ0(u) + r(u) , (3.14)

and use the expansion (3.12) to obtain a leading integral equation for r(u). Upon Fourier
transformation one finds

r̂(t) =
1

2m

(
3
e−|t|/2

1 − e−|t|
− 3

|t| −
L

1 + e−|t|/2

)
. (3.15)

One can now use (3.14) to calculate the one-loop anomalous dimension. After straightforward
integration one finds

γ0 = 12 logm+ 12γ
E
− 8(L− 3) log 2 + 6π C. (3.16)

This should be compared with the large m expansion of the L = 3 analytic result (2.4)

γL=3
0 = 12 logm+ 12γ

E
. (3.17)

Thus, the constant c is determined by the condition C = 0 in conjunction with (3.11).
Numerically one may determine c = 2.83181(. . . ), which means that approximately 7

10 of the
u5 roots form effective strings. We have checked numerically that b̄(0) obtained by inserting
this value of c is consistent with the scaling properties of the largest u4 roots.
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3.2 The solution for general α > 0

The limit m → ∞, n → ∞ with n
m = α = fixed is a simple generalisation of the α = 0 case

discussed above. The roots u5 form again strings, and one expects the cut-off parameter to
depend on α, i.e. c = c(α). Upon rescaling the roots by n+ 2m = m(α+ 2), one derives the
following integral equation

3π sgn(ū) − 2 arctan((2 + α) c(α) ū) + 2 −
∫ b̄(α)

−b̄(α)
dū′

ρ̄0(ū′, α)

(ū− ū′)
= 0 . (3.18)

The solution to this equation is given by

ρ̄0(ū, α) =
3

2
ρ̄K

( ū

2 b̄(α)

)
− 1

2π
log




√
1 − ū2

b̄(α)2
+

√
b̄(α)2(α+2)2c(α)2+1

b̄(α)(α+2)c(α)√
b̄(α)2(α+2)2c(α)2+1

b̄(α)(α+2)c(α)
−
√

1 − ū2

b̄(α)2


 . (3.19)

The normalisation condition yields the relation

b̄(α) =
1

8 (2 + α) c(α)

(
−3 + 3 (2 + α) c(α) +

√
9 − 2 (2 + α) c(α) + (2 + α)2 c(α)2

)
. (3.20)

The constant c(α) may be determined by the same procedure as in the α = 0 case. The
denisty ρ0(u) has the following large m expansion

ρ0(u, α) =
3

2m(2 + α)

(
2

π
logm+ C(α) − 2

π2
log(u2)

)
,

with

C(α) =
2

π
log
(
2 b̄(α)(α + 2)

)
− 2

3π
log

(
b̄(α)(α + 2)c(α) +

√
b̄(α)2(α+ 2)2c(α)2 + 1

)
.

(3.21)
Splitting again the leading density as

ρ(u, α) = ρ0(u, α) + r(u, α) + . . . , (3.22)

one determines r̂(t, α) to be

r̂(t, α) =
1

m(2 + α)

(
3
e−|t|/2

1 − e−|t|
− 3

|t| −
L

1 + e−|t|/2

)
. (3.23)

This immediately leads to

γ0 = 12 logm+ 12γ
E
− 8(L− 3) log 2 + 6π C(α). (3.24)

Expanding (2.4) for general α, one finds

γ0 = 12 logm+ 12γ
E

+ 4 log
(

1
2(1 + α)(2 + α)

)
. (3.25)

One thus concludes that

3π C(α) = 2 log
(

1
2 (1 + α)(2 + α)

)
. (3.26)

The above formula in conjunction with (3.21) and (3.20) determines c(α) uniquely. The
behaviour of c(α) as a function of α is shown in figure 2. Clearly, the effective strings become
exact in the large α limit

lim
α→∞

c(α) → 2 . (3.27)

6



0 5 10 15 20

1.8

2.0

2.2

2.4

2.6

2.8

3.0

c(α)

α
Figure 2: The plot of c(α) as function of α.

3.3 The α = ∞ solution

In view of (3.27), one concludes that for α→ ∞ all roots u5 form strings as in (3.3). Rescaling
the main roots as u4 = n ū4 and taking the large n limit we find

0 = 2π sgn(ū) − 2 −
∫ b/n

−b/n
dū′

ρ̄0(ū)

(ū− ū′)
. (3.28)

The above equation, together with the momentum constraint which fixes b to n/2, is solved
by the known sl(2) density, ρ̄K(ū), found in [35]. This formally corresponds to taking α→ ∞,
although the latter is not unique due to the fact that any dependence on finite values of the
spin S2 is lost.

4 The all-loop equations

Beyond the one-loop order the spectral equations for the operators (1.3) can be derived from
the full system of the asymptotic Bethe equations conjectured in [32]. In what follows, we
will work with a set of four coupled Bethe equations

(
x+

4,k

x−4,k

)L

=

n+2m∏

j 6=k

x−4,k − x+
4,j

x+
4,k − x−4,j

1 − g2/x+
4,kx

−
4,j

1 − g2/x−4,kx
+
4,j

σ2(u4,k, u4,j)

×
m∏

j=1

x+
4,k − x5,j

x−4,k − x5,j

m−2∏

j=1

1 − g2/x+
4,kx7,j

1 − g2/x−4,kx7,j

1 =
m−1∏

j=1

u5,k − u6,j − i/2

u5,k − u6,j + i/2

n+2m∏

j=1

x5,k − x−4,j

x5,k − x+
4,j

1 =
m−1∏

j=1

u6,k − u6,j + i

u6,k − u6,j − i

m∏

j=1

u6,k − u5,j − i/2

u6,k − u5,j + i/2

m−2∏

j=1

u6,k − u7,j − i/2

u6,k − u7,j + i/2

1 =

m−1∏

j=1

u7,k − u6,j − i/2

u7,k − u6,j + i/2

n+2m∏

j=1

1 − g2/x7,kx
−
4,j

1 − g2/x7,kx
+
4,j

. (4.1)

7



Our convention for the coupling constant is g2 = g2
YMNc/(16π2). The deformation of the

spectral parameter reads x(u) = 1
2 (u +

√
u2 − 4g2), with the conventional notation x± =

x(u± i
2 ). The form of the dressing factor σ2 is given in [13]. Note that at one-loop order, the

generating functions of the u6 and u7 roots can be immediately obtained from the u5 roots.
Consequently, these roots inherit the behaviour of the u5 roots and also form effective strings.
We will denote the effective cut-off parameter for the u7 roots by d(α).

In the large m,n limit, the leading positions of the inner u5 roots are again given by (3.4).
The quantum corrections to these roots vanish as m,n → ∞. The outer roots, on the other
hand, grow very rapidly. The same is true for the auxiliary roots u7. Thus, effectively, the
system (4.1) reduces to

(
x+

k

x−k

)L

=

n+2m∏

j 6=k

uk − uj − i

uk − uj + i

(
1 − g2/x+

k x
−
j

1 − g2/x−k x
+
j

)2

×
uk + i m

c(α)

uk − i m
c(α)

1 − g2/x−k x(i m
c(α))

1 + g2/x+
k x(i m

c(α))

1 + g2/x−k x(i m
d(α) )

1 − g2/x+
k x(i m

d(α) )
σ2(uk, uj). (4.2)

From this set of effective Bethe equations we will derive an integral for the fluctuation density,
σ(g, u, α),

ρ(g, u, α) = ρ(u, α) − 8 g2

m(α+ 2)
σ(g, u, α) . (4.3)

In what follows, we will treat the cases α = 0, α > 0 and α = ∞ separately, even though the
first two directly interpolate between each other. The case of α = ∞ requires a more careful
analysis.

4.1 The equal spin case α = 0

Knowing (3.12) and (3.15), one can easily derive the integral equation for the Fourier-Laplace
transform1 of the fluctuation density σ̂(g, t, 0)

σ̂(g, t, 0) =
t

et − 1

[ (
3
2 logm+ 3

2γE
− (L− 3) log 2

)
K(2gt, 0) − L

8g2t
(J0(2gt) − 1)

+
1

2

∫ ∞

0
dt′
( 3

et′ − 1
− L− 3

et′/2 + 1

) (
K(2gt, 2gt′) −K(2gt, 0)

)

−4g2

∫ ∞

0
dt′K(2gt, 2gt′)σ̂(g, t′, 0)

]
. (4.4)

It is written in terms of the usual integral kernel K(t, t′) = K0(t, t′) + K1(t, t′) + Kd(t, t′),
with the parity even and odd components given respectively by [13]

K0(t, t′) =
tJ1(t)J0(t′) − t′J0(t)J1(t′)

t2 − t′2
=

2

tt′

∞∑

n=1

(2n− 1)J2n−1(t)J2n−1(t′) ,

K1(t, t′) =
t′J1(t)J0(t′) − tJ0(t)J1(t′)

t2 − t′2
=

2

tt′

∞∑

n=1

(2n)J2n(t)J2n(t′) . (4.5)

1We define the Fourier-Laplace transform of the fluctuation density by σ̂(t) = e
−

t

2

R

∞

−∞
du e

−itu
σ(u).
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The dressing kernel Kd(t, t′) is a convolution of the even and the odd part

Kd(t, t) = 8g2

∫ ∞

0
dt′′K1(t, 2gt′′)

t′′

et′′ − 1
K0(2gt′′, t′) . (4.6)

The anomalous dimension corresponds to the value of σ̂(g, t, 0) at the origin

γ(L,m) = 16 g2 σ̂(g, 0, 0) . (4.7)

By comparing (4.4) with the corresponding equation for the sl(2) sector [22], one easily infers
that terms proportional to K(2gt, 0) in the first line of (4.4) give rise to the cusp anomalous
dimension f(g), while the remaining terms yield the virtual scaling function B2(g) obtained
in [22], and the first generalised scaling function ǫ1(g) of [36, 37]. Hence, the anomalous
dimension is given by

γ(L,m) =
3

2
f(g) (logm+ γ

E
) + (L− 3)ǫ1(g) +

3

2
B2(g) + O

( 1

logm

)

=
3

2
γsl(2)(

2
3L,m) + O

( 1

logm

)
. (4.8)

Remarkably, the large m anomalous dimension is up to the order O( 1
log m) proportional to

the anomalous dimension of the twist operators. This can be traced back to the “screening
properties” of the u5 roots, cf. (3.4). It should be noted that although we have assumed
α = 0, one does not need to put n = 0. In contrary, (4.8) is valid also in the latter case
and the first finite n corrections are sub-leading. We expect, in similarity to the case of sl(2)
operators, that the wrapping corrections will not affect the first two orders in the large spin,
S = 2S1, expansion. The findings of [31] confirm this hypothesis.

4.2 The case of α > 0

It is straightforward to repeat the computation of the preceding paragraph for α > 0, the only
difference being an additional one-loop term in the energy, cf. (3.25). The resulting equation
for σ̂(g, t, α) takes the following form

σ̂(g, t, α) =
t

et − 1

[ (
3
2 logm+ 3

2γE
− (L− 3) log 2 + 1

2 log
(

1
2(1 + α)(2 + α)

))
K(2gt, 0)

− L

8g2t
(J0(2gt) − 1) +

1

2

∫ ∞

0
dt′
( 3

et′ − 1
− L− 3

et
′/2 + 1

) (
K(2gt, 2gt′) −K(2gt, 0)

)

−4g2

∫ ∞

0
dt′K(2gt, 2gt′)σ̂(g, t′, α)

]
. (4.9)

The anomalous dimension can be easily found

γL(g,m) =
3

2
γsl(2)(

2
3L,m) +

f(g)

2
log
(1

2
(1 + α)(2 + α)

)
+ O

( 1

logm

)
. (4.10)

It is noteworthy that the dependence on α is logarithmic and that the corresponding prefactor
is again proportional to f(g). It would be interesting to understand from a string theory
perspective why the energy of the general two-spin solution so closely resembles the one-spin
solution.
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4.3 One large spin limit

In this section we will discuss the case of n → ∞ and finite values of m. It turns out that,
contrary to the α = 0 case, the sub-leading correction exhibits an interesting dependence on
m.

The one-loop leading solution has been discussed in section 3.3 and is fully equivalent to
the one-loop problem for the ground states in the sl(2) sub-sector, cf. [34]. Proceeding in the
same spirit as in the previous sections, we split off the leading density

ρ(u) = ρ0(u) + r(u) (4.11)

and derive a leading equation for r(u), which subsequently may be solved by Fourier trans-
formation

r̂(t) =
1

n

(
− L− 3

1 + e−|t|/2
+ 3

e−|t|/2

1 − e−|t|
− e−m|t|/2

1 − e−|t|
− 2

|t|
)
. (4.12)

Using this expression, it is straightforward to calculate the one-loop anomalous dimension for
the first two orders in n

E0 = 4 log n+ 6γ
E

+ 2ψ0(m+1
2 ) − 4(L− 3) log 2 . (4.13)

The derivation of higher-loop corrections goes along similar lines as in the preceding sections.
Upon defining the fluctuation density by

ρ(g, u,m) = ρ(u,m) − 8 g2

n
σ(g, u,m) , (4.14)

one derives the following closed integral equation for m ≥ 2

σ̂(g, t,m) =
t

et − 1

[ (
log n+ 3

2γE
+ 1

2ψ0(m+1
2 ) − (L− 3) log 2

)
K(2gt, 0) − L

8g2t
(J0(2gt) − 1)

+
1

2

∫ ∞

0
dt′
( 3

et′ − 1
− e−(m+1)t′/2

1 − e−t′
− L− 3

et′/2 + 1

) (
K(2gt, 2gt′) −K(2gt, 0)

)

−4g2

∫ ∞

0
dt′K(2gt, 2gt′)σ̂(g, t′) − 1

2

∫ ∞

0
K1(2gt, 2gt′)e−t′

m−1
2 . (4.15)

The resulting anomalous dimension scales logarithmically with n

γ(L, n,m) = 16g2σ(g, 0,m) = f(g) log n+ . . . , (4.16)

while the finite-spin corrections depend explicitly on m, as can be directly inferred from (4.15).
At weak-coupling, one can easily determine the perturbative expansion at the first few orders

γ(L, n,m) = f(g)(log n+ 3
2γE

+ 1
2ψ0(m+1

2 ) − (L− 3) log 2) − 2g4(ψ2(m+1
2 ) + 2(21 − 4L)ζ(3))

+1
3g

6
(
ψ4(m+1

2 ) + 2π2ψ2(m+1
2 ) + 24ψ1(m+1

2 )ζ(3) + 96
(m−1)2 ζ(3)

+8(6 − L)π2ζ(3) + 72(31 − 7L)ζ(5)
)

+ . . . , (4.17)

For the choice of parameters m = 2 and L = 3 we find perfect agreement with the large
n expansion of the anomalous dimension up to four-loop order which is available in [38].
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However, since the g8 contribution to (4.17) is quite lengthy, we merely give the first three
loop orders.

Interestingly, equation (4.15) can also be solved at large values of the coupling by making
use of the strong coupling expansion for twist operators in the sl(2) sector [15]. We defer the
strong-coupling analysis to Appendix B and only present the final result

γ(L, n,m) =
(

4g − 3 log 2

π

)
log

n

g
+ 6 g (log 2 − 1) + (1 − L) +

2

m− 1
+
m

2

+
9 log 2

π
− 9(log 2)2

2π
+ O

(1

g

)
. (4.18)

5 Outlook

The appearance of the cusp anomalous dimension f(g) and the virtual scaling function BL(g)
beyond the sl(2) sector in (1.5) is quite remarkable and certainly promotes their universality.
For further sub-leading corrections in spin, the endpoints of the effective condensate may not
be enough to completely determine the corresponding contribution. In this case the remaining
roots should also be taken into account and it is questionable if the scaling still resembles the
behaviour of twist operators.

It will be quite interesting to investigate if the generalised scaling function f(g, j) of the
sl(2) sector [39] also appears in the refined limit S → ∞, L→ ∞ with j = L

log S fixed.
In similarity to the known solvable cases of twist-two and three operators, it would be

very interesting to see whether it is possible to construct higher loop contributions to the
anomalous dimension (2.4) for general values of m and n. A first step in this direction has
been made in [38], where the case of m = 2 was analysed.

Furthermore, the decoupling procedure described in detail in Appendix A is based on
iteratively splitting one bosonic node of the corresponding Dynkin diagram into two fermionic
ones. Although this is straightforward at the level of the equations, it remains obscure to us
what the corresponding algebraic interpretation might be.
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A The analytic one-loop solution

In this section we will study the following class of length-three operators

trDn+m ˙̄DmZ3 . (A.1)

For m = 0 this set reduces to twist-three operators of the sl(2) sub-sector. Also the case
of m = 1 is redundant as (A.1) then corresponds to descendents of twist-two operators.
Therefore in what follows we will assume m > 1. A subgroup of these operators for m = 2
has been studied in [38] up to four-loop order. At one-loop order, on the other hand, a closed
expression for the anomalous dimension of the ground states has been conjectured in [33] for
any value of m and n, see (2.4). It is rather straightforward to prove this formula2 using the
analytic solution provided below.

The excitation pattern for the higher-loop Dynkin diagram in the upper part of figure 1
reads

(K1,K2,K3,K4,K5,K6,K7) = (0, 0, n + 2m− 1, n+ 2m,n + 2(m− 1),m − 1, 0) , (A.2)

where Kν denotes the excitation number of the ν-th node of the Dynkin diagram. After a
dualisation of the u3 roots the corresponding one-loop system of equations describing this
class of operators is given by

(
u4,k + i

2

u4,k − i
2

)3

=

n+2m−2∏

j=1

u4,k − u5,j − i
2

u4,k − u5,j + i
2

(A.3)

1 =
m−1∏

j=1

u5,k − u6,j + i
2

u5,k − u6,j − i
2

n+2m∏

j=1

u5,k − u4,j − i
2

u5,k − u4,j + i
2

(A.4)

1 =
m−1∏

j=1
j 6=k

u6,k − u6,j + i

u6,k − u6,j − i

n+2m−2∏

j=1

u6,k − u5,j − i
2

u6,k − u5,j + i
2

. (A.5)

This set of Bethe equations is valid for m ≥ 1. In the following section we will solve it exactly

thanks to a hidden recurrence relation between roots for different value of m.

A.1 The one-loop recurrence

We start by dualizing equation (A.3). The system of equations (A.3)-(A.5) reduces to

(
u5,k + i

u5,k − i

)3

=

n+2m−2∏

j=1
j 6=k

u5,k − u5,j − i

u5,k − u5,j + i

m−1∏

j=1

u5,k − u6,j + i
2

u5,k − u6,j − i
2

(A.6)

1 =

m−1∏

j=1
j 6=k

u6,k − u6,j − i

u6,k − u6,j + i

n+2m−2∏

j=1

u6,k − u5,j + i
2

u6,k − u5,j − i
2

. (A.7)

2M. Beccaria, private communication.
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The derivation of the hidden recurrence is based on the observation that the last equation is
equivalent to a system of two coupled equations

1 =
m−2∏

j=1

u6,k − u7,j − i
2

u6,k − u7,j + i
2

n+2m−2∏

j=1

u6,k − u5,j + i
2

u6,k − u5,j − i
2

(A.8)

1 =

m−1∏

j=1

u7,k − u6,j + i
2

u7,k − u6,j − i
2

, (A.9)

where we have introduced a new set of auxiliary roots u7. We now introduce the Baxter
function for the u6 roots and their dual counterpart ũ6

R(u)≡
m−2∏

j=1

(u− u7,j − i
2)

n+2m−2∏

j=1

(u− u5,j + i
2) −

m−2∏

j=1

(u− u7,j + i
2)

n+2m−2∏

j=1

(u− u5,j − i
2)

= c6

m−1∏

j=1

(u− u6,j)
n+2m−4∏

j=1

(u− ũ6,j) . (A.10)

It is straightforward to derive the following two relations

R(u5,k + i
2 )

R(u5,k − i
2 )

=

n+2m−2∏

j=1
j 6=k

u5,k − u5,j + i

u5,k − u5,j − i
=

m−1∏

j=1

u5,k − u6,j + i
2

u5,k − u6,j − i
2

n+2m−4∏

j=1

u5,k − ũ6,j + i
2

u5,k − ũ6,j − i
2

, (A.11)

R(u7,k + i
2)

R(u7,k − i
2)

=
m−2∏

j=1
j 6=k

u7,k − u7,j + i

u7,k − u7,j − i
=

m−1∏

j=1

u7,k − u6,j + i
2

u5,k − u7,j − i
2

n+2m−4∏

j=1

u7,k − ũ6,j + i
2

u7,k − ũ6,j − i
2

. (A.12)

With the help of (A.11) we now rewrite (A.6) as

(
u5,k + i

u5,k − i

)3

=

n+2m−4∏

j=1

u5,k − ũ6,j − i
2

u5,k − ũ6,j + i
2

, (A.13)

and once again dualize this set of equations by defining the polynomial Q5(u) as

Q5(u) ≡ (u+ i)3
n+2m−4∏

j=1

(u− ũ6,j + i
2) − (u− i)3

n+2m−4∏

j=1

(u− ũ6,j − i
2) = c5

n+2m−2∏

j=1

(u− u5,j).

(A.14)
The function Q5(u) obeys the relation

Q5(ũ6,k + i
2 )

Q5(ũ6,k − i
2 )

=

(
ũ6,k + 3

2 i

ũ6,k − 3
2 i

)3 n+2m−4∏

j=1
j 6=k

ũ6,k − ũ6,j + i

ũ6,k − ũ6,j − i
=

n+2m−2∏

j=1

ũ6,k − u5,j + i
2

ũ6,k − u5,j − i
2

. (A.15)
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Since the ũ6 roots also solve (A.8), we can decouple the u5 roots. Likewise, we use (A.12) to
rewrite (A.9) in terms of ũ6. The resulting set of equations thus reads

(
ũ6,k + 3

2 i

ũ6,k − 3
2 i

)3

=

n+2m−4∏

j=1
j 6=k

ũ6,k − ũ6,j − i

ũ6,k − ũ6,j + i

m−2∏

j=1

ũ6,k − u7,j + i
2

ũ6,k − u7,j − i
2

(A.16)

1 =

m−2∏

j=1
j 6=k

u7,k − u7,j − i

u7,k − u7,j + i

n+2m−4∏

j=1

u7,k − ũ6,j + i
2

u7,k − ũ6,j − i
2

. (A.17)

Comparing the two systems of equations, namely (A.6)-(A.7) with (A.16)-(A.17), we note
that the value of m has been lowered by one, while the spin of the representation increased
by 1

2 . Clearly, this procedure can be applied recursively until all second-level roots vanish
and get absorbed into the spin representation of the first-level roots. Thus, after (m−1) steps
one can decouple (A.7) from (A.6) and one is left with a single system of equations3. Before
using this recursion to solve the system (A.6)-(A.7), we will investigate the Baxter functions
appearing in the intermediate steps.

Suppose that one has repeated the aforementioned procedure ℓ times. The intermediate
equations then read

(
u

(ℓ)
k + (1 + ℓ

2)i

u
(ℓ)
k − (1 + ℓ

2)i

)3

=

n+2(m−1−ℓ)∏

j=1
j 6=k

u
(ℓ)
k − u

(ℓ)
j − i

u
(ℓ)
k − u

(ℓ)
j + i

m−1−ℓ∏

j=1

u
(ℓ)
k − v

(ℓ)
j + i

2

u
(ℓ)
k − v

(ℓ)
j − i

2

(A.18)

1 =

m−1−ℓ∏

j=1
j 6=k

v
(ℓ)
k − v

(ℓ)
j − i

v
(ℓ)
k − v

(ℓ)
j + i

n+2(m−1−ℓ)∏

j=1

v
(ℓ)
k − u

(ℓ)
j + i

2

v
(ℓ)
k − u

(ℓ)
j − i

2

, (A.19)

with the initial values
u

(0)
k ≡ u5,k , u

(1)
k ≡ ũ6,k , (A.20)

v
(0)
k ≡ u6,k , v

(1)
k ≡ u7,k . (A.21)

A single step of the iteration relates the polynomials

Pℓ(u) ≡
n+2(m−1−ℓ)∏

j=1

(u− u
(ℓ)
j ) , (A.22)

with consecutive values of ℓ through

Pℓ(u) =
(
u+ (1 + ℓ

2) i
)3
Pℓ+1(u+ i

2 ) −
(
u− (1 + ℓ

2) i
)3
Pℓ+1(u− i

2) . (A.23)

The initial polynomials (A.10) and (A.14) are respectively the second and the third member
of this family, i.e. Q̃6(u) = P1(u) and Q5(u) = P0(u). It should be clear that the first element
is given by

P−1(u) = Q4(u) = c4

n+2m∏

j=1

(u− u4,j) . (A.24)

3Please note, however, that in the penultimate step one should not perform the splitting, but rather dualize
the nested set of equations directly.
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A general solution to the recurrence relation (A.23) is given by

Pℓ(u) =

n∑

k=0

(−1)k

(
n

k

) k∏

j=1

(
u− (2j + ℓ)i

2

)3 n−k∏

j=1

(
u+

(2j + ℓ)i

2

)3

Pℓ+n

(
u+

(n
2
− k
)
i
)
,

(A.25)

with n being an arbitrary positive integer.
As already mentioned before, for ℓ = m− 1 equations (A.18)-(A.19) decouple and one is

left with a single equation

(
u

(m−1)
k + m+1

2 i

u
(m−1)
k − m+1

2 i

)3

=

n∏

j=1
j 6=k

u
(m−1)
k − u

(m−1)
j − i

u
(m−1)
k − u

(m−1)
6 + i

. (A.26)

It is noteworthy that these are the Bethe equations of a non-compact sl(2) magnet in the
spin-(−m+1

2 ) representation. Thus, we have proven an equivalence between both systems
noticed in [33]. The corresponding Baxter equation can be solved exactly for the ground
state. Please refer to Appendix A.2 for further details. The solution is the Wilson polynomial

Fn,m(u)≡Pm−1(u) = cm−1

n∏

j=1

(u− u
(m−1)
j )

= 4F3

(
−n

2 ,
n
2 + 1 + 3 m

2 , 1
2 + iu, 1

2 − iu
1 + m

2 , 1 + m
2 , 1 + m

2

∣∣∣∣ 1
)
. (A.27)

Plugging this into (A.25), one finds an explicit solution for the primary roots

Q4(u) =

m∑

k=0

(−1)k

(
m

k

) k∏

j=1

(
u− (2j−1)i

2

)3
m−k∏

j=1

(
u+ (2j−1)i

2

)3
Fn,m

(
u+

(
m
2 − k

)
i
)
, (A.28)

while the u5 roots are generated by

Q5(u) =

m−1∑

k=0

(−1)k

(
m− 1

k

) k∏

j=1

(u− j i)3
m−1−k∏

j=1

(u+ j i)3 Fn,m

(
u+

(
m−1

2 − k
)
i
)
. (A.29)

The Baxter function for the u6 roots is a part of a different recursive scheme. Defining

Kℓ(u) ≡
m−1−ℓ∏

j=1

(u− v
(ℓ)
j ) , (A.30)

we find that Kℓ obeys the following functional relation

Kℓ(u) = fℓ(u)Kℓ+1

(
u+ i

2

)
− f̃ℓ(u)Kℓ+1

(
u− i

2

)
, (A.31)

with

fℓ(u) = −Pℓ

(
u− i

2

)

Pℓ+1(u)
and f̃ℓ(u) = −Pℓ

(
u+ i

2

)

Pℓ+1(u)
. (A.32)
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Figure 3: A schematic representation of the decoupling procedure. Dotted lines indicate
the bosonic splitting and the dualization of the interjacent roots. The curved lines denote
two kinds of recurrence relations P and K, respectively. The exact one-loop solutions Q4

and Q5 belong to P iteration, while Q6 is part of the K recurrence.

A general solution to equation (A.31) is presented in Appendix A.3. We fix the boundary
conditions by specifying

Km−1 = 1 and K0(u) ≡ Q6(u) =

m−1∏

j=1

(u− u6,j) . (A.33)

Thus, we find that Q6 is given by the following expression

Q6(u) =
m−2∏

k=0

fk

(
u+

k

2
i

)

+

m−1∑

r=1

(−1)r
m−2∑

j1=0

j1−1∑

j2=0

. . .

jr−1−1∑

jr=0

r∏

s=1

f̃js

(
u+

js − 2(r − s)

2
i

) jr−1∏

k=0

fk

(
u+

k

2
i

)

×
r∏

s=2

js−1−1∏

k=js+1

fk

(
u+

k − 2(r − s+ 1)

2
i

) m−2∏

k=j1+1

fk

(
u+

k − 2r

2
i

)
, (A.34)

with fp(u) and f̃p(u) given in (A.32) and

Pℓ(u) =

m−1−ℓ∑

k=0

(−1)k

(
m− 1 − ℓ

k

) k∏

j=1

(
u− (2j + ℓ) i

2

)3 m−1−ℓ−k∏

j=1

(
u+

(2j + ℓ) i

2

)3

×Fn,m

(
u+

(
m− 1 − ℓ

2
− k

)
i

)
, (A.35)
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as follows from (A.25) with ℓ + n = m− 1.

The complete solution of the one-loop problem is hence given by (A.28), (A.29) and (A.34).

A.2 Solution to the higher spin magnet

The Bethe equations in (A.26) correspond to an integrable non-compact XXX−m+1
2

magnet.

The Baxter equation associated with XXX−s magnets takes the following generic form

(u+ is)LQ(u+ i) + (u− is)LQ(u− i) = tL(u)Q(u) . (A.36)

For the special case of L = 3, the transfer matrix of the ground states can be determined
explicitly

t3(u) = 2u3 + q2u+ q3 , q2 = −(n2 − n+ 6n s+ 6 s2) , q3 = 0 . (A.37)

The solution to (A.36) with (A.37) can be found by noting that the Wilson polynomials Wk ,

Wk(u2; a, b, c, d)

(a+ b)k (a+ c)k (a+ d)k
≡ 4 F3

(
−k, k + a+ b+ c+ d− 1, a+ i u, a− i u

a+ b, a+ c, a+ d

∣∣∣∣ 1
)
, (A.38)

satisfy the following difference equation (see e.g. [41])

k(k + a+ b+ c+ d− 1)y(u) = B(u)y(u+ i) − [B(u) +D(u)]y(u) +D(u)y(u− i) . (A.39)

Here, y(u) = Wk(u2; a, b, c, d) and

B(u) =
(a− iu)(b − iu)(c− iu)(d − iu)

2iu(2iu − 1)
, D(u) =

(a+ iu)(b + iu)(c + iu)(d + iu)

2iu(2iu + 1)
. (A.40)

It is easy to check that (A.36) is embedded in (A.39) upon the identification

a =
1

2
, b = c = d = s and k =

n

2
. (A.41)

Hence, the solution is given by

Q(u) = 4 F3

(
−n

2 ,
n
2 + 3s − 1

2 ,
1
2 + i u, 1

2 − i u
1
2 + s, 1

2 + s, 1
2 + s

∣∣∣∣ 1
)
. (A.42)

For the special value of s = m+1
2 one finds (A.27).

A.3 Solution of the recurrence

The class of functional equations

Ap(u) = fp(u)Ap+1

(
u+

i

2

)
− f̃p(u)Ap+1

(
u− i

2

)
(A.43)
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is solved by

Ap(u) =
n−1∏

k=0

fp+k

(
u+

k

2
i

)
Ap+n

(
u+

n

2
i
)

+

n∑

r=1

(−1)r
n−1∑

j1=0

j1−1∑

j2=0

. . .

jr−1−1∑

jr=0

r∏

s=1

f̃p+js

(
u+

js − 2(r − s)

2
i

) jr−1∏

k=0

fp+k

(
u+

k

2
i

)

×
r∏

s=2

js−1−1∏

k=js+1

fp+k

(
u+

k − 2(r − s+ 1)

2
i

) n−1∏

k=j1+1

fp+k

(
u+

k − 2r

2
i

)

×Ap+n

(
u+

n− 2 r

2
i

)
. (A.44)

The proof is by induction.

B The strong coupling limit

In order to analyse the sub-leading contribution to (4.16) we decompose the density σ̂(t) into
its parity even and odd parts

σ̂(t)
et − 1

t
=
γ+(2gt)

2gt
+
γ−(2gt)

2gt
. (B.1)

Since the kernels K0 and K1 in (4.5) are given by the sum over Bessel functions, the functions
γ± take the form of a Neumann series

γ+(2gt) = 2
∞∑

n=1

2nJ2n(2gt)γ2n , γ−(2gt) = 2
∞∑

n=1

(2n− 1)J2n−1(2gt)γ2n−1 . (B.2)

Using this decomposition of the fluctuation density it is possible to rewrite the integral equa-
tion (4.15) as an infinite system of equations with n ≥ 1

∫ ∞

0

dt

t

(
γ+(t)

1 − e−t/2g
− γ−(t)

et/2g − 1

)
J2n(t) =

L

8ng
+ h2n − 1

2

∫ ∞

0
dt
J2n(2gt)

2gt
e−tm−1

2 ,

∫ ∞

0

dt

t

(
γ−(t)

1 − e−t/2g
+

γ+(t)

et/2g − 1

)
J2n−1(t) = h2n−1 , (B.3)

where the term hn = hn(g) is given by the expression

hn =
1

4

∫ ∞

0
dt

(
3

et − 1
− e−(m+1)t/2

1 − e−t
− L− 3

et/2 + 1

)(
Jn(2gt)

gt
− δn,1

)
. (B.4)

Since the left hand side of the equations (B.3) is the same as in the case of the BES equation,
we expect to be able to express the solution in terms of the solution to the BES equation.
For this purpose we introduce a new parameter j, which interpolates between the system
corresponding to the BES equation and (B.3)

∫ ∞

0

dt

t

(
γ+(t, j)

1 − e−t/2g
− γ−(t, j)

et/2g − 1

)
J2n(t) =

jL

8ng
+ jh2n − j

2

∫ ∞

0
dt
J2n(2gt)

2gt
e−tm−1

2 ,

∫ ∞

0

dt

t

(
γ−(t, j)

1 − e−t/2g
+

γ+(t, j)

et/2g − 1

)
J2n−1(t) = jh2n−1 +

1

2
(1 − j)δn,1 . (B.5)
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Setting j = 0 gives back the BES equation while j = 1 corresponds to (B.3). Multiplying
the first equation by (2n)γ2n(t, j′) and the second by (2n − 1)γ2n−1(t, j′), summing over all
n and finally subtracting the two equations leads to a left hand side that is symmetric under
exchange of j and j′, see [36] for details. Using this fact and setting j = 0 and j′ = 1, we find

γ1(g, 1) =
1

4

∫ ∞

0
dt
(

3 − e−t(m−1)/4g
)( γ−(t, 0)

(et/2g − 1)gt
+

γ+(t, 0)

(e−t/2g − 1)gt
− γ1(g, 0)

(et/2g − 1)g

)

−L− 3

4

∫ ∞

0
dt

(
γ−(t, 0)

(et/4g + 1)gt
+

γ+(t, 0)

(e−t/4g + 1)gt
− γ1(g, 0)

(et/4g + 1)g

)
. (B.6)

The finite order correction is then given by 16 g2 γ1(g, 1). A change of variables as in [15],

2γ±(t, 0) =
(

1 − sech( t
2g )
)

Γ±(t, 0) ± tanh( t
2g )Γ∓(t, 0) , (B.7)

leads to

γ1(g, 1) =
1

16g2
(L− 3)ǫ1(g) + γ1(g, 0)(L − 3) log 2 +

3

2
B2(g)

+
1

2

∫ ∞

0
dte−t(m+1)/4g

(
1

4gt
(Γ+(t, 0) + Γ−(t, 0)) +

γ1(g, 0)

(et/2g − 1)

)
. (B.8)

At this stage, we make use of the solution of the BES equation obtained in [15],

Γ+(t, 0) =

∞∑

k=0

(−1)k+1J2k(t)Γ2k , Γ−(t, 0) =

∞∑

k=0

(−1)k+1J2k−1(t)Γ2k−1 ,

where the coefficients Γk are given by

Γk =−1

2
Γ

(0)
k +

∞∑

p=1

1

gp

(
c−p Γ

(2p−1)
k + c+p Γ2p

k

)
, (B.9)

Γ
(p)
2m =

Γ(m + p− 1
2 )

Γ(m+ 1)Γ(1
2 )
, Γ

(p)
2m−1 =

(−1)pΓ(m− 1
2)

Γ(m + 1 − p)Γ(1
2 )
. (B.10)

The prefactors c±p explicitly depend on g and can be determined from the so-called all-loop
quantization condition of [15]. Bearing that in mind, we find for the integral in (B.8)

I(g) =
1

2

∫ ∞

0
dt e−t(m+1)/4g

(
1

4gt
(Γ+(t, 0) + Γ−(t, 0)) +

γ1(g, 0)

(et/2g − 1)

)

=
1

8g

∞∑

k=1

(−1)k+1



(

ig

x(im−1
2 )

)2k
Γ2k

2k
+

(
ig

x(im−1
2 )

)2k−1
Γ2k−1

2k − 1




+
γ1(g, 0)

4g

∫ ∞

0
dt
e−t(m−1)/4g

et/2g − 1
− 1

8g

∫ ∞

0
dt e−t(m−1)/4g J0(t)

t
Γ0

+
1

8g

∫ ∞

0
dt e−t(m−1)/4g J1(t)

t
Γ−1 . (B.11)
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Subsequently, using that Γ0 = 4 g γ1(g, 0) and Γ−1 = 1, we can recast I(g) as

I(g) =
1

8g

∞∑

k=1

(−1)k+1



(

ig

x(im−1
2 )

)2k
Γ2k

2k
+

(
ig

x(im−1
2 )

)2k−1
Γ2k−1

2k − 1




+
γ1(g, 0)

4g

∫ ∞

0
dt e−t(m−1)/4g

(
1

et/2g − 1
− 2g

J0(t)

t

)
+

1

8g

ig

x(im−1
2 )

. (B.12)

Both sums and the integral in the above formula may be performed analytically leading to

I(g) =
1

8g2(m− 1)
+
f(g)

32g2

(
log g − ψ0

(
m+1

2

)
+ m−1

4g

)
. (B.13)

Hence we obtain

γ1(g, 1) =
1

16g2
(L− 3)ǫ1(g) +

f(g)

16g2
(L− 3) log 2 +

3

2

B2(g)

16g2
+

1

8g2(m− 1)
(B.14)

+
f(g)

32g2

(
log g − ψ0

(
m+1

2

)
+ m−1

4g

)
+ . . . .

The anomalous dimension for m ≥ 2 is consequently given by

γ(L, n) = f(g)
(
log n+ 3

2γE
+ 1

2ψ0

(
m+1

2

)
− (L− 3) log 2

)
+ 16g2γ1(g, 1)

=
(

4g − 3 log 2

π

)
log

n

g
+ 6g(−1 + log 2) + (1 − L) +

2

m− 1
+
m

2

+
9 log 2

π
− 9(log 2)2

2π
+ O

(
1
g

)
. (B.15)
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