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1 Introduction

Two key elements in our present understanding of cosmology [1, 2] are the existence of an
early inflationary phase (which successfully explains the anisotropies of the cosmic microwave
background and the observed large-scale structure of the cosmos) and the present accelerated
expansion of the universe, which could be entirely driven by a non-vanishing cosmological
constant according to present observations. The geometry of most inflationary models is close
to de Sitter spacetime and so will be the late-time behavior of our expanding universe if it
is currently driven by a cosmological constant. Therefore, the physics of de Sitter spacetime
may be crucial to understanding the very early universe as well as its ultimate fate.

Quantum metric perturbations around de Sitter and near-de Sitter spacetimes have been
extensively studied in the context of inflationary models since they provide a satisfactory ex-
planation for the observed cosmic microwave background anisotropies and the primordial
spectrum of inhomogeneities that gives rise to large-scale structure formation in the uni-
verse. The standard analysis is based on the linearized calculation of the two-point function
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of the metric perturbations [3–5]. Recently, loop corrections to these tree-level results have
also received considerable attention [6–13], but certain aspects, including the significance of
possibly large infrared effects, have not been completely settled yet. The standard theoret-
ical framework also assumes that the background dynamics of de Sitter and near-de Sitter
spacetimes is not affected by large quantum corrections. However, a growing number of
studies [14–18] claim that one-loop corrections could generate a significant backreation in
inflationary models. It has also been argued that higher-order radiative corrections from
graviton loops could give rise to a secular screening of the cosmological constant for pure
gravity in de Sitter spacetime [19, 20]. Such nonlinear effects are dominated by infrared
modes (copiously generated by the exponential expansion) and should be fairly insensitive to
the short-distance behavior of a full theory of quantum gravity. However, whether these large
effects really take place is still under debate, mainly due to gauge dependence issues [21–26].

Let us concentrate on exact de Sitter spacetime. The existence of large quantum non-
linear effects like those mentioned above could lead to a breaking of de Sitter invariance, as
sugested by Tsamis and Woodard [19, 20] or Polyakov [27] (see also refs. [28, 29] for related
work concerning the latter proposal). In order to gain insight on this possibility, it seems
convenient to study quantum metric perturbations around de Sitter spacetime keeping de
Sitter invariance always manifest. This is achieved with the formalism of de Sitter-invariant
bitensors [30]. The tree-level graviton two-point function has been computed using this for-
malism by several authors [31–33] (see also ref. [34]). A conclusion that can be drawn from
their results is that the two-point function of the linearized Riemann tensor R cd

ab (which
is gauge-invariant around de Sitter spacetime and any other maximally symmetric space)
decays like the fourth power of the physical distance between the two points [35]. Here we
would like to go beyond the tree level and study the effects of matter loops on the quantum
metric fluctuations. A key ingredient in this respect is the two-point function of the stress
tensor operators of the matter fields. Calculating this object in de Sitter spacetime, in a de
Sitter-invariant vacuum, and with the formalism of de Sitter-invariant bitensors, will be the
main goal of this paper.

Explicit results for free scalar fields in the Bunch-Davies vacuum [36, 37] will be ob-
tained. We assume minimal coupling to the curvature, but consider an arbitrary mass m.
We find that, when m is small, the correlations have a long range: the stress tensor two-point
function decays at large separations like an inverse power of the physical distance, with an ex-
ponent proportional, in the limit of small masses, to m2/H2, where H is the Hubble constant.
Hence, the correlations can decay extremely slowly for sufficiently light fields. The strictly
massless case is more subtle. As is well-known, in this case the Bunch-Davies vacuum does not
exist, and in fact there is no de Sitter-invariant vacuum at all [38]. Nevertheless, as explained
in appendix A, one can consider a vacuum “arbitrarily close” to being de Sitter-invariant. We
calculate the stress tensor two-point function of the massless field in this vacuum, and obtain
a de Sitter-invariant result. Interestingly, we find that in this case there are no long-range
stress tensor correlations, which instead decay at large separations like the fourth power of
the physical distance. Such a discontinuity of the massless limit may seem surprising at first
sight, but in fact it can be understood in simple terms. The key point is that in the massive
case there is a contribution from the mass term in the stress tensor that does not vanish in
the limit m→ 0, due to the infrared divergence of the Bunch-Davies vacuum.

Finally, we would like to highlight a simple geometric interpretation of de Sitter-invariant
bitensors for pairs of points that cannot be connected by geodesics which is presented in sec-
tion 4.1 and, to the best of our knowledge, has not been pointed out before. The basic de
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Sitter-invariant bitensors, in terms of which all other invariant bitensors can be constructed,
are the geodesic distance between two points (i.e., the length of the shortest geodesic that
joins them) and its first two covariant derivatives, which also have a simple geometric inter-
pretation. However, in de Sitter spacetime there are pairs of points that cannot be connected
by a geodesic. In ref. [30] it was shown that, for these pairs of points, one can still define
the geodesic distance and its covariant derivatives by analytic continuation, but no geometric
interpretation of the resulting objects was provided. We give this interpretation in section 4.1.

The paper is organized as follows. We start by reviewing in section 2 the basic geometric
properties of de Sitter spacetime that will be used in the rest of the paper (including a simple
proof of the existence of pairs of points that cannot be connected by geodesics). The definition
of bitensors and their general properties are introduced in section 3 as well as those of max-
imally symmetric bitensors. The latter are studied in more detail for the particular case of
de Sitter spacetime in section 4, and a novel simple geometric interpretation for geodesically
disconnected points is presented. These tools are employed in section 5 to write the stress ten-
sor two-point function for spacelike separated points in de Sitter-invariant form, and explicit
expressions for the case of a free minimally coupled scalar field are derived. Furthermore,
closed results in terms of elementary functions are given in section 6 for the particular cases
of small masses, vanishing mass, and large separations. The extension to timelike separated
points is provided in section 7. We discuss the implications of our results for the quantum
metric fluctuations around de Sitter spacetime in section 8. The subtleties concerning the
vacua of massless fields in the case of minimal coupling are discussed in appendix A, and a
qualitative explanation of the massless limit discontinuity is provided in appendix B.

We use the (+,+,+) sign convention of ref. [39] and the abstract index notation of
ref. [40]. Throughout the paper we work with natural units (~ = c = 1) such that the Hubble
constant equals one, unless explicitly stated otherwise.

2 De Sitter spacetime

We start by recalling the definition of de Sitter spacetime. Consider the (D+ 1)-dimensional
Minkowski spacetime, MD+1, with metric ηAB. The D-dimensional de Sitter spacetime,
dSD, is the submanifold embedded in MD+1 whose points satisfy the equation

ηABX
A(x)XB(x) = H−2, (2.1)

where H is a parameter with dimensions of mass called the Hubble constant, and XA(x) is
the position vector inMD+1 (regarded as an affine space) associated with the point x. This
equation defines a hyperboloid, represented in figure 1. From this definition we see that dSD
is the set of points of MD+1 that lie at a constant distance from the origin, and thus it is
the Minkowskian analog of the sphere, SD.

The isometry group of dSD is formed by all the isometries of MD+1 that leave the
hyperboloid (2.1) invariant. These are the Lorentz transformations. Thus, the isometry
group of dSD is the Lorentz group, O(D, 1). Since O(D, 1) is generated by D(D+1)/2 Killing
vectors, which is the maximum number of Killing vectors that a manifold can have, dSD is
a maximally symmetric space, like SD. The group O(D, 1) is also called the de Sitter group.

It can be shown that the metric of dSD, gab, is a solution of Einstein’s equations,

Gab + Λgab = 0, (2.2)
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Figure 1. Hyperboloid representing de Sitter spacetime. The point x and its antipode, α(x), are
also represented, as well as a spacelike geodesic joining them.

where Gab is the Einstein tensor, and

Λ =
(D − 1)(D − 2)

2
H2 (2.3)

is the cosmological constant. Henceforth we will set H = 1. The dependence on H can be
restored throughout by dimensional analysis.

2.1 Points not connected by geodesics

In dSD, some spacelike separated points cannot be connected by a geodesic. In order to see
this, let us first introduce the biscalar

Z(x, x′) = ηABX
A(x)XB(x′), (2.4)

where x, x′ ∈ dSD. Note that Z is invariant under the de Sitter group: if σ is an isometry,
i.e., XA(σ(x)) = ΛABX

B(x), where ΛAB is a Lorentz transformation, then Z(σ(x), σ(x′)) =
Z(x, x′). It is also useful to introduce the Minkowskian distance, d(x, x′), defined by

d2(x, x′) = ηAB[XA(x)−XA(x′)][XB(x)−XB(x′)]. (2.5)

That is, d(x, x′) is the length of the straight line in the embedding MD+1 that joins x and
x′. Z and d are related through

d2 = 2(1− Z), (2.6)

as follows from eq. (2.1). Therefore, Z = 1 when x′ is on the light cone of x, Z > 1 when
the points are timelike separated, and Z < 1 when the points are spacelike separated. It
should also be noted that, as the squared Minkowskian distance between two points on the
hyperboloid can take any value, Z ∈ (−∞,∞).

Consider now the spacelike curve represented in figure 1, passing through the point x.
This curve is a geodesic, because it is a straight line on a cylinder tangent to the hyperboloid.
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Figure 2. The conformal diagram of de Sitter spacetime. The points in the shaded regions are
geodesically connected with x.

The Minkowskian distance between x and any other point x′ in this geodesic satisfies 0 ≤
d(x, x′) ≤ 2. This implies

− 1 ≤ Z(x, x′) ≤ 1. (2.7)

Now, any other spacelike geodesic passing through x can be obtained from this one by
an isometry that leaves x invariant. This is analogous to the case of the sphere, where
any geodesic (meridian) passing through the north pole is obtained from a given one by a
rotation that leaves the north pole invariant. This means that any point y′ connected to x
by a spacelike geodesic satisfies y′ = σ(x′) for some x′ in the geodesic represented in figure 1,
and where σ is an isometry such that σ(x) = x. De Sitter invariance of Z then implies
Z(x, y′) = Z(σ(x), σ(x′)) = Z(x, x′). Consequently, equation (2.7) holds for any point x′

connected with x by a spacelike geodesic. In other words, spacelike separated points x, x′

such that Z(x, x′) < −1 cannot be joined by a geodesic.
There is no similar restriction for timelike geodesics, as there are theorems that guaran-

tee the existence of geodesics between any two timelike separated points when the spacetime
is globally hyperbolic [40]. The regions of dSD that are geodesically connected to a point x
are depicted in the conformal diagram of dSD in figure 2.

2.2 The antipodal transformation

We will devote special attention to one particular isometry of dSD called antipodal transfor-
mation, that we denote by α. This operation sends a point x to its antipodal point α(x),
defined by XA(α(x)) = −XA(x). An example is given in figure 1. This isometry has some
special features, namely that it commutes with the rest of elements of the de Sitter group,
σ(α(x)) = α(σ(x)), and that its square is the identity, α(α(x)) = x. On the other hand, it
follows directly from the definition of the antipodal transformation that

Z(α(x), x′) = −Z(x, x′). (2.8)

Consequently, when x′ is on the light cone of α(x), then Z(x, x′) = −1. This is shown in
figure 2.
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3 Bitensors

In this paper we want to compute the stress tensor two-point function of a quantum field.
What kind of object is this, from a geometric point of view? It is not a tensor, because it
takes values on every pair of points of the spacetime, and it has indices associated with each
of the points. It is rather a bitensor. Bitensors were first introduced by Synge [41]. In this
section we will give a precise definition of what bitensor means, and summarize some results
that will be important for us.

Let M be a manifold. Consider two points x, x′ ∈M , and let Vx and Vx′ be the tangent
spaces at x and x′ respectively. A bitensor, Ta...b′ , of type (0, k)(0, k′) over Vx and Vx′ is a
multilinear application1

Ta...b′ : Vx × · · · × Vx × Vx′ × · · · × Vx′ → C

That is, given k vectors at the point x and k′ vectors at the point x′, Ta...b′ produces a
complex number. As we see, the definition of a bitensor resembles that of an ordinary tensor.
In particular, a real-valued bitensor of type (0, k)(0, 0) is a tensor of type (0, k).

A bitensor field, Ta...b′ , is a rule that assigns a bitensor over Vx and Vx′ , Ta...b′(x, x′), to
each pair of points (x, x′) ∈M ×M . Note that a real-valued bitensor field of type (0, k)(0, 0)
is not a tensor field, but a rule that assigns a tensor over Vx to each pair of points (x, x′). In
spite of this, we will refer to bitensor fields simply as bitensors, as is commonly done with
ordinary tensor fields.

A bitensor can be differentiated with respect to either of its arguments. The covariant
derivative of a bitensor, Ta...b′ , of type (0, k)(0, k′) with respect to x, which is denoted by
∇cTa...b′ , is obtained by (i) fixing the value of x′; and (ii) taking the covariant derivative of
the resulting object as if it were a tensor of type (0, k). The covariant derivative with respect
to x′ is defined analogously.

Bitensors of type (0, 0)(0, 0) and (0, 1)(0, 1) are also called biscalars and bivectors re-
spectively. Bitensors are central mathematical objects in quantum field theory, because any
two-point correlation function is a bitensor. For example, the propagators of the scalar, the
photon and the graviton fields are a biscalar, a bivector and a bitensor of type (0, 2)(0, 2)
respectively.

3.1 Invariance of a bitensor

The notion of invariance of a bitensor is, again, closely related to the well-known notion of
invariance of a tensor. Consider a diffeomorphism σ : M →M , that assigns a point σ(x) to
each point x, and let σ∗ be the pushforward associated with this diffeomorphism. That is, if
the vector va ∈ Vx is tangent to the curve x(λ) at the point x, then the vector σ∗va ∈ Vσ(x)

is tangent to the curve σ(x(λ)) at the point σ(x). A bitensor Ta...b′ is said to be invariant
under σ if

Ta...b′(σ(x), σ(x′))σ∗va . . . σ∗wb
′

= Ta...b′(x, x′)va . . . wb
′

(3.1)

for all pairs of points (x, x′), and for any va, . . . ∈ Vx and . . . , wb
′ ∈ Vx′ . An important

property concerning invariance of bitensors is that, in the case where σ is an isometry, the
covariant derivative of a bitensor invariant under σ is also invariant under σ.

1One can define more general bitensors, of type (j, k)(j′, k′), which have superindices as well as subindices.
Here we restrict ourselves to bitensors of type (0, k)(0, k′) for simplicity.
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3.2 Maximally symmetric bitensors

Consider the case where M is maximally symmetric. A bitensor is said to be maximally
symmetric if it is invariant under all the isometries of M . The following bitensors are max-
imally symmetric [30]: the distance, µ(x, x′), along the shortest geodesic joining x and x′,
also called the geodesic distance; the unit vectors, na(x, x′) and na′(x, x′), tangent to the
geodesic at the points x and x′ respectively, pointing outward from it; the parallel propaga-
tor, gab′(x, x′), which parallel-transports a vector from x′ to x along the geodesic; and the
metric tensors, gab(x, x′) and ga′b′(x, x′), at the points x and x′ respectively. Furthermore, it
was shown in ref. [30] that these bitensors form a complete set, in the following sense: any
maximally symmetric bitensor is a linear combination of products of na, na′ , gab, ga′b′ and
gab′ , with coefficients that depend only on µ.

It is worth being more precise with the definition of µ, na and na′ . If we denote the
shortest geodesic joining x and x′ by x(λ) and its tangent vector by va(λ), and we take
x(0) = x and x(1) = x′, the geodesic distance between x and x′ is

µ(x, x′) =
∫ 1

0
dλ [gab(x(λ))va(λ)vb(λ)]1/2. (3.2)

Note that µ(x, x′) is a real number for spacelike separated points, and an imaginary number
for timelike separated points. The sign prescription for the square root is chosen in such a way
that µ(x, x′) > 0 for spacelike separated points, and µ(x, x′) = iξ(x, x′), with ξ(x, x′) > 0,
for timelike separated points. The bitensors na and na′ are defined by the equations

na = ∇aµ na′ = ∇a′µ. (3.3)

The geometric interpretation of na(x, x′) and na′(x, x′) is obtained by differentiating eq. (3.2).
One finds that they are the unit vectors tangent to the geodesic at the points x and x′,
pointing outward from it, and multiplied by the imaginary unit in the case where x and
x′ are timelike separated. This implies nana = na′n

a′ = 1 for both spacelike and timelike
separated points.

Some useful properties of na, na′ and gab′ , which follow directly from the definition of
these bitensors, are

gab′(x, x′)nb
′
(x, x′) = −na(x, x′)

g c′
a (x, x′)gc′b(x′, x) = gab(x). (3.4)

From the last of these equations, and the fact that parallel transport leaves the scalar product
invariant, one can prove the additional relation

gab′(x, x′) = gb′a(x′, x). (3.5)

The theorem of ref. [30] can be applied to the computation of the covariant derivatives
of na, na′ and gab′ , which are also maximally symmetric bitensors. The corresponding µ-
dependent coefficients were computed in ref. [30] for all maximally symmetric spaces (see
ref. [42] for an earlier calculation in the three-dimensional case). In the particular case of
dSD, the result is

∇anb = cotµ (gab − nanb)
∇anb′ = − cscµ (gab′ + nanb′)
∇agbc′ = (cscµ− cotµ)(gabnc′ + gac′nb). (3.6)
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Figure 3. The geodesic of figure 1, seen from above. The geodesic distance µ(x, x′) between x and
x′ is the angle between the position vectors XA(x) and XB(x′).

4 De Sitter-invariant bitensors

The bitensors µ, na, na′ and gab′ of dSD are defined in the domain

G = {(x, x′) ∈ dSD × dSD such that ∃ a geodesic joining x and x′}.

As we know from section 2, this does not cover the whole dSD×dSD: only the pairs of points
with Z ≥ −1 belong to G, where Z has been defined in eq. (2.4). However, as was shown in
ref. [30], the definition of µ, na, na′ and gab′ can be extended to pairs of points outside G in
such a way that all their properties are preserved. Let us review the argument of ref. [30].

For spacelike geodesics, −1 ≤ Z < 1, the geodesic distance µ of dSD is given by the
equation

µ = cos−1 Z, (4.1)

where cos−1 is the principal value of the inverse cosine, which is single-valued. For example,
cos−1 1 = 0, and cos−1(−1) = π. For the geodesic of figure 1, this equation is easily seen from
figure 3. Other spacelike geodesics are obtained from this one by an isometry, and therefore,
by de Sitter invariance of µ and Z, eq. (4.1) is true for all spacelike geodesics.

Using a similar argument, it can be shown that a similar equation holds for timelike
separated points, Z > 1:

µ = cos−1(Z − iε), (4.2)

where ε is a positive real infinitesimal. This −iε term is added because the function cos−1 Z
has a branch cut at Z < −1 and Z > 1 along the real axis, across which its imaginary part
changes sign.

Eqs. (4.1) and (4.2) serve to define µ outside G by analytic continuation. Let us la-
bel the points of dSD with their corresponding position vectors in the embedding MD+1.
The geodesic distance, µ(XA, Y A), is only defined for pairs of points (XA, Y A) such that
Z(XA, Y A) ≥ −1. However, Z(XA, Y A) is an analytic (polynomial) function of (XA, Y A)
for all complex values of XA and Y A. Furthermore, cos−1 Z is an analytic function of Z in the
whole complex plane except the branch cut. Therefore, cos−1 Z is the analytic continuation
of µ to complex values of XA and Y A. We can define µ for pairs of points with Z < −1 as

µ = cos−1(Z + iε), (4.3)
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where the sign of the iε term has been taken positive for convenience. One could also adopt
the opposite choice, in which case the imaginary part of the geodesic distance µ outside G
would have the opposite sign.

The definition of na and na′ is extended outside G by substituting (4.3) in (3.3). The
definition of the parallel propagator can also be extended using the second equation in (3.6),
which gives gab′ in terms of µ, na and na′ . Since these definitions have been obtained by
analytic continuation, all the results concerning µ, na, na′ and gab′ that we have presented in
the previous section hold everywhere in dSD × dSD.

4.1 Geometric interpretation

What was not emphasized in ref. [30] is that the bitensors µ, na, na′ and gab′ also have a
geometric interpretation outside G. We will explain it here. The principal value of the
inverse cosine has the property

cos−1 Z = π − cos−1(−Z). (4.4)

On the other hand, as we know from section 2, Z(α(x), x′) = −Z(x, x′). Therefore, the
equation above and (4.1)–(4.3) imply

µ(x, x′) = π − µ(α(x), x′) (4.5)

throughout dSD × dSD. For pairs of points in the geodesic of figure 1, this can also be seen
from figure 3. Now, for (x, x′) /∈ G we have Z(x, x′) < −1, which implies Z((α(x), x′) > 1.
Therefore, α(x) and x′ are geodesically connected and timelike separated. This can also be
seen in figure 2. This means that the geodesic distance for geodesically disconnected points
is π minus the length of the shortest geodesic joining α(x) and x′. Since this geodesic is
timelike, the geodesic distance is a complex number outside G: µ = π − iξ, with ξ ∈ R+.

Substituting (4.5) in (3.3), we obtain

na(x, x′) = −na(x, α(x′)) na′(x, x′) = −na′(α(x), x′), (4.6)

where we have used that µ(α(x), x′) = µ(x, α(x′)). This is because µ is de Sitter-invariant,
and the antipodal transformation is an isometry such that α(α(x)) = x. Eq. (4.6) means
that, for (x, x′) /∈ G, na(x, x′) is the unit vector tangent at x to the geodesic joining x and
α(x′), and na′(x, x′) is the unit vector tangent at x′ to the geodesic joining α(x) and x′, both
of them pointing inward. This is shown in figure 4.

Finally, after substitution of (4.5) and (4.6) in the second equality of (3.6), we obtain
for the parallel propagator

gab′ = −ḡab′ − 2nanb′ , (4.7)

where the bivector ḡab′ is defined by the equation

ḡab′(x, x′)wb
′

= gab′(x, α(x′))α∗wb
′

(4.8)

for all vectors wb
′ ∈ Vx′ . In order to obtain eq. (4.7), we have used the property

nb′(α(x), x′)wb′ = nb′(x, α(x′))α∗wb′ , which holds for all vectors wb
′ ∈ Vx′ , and which is

a direct consequence of de Sitter invariance of nb′ and the properties of the antipodal trans-
formation. For (x, x′) /∈ G, ḡab′(x, x′) is the operator that “pushes forward” a vector from x′ to
α(x′), and then parallel transports it from α(x′) to x along the geodesic joining these points.
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Figure 4. Example of unit vectors na and na′ for points x and x′ that are not connected by a
geodesic.

4.2 A comment on the Minkowskian distance

In the previous subsection we have found the geometric interpretation of the bitensors
µ, na, na′ and gab′ for pairs of points that are not connected by a geodesic. In the particular
case of the geodesic distance µ, note that, although the geometric interpretation is simple,
µ is not the length of any spacelike curve (remember that x and x′ are spacelike separated
when they are not geodesically connected). Therefore, it cannot be taken as a notion of
distance. In order to interpret physically our results below for spacelike separated points,
it will be more convenient to express them in terms of the Minkowskian distance, defined
in eq. (2.5). The reason is that, for x and x′ spacelike separated, this biscalar coincides
with the so-called “physical distance” or “proper distance” associated with the flat slicing
of dSD. Let us see this. If we label the points in dSD with the coordinates {t, xi}, with
i = 1, . . . , D − 1, defined by

X0 = sinh t+
1
2
δijx

ixjet

Xi = xiet

XD = cosh t− 1
2
δijx

ixjet, (4.9)

then the line element takes the form

ds2 = ηABdX
AdXB = −dt2 + e2tδijdx

idxj , (4.10)

so that the surfaces Σt of constant t are flat. Moreover, any two spacelike separated points
can be brought to the same flat hypersurface by an isometry. Now, for x, x′ ∈ Σt we have

d2(x, x′) = e2tδij [xi(x)− xi(x′)][xj(x)− xj(x′)], (4.11)

as can be straightforwardly seen by using eqs. (2.5) and (4.9). Hence, for x, x′ ∈ Σt the
Minkowskian distance coincides with the length of the straight line of Σt that joins x and
x′. This is what in cosmology is called “physical distance” or “proper distance”.
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5 Stress tensor fluctuations in de Sitter spacetime

Consider a quantum field in dSD, whose stress tensor operator is Tab, in a vacuum state |0〉
that we assume de Sitter-invariant. We want to compute the two-point function of the stress
tensor operator,

Fabc′d′(x, x′) = 〈0|Tab(x)Tc′d′(x′)|0〉 − 〈0|Tab(x)|0〉〈0|Tc′d′(x′)|0〉, (5.1)

which we will also refer to as the stress tensor fluctuations. For the moment we will assume
that the points x and x′ are spacelike separated. What we have seen so far tells us a lot about
this two-point function before doing any computation, even before specifying the quantum
field theory under consideration. Indeed, if we choose |0〉 to be a de Sitter-invariant state,
the expectation value of any observable must be de Sitter-invariant. If the points x and x′

are spacelike separated, causality requires

[Tab(x), Tc′d′(x′)] = 0, (5.2)

which implies that Fabc′d′ is the expectation value of a Hermitian operator, i.e., an observable
(the product of two Hermitian operators that commute is Hermitian). Therefore, when x and
x′ are spacelike separated, Fabc′d′ is a de Sitter-invariant bitensor. According to the theorem
stated in the previous section, it must be a linear combination of products of na, na′ , gab, ga′b′
and gab′ , with coefficients that depend only on µ. On the other hand, for spacelike separated
points eq. (5.2) implies

Fabc′d′(x, x′) = Fc′d′ab(x′, x).

And, since the stress tensor is symmetric, we have

Fabc′d′ = Fbac′d′ = Fabd′c′ .

The most general bitensor of type (0, 2)(0, 2) (i.e., with the index structure of Fabc′d′) that
is a linear combination of products of na, na′ , gab, ga′b′ and gab′ , with coefficients that depend
only on µ, and that satisfies the above constraints is

Fabc′d′ = P (µ)nanbnc′nd′ +Q(µ)(nanbgc′d′ + nc′nd′gab)
+R(µ)(nanc′gbd′ + nbnd′gac′ + nand′gbc′ + nbnc′gad′)
+S(µ)(gac′gbd′ + gbc′gad′) + T (µ)gabgc′d′ . (5.3)

Moreover, the stress tensor conservation law implies ∇aFabc′d′ = 0. Imposing this equation
on (5.3), and using (3.6), we obtain

P ′ +Q′ − 2R′ + (D − 1)P cotµ− 2Q cscµ
−2R[(D − 2) cotµ−D cscµ] = 0

Q′ + T ′ + (D − 1)Q cotµ− 2R cscµ− 2S(cotµ− cscµ) = 0
R′ − S′ −Q cscµ+DR cotµ−DS(cotµ− cscµ) = 0, (5.4)

where the prime stands for derivative with respect to µ. Eqs. (5.3) and (5.4) are valid for
any quantum field theory in dSD, assuming that |0〉 is de Sitter-invariant and that the points
are spacelike separated.

There is yet another constraint on the functions P,Q,R, S and T , which comes from
requiring the stress tensor two-point function to be unambiguous for antipodal points, x′ =
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α(x). The unit vector na is not well-defined when x′ = α(x), because there is an infinite
number of geodesics joining x and α(x), all of them with the same length, µ(x, α(x)) = π.
This is analogous to what happens in the sphere: the north and the south poles are joined by
an infinite number of meridians, all of them with the same length. The parallel propagator is
also not well-defined, but it can be split into an ambiguous and an unambiguous part through
eq. (4.7). Using this equation, (5.3) can be rewritten as

Fabc′d′ = (P + 8S − 8R)nanbnc′nd′ +Q(nanbgc′d′ + nc′nd′gab)
+(2S −R)(nanc′ ḡbd′ + nbnd′ ḡac′ + nand′ ḡbc′ + nbnc′ ḡad′)
+S(ḡac′ ḡbd′ + ḡbc′ ḡad′) + Tgabgc′d′ . (5.5)

The bitensors appearing in this equation are all well-defined for antipodal points except for
na. In order for the stress tensor two-point function to be unambiguous when x′ = α(x), the
coefficients of the terms containing na in the equation above should vanish at µ = π,

P (π) + 8S(π)− 8R(π) = Q(π) = 2S(π)−R(π) = 0. (5.6)

This equation is also valid for any quantum field theory in dSD, assuming that |0〉 is de
Sitter-invariant.

5.1 Stress tensor fluctuations of a free scalar field

Let us be more concrete and consider a particular quantum field theory in dSD, namely that
of a free, minimally coupled scalar field φ, with mass m. The corresponding equation of
motion is the Klein-Gordon equation

(∇a∇a −m2)φ = 0. (5.7)

The stress tensor operator of this field can be written using point splitting regularization as

Tab(x) = lim
x′′→x

Dab(x, x′′)φ(x)φ(x′′), (5.8)

with
Dab = g c′′

b ∇a∇c′′ −
1
2
gabg

cd′′∇c∇d′′ − 1
2
m2gab. (5.9)

In order to check that this expression coincides with the standard one [37], one has to take
into account that the parallel propagator becomes the metric in the coincidence limit, i.e.,
gab′′(x, x′′) → gab(x) when x′′ → x. The stress tensor two-point function of the free scalar
field is obtained by substituting (5.8) in (5.1),

Fabc′d′(x, x′) = lim
x′′→x
x′′′→x′

Dab(x, x′′)Dc′d′(x′, x′′′)
[〈0|φ(x)φ(x′′)φ(x′)φ(x′′′)|0〉

−〈0|φ(x)φ(x′′)|0〉〈0|φ(x′)φ(x′′′)|0〉] . (5.10)

Since the field φ is free, and |0〉 is a vacuum state, the four-point function appearing in this
equation can be written in terms of the Wightman function, G+(x, x′) = 〈0|φ(x)φ(x′)|0〉,

〈0|φ(x)φ(x′′)φ(x′)φ(x′′′)|0〉 = G+(x, x′′)G+(x′, x′′′) +G+(x, x′)G+(x′′, x′′′)
+G+(x, x′′′)G+(x′′, x′). (5.11)
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This equation is obtained by expanding the field φ in terms of creation and annihilation
operators. Note that, in the particular case where the product of fields on the left-hand side
is time-ordered, this equation also follows from Wick’s theorem. Substituting (5.11) in (5.10),
and taking the limit x′′ → x and x′′′ → x′, we find

Fabc′d′ = ∇a∇c′G+∇b∇d′G+ +∇a∇d′G+∇b∇c′G+

−gab
(∇e∇c′G+∇e∇d′G+ +m2∇c′G+∇d′G+

)
−gc′d′

(
∇a∇e′G+∇b∇e′G+ +m2∇aG+∇bG+

)
+

1
2
gabgc′d′

[
∇e∇e′G+∇e∇e′G+

+m2
(
∇eG+∇eG+ +∇e′G+∇e′G+

)
+m4G+2

]
. (5.12)

Note that, after substitution of (5.11) in (5.10), there has been a cancellation of terms that
diverge in the limit x′′ → x, x′′′ → x′, so that this result is finite as long as x is not on the
light cone of x′.

At this point we impose that the vacuum |0〉 is de Sitter-invariant, and that the points
x and x′ are spacelike separated. For spacelike separated points, the Wightman function is
the expectation value of an observable, so that it must be a de Sitter-invariant biscalar. Thus
it must have the form

G+ = G(µ). (5.13)

On the other hand, the Wightman function satisfies the Klein-Gordon equation (5.7). Us-
ing (5.13) and (3.6), this equation translates into

G′′(µ) + (D − 1) cotµG′(µ)−m2G(µ) = 0. (5.14)

Imposing as boundary conditions that G(µ) diverges only at the coincidence limit, µ→ 0, and
that it does so in the same way as the standard Wightman function in Minkowski spacetime,
the only solution is [43]

G(µ) = cm,D F
(
h+, h−;

D

2
;
1 + Z

2

)
, (5.15)

where F denotes the hypergeometric function, h± and cm,D are constants,

h± =
1
2

[
(D − 1)±

√
(D − 1)2 − 4m2

]
(5.16)

cm,D =
Γ(h+)Γ(h−)
(4π)D/2Γ(D2 )

, (5.17)

and we are using that Z = cosµ, as follows from (4.1) and (4.3). One can see [37] that
there is a vacuum whose Wightman function for spacelike separated points is (5.15). It is the
so-called Bunch-Davies vacuum. In what follows we will be interested in the stress tensor
fluctuations in the Bunch-Davies vacuum.

Substituting (5.13) into (5.12), and using (3.6), we find that the stress tensor two-point
function in the Bunch-Davies vacuum has the form (5.3), as corresponds to a de Sitter-
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invariant state. The associated µ-dependent functions are

P = 2
(
G′′ −G′ cscµ

)2
,

Q = − (G′′)2 +
(
G′
)2 (csc2µ−m2

)
,

R = G′ cscµ
(
G′ cscµ−G′′) ,

S =
(
G′
)2 csc2µ,

T =
1
2
(
G′′
)2 +

(
G′
)2(D − 5

2
csc2µ+m2

)
+

1
2
m4G2, (5.18)

where, again, the prime stands for derivative with respect to µ. The functions (5.18) satisfy
the stress tensor conservation equations (5.4), as can be checked by using the Klein-Gordon
equation (5.14). They also satisfy the conditions (5.6), as follows from basic properties of
the hypergeometric function.

It is worth mentioning that the argument of the square root in (5.16) and h± themselves
play an important role within a group theoretical approach to quantum field theory in dSD.
The unitary irreducible representations of the SO0(D, 1), the identity component of the de
Sitter group, are characterized by the eigenvalues of two Casimir operators. For a scalar
field (spin zero) one of the Casimir operators vanishes identically, while the other reduces
to the D’Alembertian operator, C = ∇a∇a. When the Klein-Gordon equation is satisfied,
its eigenvalues are given by m2 + D(D − 1) ξ, or simply m2 in the minimally coupled case.
There exist three different kinds of irreducible unitary representations, known as principal,
complementary and discrete series, depending on the possible values of the Casimir operator.
Only the discrete set C = −n(n + D − 1) with n ∈ N is allowed for negative or vanishing
eigenvalues. This corresponds to the discrete series, for which h− ≤ 0 (the equality holds
for the massless case, the first member of the series). The complementary series comprises
the range 0 < C ≤ (D − 1)2/4 and corresponds to real positive values of h±. Finally,
the principal series includes representations with larger eigenvalues of the Casimir operator,
(D − 1)2/4 ≤ C, whose associated values for h± are complex with strictly positive real part
[equal to (D − 1)/2] and nonvanishing imaginary part. A couple of brief recent reviews on
unitary irreducible representations of the de Sitter group can be found in refs. [44, 45], where
references to earlier work and more detailed studies are provided.

6 Particular cases

Eqs. (5.18) give the stress tensor two-point function of the free, minimally coupled scalar field
in terms of the Wightman function (5.15) and its derivatives with respect to µ. Of course,
this result is not very explicit. In this section we will derive explicit expressions for the stress
tensor two-point function in the following particular cases: small masses, strictly zero mass,
and large negative values of Z.

The results will be given in terms of the biscalar Z. In order to interpret them, recall
that Z is related to the Minkowskian distance d through eq. (2.6). Remember also, from
section 4.2, that the Minkowskian distance coincides with the physical distance when the
points are spacelike separated.

6.1 Small masses

Let us assume that the mass of the field is small, m� 1. Remember that we are using units
in which H = 1. In a general system of units, our assumption is that the mass is much smaller
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than the Hubble constant. This is the situation one encounters in inflationary models.
We begin by studying the behavior of the Wightman function (5.15) in the limit of small

masses. Using the definition of the hypergeometric function [46], eq. (5.15) can be rewritten
as follows for |1 + Z|/2 < 1:

G(µ) =
1

(4π)D/2

∞∑
n=0

Γ(h+ + n)Γ(h− + n)
Γ(D2 + n)

1
n!

(
1 + Z

2

)n
. (6.1)

For other values of Z, the Wightman function is obtained by analytic continuation. The
dependence onm is implicit in the parameters h±, eq. (5.16). Expanding the gamma functions
in the equation above in powers of m we obtain at leading order

G(µ) =
1
m2

Γ(D)
(4π)D/2Γ(D2 )

+O(m0). (6.2)

The Wightman function diverges in the limit m → 0. This is the well-known infrared
divergence of the Bunch-Davies vacuum. Since the divergent term is independent of µ, the
derivative of the Wightman function G′(µ) will be finite in this limit. Indeed, expanding the
derivative of (6.1) in powers of the mass, we obtain after some algebraic manipulations

G′(µ) = − sinµ
1− Z

D
2
−1∑

k=0

Ck

(
1 + Z

1− Z
)k

+O(m2) (6.3)

for an even number of dimensions D, where

Ck =
Γ(D/2)
(4π)D/2

(
D − 1
D/2 + k

)
. (6.4)

Note that (6.3) is a sum over a finite number of terms, not an infinite series. Eqs. (6.2)
and (6.3) have been derived assuming |1 + Z|/2 < 1. However, since the extension to other
values of Z is obtained by analytic continuation, these equations are actually valid for any
Z < 1. This result generalizes to an arbitrary, even number of dimensions a previously
obtained expansion of the Wightman function in powers of the mass in dS4 [47], and reduces
to it when we set D = 4.

Now that we have written the Wightman function and its derivative with respect to
µ in terms of simple functions, we can obtain an explicit expression for the stress tensor
fluctuations. Substituting (6.2) and (6.3) in (5.18), we find that the functions P,Q,R, S have
the form

F (µ) =
1

(1− Z)2

D−2∑
n=0

Fn

(
1 + Z

1− Z
)n

+O(m2), (6.5)

where we are denoting P,Q,R, S generically by F . For the remaining function we obtain

T (µ) =
1

(1− Z)2

D−2∑
n=0

Tn

(
1 + Z

1− Z
)n

+
1
2

[
Γ(D)

(4π)D/2Γ(D2 )

]2

+O(m2). (6.6)
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In these equations, the coefficients Fn and Tn are

Pn = 8
N∑

l=−N

(
n+ l

2
+ 1
)(

n− l
2

+ 1
)
Cn+l

2
Cn−l

2

Qn = −4
N∑

l=−N

(
n+ l

2
+ 1
)(

n− l
2

)
Cn+l

2
Cn−l

2

Rn = 2
N∑

l=−N

(
n+ l

2
+ 1
)
Cn+l

2
Cn−l

2

Sn =
N∑

l=−N
Cn+l

2
Cn−l

2

Tn =
N∑

l=−N

[
2
(
n+ l

2
+ 1
)(

n− l
2

)
+
D − 4

2

]
Cn+l

2
Cn−l

2
, (6.7)

where N = min(n,D − 2− n).
The stress tensor two-point function of a free scalar field with small mass, for spacelike

separated points, is given by eqs. (6.5) and (6.6). It is finite in the limit m → 0, unlike
the Wightman function. This is because eqs. (5.18) involve only derivatives of G, which are
finite, with the only exception of T , which includes a term proportional to m4G2. The factor
m4 cancels the divergence of the Wightman function.

An interesting aspect of the obtained stress tensor two-point function is its behavior at
long Minkowskian distances. From eq. (2.6), this corresponds to large negative values of Z.
Setting Z � −1 in (6.5) and (6.6), we obtain

P,Q,R, S ∼ Z−2 +O(m2)
T ∼ constant +O(m2). (6.8)

From eq. (2.6), we see that the leading terms in P,Q,R, S decay like d−4. More interestingly,
the leading term in T does not decay to zero. In other words, the stress tensor two-point
function in the limit m→ 0 does not vanish at long distances.

The origin of this behavior is, again, the term proportional to m4G2 in eqs. (5.18).
Indeed, the terms with derivatives of G are either O(m2), and thus subleading, or vanishing
in the limit Z → −∞, whereas the term proportional to m4G2 is a constant of order O(m0).

It is worth comparing this result with the stress tensor fluctuations in Minkowski space-
time, MD. Note first that, since the theorem stated in section 3 is valid for all maximally
symmetric spaces, the stress tensor fluctuations in MD also have the form (5.3). The cor-
responding functions P,Q,R, S, T can be obtained by dimensional analysis. Indeed, these
functions must have dimensions of (energy density)2, that is, (mass)2D. But the theory of a
free scalar field in MD, and in the limit m → 0, has no dimensionful constants. Thus, by
dimensional analysis the only possibility is

P,Q,R, S, T ∝ µ−2D. (6.9)

Hence, the stress tensor fluctuations in the limit m→ 0 do decay with the distance in MD.
Finally, it is worth noting that, for small distances (Z → 1) the functions (6.5) and (6.6)
have the same form as in MD, eq. (6.9), as it should be.
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6.2 Massless field

We now consider a slightly different case, namely that of a strictly massless field, m = 0.
As is well-known [38], in this case there exists no de Sitter-invariant vacuum. The vacuum
states we choose for the massless field are the O(D)-invariant vacua, |0〉α, introduced by
Allen and Folacci [47]. These states form a one-parameter family with α ∈ (0,∞). We will
be interested in the limit α→ 0, because, although |0〉α are not de Sitter-invariant, there is
a class of observables whose expectation values are de Sitter-invariant in this limit. This is
explained in appendix A.

The stress tensor two-point function of a free scalar field is given by eq. (5.12), for any
mass m and for any vacuum state. In the massless case this equation reduces to

Fabc′d′ = ∇a∇c′G+∇b∇d′G+ +∇a∇d′G+∇b∇c′G+

−gab∇e∇c′G+∇e∇d′G+ − gc′d′∇a∇e′G+∇b∇e′G+

+
1
2
gabgc′d′∇e∇e′G+∇e∇e′G+. (6.10)

Note that all terms in this equation are products of ∇a∇b′G+. Let us denote by Fαabc′d′ the
stress tensor two-point function in the vacuum |0〉α. We want to compute it in the limit
α→ 0. Now, in appendix A it is shown that

lim
α→0
∇a∇b′G+

α = lim
m→0

∇a∇b′G+
BD, (6.11)

where G+
α is the Wightman function of the massless field in the vacuum |0〉α, and G+

BD is the
Wightman function of the massive field in the Bunch-Davies vacuum. Therefore, the stress
tensor two-point function of a massless field in the limit α→ 0 can be computed as follows:
(i) compute (6.10) for a massive field in the Bunch-Davies vacuum; and (ii) let m→ 0. It is
important to notice that this is not exactly the same as computing the stress tensor two-point
function of a massive field in the limit m → 0, which is what we have done in the previous
subsection.

The step (i) corresponds to substituting the Wightman function (5.13) in (6.10). The
result has the form (5.3), with

P = 2
(
G′′ −G′ cscµ

)2
,

Q = − (G′′)2 +
(
G′
)2 csc2µ,

R = G′ cscµ
(
G′ cscµ−G′′) ,

S =
(
G′
)2 csc2µ,

T =
1
2
(
G′′
)2 +

D − 5
2

(
G′
)2 csc2µ, (6.12)

This equation is exactly the same as (5.18), but without the mass terms. We can now let
m→ 0. Following the arguments of the previous subsection, we obtain

F (µ) =
1

(1− Z)2

D−2∑
n=0

Fn

(
1 + Z

1− Z
)n

T (µ) =
1

(1− Z)2

D−2∑
n=0

Tn

(
1 + Z

1− Z
)n

, (6.13)
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where, as before, F denotes generically P,Q,R and S, and Fn and Tn are given by eqs. (6.7).
We have thus obtained for the massless field exactly the same result as in the limit m → 0,
except for the constant piece of T (µ) in eq. (6.6). Remember that such a constant piece
arises because of a mass term, which is lacking here.

Due to the absence of the constant piece, the behavior at large distances changes dra-
matically with respect to the case of small masses: at Z � −1, we have

P,Q,R, S, T ∼ Z−2. (6.14)

Therefore, the stress tensor two-point function of the massless field vanishes at long distances.
There is a “discontinuity” at m = 0: taking the limit m→ 0 is not the same as setting m = 0.

One might think that this discontinuity is due to our choice of states for both the
massive and the massless fields, and that by choosing appropriate states the discontinuity
would disappear. However, this does not seem to be the case. In ref. [48], the expectation
value α〈0|Tab|0〉α was computed for all values of α. In the limit α → 0 the result is de
Sitter-invariant and it disagrees with the limit m → 0, similarly to what we have just seen
for the stress tensor two-point function. Furthermore, at late times one has

α〈0|Tab|0〉α → lim
α→0

α〈0|Tab|0〉α.

That is, limα→0 α〈0|Tab|0〉α is an attractor at late times. As is well-known, the same behavior
occurs for the massive field in the Bunch-Davies vacuum. This means that, in the case of
the expectation value of Tab, the discontinuity at m = 0 appears at late times regardless of
the state of the quantum field. It is plausible that something similar happens for the stress
tensor two-point function.

It is important to note that we are comparing the massless, minimally coupled field with
a very particular limit in parameter space. In general, in dSD (and in any curved spacetime)
the Klein-Gordon equation (5.7) includes the term ξRφ, where R is the Ricci scalar and
ξ is a parameter called the coupling to the curvature. In this paper we have considered
only minimally coupled fields, i.e., ξ = 0, and we have compared the case ξ = 0,m = 0
with the case ξ = 0,m → 0. In ref. [48], the expectation value of the stress tensor in the
case ξ = 0,m = 0 was compared with the same expectation value in the more general limit
ξ → 0,m → 0. It was found that such a limit is not unique. In particular, it was shown
that, if the limit is taken in such a way that ξR/m2 → −2, the discontinuity disappears. It is
reasonable to think that the stress tensor two-point function will exhibit a similar behavior.

We close this subsection by mentioning that the stress tensor two-point function of a
massless minimally coupled scalar field in dS4 was also computed in ref. [49]. Although in
qualitative agreement, the result of that reference differs from the results presented here be-
cause the covariant derivatives of the unit vectors were not properly taken into account there.

6.3 Large distances

In the previous subsections we have studied the stress tensor fluctuations in the cases of
small masses and strictly zero mass. In both cases we have paid attention to the long-
distance (Z � −1) regime. Here we investigate the long-distance behavior of the stress
tensor fluctuations of a massive field, without making assumptions on the smallness of m.

Using the properties of the hypergeometric function [46], one sees that the Wightman
function (5.15) can be expanded as

G(µ) = g+(−Z)−h+ + g−(−Z)−h− +O(Z−min(h+,h−)−1), (6.15)
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where

g± =
2h±

(4π)D/2
Γ(h±)Γ(h∓ − h±)

Γ(D2 − h±)
, (6.16)

and where h± is given in (5.16). Now, there are two possible situations, depending on the size
of m compared to (D − 1)/2. If m < (D − 1)/2, the parameters h± are real, with h+ > h−.
Then, the first term in (6.15) is subleading, and the equation simplifies to

G(µ) = g−(−Z)−h− +O(Z−min(h+,h−+1)). (6.17)

After substitution in (5.18), one obtains the following result for the µ-dependent functions
that determine the stress tensor two-point function:

P (µ) =
[
2h4
−g

2
− +O(Z−∆)

]
(−Z)−2h−

Q(µ) =
[
h2
−(m2 − h2

−)g2
− +O(Z−∆)

]
(−Z)−2h−

R(µ) =
[−h3

−g
2
− +O(Z−∆)

]
(−Z)−2h−−1

S(µ) =
[
h2
−g

2
− +O(Z−∆)

]
(−Z)−2h−−2

T (µ) =
[
(m2 − h2

−)2g2
−/2 +O(Z−∆)

]
(−Z)−2h− , (6.18)

where ∆ = min(h+, h− + 1) − h− > 0. Therefore, the long-distance behavior for
m < (D − 1)/2 can be written schematically as

P,Q, T ∼ Z−2h− R ∼ Z−2h−−1 S ∼ Z−2h−−2. (6.19)

In other words, the stress tensor two-point function decays like d−4h− , where d is the
Minkowskian distance. If the mass is small, m � 1, it follows from (5.16) that h− '
m2/(D − 1), and thus the two-point function decays like d−4m2/(D−1). Hence, the stress
tensor two-point function can decay arbitrarily slowly with the distance, provided that m is
sufficiently small . In particular, in the limit m→ 0, it does not vanish at long distances, as
seen in section 6.1. Furthermore, it follows from (6.16) and (6.18) that the coefficients of the
leading terms of P,Q and R in the expansion in inverse powers of Z all vanish in the limit
m → 0. This implies that the only function that is a finite constant at long distances when
m→ 0 is T , consistently with section 6.1. Besides, in this limit R decays more quickly than
Z−1, also consistently with that subsection. A qualitative explanation of this long-distance
behavior for small masses will be given in appendix B. On the other hand, the parameter h−
increases with the mass as long as m < (D− 1)/2. Hence, the fluctuations decay faster with
the distance as the mass increases.

In the opposite case, namely m > (D − 1)/2, the parameters h± are complex, and so
are g±. According to eqs. (5.16) and (6.16), we can write

h± =
1
2

(D − 1)± iα g± = ge±iδ,

where α, g and δ are positive real numbers. In terms of these parameters, eq. (6.15) takes
the form

G(µ) = 2g cos[α ln(−Z)− δ](−Z)−
D−1

2 +O(Z−
D+1

2 ). (6.20)

Substituting this equation in (5.18), we obtain the following result for the long-distance
behavior of the stress tensor two-point function:

P,Q, T ∼ Z−D+1 R ∼ Z−D S ∼ Z−D−1, (6.21)
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where the coefficients that have been omitted are oscillating functions of Z. Hence, for
m > (D − 1)/2, the way in which the stress tensor fluctuations decay with the distance
does not depend on the mass of the field. This is different from the situation in Minkowski
spacetime, where the Wightman function decays with the distance like e−mµ, and accordingly
the stress tensor fluctuations decay like e−2mµ.

Naively, one might expect to recover the results of Minkowski spacetime when the Comp-
ton wavelength 1/m is much smaller than the Hubble radius (which here is set to one). Then
one would find a contradiction with our results above for m > (D − 1)/2. However, the cor-
rect expectation is that one should recover the results of Minkowski spacetime when both the
Compton wavelength and the physical distance between the two points under consideration
are smaller than the Hubble radius. This is not the case we are dealing with here, where we as-
sume Z � −1, which means that the physical distance is much larger than the Hubble radius.

7 Timelike separated points

In the previous two sections we have been discussing the properties of the stress tensor
two-point function for spacelike separated points. Here we extend these results to timelike
separated points.

The Wightman function of the free scalar field in the Bunch-Davies vacuum for timelike
separated points, Z > 1, is [30, 37, 38]

G+ = cm,D F
(
h+, h−;

D

2
;
1 + Z̃

2

)
, (7.1)

where F is the hypergeometric function, and cm,D and h± are given in eq. (5.16). Thus, G+

has the same form as for spacelike separated points, except that now it depends on Z̃ instead
of Z. The biscalar Z̃ is defined as

Z̃(x, x′) = Z(x, x′)∓ iε, (7.2)

where ε is a positive real infinitesimal, and the minus (plus) sign is chosen when x is to
the future (past) of x′. This ∓iε term is important because the hypergeometric function,
F (a, b; c; z), has a branch cut at z > 1 along the real axis. (See also ref. [50] for a general
study of the analytic properties of two-point functions in de Sitter spacetime, where the
continuation from spacelike to timelike separated points is discussed.)

Introducing the biscalar µ̃ ≡ cos−1 Z̃, the Wightman function (7.1) can also be written as

G+ = G(µ̃), (7.3)

where G is the function defined in (5.15). From (4.2) and the discussion below that equation
it follows that

µ̃(x, x′) = ±µ(x, x′) + ε, (7.4)

where the plus (minus) sign is chosen when x is to the future (past) of x′. Unlike in eq. (4.2),
here we are keeping the leading term that vanishes when ε→ 0+, because this limit has to be
taken after evaluating the hypergeometric function at Z̃. Recall that the geodesic distance
between timelike separated points is imaginary, as has been emphasized under eq. (3.2).

Note that µ̃ is not invariant under the full de Sitter group. For example, under the
antipodal transformation it transforms as

µ̃(α(x), α(x′)) = µ̃∗(x, x′). (7.5)
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This is because, if x is to the future of x′, then α(x) is to the past of α(x′). Also, due to
the branch cut of the hypergeometric function, G(µ̃) 6= G(µ̃∗) and, hence, the Wightman
function in the Bunch-Davies vacuum for timelike separated points is not invariant under the
full de Sitter group. This is not surprising: for timelike separated points, [φ(x), φ(x′)] does
not necessarily vanish. If this commutator does not vanish, the product φ(x)φ(x′) is not a
Hermitian operator and, in consequence, the Wightman function does not have to be a de
Sitter-invariant biscalar.

The stress tensor two-point function in the Bunch-Davies vacuum for timelike separated
points is obtained by substitution of (7.3) in (5.12). Using (3.6), we find

Fabc′d′ = P (µ̃)nanbnc′nd′ +Q(µ̃)(nanbgc′d′ + nc′nd′gab)
+R(µ̃)(nanc′gbd′ + nbnd′gac′ + nand′gbc′ + nbnc′gad′)
+S(µ̃)(gac′gbd′ + gbc′gad′) + T (µ̃)gabgc′d′ , (7.6)

where P,Q,R, S and T are given by eq. (5.18). Therefore, the stress tensor two-point function
for timelike separated points has the same form as for spacelike separated points, except that
now the functions P,Q,R, S and T depend on µ̃ instead of µ.

The explicit form of these functions in the particular cases of small masses and massless
field is obtained simply by replacing µ by µ̃ (or, equivalently, Z by Z̃) in eqs. (6.5)–(6.7)
and (6.13). In fact, the functions of Z appearing in those equations do not have any branch
cut. Hence, the ∓iε term in the definition of Z̃ is irrelevant, and those equations are valid
themselves also for timelike separated points. This means that, for both m = 0 and m→ 0,
the stress tensor two-point function is also de Sitter-invariant for timelike separated points.
The behavior at large separations, Z � 1, is obtained similarly, by replacing Z by Z̃ in
eqs. (6.18) and (6.21). There, strictly speaking we do have branch cuts (due to the non-
integer exponents in (6.18) and the oscillating functions that have been omitted from (6.21)),
but the qualitative behavior is not affected by them.

In order to interpret physically these results, it is convenient to express them in terms
if the geodesic distance µ, because there is always a geodesic joining two timelike separated
points. For Z � 1, we have Z ∼ exp |µ|, as can be seen from (4.2). Let us concentrate
on the cases m → 0 and m = 0. In the limit m → 0, due to the constant piece in (6.6),
the fluctuations do not vanish at large separations. As we have already commented, this
is different from what happens in Minkowski spacetime, where the fluctuations decay like
µ−2D. In contrast, in the massless case it follows from (6.14) that the fluctuations decay
exponentially with |µ|, that is, much faster than in Minkowski spacetime.

8 Discussion

In this paper we have studied the stress tensor two-point function of a quantum field in dSD.
We have given general constraints on this two-point function that hold for any quantum field
theory in dSD, assuming that the state of the field is de Sitter invariant and that the two
points are spacelike separated. Next, we have derived explicit expressions for a free minimally
coupled scalar field in the Bunch-Davies vacuum. These expressions take a simple form (in
terms of elementary functions) in the particular cases of a small or vanishing mass as well as
for large separations between the two points and general mass. (In the case of a vanishing
mass the Bunch-Davies vacuum does not exist, but one can consider a vacuum arbitrarily
close to it, in the sense specified in appendix A.) These simple expressions, which have been
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given in section 6, are the main result of this paper. The conclusions of that section can
be summarized as follows. When the mass m of the field is small, the correlations have
a long range: they decay like an inverse power of the physical distance, with an exponent
proportional tom2/H2. In particular, in the limitm→ 0 they do not vanish at long distances.
In contrast, in the strictly massless case the stress tensor two-point function decays like the
fourth power of the physical distance. There is thus a discontinuity in the massless limit. Such
a discontinuity may seem surprising at first sight, but it can be easily understood as follows.
In the massive case, there is a contribution from the mass term in the stress tensor that does
not vanish in the limit m→ 0 due to the infrared divergence of the Bunch-Davies vacuum.

By explicitly writing the dependence on the Hubble constant in our expressions for the
stress-tensor two-point functions and taking the limit H → 0 one can recover the flat-space
limit and compare with the results of ref. [51], where they were computed in the Minkowski
vacuum for a general mass and curvature coupling. In fact, by generalizing eqs. (5.7)–(5.18)
one can straightforwardly (although somewhat tediously) extend our results to a general value
of the curvature coupling parameter. Furthermore, by an analytic continuation of the Hubble
constant to iH and the choice of a solution of eq. (5.14) with appropriate boundary conditions
in that case [rather than the solution given by eq. (5.15)] one can also obtain the stress-tensor
two-point functions for the natural vacua in anti-de Sitter. This will give the general result
in terms of invariant bitensors for all maximally symmetric spacetimes (Minkowski, de Sitter
and anti-de Sitter). By particularizing to the massless conformally coupled case, one can
then compare with the results of ref. [52] for general conformal field theories.

Next, we discuss how our results for the quantum correlations of the stress tensor can
be used to obtain information on the quantum fluctuations of the gravitational field in de
Sitter spacetime. Specifically, we will consider a perturbative quantization of the metric
around a de Sitter background within the framework of an effective field theory approach
to quantum gravity [53, 54], and for simplicity we will restrict our attention to D = 4
spacetime dimensions. Moreover, we will neglect the contributions from graviton loops in
order to avoid the difficulties involved in constructing and dealing with diffeomorphism-
invariant observables [55] that arise when those are taken into account. This can be naturally
implemented in the context of a large N expansion for N matter fields (free scalar fields in
our case) coupled to the gravitational field, where one introduces a rescaled coupling constant
l̄p = lp

√
N (with lp being the usual Planck length) and expands in powers of 1/N keeping l̄p

fixed. Neglecting graviton loops amounts then to considering only the leading order in 1/N ,
i.e. the first non-vanishing order that contributes to any quantity of interest. For instance,
the leading contribution to the two-point function of the metric perturbations is of order 1/N .

As a characterization of the quantum metric fluctuations at order 1/N , one can study
the two-point correlation functions of the linearized Riemann tensor including the effects of
matter loops. It should be emphasized that we are not referring to transition matrix el-
ements but to the correlation functions appearing in the closed time path (also known as
in-in) formalism [56–60]. They can be obtained either from a purely quantum field theoret-
ical calculation [6] or within the framework of stochastic gravity [61–65], which provides an
equivalent way of obtaining the result at order 1/N [66, 67]. The Riemann tensor of the back-
ground de Sitter spacetime with appropriately raised indices is given by R cd

ab = (R/6) δ [c
[a δ

d]
b]

and its linear perturbation is, therefore, gauge invariant since its Lie derivative with respect
to an arbitrary vector vanishes [68]. In fact, both the Ricci tensor and the Weyl tensor
(which vanishes in the background spacetime) are separately gauge invariant at the linear
level, and together they entirely determine the Riemann tensor at that order. This is actually
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enough to guarantee that the connected part of their two-point correlation functions at order
1/N is gauge invariant. One could alternatively consider the two-point function of other
gauge-invariant quantities for the linearized metric perturbations, such as those commonly
employed in the study of cosmological perturbations. Instead, here we consider the Riemann
tensor because besides being a gauge-invariant object with a simple geometric meaning and
completely characterizing the local geometry, the de Sitter invariance of its correlation func-
tions can be directly analyzed, especially when using a manifestly invariant formalism like
the one employed in this paper. Furthermore, from our results for the stress-tensor two-point
functions one can immediately obtain the two-point functions of the Ricci tensor to leading
order in the Planck length (and order 1/N), as we will see below.

The lowest-order non-vanishing contribution to the two-point function of the Ricci ten-
sor, or equivalently the Einstein tensor, is quartic in l̄p and (at order 1/N) comes from
the one-loop contributions of the matter fields. Both from the stochastic gravity formal-
ism [65, 66] or from the Einstein equation to linear order in the metric perturbations as
an equation for operators in the Heisenberg picture (including the matter fields as well as
the metric perturbations), one obtains the following result for the two-point function of the
Einstein tensor at that order:

〈Ga (1)
b (x)Gc

′ (1)
d′ (x′)〉 − 〈Ga (1)

b (x)〉〈Gc′ (1)
d′ (x′)〉 = (8π)2

l̄ 4
p

N
F a c

′
b d′(x, x

′), (8.1)

where Ga(1)
b is the linearized Einstein tensor, and F a c

′
b d′ is the stress tensor two-point function

that has been computed in this paper, with appropriately raised indices. Therefore, the
stress tensor two-point function in dS4 gives the leading order contribution to the two-point
function of the linearized Einstein tensor in an expansion in powers of 1/N and l̄p. Note that
in general this two-point function would receive additional contributions of the same order
from the finite part of the local counterterms quadratic in the curvature which are required
in order to renormalize the divergences of the one-loop contribution, but at this order these
contributions turn out to vanish for the particular case of a de Sitter background.

On the other hand, even though the two-point function of the Weyl tensor also gets
contributions of order l̄ 4

p and higher from matter loops, it gets in addition a non-vanishing
tree-level contribution of order l̄ 2

p even in the absence of matter loops, which was calculated
in ref. [35]. In contrast with the correlation functions of the Ricci tensor, the contributions of
order l̄ 4

p to the two-point function of the Weyl tensor cannot be immediately obtained from
the stress-tensor two-point function. Nevertheless, when combined with the tree-level result
for the correlations of the Weyl tensor in ref. [35], our current result for the correlations
of the Ricci tensor completely characterizes the quantum fluctuations of the full Riemann
tensor at order 1/N and leading order in the Planck length. It should be pointed out that the
two-point function corresponding to the cross-correlation of the Ricci and Weyl tensors is of
order l̄ 4

p (rather than l̄ 3
p ). This can be interpreted as the absence of correlations between the

tree-level fluctuations of the Weyl tensor, with an amplitude of order l̄p, and the fluctuations
of the Ricci tensor, with an amplitude of order l̄ 2

p .
Note that in contrast to the existing calculations of loop corrections to the spectrum

of cosmological perturbations in inflationary models, where the self-interaction of the matter
fields often plays an important role [7–9], the only interaction vertices associated with the
free fields that we have considered here are those corresponding to their gravitational interac-
tion. Moreover, we do not consider a non-vanishing homogeneous background configuration
for the scalar fields (which would give also a tree-level contribution to the stress-tensor two-

– 23 –



J
C
A
P
0
5
(
2
0
1
0
)
0
3
6

point function [69]) and the usual treatment for the correlations of the scalar-type metric
perturbations [6, 10, 12, 70] cannot be directly applied. On the other hand, the calculation
for tensor metric perturbations should be equivalent (since the slow-roll geometry is usually
approximated by de Sitter space in that case) but the existing results are either approxi-
mate [11] or restricted to the massless case [12]. Furthermore, considering the correlations
of the Riemann tensor and expressing them in terms of maximally invariant tensors is very
useful in order to analyze whether de Sitter invariance is disrupted by loop corrections.

We close this section with a few remarks concerning possible lines of future research in
connection with our work. An aspect that deserves further study is analyzing how generic
our main results for light fields (namely, the existence of long-range stress-tensor correla-
tions and the discontinuity of the massless limit) are when considering general states. For
instance, for a wide range of masses and curvature-coupling parameters it has been shown
that given a generic well-behaved and spatially isotropic initial state, the expectation value
of the stress-tensor operator on a de Sitter background tends at late times to the same value
as the expectation value for the Bunch-Davies vacuum [71]. Moreover, for spatially isotropic
perturbations this conclusion remains true even when the back-reaction on the background
geometry is taken into account [72–76]. This can be qualitatively understood as a con-
sequence of the exponential redshift rendering negligible, after a sufficiently long time, the
contribution to the stress tensor of any initial excitation of the Bunch-Davies vacuum. Hence,
we expect that a similar conclusion will apply to the stress-tensor correlations and its main
features, but it would be interesting to check it explicitly. Secondly, in future work we plan
to compute the one-loop contribution (of order l̄4p) to the two-point function of the Weyl ten-
sor, which unlike for the Ricci tensor cannot be immediately obtained from the stress tensor
two-point function, and investigate the de Sitter invariance of the one-loop contributions to
the correlation function of the full Riemann tensor and its implications.
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A Vacuum states

In this appendix we summarize the quantization of a free, minimally coupled scalar field in
dSD. We pay special attention to the massless case, where we reexamine the issue of the
non-existence of a de Sitter-invariant vacuum, previously addressed in refs. [38, 48],2 and
prove eq. (6.11). For simplicity, we will work in D = 4 spacetime dimensions.

2A de Sitter-invariant construction for the massless minimally coupled scalar field was put forward in
ref. [77] by essentially treating as a gauge symmetry the invariance under φ→ φ+ const. of the action in that
case. However, their quantization procedure, based on the use of a Krein space rather than the usual Fock
space, gives non-standard results for nonminimal curvature couplings (including the conformal coupling case)
as well as for positive masses, and such an approach will not be considered here.
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A coordinate system {η,Ω} can be chosen for dS4 such that the line element takes
the form

ds2 = sin−2 η[−dη2 + dΩ2]. (A.1)

where η ∈ (0, π) is the so-called conformal time, Ω is a set of angles of S3, and dΩ2 is the line
element of S3. In these coordinates, the scalar field can be expanded in spherical harmonics
on S3:

φ(η,Ω) =
∑
L,M

[aLMULM (η)YLM (Ω) + a†LMU
∗
LM (η)Y ∗LM (Ω)], (A.2)

where the spherical harmonics YLM (Ω) are normalized eigenfunctions of the Laplacian on
S3, L = 0, . . . ,∞, and M represents two indices, M1 and M2, with M1 = −L, . . . , L and
M2 = −M1, . . . ,M1. In order for the scalar field to satisfy the Klein-Gordon equation (5.7),
the modes ULM have to be particular solutions of the equation

ÜLM (η)− 2 cot η U̇LM (η) + ω2
L(η)ULM (η) = 0, (A.3)

where ω2
L(η) = L(L + 2) + m2 sin−2 η. If these particular solutions satisfy the Wronskian

condition
ULM (η)U̇∗LM (η)− U∗LM (η)U̇LM (η) = i sin2 η, (A.4)

then the canonical commutation relations between the field and its conjugate momentum
imply that a†LM and aLM are creation and annihilation operators,

[aLM , a
†
L′M ′ ] = δLL′δMM ′ . (A.5)

The vacuum |0〉 is then defined as the state annihilated by all the annihilation operators,

aLM |0〉 = 0 ∀L,M. (A.6)

In spite of the Wronskian condition (A.4), there is freedom in choosing the modes ULM .
Different choices give rise to different vacua. The Bunch-Davies vacuum, |0〉BD, is associated
with the following choice [37, 78]

UBDLM (η) = AL sin3/2 η

[
P λν (− cos η)− 2i

π
Qλν (− cos η)

]
, (A.7)

where P λν and Qλν are Legendre functions on the cut, λ = (9/4 −m2)1/2, ν = L + 1/2, and
the normalization constants are

AL =
√
π

2
eiλπ/2

[
Γ(L− λ+ 3/2)
Γ(L+ λ+ 3/2)

]1/2

. (A.8)

The Bunch-Davies vacuum is de Sitter-invariant. Note that this state is only defined for
massive fields, m > 0, because A0 does not exist for m = 0. In fact, in the massless case
there is no de Sitter-invariant vacuum, as was shown in ref. [38].3 One can instead consider

3Note also that whereas the m2 > 0 case has a well defined flat space limit when taking H → 0 and
keeping m fixed, that is not true for the massless case. Instead, one should take the flat space limit first and
the massless limit afterwards.

In fact, even the flat space limit of the unitary irreducible representations of the de Sitter group [see the
discussion in the last paragraph of section 5], regarded as a group contraction from the de Sitter to the
Poincare group, becomes more subtle for m2 = 0, whereas it is completely unambiguous for m2 > 0 [45].
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the vacua |0〉α, associated with the following modes [47]:

UαLM (η) = lim
m→0

UBDLM (η) for L > 0

Uα0 (η) = −iα
(
η − 1

2
sin 2η − π

2

)
+

1
4α
, (A.9)

where α ∈ (0,∞). These vacua are invariant under the O(4) subgroup of O(4, 1), i.e.,
the subgroup of isometries that leave invariant the hypersurfaces of constant η. They are
also invariant under time reversal. (These vacua should not be confused with the so-called
alpha vacua, which are defined for massive fields and whose Wightman function diverges for
antipodal points.)

In what follows we concentrate on the massless case. As was pointed out in ref. [48],
the non-existence of the Bunch-Davies vacuum when m = 0 is better understood by looking
at the example of the harmonic oscillator in Quantum Mechanics. The general solution of
the equation of motion of a harmonic oscillator of frequency ω can be written in the form

q(t) = U(t)a+ U∗(t)a†, (A.10)

where a† and a are creation and annihilation operators, and U(t) is a particular solution of
the equation of motion. If it is chosen as

U(t) =
1√
2ω
e−iωt, (A.11)

then the ground state |ψ〉 of the harmonic oscillator satisfies a|ψ〉 = 0. Now, U(t) does not
exist when ω = 0. This is equivalent to what happens to UBD0 when m = 0. But in this case
the interpretation is clear: a harmonic oscillator of zero frequency is a free particle. And the
ground state of the free particle, which should be annihilated by the momentum operator,
p|ψ〉 = 0, does not exist (it is not an element of the Hilbert space), because a constant
wave function cannot be normalized. Similarly [48], the wave functional of the Bunch-Davies
vacuum becomes non-normalizable in the limit m→ 0.

Even though the ground state of the free particle does not exist in Quantum Mechanics,
there are states which are “arbitrarily close” to it. An example is a Gaussian wave function
with a very large width. Similarly, one can expect to find states for the massless field in dS4

which are “arbitrarily close” to being de Sitter-invariant. This is indeed true in the following
(restricted) sense: even though the vacua |0〉α are not de Sitter-invariant, there is a certain
class of observables whose expectation values are de Sitter-invariant in the limit α→ 0.

Let us see this. For any mass m, and in any vacuum state |0〉, the Wightman function
of the free scalar field in dS4 is expanded in terms of the modes as

G+(η,Ω; η′,Ω′) =
∑
L,M

YLM (Ω)Y ∗LM (Ω′)ULM (η)U∗LM (η′). (A.12)

If we want to compute the Wightman function, G+
α , of a massless field in the state |0〉α,

we have to replace ULM by UαLM in this equation. If, instead, we want to compute the
Wightman function, G+

BD, of a massive field in the Bunch-Davies vacuum, we will use UBDLM .
Let us consider the limit α→ 0 for a massless field in the state |0〉α. It follows from (A.9) that
the zero mode Uα0 diverges in this limit, and so does the Wightman function G+

α . However,
the derivative of the zero mode, U̇α0 , vanishes. Therefore, ∂η∂η′G+

α is finite in the limit α→ 0
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and, besides, the term with L = 0 does not contribute to it. On the other hand, consider
the limit m→ 0 for a massive field in the Bunch-Davies vacuum. It follows from (A.8) that
the zero mode UBD0 diverges. This is the origin of the infrared divergence of G+

BD found in
section 6.1. However, the derivative of the zero mode, U̇BD0 , vanishes. Hence, ∂η∂η′G+

BD is
finite in the limit m→ 0, and the term with L = 0 does not contribute to it. Using eqs. (A.9)
and (A.12) we find

lim
α→0

∂η∂η′G
+
α = lim

m→0
∂η∂η′G

+
BD. (A.13)

Finally, the spherical harmonic Y00 is independent of Ω. Therefore, whenever we take
derivatives of the Wightman function (A.12) with respect to Ω or Ω′ the term with L = 0
will not contribute, and a result similar to the above equation will apply. From all this we
conclude that

lim
α→0
∇a∇b′G+

α = lim
m→0

∇a∇b′G+
BD. (A.14)

Since the right-hand side is de Sitter-invariant, this equation implies that ∇a∇b′G+
α is de

Sitter-invariant in the limit α → 0. The expectation value in the vacuum |0〉α of any
observable that only depends on derivatives of the field can be expressed in terms of
∇a∇b′G+

α , because |0〉α is a Gaussian state. In consequence, such expectation value will
be de Sitter-invariant in the limit α → 0. Hence, we conclude that, even though the states
|0〉α are not de Sitter-invariant, the expectation values of certain observables can be taken
arbitrarily close to a de Sitter-invariant value by choosing α sufficiently small.

Note that the conclusions above apply only to a certain class of observables, not all
of them. For example, ∇aG+

α does not satisfy an equation like (A.14). The reason is that,
when computing this bitensor using eq. (A.12), the contribution from the term with L = 0
is finite, but it does not vanish. Hence, one cannot use the argument that led to eq. (A.14).
It is also worth noting that |0〉α is not the only family of states satisfying (A.14). For
instance, consider the family of coherent states |z〉α, defined by aLM |z〉α = 0 for L > 0
and a0|z〉α = z|z〉α, where z is a complex number, and the annihilation operators are those
associated with the O(4) invariant vacua |0〉α. It is not hard to see that this family of states
also satisfies eq. (A.14) for all values of z.

B Qualitative explanation of the massless limit discontinuity

The main result of this paper is that the stress tensor two-point function of a free minimally
coupled scalar field in dSD decays with the Minkowskian (physical) distance like d−4m2/(D−1)

for small masses, that is, arbitrarily slowly if the mass is sufficiently small, and like d−4

when the mass vanishes exactly, so that there is a discontinuity in the massless limit. These
results have been obtained in a coordinate-independent way, using the properties of the de
Sitter-invariant bitensors and the hypergeometric function. In this appendix we provide an
alternative, semi-qualitative explanation in a language that is more familiar to cosmologists.
For simplicity we will restrict again the discussion to D = 4 spacetime dimensions. Here
we will no longer use a system of units where the Hubble constant is H = 1, so that the
dependence on H will be explicit throughout this appendix.

In cosmology dS4 is most commonly studied using the coordinate system {t, xi} defined
by eqs. (4.9), in which the line element takes the spatially flat Robertson-Walker form

ds2 = −dt2 + a2(t)δijdxidxj , (B.1)
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with scale factor a(t) = eHt. In these coordinates the scalar field φ can be expanded in plane
waves,

φ(t,x) =
∫
d3k[akUk(t)eik·x + a†kU

∗
k (t)e−ik·x], (B.2)

where v denotes a vector of components vi, and v · w = δijv
iwj . We assume that the

modes Uk(t) depend on k only through its norm k = |k| = (k · k)1/2, which corresponds to
having a spatially homogeneous and isotropic vacuum. Substituting the equation above in
the Klein-Gordon equation (5.7), one obtains the following equation for the modes:

Ük + 3HU̇k +
(
k2/a2 +m2

)
Uk = 0. (B.3)

The Wightman function can also be written in terms of the modes. Assuming that the points
x and x′ are simultaneous in our coordinate system, t = t′, we have

G+(t,x; t,x′) =
∫ ∞

0
dk k2 sin kr

kr
|Uk(t)|2, (B.4)

where r = |x− x′|. Global numerical coefficients are unimportant for our present purposes,
and for this reason they are omitted from the equation above and all the equations that
follow in this appendix. For pairs of points separated by a physical distance much larger
than the horizon, d = ar � H−1, the integral above is dominated by terms with physical
wavelengths also much larger than the horizon, i.e., k � aH. This condition is satisfied in
the time interval t� tk, where tk is defined by k = a(tk)H, and is usually referred to as the
time of horizon exit. Since k/a decreases exponentially, in most of this time interval we have
k/a � m. Hence, the term proportional to (k/a)2 in eq. (B.3) can be neglected, and that
equation takes the form of the Klein-Gordon equation for a homogeneous scalar field in dS4,

Ük + 3HU̇k +m2Uk ' 0, (B.5)

This equation has two linearly independent solutions, which are proportional to e−3Ht and
e−m2t/3H respectively. The second solution, which decays much more slowly than the first,
eventually dominates. Therefore, we can concentrate on the second, slowly decaying solution.
In order to find the dependence on k, we have to impose an initial condition. This is obtained
by matching with the behavior when the mode is inside the horizon, i.e., when t � tk. In
this time interval, for the vacuum to be adiabatic we must have [37]

Uk(t) ' 1
a(t)

1√
k
e−ikη, (B.6)

where η = −1/aH is the conformal time. Assuming that this equation holds also at t ' tk,
we obtain the initial condition Uk(tk) ' H/k3/2. Thus, we have

Uk(t) ' H

k3/2
e−

m2

3H
(t−tk) =

H

k3/2

(
k

aH

) m2

3H2

(B.7)

for t� tk or, equivalently, for k � aH. This result has been obtained using semi-qualitative
arguments, but it can also be rigorously derived from the exact form of the modes associated
with the Bunch-Davies vacuum [37]. Substituting this equation into eq. (B.4) and defining
the dimensionless variable ξ = kr, we obtain the following result for the Wightman function:

G+(t,x; t,x′) ' H2(Hd)−
2m2

3H2

∫ ∞
0

dξξ−2+ 2m2

3H2 sin ξ, (B.8)
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where we have used that the physical distance is d = ar. The integral above is just a constant,
dimensionless factor that depends on H and m. It can actually be computed exactly and
gives the following result:

G+(t,x; t,x′) ' H4

m2
(Hd)−

2m2

3H2 . (B.9)

This result is valid for d� H−1 and m� H, up to a numerical factor. Thus, we see that the
Wightman function can decay arbitrarily slowly with the physical distance, provided that
the mass is sufficiently small. Similar results hold for the time derivatives of the Wightman
function evaluated at simultaneous points [which are given by expressions similar to (B.4),
but involving time derivatives of the modes],

(∂tG+)(t,x; t,x′) ' H3(Hd)−
2m2

3H2

(∂t∂t′G+)(t,x; t,x′) ' H2m2(Hd)−
2m2

3H2 . (B.10)

In contrast, spatial derivatives of the Wightman function decay faster with the distance,
because they are obtained by deriving eq. (B.9).

The stress tensor two-point function is given by eq. (5.12) in terms of the Wightman
function and its derivatives. From what we have just seen, it follows that the terms that
decay most slowly are those proportional to the squares of G+, ∂tG

+ and ∂t∂t′G
+. It also

follows that, due to these terms, the stress tensor two-point function decays like d−4m2/(3H2).
This is exactly the long-distance behavior found in section 6.3, particularized to small masses
and to D = 4. In the massless limit, m→ 0, the term of (5.12) proportional to G+2 tends to
a finite constant. Contrarily, the terms proportional to time derivatives of G+ vanish, due to
the powers of m appearing in eqs. (5.12) and (B.10). Hence, in the massless limit the stress
tensor two-point function is a nonvanishing constant at long distances, and this is entirely
due to the term proportional to G+2 in (5.12). This was seen in section 6.1. In the strictly
massless case, the term proportional to G+2 is absent, and thus the stress tensor two-point
function vanishes at long distances. Therefore, taking the limit m → 0 is not the same as
setting m = 0, as was previously found in section 6.2.
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[75] G. Pérez-Nadal, A. Roura and E. Verdaguer, Stability of de Sitter spacetime under isotropic
perturbations in semiclassical gravity, Phys. Rev. D 77 (2008) 124033 [arXiv:0712.2282]
[SPIRES].
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