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Abstract. We give a brief overview of the role of quantum theory in cosmology, reviewing
the standard model of classical cosmology, inflation and quantum cosmology.
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1 Introduction

Quantum theory makes numerous important contributions to cosmology, the study of
the universe as a whole: Within the standard model of cosmology based on Einstein’s
theory of general relativity, the quantum field theories of electroweak and strong inter-
actions are used to describe the properties of matter in the high-temperature phases
of the universe. In addition, it has been theorized that prior to the evolution predicted
by the standard model of cosmology, our universe has undergone an inflationary pe-
riod of rapid exponential expansion; the models for this inflation also rely on quantum
theoretical arguments. Finally, one can attempt to view the universe as a whole as
a quantum system; this is commonly referred to as quantum cosmology. A review as
brief as this cannot attempt to present even a moderately complete bibliography of
original papers; rather, the references that we give should be viewed as suggestions for
further reading. A few more general references for the topics treated here are Refs. [1].

2 The cosmological standard model

There is observational evidence that viewed on a scale of several hundred million
lightyears, our universe is homogeneous and isotropic, and furthermore, that it is in
a process of uniform expansion. Newtonian gravity cannot account for this. Instead,
modern cosmology [2] is based on Einstein’s description of gravity as governed by one
of the most elegant systems of equations in physics, the Einstein field equations:

Rµν − 1
2
gµν R = 8πGTµν − Λ gµν. (1)
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These equations relate the geometry of spacetime (described by the metric gµν , the
Ricci tensor Rµν and the Ricci scalar R on the left-hand side) to the energy and
momentum of the matter contained within spacetime (in the form of the energy-
momentum tensor Tµν on the right-hand side); G is Newton’s constant. The cosmo-
logical constant Λ is an addition to the original field equations that can be interpreted
as an energy density associated with empty space itself. Spacetime is no longer a stage
on which the drama of matter interactions unfolds; instead, it takes an active part in
the dynamics.

As non-linear partial differential equations, the Einstein equations are extremely
difficult to solve. However, under the assumption of homogeneity and isotropy of
the universe, one can choose a natural coordinate system at rest with respect to the
uniformly distributed matter (“co-moving coordinates”) from which follows a met-
ric (which characterizes the space-time geometry by relating infinitesimal coordinate
differences to an infinitesimal distance ds), the Robertson-Walker metric

ds2 = −dt2 + a2(t)
(

dr2

1 − kr2
+ r2 dΩ2

)
. (2)

This contains only one unknown function, the cosmic scale factor a(t) which depends
solely on the time coordinate (the “cosmic time”) and shows how the spatial dis-
tance between two objects changes with the cosmic expansion: if their initial dis-
tance at cosmic time t0 was d(t0), then their distance at a later time t1 will be
d(t1) = a(t1)/a(t0) · d(t0). The constant k can take on one of three possible val-
ues, corresponding to different types of cosmological models. For k = 1, the spatial
part of the universe is locally spherical, analogously to the surface of a sphere, for
k = 0 it is locally flat analogously to a plane, and for k = −1 it is locally hyperbolic,
analogously to a saddle. The scale factor can be related to observations; in particular,
by measuring the red-shifts and distances of distant galaxies, one can determine the
current expansion rate ȧ/a, which is the so-called Hubble constant H0, as well as the
current value of −ä/ȧ2, known as the deceleration parameter q0. Recent numerical
values for these parameters are in the range of H0 = 60 to 80 km/(s MPc) and q0 < 0,
pointing to an accelerated expansion.

The matter in such a universe has the energy momentum tensor of an ideal fluid,
Tµν = diag(ρ, p, p, p), with characteristic properties encoded into an equation of state
p = p(ρ). Relevant for different eras of our universe are (non-relativistic) matter with
the equation of state p = 0 and radiation with p = 1/3 ρ. For pure vacuum energy,
p = −ρ. Substituting the energy-momentum-tensor and the metric Ansatz (2) into
Einstein’s field equations, one obtains (either when Λ = 0 or including the energy
contribution of Λ in ρ and p)

ä

a
= −4πG

3
(ρ + 3p) and

(
ȧ

a

)2

+
k

a2
=

8πG
3

ρ. (3)

A spacetime with the metric Eq. (2), satisfying these equations, is called Friedmann-
Lemaitre-Robertson-Walker (FLRW) universe. For the sample equations of state
shown above, we can solve Eq. (3) and write down the relation between the scale
factor and the matter density, as well as the scale factor’s dependence on cosmic time:
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Fig. 1 Development of the universe from the big bang to the present (schematic)

For a matter-dominated universe, ρ ∝ a−3 and a(t) ∼ t2/3; for a universe dominated
by radiation, ρ ∝ a−4 and a(t) ∼ t1/2. It turns out that the total mass density ρ of the
universe directly determines its local geometrical properties. Define the critical density
as ρcrit := 3H2

0/8πG, and define Ω := ρ/ρcrit. Then for Ω > 1, the universe is locally
spherical; for Ω = 1 it is locally flat; and for Ω < 1, it is locally hyperbolic. For the val-
ues of the Hubble constant H0 given above, the critical density is ρcrit ∼ 10−29g/cm3.
The observations point to Ω remarkably close to 1. However, drawing together mass
estimates from observations of matter dynamics (for instance, the rotation curves of
galaxies) and from primordial nucleosynthesis (see below), it appears as if substantial
contributions to Ω are made by so-called non-baryonic dark matter, a hypothetical, as
yet unknown form of non-standard matter that does not take part in electromagnetic
interactions. Typical estimates are Ωb ≈ 0.05 for ordinary, baryonic matter, Ωnb ≈ 0.3
for baryonic and non-baryonic matter combined, and ΩΛ ≈ 0.7 for the energy density
associated with the cosmological constant.

Ordinary matter obeys ρ+3p > 0 which, by Eq. (3), implies permanent deceleration
ä < 0 and leads to solutions for which, some finite time t0 ago, a = 0. This extreme
point in the development of FLRW models is commonly called the big bang. The
standard model of cosmology describes the universe’s evolution from about 10−26 s
after the big bang to the present (Fig. 1). An important – and successful – prediction
of standard cosmology is that of the existence of the cosmic background radiation
(CBR), blackbody radiation made up of photons that have not interacted with the
rest of the universe since the time of recombination near t ≈ 1012 s. The isotropy of
the CBR is further evidence of the homogeneity and isotropy of our universe, and a
very active area of research is that of structure formation [4], addressing the question
of how the observed inhomogeneous structures of our universe (e.g., galaxy clusters)
developed from such nearly homogeneous initial conditions.
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Within the cosmological standard model, quantum theory, or more precisely, the
standard model of elementary particles, plays a crucial role [1, 3]. The standard model
of particle physics contributes to the predictions for primordial nucleosynthesis at cos-
mic time t ≈ 1 s; the fact that these predictions of the relative abundance ratios for
light nuclei such as Helium-4, Deuterium and Lithium-7 agree with observation is one
cornerstone of supporting evidence for the standard cosmology. Another important
question is that of baryogenesis: why does the universe around us consist predomi-
nantly of matter, instead of an even mix of matter and anti-matter? While the issue
is not completely resolved, there exist a number of viable models for how this matter-
antimatter-asymmetry developed [3].

For all its predictive power, the standard model of cosmology leaves open a num-
ber of important questions. First of all, the singularity problem: What happened at
t = 0 (or “before”)? The answer presumably lies with a quantum theory of grav-
ity (Sect. 4). Secondly, elementary particle physics would appear to predict a very
large cosmological constant. But then, why is the observed value for the constant so
comparatively small? Furthermore, the uniqueness problem: Is there a reason for the
observed properties of our particular universe? This is especially pressing in the light
of superstring theory, which seems to imply a huge number (1010...

) of possible consis-
tent vacua. Two particular properties are especially interesting: Why is Ω so close to
one, corresponding to a flat universe (flatness problem) or, put in a different way, why
is the extension of the universe so large, compared with the Planck length, the natural
length scale �Planck =

√
Gh̄/c3, why is Runiv ∼ 1028 cm � �Planck ∼ 10−33 cm? Why

is our universe isotropic and homogeneous in the first place? This last question is
made especially vexing by the so-called horizon problem: in the standard cosmological
models, regions of the cosmic background radiation that we observe as homogeneous
should not even have been in causal contact with each other – in the early universe,
there should have been a myriad of causally disconnected regions.

3 Inflation

Inflationary models postulate that the evolution of our universe as described by FLRW
models was preceeded by an inflationary phase of rapid exponential expansion [5].
This assumption is motivated by the problems of flatness and homogeneity, by the
hope that quantum fluctuations might provide the seed for later structure formation,
and by the attempt to explain the observed scarcity of certain exotic relic particles
predicted by some models for the very early, high energy cosmos. Such an expansion is
characteristic for a universe dominated by vacuum energy embodied in a cosmological
constant Λ > 0. Defining Λ = 8πGλ, one can view the cosmological constant as the
presence of “matter” with the equations of state ρ = λ = const. and p = −ρ = −λ.
As opposed to ordinary matter, we have ρ + 3p < 0 which, by Eq. (3), entails ä > 0.
For times t � 0 the evolution of the cosmic scale factor approaches a(t) ∼ eH0t with
H0 =

√
Λ/3.

Inflation can be achieved in an elegant way with the help of quantum field theory,
namely as a consequence of the presence of a scalar field known as the inflaton in the
early universe. The generic Lagrangian of a scalar field is L = 1/2 gµν∂µϕ∂νϕ−V (ϕ),
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Fig. 2 Generic potential for the inflaton field

corresponding to an energy-momentum tensor Tµν = ∂µϕ∂νϕ − gµνL. From this it
can be read off that for a near-constant scalar field, ρ = −p = V (ϕ). Apparently,
such a field can provide the matter behaviour needed for the inflationary phase. For
simplicity, we assume that the scalar field evolves in an FLRW background, and that
ϕ(t,x) ≡ ϕ(t). Then its equation of motion has the simple form

ϕ̈ +
dV
dϕ

+ 3
ȧ

a
ϕ̇ + Γϕ̇ = 0, (4)

where the first three terms follow from the given Lagrangian while the last term
incorporates the interaction with other matter fields, which will become important
later on. The mechanical analogue would be a particle moving in the potential V
with friction proportional to its velocity. Viewing the field classically (i.e., considering
its expectation value 〈ϕ〉), we can use this equation to describe the field dynamics
in a typical inflation scenario. A generic potential for the inflaton field is shown in
Fig. 2; important is the presence of a minimum at 3 and of a comparatively flat stretch
between 1 and 2. The initial inflaton expectation value is taken to be at point 1. Then,
〈ϕ〉 slowly evolves towards point 2; during this “slow rolling” phase, the scalar field
is approximately constant and drives inflation in the way indicated above. A typical
value for the duration of this phase is ∆t ∼ 10−26 s (a long time, compared to the
expansion time scale H−1

0 ), during which a increases by a factor of about 1030. When,
continuing down the slope, the expectation value has reached the minimum at 3, the
scalar field begins to oscillate. This is the so-called reheating phase in which the term
Γϕ̇ becomes important. As mentioned above, it contains the coupling of ϕ to all other
matter degrees of freedom, and in the reheating phase, the scalar field expends its
energy in pair creation of matter particles (or the decay of ϕ-particles into ordinary
matter), leading to a high-temperature universe which then continues its evolution as
described by the FLRW-models. In a natural way, the inflationary phase leads to a
flat, homogeneous universe: Possible initial inhomogeneities get “inflated away”, the
inflation naturally leads to Ω of order unity, and the different parts of the CBR we
observe today have been in causal contact at sufficiently early times.

At present, inflation is not “a” model, but rather a framework into which a plethora
of models fit – models differing, for instance, by the choice of potential V (ϕ), but
all reproducing the basic stages of slow rolling and reheating. A class of models that
enjoys great current popularity embodies what is called chaotic inflation. These models
assume a primordial cosmos full of violent quantum fluctuations, in some regions of
which the expectation value of the scalar field has a value that permits inflationary
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expansion. Such a region will inflate, forming a huge bubble. At least for some time,
the inner parts of this bubble will be causally unconnected to the rest of the universe,
and it is inside such a bubble that the whole of our observable universe is thought to
be situated. The uniqueness problem has been circumvented – at the cost that, now,
our observable universe is just one of a myriad of other “universes”, a tiny part of a
cosmos possibly 1010100

times larger.
While inflation appears to be an elegant way of overcoming the flatness and ho-

mogeneity problems, it introduces some new problems of its own. The multitude
of models shows us that our knowledge of a possible inflationary phase is still rather
vague. Generally, the inflaton field is introduced ad-hoc, and does not arise in a natural
way from some basic elementary particle model. Still worse, the fundamental theories
one could expect to govern the quantum gravity phase directly preceeding inflation
appear to prefer a negative cosmological constant, Λ < 0 (e.g., Anti-deSitter space).
While there appear to be a few “stable” predictions shared by all inflationary models
and consistent with available data (in addition to the flatness of the universe, a cer-
tain spectrum of density fluctuations in the cosmic background radiation; additional
predictions of relic gravitational waves might become testable in the near future), in-
flation also introduces a great number of as-yet untestable predictions (and, in the
case of multiple “universe bubbles”, a plethora of spacetime regions of our universe
that cannot, even in principle, be observed today or in the foreseeable future as they
concern space-time regions behind the current event horizon). Ultimately, one must
still strive to understand what “happens” at the Planck scale. Given that, typically,
the initial value of the inflaton field falls into that energy region, an understanding
of Planck-scale physics is now important for setting the initial conditions of inflation
and showing how the preconditions of inflation – a universe dominated by the inflaton
field – can arise in the first place.

4 Quantum cosmology

Again and again, the preceeding sections have led us to the question of what a quan-
tum theory of gravity looks like, and how it might influence the development of the
very early universe. As yet, no conclusive answer to that question is known. In the
search for such a theory, there are currently two major approaches: Starting from
elementary particle physics, there is superstring theory [6], which might lead not only
to a theory of quantum gravity, but to a unified theory of all interactions. The most
immediate consequence of this theory is the presence of additional particle modes in
the very early universe, while recent developments concerning possibly large extra di-
mensions and hints of an underlying non-commutativity of space-time could well have
a more fundamental cosmological significance. Here, however we will focus on another
Ansatz, the program of canonical quantization of gravity [7], which attempts to apply
a quantization procedure to Einstein’s theory of gravity that respects the theory’s ge-
ometric nature. Within this latter framework, quantum cosmology [8] is an attempt
to explain the evolution of the universe as a whole in quantum mechanical terms.

One basic conflict between general relativity and ordinary quantum mechanics is
already apparent in the quantum mechanics of point particles, where the dynamics
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of a state vector Ψ(t, q1, . . . , qN) is described by the Schrödinger equation and where
|Ψ(t, q1, . . . , qN)|2 has a straightforward interpretation as a probability density. In the
Schrödinger equation, time plays a special role and is not quantized, in contrast to
the space coordinates which are replaced by operators obeying certain commutation
relations. This special split in space and time is incompatible with the general coordi-
nate invariance that relativity demands, and for relativistic point-particle mechanics,
a different formulation is needed. The solution is to start from an invariant point-
particle action defined by the invariant length of the particle’s world line, namely the
action S = m

∫
ds = m

∫ √
ẋµẋµdτ , with τ some variable parametrizing the world

line. Define a conjugate momentum pµ := ∂L/∂ẋµ. The invariance of the action
under reparametrizations τ → τ ′ = τ ′(τ ) leads to the constraint H := pµp

µ −m2 = 0.
If we quantize the system, pµ �→ −i ∂µ ≡ −i ∂/∂xµ, the quantum version of this
constraint will have to be imposed on all states, Ĥφ = −(∂µ∂µ + m2)φ = 0. This
(Hamiltonian) constraint is in fact the Klein-Gordon equation which determines the
field’s dynamics. We have achieved parametrization invariance, but at a cost: it is no
longer possible to interpret φ∗φ as a probability density because it is not conserved.
The charge constructed from the current jµ = i[φ∗ · ∂µφ− ∂µφ∗ · φ] is conserved, but
not positive and thus not a good probability density either. The resolution demands
a radical re-interpretation and results in a quantum field theory in which the φ(x)
become operators themselves.

The situation for quantizing a whole spacetime, structured by its metric field gµν ,
is somewhat similar. As a first step, one foliates spacetime into slices of “equal time”,
corresponding to a split of spacetime into space and time. Continuing the canonical
analysis for the configuration space variables, which are the space-space components
gij of the metric, and their conjugate momenta, one finds that Einstein’s equations
lead to four constraint equations – three that arise from the reparametrization freedom
for each space slice and one that arises from the possibility of small deformations
orthogonal to the slice. The latter gives rise to the Wheeler DeWitt (WDW) equation(

Gij,kl(x)
δ

δgij(x)
δ

δgkl(x)
+

√
g(x)R(3)(x)

)
Ψ

{
gij(x)

}
= 0, (5)

where Gij,kl is a metric on the space of all 3-metrics, and Ψ is called the “wave
function of the universe”. The fact that this is a Hamiltonian constraint rather than
a Hamiltonian reflects the general covariance of the theory. The situation is, however,
much more complicated than in the case of the point particle: as it stands, Eq. (5)
is ill-defined; the choice of Hilbert space is much less obvious, and it is not clear
whether or not Eq. (5) will become a well-defined operator valued distribution. In
general, the WDW equation leads to the problem of time: To start with, it gives us
a completely static description of the universe; the wave function Ψ contains all the
information “from beginning to end”. Time can only be introduced intrinsically: the
WDW equation is hyperbolic (in field space); thus, one of the configuration space
variables could serve as a time coordinate (a “clock field”), leading to the emergence
of time from a “timeless” equation. Again, this is similar to the situation of the
relativistic point particle, where the world-line parameter is absent from the dynamical
constraint equation. A more general problem in quantum cosmology is that the usual
Copenhagen interpretation is not applicable anymore. The observer is now an integral
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part of the quantum system. Still unsolved is the problem of decoherence – how does a
classical (FLRW or inflationary) cosmology emerge from Ψ? This question has in fact
prompted new interpretations of quantum mechanics, such as the consistent history
formulation of [9].

While many questions of interpretation remain unanswered, the last decades have
seen both improvements in the mathematical formulation of canonical quantum gravity
(Ashtekar’s new variables, loop formulation) and progress toward a better understand-
ing of quantum cosmology in this framework.

5 Outlook

Many fundamental questions about the role of quantum theory in cosmology remain
unsolved. While progress has been made and is being made, we are still far from
understanding the quantum basis of our universe. We can but hope to reach eventually
such an understanding – aided by theorists providing us with a proper framework for
quantum gravity, and by experimentalists and observers collecting new data, e.g.,
about gravitational waves, dark matter and new (supersymmetric?) particles.
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