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Abstract. Using the thermodynamic Bethe ansatz method we derive an infinite set of
integral non-linear equations for the spectrum of states/operators in AdS/CFT. The
Y -system conjectured in Gromov et al. (Integrability for the Full Spectrum of Planar
AdS/CFT. arXiv:0901.3753 [hep-th]) for the spectrum of all operators in planar N = 4
SYM theory follows from these equations. In particular, we present the integral TBA type
equations for the spectrum of all operators within the sl(2) sector. We prove that all the
kernels and free terms entering these TBA equations are real and have nice fusion proper-
ties in the relevant mirror kinematics. We find the analog of DHM formula for the dressing
kernel in the mirror kinematics.
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1. Introduction

Recently, a set of functional equations, the so-called Y -system, defining the spec-
trum of all local operators in planar AdS/CFT correspondence, was proposed by
three of the current authors [1]. The Y -system has the form of functional equations

Y +
a,sY −

a,s

Ya+1,sYa−1,s
= (1+Ya,s+1)(1+Ya,s−1)

(1+Ya+1,s)(1+Ya−1,s)
, (1)
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Figure 1. T-shaped “fat hook” (T-hook) uniting two SU (2|2) fat hooks, see [2] for details on
fat hooks and super algebras.

where f ± ≡ f (u ± i/2) are simple shifts in the imaginary direction. The functions
Ya,s(u) are defined only on the nodes marked by , , , , on Figure 1. Its
solutions with appropriate analytical properties define the energy of a state (anom-
alous dimension of an operator in N =4 SYM) through the formula1

E =
∑

j

ε1(u4, j )+
∞∑

a=1

∞∫

−∞

du

2π i

∂ε∗
a

∂u
log
(
1+Y ∗

a,0(u)
)
. (2)

where ε∗
n is the mirror “momentum” defined in the text below and the rapidities

u4, j are fixed by the exact Bethe ansatz equations

Y1,0(u4, j )=−1. (3)

The Y -system is equivalent to the Hirota bilinear equation

T +
a,s T −

a,s = Ta+1,s Ta−1,s + Ta,s+1Ta,s−1, (4)

where the functions Ta,s(u) are non-zero only on the visible part of the 2D lattice
drawn on Figure 1 and

Ya,s = Ta,s+1Ta,s−1

Ta+1,s Ta−1,s
. (5)

It was shown that the Y -system passes a few non-trivial tests, and in particular
it is completely consistent with the asymptotic Bethe ansatz (ABA) [4–7], is com-
patible with the crossing relation [3] and reproduces the first wrapping corrections
at weak coupling for Konishi and other twist two operators [8–11].

1In some cases the integration contour could encircle singularities of the integrand situated away
from the real axe. In the large L asymptotics these singularities can be responsible for the Lüscher
µ-terms. See also discussion in Section 7.
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In this paper, we will provide a derivation of the Y -system similar in spirit to
that employed in the derivation of the TBA-type non-linear integral equations for
the finite volume spectra of relativistic 2D models. It is based on the Matsubara
trick relating the ground state of a euclidean QFT on a cylinder to the free energy
of the same theory in finite temperature. If we take instead of the cylinder a torus
with a small circumference L and a large circumference R we can represent the
partition function in two different channels as a sum over energy levels. In the
large R limit, we can identify the free energy F(L) per unit length of a “mirror”
QFT living in the space section along the infinite direction of the torus and having
a temperature T = 1/L, with the ground state energy E0(L) of the original QFT
living on a space circle of the radius L

Z(L , R)=
∑

k

e−L Ẽk (R) =
∑

j

e−RE j (L) →R→∞ e−RF(L) = e−RE0(L).

In the relativistic QFTs the original theory and the mirror theory are essentially
equivalent and differ only in the boundary conditions [12]. An example of such
a TBA calculation, useful for our further purposes, for the SU (2) principle chiral
field (PCF), can be seen in the Appendix A of [13]. In the supersting sigma model
on Ad S5 × S5 background in the light cone gauge relevant to our problem, we have
to deal with the non-relativistic original and mirror sigma models (see [14,15]).

Particularly important for our discussion is the form of the energy and momen-
tum of the elementary excitations for both the physical and mirror theories in
infinite volume. They are conveniently parameterized in terms of the Zhukowsky
variables,

x(u)+ 1
x(u)

= u

g
(6)

which admits two solutions, one of them outside the unit circle |x(u)| > 1 and
another inside the unit circle, |x(u)| < 1. The energy εa(u) and momentum pa(u)

of the physical bound states are then given by [16]

εa(u)=a + 2ig

x [+a] − 2ig

x [−a] , pa(u)= 1
i

log
x [+a]

x [−a] (7)

where x [±a] ≡ x(u ± ia/2) are evaluated in the physical kinematics where |x [±a]|>1.
The mirror energy and momentum are obtained by the usual Wick rotation

(E, p)→ (i p, i E). To stress this we denote the mirror energy by i p∗
a and the mirror

momentum by iε∗
a . The quantities ε∗

a and p∗
a are defined precisely as in (7) where

x [a] are now evaluated in the mirror kinematics where |x [a]|>1 but |x [−a]|<1, for
a >0.

Let us now return to our general review of the TBA method. This method is
based on the so-called string hypothesis: all the eigenstates of an integrable model
in the infinite volume are represented by bound states (the simplest ones are called
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“strings”) described by some density ρA. In terms of these densities the asymptotic
Bethe equations simply read

ρ̄A(u)+ρA(u)= i

2π

dε∗
A(u)

du
− K B A(v,u)∗ρB(v). (8)

Here, K B A(v,u) = 1
2π i

d
du log SAB(u, v) is the kernel describing the interaction

between the bound states A and B which scatter via an S-matrix SAB . iε∗
A is the

momentum of a magnon labeled by A. For the same aforementioned reasons in the
discussion of the Ad S/C FT dispersion relations we use this notation to emphasize
that the momenta of these mirror particles are obtained from the energy of the
physical particles εA(u) by the Wick rotation. Finally, ρ̄A is the density of holes
associated with the bound state A.

To compute the free energy we must minimize the functional

F =
∑

A

∞∫

−∞
du

((
Lip∗

A +h A
)
ρA −

[
ρA log

(
1+ ρ̄A

ρA

)
+ ρ̄A log

(
1+ ρA

ρ̄A

)])
(9)

with respect to ρA(u), ρ̄A(u) and exclude δρ̄A by the use of the constraint imposed
by the BAEs (8). The physical origin of each term in the expression for the free
energy is as follows: The first term accounts for the energy (times inverse “temper-
ature” L); the term in the square brackets represent the entropy contribution; we
added a generic chemical potential h A for each kind of bound states. This chemical
potential is needed if the theory contains fermionic excitations, as is the case for
the AdS/CFT system, since we want to compute the Witten index rather than the
thermal partition function where the physical fermions are periodic. This amounts
to choosing h A = iπ = log(−1) for the fermionic states and h A =0 for the bosonic
states.

The minimization of the free energy yields the TBA equations

log YA(u)= K AB(u, v)∗ log[1+1/YB(v)]+ i Lp∗
A(u)+h A (10)

for the quantities YA = ρ̄A
ρA

. Finally, at this saddle point, the free energy can be sim-
ply written as

F =
∑

A

∫
du

2π i

dε∗
A

du
log (1+1/YA(u)) . (11)

In this way one obtains the finite volume ground state energy for a generic inte-
grable field theory. The excited physical states are recovered by the usual procedure
of analytic continuation [17–20] and will be also discussed in this paper.

In what follows, we will apply the TBA method to the “mirror” superstring
sigma model and derive this AdS/CFT Y -system conjectured in [1]. The actual
TBA equations arising as an intermediate step towards the Y -system may be very
useful for the numerical calculations of the energies of low-lying states.
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2. The Starting Point: Beisert–Staudacher Equations

The basis of our derivation of TBA for AdS/CFT are the Beisert–Staudacher (BS)
ABA equations of [4,5,7] in their mirror form [15,21]. We write them in our com-
pact notations, introducing three types of Baxter functions

R(±)
l (u)≡

Kl∏

j=1

x(u)− x∓
l, j√

x∓
l, j

, B(±)
l (u)≡

Kl∏

j=1

1
x(u)

− x∓
l, j√

x∓
l, j

,

Ql(u)=
Kl∏

j=1

(u −ul, j )= (−g)Kl Rl(u)Bl(u).

(12)

The index l takes the values l = 1L ,2L ,3L or l = 1R,2R,3R parametrizing the
rapidities of the left and right SU (2|2) wings of the model, correspondingly. R(±)

and B(±) with no subscript l correspond to the roots x4, j of the middle node and
Rl , Bl without superscript (+) or (−) are defined as in (12) with x±

j replaced by
x j . In these notations the left wing ABAs read:

1= Q+
2L B(−)

Q−
2L B(+)

∣∣∣∣∣
u1L ,k

, −1= Q−−
2L Q+

1L Q+
3L

Q++
2L Q−

1L Q−
3L

∣∣∣∣∣
u2L ,k

, 1= Q+
2L R(−)

Q−
2L R(+)

∣∣∣∣∣
u3L ,k

(13)

with a similar set of equations for the right wing replacing L → R. The Bethe
equation for the middle node for the full AdS/CFT ABA of [5] fixes the positions
of the u4, j roots from2

−1=
⎡

⎣eR ε∗
1

(
Q−−

4

Q++
4

B+
1L R+

3L

B−
1L R−

3L

B+
1R R+

3R

B−
1R R−

3R

)(
B+(+)

B−(−)

)2

S2

⎤

⎦×

×
K4∏

j=1

x+
j

x−
j

(
x+

k

x−
k

) K1R−K3R+K1L −K3L
2

∣∣∣∣∣∣∣
u=u4,k

(14)

for the sl(2) favored grading. The dressing factor is S(u)=∏ j σ(x(u), x4, j ) where
σ is the BES dressing kernel [7] (see [22] for a nice integral representation of the
dressing kernel).

3. Bound States and TBA Equations for the Mirror “Free Energy”

To write the TBA for the full AdS/CFT, we have to find the BAEs for the densities
of all complexes of Bethe roots in the infinite volume R =∞. The string hypothesis

2This equation is identical to the Eq. (6.6) from [15]. The factors of x+/x− outside of the
square brackets were not present in our earlier preprints. However, they are present inside the ker-
nels [the last column of (19)] starting from the preprint arXiv:0902.4458v2 of our paper. We thank
the referee for pointing us out this misprint which fortunately does not affect any of our results.
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implies the full description of the infinite volume solutions. They are easy to clas-
sify: there is only one type of momentum carrying complexes, strings in the middle
nodes, similar to standard SU (2) strings [16]; the rest are the same complexes as
found by Takahashi in the Hubbard model [23,24] (see also [25]).

As a result, we find that in the large R limit of BAEs the roots regroup into the
following bound states:

u4 =u + i j, j =− n−1
2 , . . . , n−1

2 : middle node bound states : n

uL ,R
2 =u + i j, j =− n−2

2 , . . . , n−2
2 : L , R string bound states : ±n

uL ,R
3 =u + i j, j =− n−1

2 , . . . , n−1
2

uL ,R
2 =u + i j, j =− n−2

2 , . . . , n−2
2 : L , R trapezia : ±n

uL ,R
1 =u + i j, j =− n−3

2 , . . . , n−3
2

uL ,R
1 =u : L , R single fermion : ±

uL ,R
3 =u : L , R single fermion : ±

where by u we denote the real center of a complex. Thus, the index A in formulae
(8–11) takes the values

A ={ ±n, ±, ±, ±n, n} (15)

or, in the notation used in [1] for the points on the T-hook

A ={(1,±n), (2,±2), (1,±1), (n,±1), (n,0)} . (16)

Multiplying the Bethe equations along each complex we obtain the fused equa-
tions (8) for the densities (of particles and holes, ρA(u) and ρ̄A(u)) of the centers
of complexes (10). It is useful to introduce the following notation for YA:

{
Y ±n

,Y ± ,Y ± ,Y ±n
,Y ±n

}
=
{

Y ±n
,Y ± ,

1
Y ±

,
1

Y ±n

,
1

Y ±n

}
(17)

In particular, notice that the Y functions Ya,s arrange nicely into a T-shaped form
as depicted in Figure 1. As shown below, these functions are precisely those appear-
ing in the Y -system (1).

The only complexes which carry energy and momentum are those made out of
middle node roots u4, j ,

ε∗
A = δA, n

ε∗
n , p∗

A = δA, n
p∗

n (18)
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where ε∗
n and p∗

n are explained after (7). The fused kernels K AB are given by

K AB =

A\B m + + m m

n +Kn−1,m−1 −Kn−1 +Kn−1 0 0

+ −Km−1 0 0 +Km−1 −B(01)

1m

+ −Km−1 0 0 +Km−1 −R(01)

1m

n 0 −Kn−1 +Kn−1 +Kn−1,m−1 −R(01)
nm −B(01)

n−2,m

n 0 B(10)

n1 −R(10)

n1 −R(10)
nm −B(10)

n,m−2 −2Snm −B(11)
nm +R(11)

nm

(19)

where the block entrees of this infinite matrix are defined as

Kn ≡ 1
2π i

d
dv

log
u −v + in/2
u −v − in/2

, Knm ≡
m−1

2∑

j=− m−1
2

n−1
2∑

k=− n−1
2

K2 j+2k+2 (20)

Snm(u, v)≡ 1
2π i

d
dv

log σ(x±n(u), x±m(v)) (21)

B(ab)
nm (u, v)≡

n−1
2∑

j=− n−1
2

m−1
2∑

k=− m−1
2

1
2π i

d
dv

log
b(u + ia/2+ i j, v − ib/2+ ik)

b(u − ia/2+ i j, v + ib/2+ ik)
(22)

R(ab)
nm (u, v)≡

n−1
2∑

j=− n−1
2

m−1
2∑

k=− m−1
2

1
2π i

d
dv

log
r(u + ia/2+ i j, v − ib/2+ ik)

r(u − ia/2+ i j, v + ib/2+ ik)
(23)

where

r(u, v)= x(u)− x(v)√
x(v)

, b(u, v)= 1/x(u)− x(v)√
x(v)

. (24)

In the table above, we only wrote the interaction between the complexes of the left
SU (2|2) wing, between those complexes and the middle node bound states, as well
as between the middle node bound states themselves. The right wing interaction is
of course absolutely identical and the complexes of different wings do not interact.
Equation (10) in the notation of (17) then read

log Y ± =+Km−1 ∗ log
1+1/Y ±m

1+Y ±m

+R(01)

1m ∗ log(1+Y
m
)+ log(−1) (25)

log Y ± =−Km−1 ∗ log
1+1/Y ±m

1+Y ±m

−B(01)

1m ∗ log(1+Y
m
)− log(−1) (26)

log Y ±n
=−Kn−1,m−1 ∗ log(1+Y ±m

)− Kn−1 ∗ log
1+Y ±

1+1/Y ±
+

+
(
R(01)

nm +B(01)

n−2,m

)
∗ log(1+Y

m
) (27)
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log Y ±n
= Kn−1,m−1 ∗ log(1+1/Y ±m

)+ Kn−1 ∗ log
1+Y ±

1+1/Y ±
(28)

log Y
n
= L log

x [−n]

x [+n] +
(

2Snm −R(11)
nm +B(11)

nm

)
∗ log(1+Y

m
)−

−B(10)

n1 ∗ log(1+1/Y +)+R(10)

n1 ∗ log(1+Y +)+
+
(
R(10)

nm +B(10)

n,m−2

)
∗ log(1+Y

m
)−

−B(10)

n1 ∗ log(1+1/Y −)+R(10)

n1 ∗ log(1+Y −)+
+
(
R(10)

nm +B(10)

n,m−2

)
∗ log(1+Y −m

) (29)

All convolutions are to be understood in the usual sense with the second vari-
able being integrated over so that K ∗ f = ∫ dvK (u, v) f (v). Summation over the
repeated index m is assumed (m = 2, . . . ,∞ for the convolutions involving
pyramids ±m and strings ±m and m = 1, . . . ,∞ for the convolutions with the
middle node bound states m). There are still some ambiguities involved in these
integral equations concerning the choice of the integration contours. We will dis-
cuss this, still not completely elucidated, point when we will consider equations for
the excited states where some of the ambiguities will be lifted.

4. Derivation of the AdS/CFT Y -system

We will now derive, from the TBA equations, the Y -system (1) and (4) for the
AdS/CFT spectrum conjectured in [1]. We shall do it separately for each type of
excitations.

The key idea in the derivation is to use the discrete Laplace operator acting on
the free variable u and free index n in the TBA equations. We notice that

�Kn(u)≡ Kn(u + i/2− i0)+ Kn(u − i/2+ i0)− Kn+1(u)− Kn−1(u)= δn,1δ(u)

As a simple consequence of this identity we find

�Knm(v −u)=�R(11)
nm (v,u)= δn,m+1δ(v −u)+ δn,m−1δ(v −u)

�R(01)
nm (v,u)=�R(10)

nm (v,u)= δn,mδ(v −u)
(30)

whereas the Laplacian kills all other kernels, �Snm =0, etc. For example, the fact
that the dressing factor is killed by the Laplacian follows from its harmonic form

σnm(u, v)= eχ(u + in/2,v + in/2)+χ(u−in/2,v−in/2)−χ(u−in/2,v+in/2)−χ(u+in/2,v−in/2) (31)

without any singularities in the physical kinematics (this fact was already used in
[1] when constructing the large L solutions of the Y -system). By virtue of these

identities we can easily compute the combinations log
Y +

n
Y −

n
Y

n+1
Y

n−1

, log
Y +

n
Y −

n
Y

n+1
Y

n−1

and log
Y +

n
Y −

n
Y

n+1
Y

n−1

, where f ± ≡ f (u ± i/2 ∓ i0), using, respectively, (28), (27) and

(29). We find
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log
Y +

n
Y −

n

Y
n+1

Y
n−1

= log(1+1/Y
n+1

)(1+1/Y
n−1

), n >2 (32)

and

log
Y +

2
Y −

2

Y
3

= log
(1+Y +)(1+1/Y

3
)

1+1/Y +
(33)

for the string bound states. The equations for Y1,n at n ≤−2, as well as their der-
ivation, are similar. For the pyramid complexes we obtain

log
Y +

n
Y −

n

Y
n+1

Y
n−1

= log
1+Y

n

(1+Y
n+1

)(1+Y
n−1

)
, n >2 (34)

and

log
Y +

2
Y −

2

Y
3

= log
(1+Y )(1+Y

2
)Y +

(1+Y
3
)(1+Y +)

−

− log Y +Y + +
∑

n

(
R(01)

n1 −B(01)

n1

)
∗ log(1+Y

n
) .

The first term in the r.h.s. of this equation reproduces again the correct structure
of the Y -system (1). In fact, we will see below that the last two terms cancel each
other and hence this equation perfectly fits the Y -system (1). Finally, for the mid-
dle node bound states, we kill again the kernels when applying the discrete Laplace
operator and obtain

log
Y +

n
Y −

n

Y
n+1

Y
n−1

= log
(1+Y

n
)(1+Y −n

)

(1+Y
n+1

)(1+Y
n−1

)
, n >1 (35)

and

log
Y +

1
Y −

1

Y
2

= log
1+Y +
1+Y

2

. (36)

We are left with the equations for the two fermionic nodes Y1,1 = Y + and Y2,2 =
Y + (for Y1,−1 and Y2,−2 it will be similar). We consider first the node Y1,1. Com-
bining Equation. (25) for u → u ± i/2 ∓ i0 with Eqs. (27) and (28) for real u and
n =2 we obtain (again using the fusion properties of several kernels),

log
Y +

+
Y −

+
Y

2
Y

2

= log
(1+1/Y

2
)(1+Y

1
)

1+Y
2

(37)

perfectly reproducing the equation for Y1,1 from the Y -system (1). Finally, to find
the equation for the last fermion node Y2,2 we simply add up Eqs. (26) and (25)
to get

log Y +Y + =
∑

m

(
R(01)

1m −B(01)

1m

)
∗ log(1+Y

m
) (38)
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This shows indeed that the two last terms in (35) cancel. The equation for Y22 =
Y + is not a part of Y -system (1) since in the standard form it would contain the

ratio 1+Y23
1+1/Y32

= 0
0 . It is thus natural that one cannot render this equation local if we

only use the finite Y functions (see also [26]). However, in terms of the T -func-
tions appearing in 5 we believe, and partially checked, that Hirota equation 4 is
well defined on the full T-shaped fat-hook of Figure 1.

All these equations precisely reproduce the Y -system (1) under the identification

{
Y ±n

,Y ± ,Y ± ,Y ±n
,Y ±n

}
={Y1,±n,Y2,±2,Y1,±1,Yn,±1,Yn,0

}
(39)

mentioned in the previous section!

5. Integral Equations for Excited States

In this section we will consider the non-linear integral TBA-type equations for
excited states. For the sake of simplicity, we shall consider only the states in the
SL(2) sector, corresponding to operators of the form tr (DS Z J ) + permutations.
Notice that since none of the wings are excited the Y -functions will have the
symmetry Ya,s = Ya,−s which also means that Y + = Y − ≡ Y , . . .. To consider
such excited states we employ the standard analytic continuation trick [17,18,20]
where we pick extra singularities in the convolutions with Y

1
at the points where

Y
1
(u4, j )=−1. This procedure contains some ambiguities and the result should be

considered as a conjecture. In this way, the free energy (11) becomes (2) while the
non-linear integral equations of Section 3 are modified by the terms in the square
brackets

log Y =+Km−1 ∗ log
1+1/Y

m

1+Y
m

+R(01)

1m ∗ log(1+Y
m
)+

+
[

log
R(+)

R(−)

]
+ log(−1) (40)

log Y =−Km−1 ∗ log
1+1/Y

m

1+Y
m

−B(01)

1m ∗ log(1+Y
m
)−

−
[

log
B(+)

B(−)

]
− log(−1) (41)

log Y
n
=−Kn−1,m−1 ∗ log(1+Y

m
)− Kn−1 ∗ log

1+Y

1+1/Y
+

+
(
R(01)

nm +B(01)

n−2,m

)
∗ log(1+Y

m
)+

+
⎡

⎢⎣

n−1
2∑

k=− n−1
2

log
R(+)(u + ik)

R(−)(u + ik)
+

n−3
2∑

k=− n−3
2

log
B(+)(u + ik)

B(−)(u + ik)

⎤

⎥⎦ (42)
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log Y
n
= Kn−1,m−1 ∗ log(1+1/Y

m
)+ Kn−1 ∗ log

1+Y

1+1/Y
(43)

log Y
n
= L log

x [−n]

x [+n] +
(

2Snm −R(11)
nm +B(11)

nm

)
∗ log(1+Y

m
)+

+
⎡

⎢⎣

n−1
2∑

k=− n−1
2

i�(u + ik)

⎤

⎥⎦+2
(
R(10)

n1 ∗ log(1+Y ) −

−B(10)

n1 ∗ log(1+1/Y )+
(
R(10)

nm +B(10)

n,m−2

)
∗ log(1+Y

m
)
)

(44)

where

�(u)= 1
i

log

(
S2 B(+)+ R(−)−

B(−)− R(+)+

)
. (45)

and B and R and S containing the positions of rapidities of the excited states are
defined in section 2. These rapidities are constrained by the exact Bethe equations

Y
1
(u4, j )=−1, j =1, . . . , M. (46)

In the convolutions involving the fermionic Y -functions Y and Y we integrate
over v∈[−2g,2g].3 We found that prescription to be consistent with the asymptot-
ical large L solution of the Y -system derived in [1]. In fact, as one can see from
these integral equations we can think of the two functions Y and 1/Y as two
branches of the same function. In this language the convolutions can be recasted
into some nice B-cycle contour integrals in the x(u) Riemann sheet. This is remi-
niscent of the inversion symmetry in the BS equations which allows one to reduce
the seven Bethe equations to a smaller set of five equations [5].

An important check of these equations is the limit where L →∞. The solution
of the Y -system in this limit was constructed explicitly in [1]. We checked numer-
ically that for large L our integral equations are consistent with the large volume
solution.

6. Physical and Mirror Choices of Branches

The above system of TBA equations should be valid for any value of the spectral
parameter u, and it should be possible to analytically continue it to any point of
the Riemann surface of the multi-valued Y -functions. But the choice of branches
to formulate the TBA equations can be very important for its good definition and
in particular for the future numerical applications. In this section we will fix a par-
ticular choice of branches in the kernels involved in the integral equations. This

3Another possibility, consistent with the infinite length solution of [1], is to choose
v ∈ ]−∞,−2g]∪ [2g,∞[. We will examine that possibility in detail in the next section. We thank
G. Arutyunov and S. Frolov for the correspondence on this issue.
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choice will be quite unique, with the following nice properties for the Y -functions
and the integration kernels:

• They have only a minimal number of cuts, in general only a pair of cuts, which
means that they obey an ordinary fusion procedure where all the intermediate
constituents of a bound state but the first and the last cancel.

• They are real functions of the spectral parameter u on the real axis. It fits well
their physical meaning in TBA as of the ratios of densities of physical particles
and holes.

These properties will stem of course from the similar properties of integration
kernels and free terms (with no convolutions) in the TBA equations (40)–(44).

There are two natural possibilities to define x(u) compatible with (6). We define
two functions

xph(u)= 1
2

(
u

g
+
√

u

g
−2
√

u

g
+2
)

, xmir(u)= 1
2

⎛

⎝u

g
+ i

√

4− u2

g2

⎞

⎠ . (47)

They both solve (6). It is easy to check that with this choice of branches (7)
reproduces the physical and mirror dispersion relations, correspondingly [15]. They
coincide above the real axes and have the following properties under complex con-
jugation:

xph = xph, xmir =1/xmir. (48)

Basically both representations (47) describe the same function, with the same Rie-
mann surface but extended from the upper half plane to the plane with the cut
(−2g,2g) for xph, and to the plane with the infinite cut (−∞,−2g)∪ (2g,∞) for
the function xmir. One can say that they are two sections of the same Riemann
surface.

We can plot them in Mathematica by running, e.g.,

z=a+b I;xmr=1/2(z+I Sqrt[4-zˆ2]);xph=1/2(z+Sqrt[z-2]Sqrt[z+2]);

Plot3D[{Im[xph],Im[xmr]+0.1},{a,-3,3},{b,-1,1},PlotStyle->{Red,Yellow}]

Notice that in the mirror ABA [15] (13) and (14) which we started from, the
choice xmir is employed [21,15]. However, for the physical ABA of Beisert and
Staudacher [5] we only use the physical choice xph. Thus, to have a link with the
ABA in the physical channel one should use the same definition (12) with

x j ≡ xph(u j ), x±
j ≡ xph(u j ± i/2), (49)

in various free terms (with no convolutions) in the TBA equations.
On the other hand, since all the kernels in the TBA equations are coming

from the mirror theory, both arguments should be in mirror kinematics. Hence we
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m1

m2

m3

p1

p2

p3

A A

C B

Figure 2. Structure of the cuts and conjugation paths on the mirror and physical sheets.

specify in definitions (24) for the integration kernels the following branches:4

r(u, v)= xmir(u)− xmir(v)√
xmir(v)

, b(u, v)= 1/xmir(u)− xmir(v)√
xmir(v)

. (50)

With this choice of branches, it is easy to check that the kernels R(ab)
nm , B(ab)

nm enter-
ing our TBA integral equations (40)–(44) are all real! In the next section we show
that the kernel involving the dressing factor, 2Snm , is real as a consequence of
crossing, up to a simple square root factor which we identify there. Moreover,
together with R11

nm −B11
nm appearing in (44), it has very simple analytic properties.

Namely, it has only four branch points for each of two variables, confirming the
nice fusion property announced earlier. We will also present a simple integral rep-
resentation for this combination.

6.1. REALITY AND CROSSING

One of the important consequences of the crossing for the SU (2)× SU (2) principal
chiral model considered in [13] was the reality of the function Y0 corresponding to
the single middle node in the finite size TBA equations. Here, we show that exactly
the same phenomenon is taking place in the present AdS/CFT TBA equations.

Similarly to the Beisert–Eden–Staudacher physical dressing factor, the mirror
S-matrix ought to be a pure phase. Let us here explain why this follows indeed in
a simple way from the crossing relation for the dressing factor. The same argument
can be easily adapted to prove that the leading large volume Y -functions found in
[1] are indeed real.

We present schematically the mirror and physical sheets on the Figure 2. They
are naturally divided by cuts into three regions denoted by m1,m2,m3 and
p1, p2, p3, correspondingly. Since xph(u) coincides with xmir(u) in the upper half-
plane the regions p1 and m1 are equivalent, p1 =m1.

Let us consider two points u A and vA above the upper cut, i.e., in the region
p1 =m1. Conjugation in the mirror sheet sends these points to u B ≡ ũ A and vB ≡ ṽA

4The same branches are used in [31,32].
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(belonging to the physical sheet) while conjugation in the physical sheet maps them
to uC ≡ ū A and vC ≡ v̄A (belonging to the mirror sheet).

Notice that crossing condition relates the dressing factor with argument u B with
the dressing factor at the point uC . More precisely, we have [3]

σ(u B, vB)σ (uC , vB)= y−

y+
x− − y−

x+ − y−
1/x− − y+

1/x+ − y+ , x = xph(u B), y = xph(vB) (51)

Notice also that we can now analytically continue both sides of this equality with
respect to the vB root; in particular, we can generate the crossing relation where
vB is replaced by vC . Using again the (analytically continued) crossing relation to
transform vB into vC , we get

σ(uC , vC )= x−y+

x+y− σ(u B, vB), x = xph(u B), y = xph(vB) (52)

Taking the complex conjugate of this expression and using the fact that the dress-
ing factor is a pure phase on the physical sheet, we get [15]

(σ (ū A, v̄A))∗ = x+y−

x−y+
1

σ(u A, vA)
, x = xmir(u A), y = xmir(vA) (53)

Notice that we replaced xph(u A) and xph(vA) by their mirror counterparts because
A is in the region p1 =m1. Furthermore, in the left-hand side, we explicitly wrote
uC = ū A and vC = v̄A to recognize the explicit definition of the conjugated function

on the mirror sheet. It is now clear that up to a simple factor of
√

x+ y−
x− y+ the dress-

ing factor in the mirror theory is indeed a pure phase function. More precisely, the

combination
√

x− y+
x+ y− σ(u, v) is a pure phase in the real axis of the mirror sheet. The

same kind of arguments can be used to prove the reality of the large L Y -functions
of [1].

6.2. INTEGRAL REPRESENTATION

We will show that the dressing phase on the mirror sheet admits some concise inte-
gral representation. Based on that representation we can explicitly see that it has
very simple analytical properties. In particular, up to a simple multiplier, namely
the simple square root factor identified in the previous section, we can clearly see
that this dressing phase is indeed a pure phase function.

6.2.1. A New Representation of the Dressing Kernel in (mir,mir) Kinematics

We will start form the DHM integral representation [22] for σ(xph(u ± i/2), xph(v±
i/2)),

σ ≡ exp
[
iχ++ + iχ−− − iχ+− − iχ−+] (54)
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where χ±± =χ(u ± i/2, v ± i/2),

χ(u, v)= 1
i

∮

|z1|=1

dz1

2π

∮

|z2|=1

dz2

2π

1
z1 − xph(u)

1
z2 − xph(v)

log
	(iw1 − iw2 +1)

	(iw2 − iw1 +1)
(55)

and w1,2 = g(z1,2 + 1/z1,2). This representation is valid for the physical kinematics
and in particular for u, v in the region p1. Since p1 = m1 we can start with the
same expression with xph(u) and xph(v) replaced by xmir(u) and xmir(v) for u and
v in the region m1, above the upper cut.

For the kernel S(u, v) ≡ 1
2π i ∂v log σ(u, v) appearing in our TBA equations we

have

S(u, v)=−
2g∫

−2g

2g∫

−2g

(
R(10)(u,w1 − i0)−B(10)(u,w1 + i0)

)
G(w1 −w2)×

×
(
R(01)(w2 − i0, v)−B(01)(w2 + i0, v)

)
dw1dw2 (56)

where

G(u)≡ ∂u

2π i
log

	(1− iu)

	(1+ iu)
=

∞∑

a=1

(
K2a − 1

aπ

)
+ γ

π
. (57)

Let us briefly recall how to derive this representation for the dressing kernel
from the integral representation (55). First, the pole terms 1/(z1 − x(u)) and 1/(z2 −
x(v)) are written as derivatives of log which will give rise to the Bs and Rs in
this expression (in this section we often omit the lower indices of Bs and Rs in
which case they are equal to . . .11). The extra derivative to make a kernel out of
the phase can also be transported to the log of gamma function by integration by
parts and this generates the function G. The integration contour around the unit
circle in the z1,2 variable is mapped to an integral from 2g to −2g slightly above
the real axis and then back from −2g to 2g slightly below the real axis for the
variable w1,2. When w1 is above the real axis we have z1 = xph(w1)= xmir(w1), but
when we are below we have z1 = xph(w1) = 1/xmir(w1). This explains why we get
that combination of Rs and Bs in the last formula.

Now that we have transformed the original contour integrals into usual integrals
in the real axis, we can further replace the integration limits in this expression by
∓∞ because for |w1|>2g we have R(10)(u,w1 − i0)−B(10)(u,w1 + i0)=0 and simi-
larly for w2. Hence, we arrive at the following integral representation for the dress-
ing kernel in the mirror kinematics:

S(u, v)=−
∞∫

−∞

∞∫

−∞

(
R(10)(u,w1 − i0)−B(10)(u,w1 + i0)

)
G(w1 −w2)×

×
(
R(01)(w2 − i0, v)−B(01)(w2 + i0, v)

)
dw1dw2. (58)
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Recall that this expression is derived for u and v in the region m1. The reason for
which we cannot use this integral representation everywhere on the mirror sheet is
the presence of poles of R under the integral at u =±w1 ± i/2 − i0. To get rid of
them we use the relations5 R(10) = K1 −B(10), R(01) = K1 −B(01) and then evaluate
the integrals with K1 by poles using6

∫
K1(u−w1)G(w1−w2)B(01) (w2+i0, v) dw1dw2 = −B(01) (u+i/2, v)− i

2
P(1)(v),

∫
B(10) (u,w1 + i0)G(w1 −w2)K1(w2 −v)dw1dw2 = −B(10) (u, v + i/2) ,

where

P(a)(v)=− 1
2π

∂v log
xmir(v + ia/2)

xmir(v − ia/2)
. (59)

In this way, we get the following representation valid everywhere in m1,m2,m3 for
both variables

S(u, v)=−B(11)(u, v)− i

2
P(1)(v)+

∞∫

−∞

∞∫

−∞

[(
B(10) (u,w1 + i0)−B(10) (u,w1 − i0)

)
×

×G(w1 −w2)
(
B(01) (w2 + i0, v)−B(01) (w2 − i0, v)

)]
dw1dw2. (60)

We see that the integrals can be combined to a contour integral around the cuts
(−∞,−2g)∪ (2g,∞)! This implies that we can write the result in a fashion similar
to (55). Introducing

χ̂ (u, v)≡ 1
i

∫

|z1|>1

dz1

2π

∫

|z2|>1

dz2

2π

[
1

(z1 − xmir(u))
− 1

(z1 − xmir(u))

]
×

×
[

1

(z2 − xmir(v))
− 1

(z2 − xmir(v))

]
log

	(iu1 − iu2 +1)

	(iu2 − iu1 +1)
(61)

with the integration going along the part of the real axes over (−∞,−1)∪ (1,∞).
Then for the physical dressing factor, analytically continued to the mirror in both
variables, we get the following representation

σm,m(u, v)= 1−1/(x−y+)

1−1/(x+y−)
σ̂ (u, v), σ̂ ≡ exp

[
i χ̂++ + i χ̂−−−i χ̂+−−i χ̂−+] , (62)

where x = xmir(u), y = xmir(v) and χ̂±± = χ̂ (u ± i/2, v± i/2). We see that the second
factor σ̂ has the same properties under the fusion procedure on the mirror sheet as

5It is often useful to change from Rs to Bs because the latter are much more regular than
the former. In particular, since Im xmir(u), Im xmir(v)>0 we can never have 1/xmir(u)= xmir(v) and
thus B will be pole free when both variables are taken in the mirror sheet. Similarly, in the physical
sheet, |xph(u)|, |xph(v)|> 1 and again B is regular. Only when u and v are in different kinematics
we should worry about regularity of the B functions.

6In these formulae, w is the variable being integrated over in the last convolution.
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the physical dressing phase σ had on the physical sheet – one simply replaces shifts
by ±i/2 by ±in/2 for u and by ±im/2 for v in χ̂ . Note that χ̂ is a real function
and thus σ̂ is a pure phase. Thus, σ̂ (u, v) is nothing but the dressing phase of the
mirror theory!

Finally, let us present yet another interesting representation of the dressing phase
in the mirror kinematics. It is easy to see that R(10)(u,w) and R(01)(w, v), as func-
tions of w, are regular below the real axis. Moreover, B(10)(u,w) and B(01)(w, v)

are regular on the whole complex plane except for the Zhukoswky cuts (see previ-
ous footnote). That implies that the terms with BB and RR in (58) vanish because
for those terms we can deform the integration contour to +i∞ and −i∞, corre-
spondingly. For the remaining terms, the integration with G can be done explicitly
to yield

2Snm(u, v)−R(11)
nm (u, v)+B(11)

nm (u, v)=−Kn,m(u −v)− i

2
P(m)(v)−

−2
∑

a=1

∫ [
B(10)

n1 (u,w + ia/2)B(01)

1m (w − ia/2, v) +

+B(10)

n1 (u,w − ia/2)B(01)

1m (w + ia/2, v)
]

dw (63)

where we wrote the result already after fusion, i.e., for the dressing factor between
magnon bound states n and m. Quite remarkably this combination of kernels,
which is precisely the one appearing in the TBA equations contains no cuts apart
from those at Im (u)=±n/2 in the u plane and Im (v)=±m/2 for the v variable,
precisely as expected. This property was also noticed independently in [33].

6.2.2. A New Representation of the Dressing Kernel in the (mir,ph) Kinematics

In this section, we analyze the dressing kernel when σ(u, v) when the first variable
u takes values in the mirror sheet while the second variable v lives in the phys-
ical sheet. This is precisely the case for the free terms (without convolutions) in
the TBA equations. For example, in (43) the term � contains S(u)=∏ j σ(u,u4, j )

where u4, j are the Bethe roots of the physical theory while u is in the mirror kine-
matics. The derivation of a nice integral representation for this dressing factor goes
along the same lines as in the previous section. We find

log S(u)=−
[
B(10)(u,w + i0)−R(10)(u,w − i0)

]
∗G ∗

∗
[

log
B(+)(u + i0)

B(−)(u + i0)
− log

R(+)(u − i0)

R(−)(u − i0)

]
(64)

where R and B are defined like in (12) with x(u)= xmir(u) and x±
j = xph(u j ± i/1).

As in the previous section, this relation is derived in the region m1 = p1, and the
next step is to transform this expression in such a way that it allows for a trivial
analytical continuation to the full mirror sheet for the u variable. Actually the r.h.s.
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is not singular in m1,m2 (but not in m3) and thus should coincide with analytical
continuation of the dressing factor. Next we recall that

B(+)(u j − i/2)=0, R(−)(u j + i/2)=0 (65)

while log B(−) and log R(+) are regular in m1,m2,m3. Assuming u to be real we
can again drop B B and R R terms and convert R to B as in the previous section
to obtain

log S(u)=B(10)(u,w + i0)∗G ∗ log
R(+)(u − i0)

R(−)(u − i0)
−

−B(10)(u,w − i0)∗G ∗ log
B(+)(u + i0)

B(−)(u + i0)
+ K1 ∗G ∗ log

B(+)(u + i0)

B(−)(u + i0)

(66)

The last term can be computed explicitly, K1 ∗G ∗ log B(+)(u+i0)

B(−)(u+i0)
=− log B(+)(u+i/2)

B(−)(u+i/2)
−

∑
j

1
2 log

x+
j

x−
j

, and in this way we obtain the following integral representation valid

in the full mirror sheet m1, m2, and m3

log S = log
B(−)+

B(+)+ +
∑

j

1
2

log
x+

j

x−
j

+

+
(

B(10)(u,w + i0)∗G ∗ log
R(+)(u − i0)

R(−)(u − i0)
+

+B(10)(u,w − i0)∗G ∗ log
B(−)(u + i0)

B(+)(u + i0)

)
(67)

Fusion is again trivial and yields

m−1
2∑

k=− m−1
2

log S(u + ik)=
m−1

2∑

k=− m−1
2

log
B(−)(u + i/2+ ik)

B(+)(u + i/2+ ik)
+
∑

j

1
2

log
x [+m]

j

x [−m]
j

+

+
(

B(10)

m1 (u,w + i0)∗G ∗ log
R(+)(u − i0)

R(−)(u − i0)
+

+B(10)

m1 (u,w − i0)∗G ∗ log
B(−)(u + i0)

B(+)(u + i0)

)
. (68)

Using the same arguments as in the previous section we could explicitly eliminate
G and one of the convolutions in this representation at the expense of introducing
an extra infinite sum over a. In this way we could derive an alternative integral
representation very similar to that in (63).

In the next section, the reality property is discussed in further detail and in
particular we explain why the Y -functions which solve our integral equations are
indeed real.
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6.3. REALITY AND ANALYTICITY PROPERTIES OF Y S

We can easily check using the explicit large L solution for the Y -functions pre-
sented in [1] together with the explicit representation of the dressing kernel derived
in the previous section that all Y -functions are real when u is in the real axis.7 To
understand that this property actually holds for the Y -functions even at finite L we
should study the reality of several kernels in the TBA equations and also the real-
ity of the free term (without convolutions). If both are real then the exact finite
L solution for Y -functions will be also real. The reality property is of a particular
interest for the future numerical applications of our equations which can be now
done by iterations starting from the known large L solution.

The most complicated equation to analyze is the one for the middle node, Equa-
tion (44), which contains the dressing factor in the (fused) kernel and in the free
term. We will focus now only on this equation since the reality of all other equa-
tions can be checked trivially. Let us explicit in (44) only the “dangerous” terms:

log Y
n
=2Snm ∗ log(1+Y

m
)+

n−1
2∑

k=− n−1
2

i�(u + ik)+

+2R(10)

n2 ∗ log(1+Y
2
)+ . . .

where the . . . stand for the rest of the terms, which are explicitly real. The reason
why we also kept the last term as dangerous (i.e. potentially not real) will become
clear in the following:

Inside the kernel Snm the only non-real contribution comes from the square root
of − i

2P(m) in (63) and the dangerous terms coming from the fusion of � are those
in the first line of (68) so that we can re-write the dangerous terms in the r.h.s of
(44) as8

log Y
n
=−iP(m) ∗ log(1+Y

m
)+
∑

j

log
x+

j

x−
j

+ log

[
B(−)(u + in

2 )

B(−)(u − in
2 )

]2

×

× Q(u − i n+1
2 )Q(u − i n−1

2 )

Q(u + i n+1
2 )Q(u + i n−1

2 )
+2R(10)

n2 ∗ log(1+Y
2
)+· · · (69)

7For the Y -functions Y11 and Y22 associated to the fermionic roots this property is true for
|u|<2g.

8To simplify the first line in (68) we use the identity

n−1
2∑

k=− n−1
2

log

[
B(−)(u + i/2+ ik)

B(+)(u + i/2+ ik)

]2
B(+)(u + i/2+ ik)R(−)(u − i/2+ ik)

B(−)(u − i/2+ ik)R(+)(u + i/2+ ik)
=

= log

[
B(−)(u + in

2 )

B(−)(u − in
2 )

]2
Q(u − i n+1

2 )Q(u − i n−1
2 )

Q(u + i n+1
2 )Q(u + i n−1

2 )
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Now we notice that the first line is nothing but the total corrected momentum
(compare with the expression (2) for the corrected energy) which should vanish due
to the string theory level matching constraint!9 Thus, the only danger stems from
both terms in the second line: in fact, they are not real (even though the kernel
R(10)

n2 is real), but their combination will be shown to be real.
The reason for the second term to be not real is that the function Y

2
contains

pole divergencies on the real axis located precisely at the positions of the Bethe
roots u j . This can be seen from the free terms (containing no convolutions) in the
TBA equation (42). We see that iff n = 2, then we do get singularities in the real
axis coming from the zeros of R(−)(u + i/2)=0 which are precisely the Bethe roots
u j . The zeros of this function induce, via this integral equation, the poles in Y

2
.10

Analyzing all other TBA equations in a similar way we can easily see that no other
free terms give rise to poles in the real axis for any other Y -function.

Now let us explain why the second line in (69) is explicitly real. The convolution
in the presence of these poles should be understood as 2R(10)

n2 ∗ log(1+Y
2
(u − i0))

which we can rewrite as a principal value integral (which will be of course explic-
itly real) plus half of each residue of the singularities at the Bethe roots, i.e.,11

2R(10)

n2 ∗ log(1+Y
2
(u − i0))=2R(10)

n2 ∗p.v. log(1+Y
2
)+

+ log
R(−)(u + in

2 )B(+)(u + in
2 )

R(−)(u − in
2 )B(+)(u − in

2 )

The last term in this expression is not real. However, it can be easily seen that it
combines with the first term in the second line of (69) to give a real contribution!

This concludes our check of reality of all the kernels and free terms in all TBA
equations. The reality means that the Y -functions solving these equations will be
real, at least on some stretch of the real u-axis.

7. Discussion and Conclusions

The integral equations we present are suitable for the numerical study. In the large
L limit we can drop all convolutions containing the black nodes Y

n
and recover

in this way the large L solutions of [1] (we also checked this statement numer-
ically). However, compared with the Y -system equation in functional form these
equations are of easy numerical implementation, and the iteration from the large
L solution to the finite L case is now accessible. This numerical approach is cur-
rently under investigation.

9The gauge theory analog of level matching is the cyclicity of the trace in the definition of
local gauge invariant operators.

10For n > 2 we also have poles for the corresponding Y -functions but they will lie away from
the real axis.

11Notice that the residues at these singularities depend only on the prefactor of the log since
when integrating by parts we get a log derivative which has always unit residue.
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In conclusion, we derived in this paper the system of non-linear integral equa-
tions of the TBA type, describing, in principle, the spectrum of the states/operators
in the full planar AdS/CFT system, including the low lying ones, such as Koni-
shi operator. Not only do these equations confirm our Y -system conjectured in
[1], but they also give a practical way to the numerical calculation of the anoma-
lous dimensions as functions of the coupling λ. An alternative, usually numerically
quite efficient, would be the derivation of the Destri–DeVega type equations along
the guidelines presented in [13] for the SU (2) principal chiral field. In any case, a
better understanding of the analytical structure of these equations is needed for the
efficient numerics.

A point which we do not completely understand in detail concerns the role of
the so-called µ-term contributions in the TBA equations. In particular, we might
need to pick extra contributions in (2) coming from further singularities which
might arise in the Yn,0 functions. In the large L limit such extra terms could prob-
ably be identified with the Lüscher’s µ term contributions. The role of these extra
contributions, if they are present at all, needs to be further elucidated.

One more unclear point concerns the underlying P SU (2,2|4) symmetry of the
problem. In our approach, the starting point is the string theory in the light cone
gauge where this symmetry is broken to SU (2|2)2. It would be extremely inter-
esting to understand how the full superconformal symmetry emerges in the TBA
equations.

Interesting questions yet to be considered concern the derivation of a full set of
finite size Bethe equations for any type of excitations of the theory, again along
the lines of [13] as well as the generalization of these TBA equations to another
integrable example of the AdS/CFT correspondence, the ABJM duality [27] (see
[28–30] and references therein for the integrability related works on this theory).

The set of TBA equations derived here should give us access to the full spectrum
of AdS/CFT for any coupling. Hopefully, it will help to understand deep physical
reasons of the integrability of N =4 SYM theory. Knowing the exact results always
helps understanding physics.

Note Added

After the work on this project was already finished the paper [31] appeared where
essentially the similar equations for the vacuum have been derived except the cor-
ner, fermionic nodes Y2,±2. The corresponding equation 5.71 proposed in [31]
appears to be incorrect. We derive here the correct equation and also propose the
TBA equations for the excited states.12

12In the preprint arXiv:0902.3930v2 of [31], which appeared after our preprint arXiv:0902.
4458v1 of the current paper, the Eq. 5.16 (Equation 5.71 in arXiv:0902.3930v1), associated with Y2,2,
was indeed recognized to be incorrect.
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Note Added for preprint arXiv:0902.4458v3

When we were preparing a paper with the results of the new section 6, the sec-
ond version of the paper arXiv:0904.4575 [33] appeared where a part of our new
results, concerning the fusion properties for the mirror dressing factor, was estab-
lished. We decided to update our old paper with these new results. We also stated
more explicitly our preferable chose of the contours and branches in the integral
equations. It is consistent with [21,15] and agrees with that of [31,32]. We also
show that for that choice the Y -functions for excited states have particulary nice
analytic properties and are real.
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