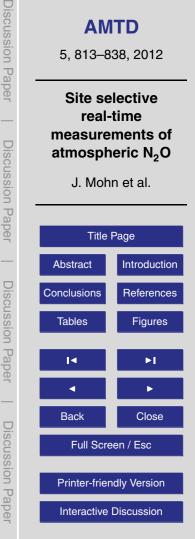
Atmos. Meas. Tech. Discuss., 5, 813–838, 2012 www.atmos-meas-tech-discuss.net/5/813/2012/ doi:10.5194/amtd-5-813-2012 © Author(s) 2012. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Measurement Techniques (AMT). Please refer to the corresponding final paper in AMT if available.

Site selective real-time measurements of atmospheric N₂O isotopomers by laser spectroscopy

J. Mohn¹, B. Tuzson¹, A. Manninen¹, N. Yoshida², S. Toyoda², W. A. Brand³, and L. Emmenegger¹


¹Laboratory for Air Pollution & Environmental Technology, Empa, Dübendorf, Switzerland ²Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, Yokohama, Japan

³Max-Planck-Institute for Biogeochemistry, Jena, Germany

Received: 3 January 2012 - Accepted: 9 January 2012 - Published: 23 January 2012

Correspondence to: J. Mohn (joachim.mohn@empa.ch)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

We describe the first high precision real-time analysis of the N₂O site-specific isotopic composition at ambient mixing ratios. Our technique is based on mid-infrared quantum cascade laser absorption spectroscopy (QCLAS) combined with an automated preconcentration unit. The QCLAS allows for simultaneous and specific analysis of the three main stable N₂O isotopic species, ¹⁴N¹⁵N¹⁶O, ¹⁵N¹⁴N¹⁶O, ¹⁴N¹⁴N¹⁶O, and the respective site-specific relative isotope ratio differences δ¹⁵N^α and δ¹⁵N^β. Continuous, stand-alone operation is achieved by using liquid nitrogen free N₂O preconcentration, a quasi-room-temperature quantum cascade laser (QCL), quantitative sample transfer to the QCLAS, and an optimized calibration algorithm. The N₂O site-specific isotopic composition (δ¹⁵N^α and δ¹⁵N^β) can be analysed with a long term precision of 0.2‰. The potential of this analytical tool is illustrated by continuous N₂O isotopomer measurements above a grassland plot over three weeks period, which allowed identification of microbial source and sink processes.

15 1 Introduction

Nitrous oxide (N₂O) is the most important anthropogenically emitted ozone depleting substance and also a significant greenhouse gas (Ravishankara et al., 2009). N₂O mixing ratios in the troposphere increased from 270 ppb to the current level of 321.6 ppb (AGAGE 2008) at 0.8 ppb yr⁻¹ (2005 to 2008) with more than one third of N₂O emissions being anthropogenic (Montzka et al., 2011; Solomon et al., 2007). For a better understanding of source and sink processes, however, the information obtained from measuring the intramolecular distribution of ¹⁵N on the central (α) and the end (β) position of the linear N₂O molecule is crucial (Yoshida and Toyoda, 2000).

Abundances of the different isotopic species (${}^{14}N^{14}N^{16}O$, ${}^{14}N^{15}N^{16}O$, ${}^{15}N^{14}N^{16}O$, etc.) are usually reported in the δ -notation, where $\delta^{15}N$ denotes the relative difference in the amount of ${}^{15}N$ versus ${}^{14}N$ (abbreviated herein as ${}^{15}N/{}^{14}N$) in N₂O in comparison

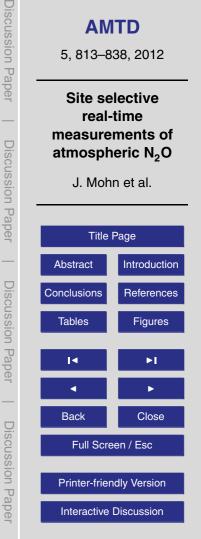
Discussion Pape

Discussion Pape

Discussion Paper

Discussion Paper

to atmospheric N₂ as the reference material (Coplen, 2011). Similarly, $\delta^{15}N^{\beta}$ denotes the relative difference of isotope ratios for ${}^{15}N^{14}N^{16}O$ vs. ${}^{14}N^{16}N^{16}O$.

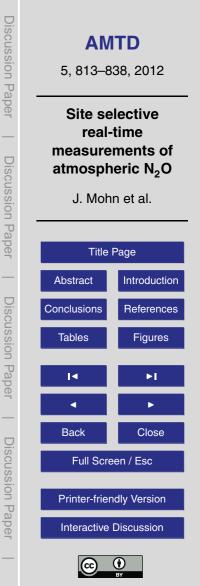

The bulk nitrogen δ value ($\delta^{15}N^{\text{bulk}} = (\delta^{15}N^{\alpha} + \delta^{15}N^{\beta})/2$) of tropospheric N₂O is enriched by 6.3±0.3‰ to 6.72±0.12‰, depending on the sampling location and time

⁵ (Kaiser et al., 2003; Park et al., 2004; Röckmann and Levin, 2005; Toyoda et al., 2004), with a strong site preference (SP = δ¹⁵N^α – δ¹⁵N^β) of 18.7±2.2‰ for the central nitrogen atom (Yoshida and Toyoda, 2000). Temporal trends in the N₂O isotopic composition from firn air, ice core and archived air sample measurements indicate a year to year decrease in δ¹⁵N^{bulk} of 0.04‰ yr⁻¹, confirming substantial emissions of isotopi ¹⁰ cally depleted N₂O (Bernard et al., 2006; Ishijima et al., 2007; Röckmann and Levin, 2005). According to isotopic budgetary calculations based on a simple two-box model, this could be due to increased anthropogenic N₂O emission from agricultural soils, as

well as a to a change in their average isotopic signature (Ishijima et al., 2007).

On a local scale, the N₂O isotopic composition can be applied to disentangle or even quantitatively apportion N₂O production and destruction pathways. For example, the ¹⁵N depletion in N₂O produced by autotrophic nitrification was found to be considerably higher as compared to heterotrophic denitrification (Koba et al., 2009; Sutka et al., 2006; Toyoda et al., 2005; Yoshida, 1988). On the other hand, process-specific effects on $\delta^{15}N^{\text{bulk}}$ might be masked by shifts in the precursor signature (Well et al., 2008), and theoretical considerations indicate a major impact of the involved bacterial species (Schmidt et al., 2004). In contrast to $\delta^{15}N^{\text{bulk}}$, the site preference is considered to be independent of the isotopic composition of the precursor and thus supplies clear process information even if the isotopic signature of the substrate for N₂O production is lacking (Frame and Casciotti, 2010; Ostrom et al., 2007; Sutka et al., 2006; Toyoda 25 et al., 2002; Well and Flessa, 2009; Yamaqishi et al., 2007).

The standard technique for N₂O isotopic measurements is laboratory-based isotoperatio mass-spectrometry (IRMS) in combination with flask-sampling (Brenninkmeijer and Röckmann, 1999; Toyoda and Yoshida, 1999). It is a well-known method with excellent precision of up to 0.05% for δ^{15} N^{bulk}, 0.1% for δ^{18} O, and 0.3% for δ^{15} N^{α}


and $\delta^{15}N^{\beta}$ (Bernard et al., 2006; Toyoda et al., 2011a,b). Nevertheless, it also has some disadvantages such as the large size of the instrument, which hinders in-situ field measurements. Laser spectroscopy is a valuable alternative because it is inherently selective, even for molecules with the same mass (Janssen and Tuzson, 2006;

- ⁵ Gagliardi et al., 2005; Nakayama et al., 2007; Uehara et al., 2001, 2003; Wächter and Sigrist, 2007), and field-deployable instruments for unattended measurements can be designed. A significant improvement was obtained in recent years by the implementation of quantum cascade laser sources (QCL) to reach a precision of 0.5% for $\delta^{15}N^{\alpha}$ and $\delta^{15}N^{\beta}$ at N₂O mixing ratios of 90 ppm (Wächter et al., 2008).
- In the present project we describe the first instrumentation to perform real-time analysis of N₂O site-specific isotopic composition at atmospheric mixing ratios. This is achieved combining a liquid nitrogen-free fully-automated preconcentration unit optimized and validated for N₂O isotopomer analysis by Mohn et al. (2010) with an improved version of the QCLAS published by Wächter et al. (2008). The potential of this approach is demonstrated by a three week measurement campaign of atmospheric
 - N_2O to identify distinct soil microbial N_2O source and sink processes.

2 Materials and methods

20

A schematic diagram of the measurement setup is shown in Fig. 1. Details on the development, optimization and validation of the N_2O preconcentration unit and the QC laser spectrometer have been described previously (Mohn et al., 2010; Wächter et al., 2008). Thus, their basic principles and recent modifications are only briefly presented, while analytical improvements, procedures of air sampling, automation and the applied calibration procedure are discussed in more detail.

2.1 Sampling site and setup

Field experiments conducted in Dübendorf 430 m were at a.s.l. (47°24'10" N/8°36'43" E). The observation area is located in an industrial and densely populated region near Zurich. A main road passes 100 m south, and a highway around 750 m north of the sampling site. Air was continuously sampled above 5 a grassland plot $(5 \text{ m} \times 20 \text{ m})$ at a flow rate of about one standard litre per minute (slpm) through a 15 m long unheated PTFE tubing (ID 4 mm) using a diaphragm vacuum pump (KNF Neuberger, CH). The air intake was first mounted at 1.5 m above ground (8 to 24 September), and then (24 to 31 September) 10 cm above the surface to be more representative for soil N₂O production. At the pump outlet, the pressure was adjusted 10 to 4 bar by means of a pressure relief valve. Water and CO_2 were quantitatively removed by permeation drying (PD-100T-48, PermaPure Inc., USA) and by chemical trapping with Ascarite (30 g, 10–35 mesh, Fluka, Switzerland) bracketed by Mg(ClO₄)₂ (2 × 13 g, Fluka, Switzerland). Finally, the sample was passed through a sintered metal filter (SS-6F-MM-2, Swagelok, USA) and directed to the preconcentration unit. An

- alternative sample input consisted of pressurized air (Messer, Switzerland) employed as target gas (Klausen et al. 2010) which was treated as described above by a second permeation dryer and a chemical trap (20 g Ascarite, $2 \times 8 \text{ g Mg}(\text{ClO}_4)_2$). This setup allows determining the long term stability and precision of the complete analytical procedure, including preconcentration, laser spectroscopic analysis and calibration. The chemical traps were exchanged every 3 to 4 days before reaching their maximal load. To detect any potential breakthrough, the CO₂ concentration was monitored
- by QCLAS after preconcentration together with the N_2O isotopomers (CO₂ line at 2188.0 cm⁻¹).

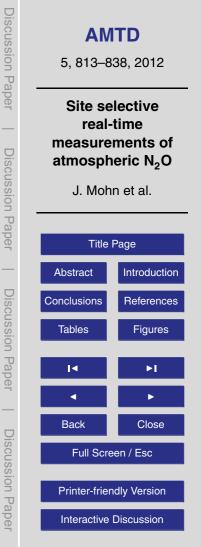
Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

2.2 Instrumentation

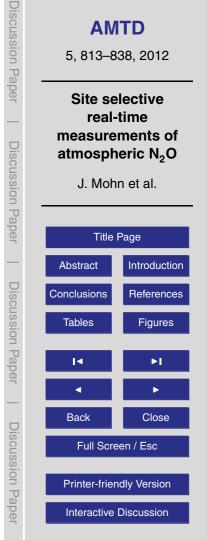

2.2.1 N₂O preconcentration

The technology of our preconcentration unit is based on a previously developed system called "Medusa" (Miller et al., 2008), re-designed and optimized for the preconcentration of N₂O isotopic species and their subsequent quantification by laser spectroscopy (Mohn et al., 2010). During standard operation, 10 l of ambient air are preconcentrated on a HayeSep D trap and desorbed in approximately 50 ml of synthetic air, yielding a concentration increase from ambient mixing ratios to >71 ppm N₂O. The system offers quantitative (>99%) N₂O recovery without any significant isotopic fractionation or relevant spectral interferences from other atmospheric constituents. Modifications to the previous procedure (Mohn et al., 2010) are mainly related to the desorption phase, where the N₂O concentration profile was further optimized by increasing the trap temperature to 10° C and decreasing the flow rate of high purity synthetic air to 10 sccm (standard cubic centimetre per minute).

15 2.2.2 Laser spectrometer

The employed QCLAS is based on the instrument described by Wächter et al. (2008). It consists of a single-mode, pulsed QCL emitting at 2188 cm⁻¹, a multipass absorption cell (optical path length 56 m, volume 0.5 l; Aerodyne Research Inc., USA) and a detection system with pulse normalization. Laser control, data acquisition and simulaneous quantification of the three main N₂O isotopic species (¹⁴N¹⁴N¹⁶O, ¹⁵N¹⁴N¹⁶O, ¹⁴N¹⁶O) is accomplished by the TDLWintel software (Aerodyne Research Inc., USA), taking into account path length, gas temperature (~ 305 K), pressure (8 kPa) and laser line width (0.0068 cm⁻¹). Employing a new generation thermo-electrically cooled detector (PVI-3TE-5, Vigo System, PL), a new quasi-room temperature QCL
²⁵ (Alpes Lasers SA, Switzerland) and redesigned electronics led to a considerably im-

²⁵ (Alpes Lasers SA, Switzerland) and redesigned electronics led to a considerably improved performance of the laser spectrometer, compared to the results of Wächter et al. (2008).


Applying the Allan variance approach (Werle, 2011) for the site-specific relative difference of isotope ratios $\delta^{15}N^{\alpha}$ and $\delta^{15}N^{\beta}$, a short term precision of 1 ‰ Hz $^{-1/2}$ is achieved at mixing ratios of 70 ppm N₂O, as typically obtained by preconcentration of atmospheric N₂O. For six minutes spectral averaging a precision below 0.1 ‰ is obtained, the maximum precision at 30 min averaging corresponds to 0.04 ‰, for both $\delta^{15}N^{\alpha}$ and $\delta^{15}N^{\beta}$.

The laser spectrometer was operated in a batch mode, where the gas cell was first evacuated by a scroll pump (TriScroll 300, Varian), then purged for 4 min with 10 sccm of purge gas at reduced pressure (1 kPa), before the downstream on-off valve (V3 in Fig. 1) (2-way, 009-0089-900, Parker Hannifin Corp., USA) was closed. The purge gas was either synthetic air (prior to analysis of preconcentrated ambient or pressurized air) or calibration gas (prior to calibration). Subsequently, the multipass cell was filled with preconcentrated air or calibration gas to a cell pressure of 8 kPa. Finally, the multipass cell was closed by switching the 3-way valve V2 or V4 (009-0933-900, Parker Hannifin

¹⁵ Corp., USA) before the gas sample was analysed.

2.3 Automation and measurement procedure

The complete experimental setup including preconcentration unit, solenoid valves (V1–V6, Parker Hannifin Corp., USA) and thermal mass flow controllers (MFCs, Redy Smart series, Vögtlin Instruments, Switzerland) was controlled and monitored by a LabVIEW program (National Instruments Corp., USA). All peripherals were connected through a 16-port serial to Ethernet connector (EL-160, Digi International Inc., USA). For ambient air monitoring, a 460 min measuring cycle was repeated which consists of the following steps (Fig. 2): (A) analysis of preconcentrated N₂O from compressed air (target gas, one sample) and ambient air (three gas samples), (B) analysis of standard II
²⁵ (two replicates) dynamically diluted to 71 ppm N₂O with synthetic air to calibrate the δ scale, (C) identical to (A), (D) analysis of standard I (88 ppm N₂O, two replicates) to calibrate N₂O mixing ratios and determine their influence on δ values. Between gas

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

AMTD

5, 813-838, 2012

Site selective

real-time

measurements of

atmospheric N₂O

J. Mohn et al.

Title Page

Introduction

References

Figures

Close

Abstract

Conclusions

Tables

Back

Discussion Pape

Discussion Paper

Discussion Paper

Discussion Pape

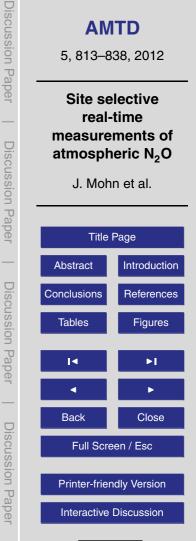
samples (A)–(D), standard I (71 ppm N_2O) was analysed as a reference point and to correct for drift effects.

2.4 Analysis of N₂O mixing ratios and isotopomer ratios

The N₂O mixing ratios of ambient air were determined based on the concentration
 of the main isotopic species ¹⁴N¹⁴N¹⁶O and calibrated against laboratory standard I dynamically diluted to different concentration levels (see Fig. 2 step D). The preconcentration step was taken into account via the ratio of the gas volume in the multipass cell (V_{cell}) and the gas volume applied for N₂O preconcentration (V_{precon}). While V_{precon} can be accurately computed based on the adsorption time and flow, for V_{cell} this is not possible. Therefore, the exact value for V_{cell} under standard conditions was determined analysing preconcentrated N₂O from a highly accurate standard (319.91±0.12 ppb) provided by the World Meteorological Organization (WMO) Central Calibration Laboratory (CCL) (Hall et al., 2007). N₂O concentrations of the laboratory standards were quantified by QCLAS against commercial calibration gases (90.5±0.1 ppm N₂O, Messer, Switzerland) and are indicated in Table 1.

Relative differences of isotopic ratios $\delta^{15}N^{\alpha}$ and $\delta^{15}N^{\beta}$ were determined employing a set of standard gases produced in our laboratory based on gravimetric and dynamic dilution methods from pure medical N₂O (Messer, Switzerland) supplemented with distinct amounts of isotopically pure (>98 %) ${}^{15}N^{14}N^{16}O$ and ${}^{14}N^{15}N^{16}O$ (Cambridge lsotope Laboratories, USA). Primary laboratory standards were analysed for $\delta^{15}N^{\alpha}$, $\delta^{15}N^{\beta}$ and $\delta^{15}N^{\text{bulk}}$ by IRMS at the Tokyo Institute of Technology (Toyoda and Yoshida, 1999). Table 1 indicates the isotopic composition of the secondary laboratory standards applied in the current project and analysed against primary standards by QCLAS. The $\delta^{15}N^{\text{bulk}}$ of pure medical N₂O was additionally analysed by mass spectrometry at the IsoLab of the Max-Planck Institute for Biogeochemistry (MPI-BGC, Jena, Germany)

using an EA/IRMS setup (Werner et al., 1999). N_2O was introduced in between the combustion and the reduction tube of the EA using the loop (250 µl) of a manually

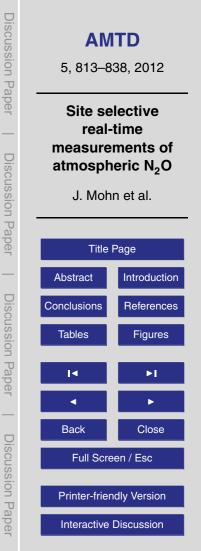

operated 6-port valve. This setup enabled a direct comparison of N₂ produced from combustion of IAEA-N1 to N₂ obtained from the medical N₂O by reduction in the 2nd EA reactor. Quantitative N₂O conversion reaction yield was verified by the absence of any *m/z* 44 ion current response following N₂O introduction. Using a δ^{15} N value of +0.43% for IAEA-N1 as the scale anchor, a δ^{15} N^{bulk} value of 1.64±0.10% (*n* = 4) was obtained which was different by 0.39% from the Tokyo Tech result. A similar difference of 0.3% was observed by Toyoda and Yoshida (1999) for δ^{15} N^{bulk} of a laboratory stan-

dard calculated from $\delta^{15} N^{\alpha}$ and $\delta^{15} N^{\beta}$ (calibration via NH₄NO₃ decomposition) and determined after N₂O to N₂ reduction. Discrepancies were attributed to fractionation during incomplete NH₄NO₃ decomposition (Toyoda and Yoshida, 1999).

Relative differences of site - selective isotope ratios $\delta^{15}N^{\alpha}$ and $\delta^{15}N^{\beta}$ of preconcentrated N₂O were corrected for dependency of the isotope ratios on the N₂O mixing ratio (before preconcentration). These corrections were small, about 0.004‰ ppb⁻¹ and 0.016‰ ppb⁻¹ for $\delta^{15}N^{\alpha}$ and $\delta^{15}N^{\beta}$, respectively. Moreover, measurements that were significantly influenced by abrupt changes in the laser intensity were discarded. These light intensity changes affected less than 2% of the data, and the laser driver that was identified as the source of instability was recently replaced.

To confirm the accuracy of our measurements, we analysed background air in a cylinder filled in 2006 by the Earth System Research Laboratory (Global Monitoring Division) of the National Oceanic & Atmospheric Administration (NOAA). The trace gas mixing ratios analysed by the WMO CCL are typical for natural air: 384.40 ± 0.02 ppm CO₂, 319.91 ± 0.12 ppb N₂O, 1838.5 ± 0.4 ppb CH₄, 143.9 ± 1.0 ppb CO. The QCLAS analysis of the N₂O site-selective isotopic composition, with $\delta^{15}N^{\alpha} = 15.62 \pm 0.06$ %, $\delta^{15}N^{\beta} = -2.84 \pm 0.04$ %, $\delta^{15}N^{\text{bulk}} = 6.39 \pm 0.03$ % and SP = 18.45 ± 0.08 % (the precision indicated is the standard error of the mean), is in perfect agreement with published

sion indicated is the standard error of the mean), is in perfect agreement with published data for unpolluted tropospheric N₂O.


3 Results and discussion

3.1 Continuous analysis of N₂O isotopomers in ambient air

Figure 3 presents to our knowledge the first example of real-time analysis of N₂O site-selective isotopic composition. Measurements were conducted for three weeks between 8th and 31st September 2010, corresponding to almost 550 air samples (408 samples of ambient air, 136 target gas samples) that were analysed in stand-alone operation. During the first two weeks of the measuring campaign (up to 22nd September), N₂O mixing ratios display tiny but typical diurnal variations with night-time increases up to 334.2 ppb, i.e. 10 ppb above background concentrations (Fig. 3). Even though these changes in N₂O mixing ratios were small in the beginning, the δ¹⁵N^{bulk} values display a detectable inverse trend indicating emissions of ¹⁵N depleted nitrous oxide. Substantially higher N₂O mixing ratios accompanied by δ¹⁵N^{bulk} changes up to 10‰ were observed after fertilizer addition (200 kg N ha⁻¹ NH₄NO₃, 400 kg C ha⁻¹ sucrose) on

¹⁵ Long-term precision and repeatability including preconcentration and calibration was ¹⁵ assessed analysing a pressurized air cylinder (target gas) at every fourth preconcentration run (open symbols Fig. 3). Figure 4 displays histogram plots of repeated measurements (n = 136) with average N₂O mixing ratios of 326.47 ± 0.36 ppb and site-specific relative isotope ratio differences of $\delta^{15}N^{\alpha} = 15.28 \pm 0.24$ ‰ and $\delta^{15}N^{\beta} = -2.91 \pm 0.17$ ‰

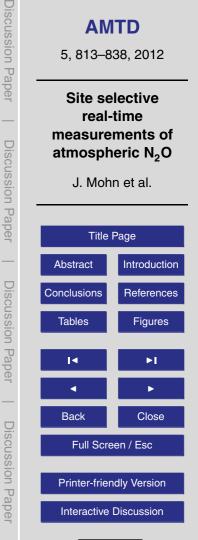
- ²⁰ (the precision indicated is the standard deviation). These values are consistent with background air with minor contributions from a ¹⁵N depleted N₂O emission source. The achieved long-term precision for $\delta^{15}N^{\alpha}$ and $\delta^{15}N^{\beta}$ is superior to state-of-the-art IRMS (Bernard et al., 2006; Toyoda et al., 2011a,b). Additionally, precision for N₂O mixing ratios determined by QCLAS is comparable to gas chromatography with electron
- ²⁵ capture detection (GC-ECD), the standard technique applied in global monitoring networks (Corazza et al., 2011). Besides that, as our technique has temporal averaging

Discussion Pape **AMTD** 5, 813-838, 2012 Site selective real-time measurements of Discussion Paper atmospheric N₂O J. Mohn et al. **Title Page** Abstract Introduction Discussion Paper Conclusions References Figures Tables Back Close **Discussion** Paper Full Screen / Esc Printer-friendly Version Interactive Discussion

capabilities, the statistical uncertainty for repeated measurements (standard error of the mean) is considerably lower.

3.2 Source appointment by N₂O isotopomer analysis

The isotopic signature of a source process can be estimated by the Keeling-plot approach where the variations in the isotopic composition are plotted against the inverse of concentration values. This technique was originally developed for carbon dioxide and its isotopologues and has been employed in numerous studies, recently also in combination with field-deployable instrumentation for continuous CO₂ isotopic analysis (McManus et al., 2010; Mohn et al., 2008; Tuzson et al., 2011). For N₂O, up to date all process studies on N₂O isotopic species had to rely on grab sampling followed by IRMS laboratory analysis because real-time analysis was not available with the required precision. Consequently, current research is based on short-term investigations with limited temporal and spatial averaging capabilities (Ostrom et al., 2010; Toyoda et al., 2011a; Yamagishi et al., 2007).

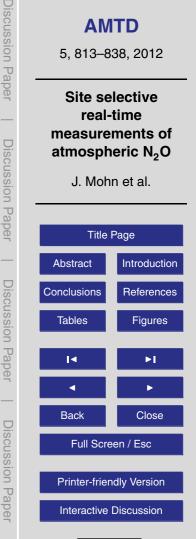

- In Fig. 5, data obtained in a 24 h time interval (e.g. from 23 September noon to 24 September noon) was analysed using the Keeling plot approach. Individual data points represent the average N₂O mixing ratio and isotopic composition over 20 min of N₂O sampling during preconcentration. Assuming a two source mixing with unpolluted background air, the intercept of the linear regression line corresponds to the isotopic signature of the N₂O emitting processes for δ¹⁵N_s^{bulk} and SP_s. This approach implies that the soil microbial N₂O production pathways and its isotopic signatures are basically constant for one diurnal cycle. As can be observed from the low scatter in the Keeling
- plots (i.e. Fig. 5), this model is adequate for the studied processes and gives moderate uncertainties in the linear regression parameters (Fig. 6).
- ²⁵ Before fertilizer addition the diurnal variability in N₂O mixing ratios was small, in the range of 3.0 to 10.5 ppb, accompanied by only a slight shift to lower relative isotope ratio differences at higher N₂O mixing ratios. It was, nevertheless, possible to resolve these small changes and calculate daily (24 h time intervals, noon to noon) N₂O source

signatures ($\delta^{15}N_s^{bulk}$, SP_s). These varied between $-5\pm7\%$ to $-26\pm6\%$ for $\delta^{15}N_s^{bulk}$ and $3 \pm 13\%$ to $29 \pm 5\%$ for SP_s with a temporal trend (9 to 22 September) from low to high $\delta^{15} N_s^{\text{bulk}}$ and high to low SP_s values (Fig. 6). Periods with changes in N₂O mixing ratios below 6.5 ppb (2%) were not considered. To estimate the net isotope effect $_{5}$ ($\Delta \delta^{15} N_{s}^{\text{bulk}} = \delta^{15} N(\text{substrate}) - \delta^{15} N_{s}^{\text{bulk}}$) of the microbial source process, the ¹⁵N content of the substrate for N_2O production needs to be known. As the focus of the present study was on method development for ambient air monitoring and not on soil science, no supplementary soil parameters were determined. However, a $\delta^{15}N$ (substrate) of 5‰ may be assumed for the inorganic soil nitrogen pool (Makarov et al., 2010). This results in a net isotope effect ($\Delta \delta^{15} N_s^{\text{bulk}}$) between 10 and 31 ‰, which is characteristic 10 for N₂O produced by heterotrophic denitrification. In pure culture studies with denitrifying bacteria, Sutka et al. (2006) and Toyoda et al. (2005) reported up to 39% for $\Delta \delta^{15} N_s^{\text{bulk}}$ of N₂O, and Koba et al. (2009) assigned the range 0 to 39% for N₂O derived from heterotrophic denitrification. In contrast, N₂O produced by nitrifying bacteria leads to a significantly higher ¹⁵N depletion with a net isotope effect ($\Delta \delta^{15} N_s^{\text{bulk}} = \delta^{15} N$ 15 $(NH_4^+) - \delta^{15}N_s^{bulk}$) between 46.9 ‰ (Sutka et al., 2006) and 68 ‰ (Yoshida, 1988).

The observed co-variation of SP_s and Δδ¹⁵N_s^{bulk} (Fig. 6) for N₂O emitted before fertilizer application with a slope of 1.18±0.32 can be attributed to a partial consumption by N₂O reductase activity of denitrifying bacteria (Koba et al., 2009; Yamagishi et al., 2007). Similar values between 1.0 and 1.2 for SP_s/Δδ¹⁵N_s^{bulk} were reported by Ostrom et al. (2007) for N₂O reduction by two denitrifier species. The temporal trend from high to low SP_s and low to high Δδ¹⁵N_s^{bulk} values (Fig. 6) can thus be interpreted as

a decreasing share of N₂O reduction vs. N₂O production. The N₂O vs. $(N_2O + N_2)$ ratio increase correlates with a night-time air temperature decrease from 13°C to 6°C at the

nearby NABEL station (data not shown), which is consistent with the temperature dependence observed in laboratory studies on soil samples (Avalakki et al., 1995; Bailey and Beauchamp, 1973).



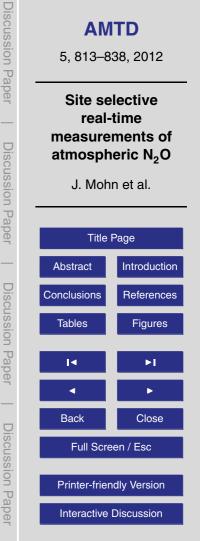
After fertilizer application the isotopic source signatures are better constrained because of larger diurnal changes in N₂O mixing ratios (Fig. 6). Furthermore, much less variation was observed in the isotopic source signatures with values between $-0.1 \pm 0.8\%$ to $-5.1 \pm 1.3\%$ for SP_s and $41.8 \pm 0.9\%$ to $23.2 \pm 0.7\%$ for $\Delta \delta^{15} N_s^{bulk}$. To calculate the net isotope effect ($\Delta \delta^{15} N_s^{bulk} = (\delta^{15} N(substrate) - \delta^{15} N_s^{bulk})$), the ¹⁵N content of the fertilizer N analysed by IRMS ($\delta^{15} N(NH_4NO_3) = 1.3 \pm 0.3\%$) was applied. The resulting SP_s and $\Delta \delta^{15} N_s^{bulk}$ values are indicative for N₂O production by heterotrophic denitrification without or with only minor N₂O to N₂ reduction (Sutka et al., 2006; Toyoda et al., 2005). The observed low N₂O consumption agrees with a reto cent publication assuming that the N₂O/(N₂O + N₂) product ratio of denitrification is positively correlated with the NO₃⁻ availability in soils (Senbayram et al., 2011). The successive increase in $\Delta \delta^{15} N_s^{bulk}$ suggests a shift in the isotope composition of the soil nitrate pool due to fractionation during denitrification.

4 Conclusions

- ¹⁵ This study presents to our knowledge the first real-time analysis of N₂O site-selective isotopic composition at atmospheric mixing ratios. Our approach is based on a cryogenic free instrumentation which comprises a mid-IR QCL absorption spectrometer and a fully automated N₂O preconcentration unit. During three weeks of continuous field measurements nearly 550 air samples were analysed for N₂O mixing ratios and
- ²⁰ site-specific isotopic composition. Long term precision for $\delta^{15}N^{\alpha}$ and $\delta^{15}N^{\beta}$ was found to be superior to state-of-the-art IRMS. Additionally, precision for N₂O mixing ratios determined by QCLAS was comparable to the standard technique applied in global monitoring networks (GC-ECD).

The excellent analytical precision allowed resolving even small changes in N₂O mixing ratios and isotope composition, $\delta^{15}N^{\text{bulk}}$ and SP and calculating daily (24 h time intervals, noon to noon) source signatures ($\delta^{15}N^{\text{bulk}}_{\text{s}}$, SP_s) for N₂O emitted from

a grassland plot. Before fertilizer application, $\Delta \delta^{15} N_s^{bulk}$ indicates heterotrophic denitrification as the main N₂O production pathway. Co-variation of SP_s and $\Delta \delta^{15} N_s^{bulk}$ can be attributed to a partial consumption by N₂O reductase activity of denitrifying bacteria. Heterotrophic denitrification remained the main N₂O production pathway after fertilization. However, the N₂O reductase activity ceased due to increased NO₃⁻ availability. As demonstrated in this feasibility study, continuous high precision analysis of N₂O isotopomers at atmospheric mixing ratios can be applied for identification of N₂O source processes and open a completely new field of applications.


 Acknowledgement. We would like to thank Roland Bol (North Wyke Research) for ¹⁵N analysis
 of the NH₄NO₃ fertilizer. Patrick Sturm (Empa) and Pascal Wunderlin (Eawag) are acknowledged for helpful discussions during the preparation of the manuscript. Thanks to Mario Lovric for his support during field measurements and Thomas Seitz from the Swiss National Air Pollution Monitoring Network (NABEL) for providing us supporting meteorological parameters. Heike Geilmann (MPI-BGC) is acknowledged for assistance during δ¹⁵N^{bulk} analysis of primary laboratory standards. Funding from the Swiss National Foundation for Scientific Research (SNF) and the State Secretariat for Education and Research (SER) within COST-ES0806 is gratefully acknowledged. Naohiro Yoshida and Sakae Toyoda were supported by KAKENHI (17GS0203 and 23224013) of the Ministry of Education, Culture, Sports, Science and Technology and by Global Environmental Research Fund (A-0904) of the Ministry of the Environment, Japan.

20 **References**

Avalakki, U. K., Strong, W. M., and Saffigna, P. G.: Measurement of gaseous emissions from denitrification of applied ¹⁵N. 2. Effects of temperature and added straw, Aust. J. Soil Res., 33, 89–99, doi::10.1071/SR9950089, 1995.

Bailey, L. D. and Beauchamp, E. G.: Effects of temperature on NO₃⁻ and NO₂⁻ reduction, nitroge-

- nous gas production, and redox potential in a saturated soil, Can. J. Soil Sci., 53, 213–218, doi:10.4141/cjss73-032, 1973.
 - Bernard, S., Röckmann, T., Kaiser, J., Barnola, J.-M., Fischer, H., Blunier, T., and Chappellaz, J.: Constraints on N₂O budget changes since pre-industrial time from new firn air and

ice core isotope measurements, Atmos. Chem. Phys., 6, 493–503, doi:10.5194/acp-6-493-2006, 2006.

- Brenninkmeijer, C. A. M. and Röckmann, T.: Mass spectrometry of the intramolecular nitrogen isotope distribution of environmental nitrous oxide using fragment-ion
- ⁵ analysis, Rapid Commun. Mass Spectrom., 13, 2028–2033, doi:10.1002/(SICI)1097-0231(19991030)13:20<2028::AID-RCM751>3.0.CO;2-J, 1999.

Coplen, T. B.: Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results, Rapid Commun. Mass Spectrom., 25, 2538–2560, 2011.

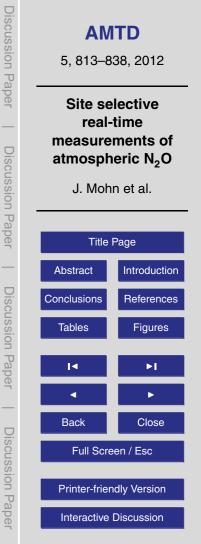
Corazza, M., Bergamaschi, P., Vermeulen, A. T., Aalto, T., Haszpra, L., Meinhardt, F.,

O'Doherty, S., Thompson, R., Moncrieff, J., Popa, E., Steinbacher, M., Jordan, A., Dlugokencky, E., Brühl, C., Krol, M., and Dentener, F.: Inverse modelling of European N₂O emissions: assimilating observations from different networks, Atmos. Chem. Phys., 11, 2381– 2398, doi:10.5194/acp-11-2381-2011, 2011.

Frame, C. H. and Casciotti, K. L.: Biogeochemical controls and isotopic signatures of nitrous

- oxide production by a marine ammonia-oxidizing bacterium, Biogeosciences, 7, 2695–2709, doi:10.5194/bg-7-2695-2010, 2010.
 - Gagliardi, G., Borri, S., Tamassia, F., Capasso, F., Gmachl, C., Sivco, D. L., Baillargeon, J. N., Hutchinson, A. L., and Cho, A. Y.: A frequency-modulated quantum-cascade laser for spectroscopy of CH₄ and N₂O isotopomers, Isot. Environ. Health Stud., 41, 313–321, doi:10.1080/10256010500384572, 2005.

Hall, B. D., Dutton, G. S., and Elkins, J. W.: The NOAA nitrous oxide standard scale for atmospheric observations, J. Geophys. Res., 112, D09305, doi:10.1029/2006jd007954, 2007.
Ishijima, K., Sugawara, S., Kawamura, K., Hashida, G., Morimoto, S., Murayama, S., Aoki, S.,

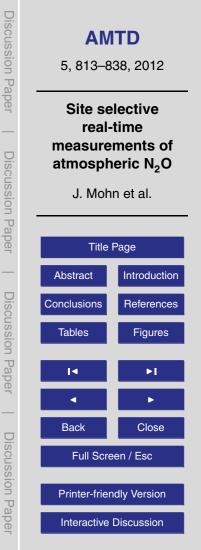

20

and Nakazawa, T.: Temporal variations of the atmospheric nitrous oxide concentration and

its δ^{15} N and δ^{18} O for the latter half of the 20th century reconstructed from firn air analyses, J. Geophys. Res., 112, D03305, doi:10.1029/2006JD007208, 2007.

Janssen, C. and Tuzson, B.: A diode laser spectrometer for symmetry selective detection of ozone isotopomers, Appl. Phys. B, 82, 487–494, doi:10.1007/s00340-005-2044-6, 2006.

- Kaiser, J., Röckmann, T., and Brenninkmeijer, C. A. M.: Complete and accurate mass spectrometric isotope analysis of tropospheric nitrous oxide, J. Geophys. Res., 108, 4476, doi:10.1029/2003JD003613. 2003.
 - Koba, K., Osaka, K., Tobari, Y., Toyoda, S., Ohte, N., Katsuyama, M., Suzuki, N., Itoh, M., Yamagishi, H., Kawasaki, M., Kim, S. J., Yoshida, N., and Nakajima, T.: Biogeo-


chemistry of nitrous oxide in groundwater in a forested ecosystem elucidated by nitrous oxide isotopomer measurements, Geochim. Cosmochim. Acta, 73, 3115–3133, doi:10.1016/j.gca.2009.03.022, 2009.

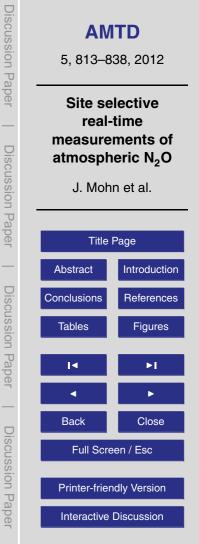
Makarov, M. I., Leoshkina, N. A., Ermak, A. A., and Malysheva, T. I.: Seasonal dynamics of the mineral nitrogen forms in mountain-meadow alpine soils. Fur. Soil Sci. 43, 905–913

- the mineral nitrogen forms in mountain-meadow alpine soils, Eur. Soil Sci., 43, 905–913, doi:10.1134/s1064229310080077, 2010.
 - McManus, J. B., Nelson, D. D., and Zahniser, M. S.: Long-term continuous sampling of ¹²CO₂, ¹³CO₂ and ¹²C¹⁸O¹⁶O in ambient air with a quantum cascade laser spectrometer, lsot. Environ. Health Stud., 46, 49–63, doi:10.1080/10256011003661326, 2010.
- Miller, B. R., Weiss, R. F., Salameh, P. K., Tanhua, T., Greally, B. R., Mühle, J., and Simmonds, P. G.: Medusa: a sample preconcentration and GC/MS detector system for in situ measurements of atmospheric trace halocarbons, hydrocarbons, and sulfur compounds, Anal. Chem., 80, 1536–1545, doi:10.1021/ac702084k, 2008.

Mohn, J., Zeeman, M. J., Werner, R. A., Eugster, W., and Emmenegger, L.: Continuous field measurements of δ^{13} C-CO₂ and trace gases by FTIR spectroscopy, Isot. Environ. Health Stud., 44, 241–251, doi:10.1080/10256010802309731, 2008.

- Mohn, J., Guggenheim, C., Tuzson, B., Vollmer, M. K., Toyoda, S., Yoshida, N., and Emmenegger, L.: A liquid nitrogen-free preconcentration unit for measurements of ambient N₂O isotopomers by QCLAS, Atmos. Meas. Tech., 3, 609–618, doi:10.5194/amt-3-609-2010, 2010.
- Montzka, S. A., Reimann, S., Engel, A., Krüger, K., O'Doherty, S., Sturges, W. T., Blake, D., Dorf, M., Fraser, P., Froidevaux, L., Jucks, K., Kreher, K., Kurylo, M. J., Mellouki, A., Miller, J., Nielsen, O.-J., Orkin, V. L., Prinn, R. G., Rhew, R., Santee, M. L., Stohl, A., and Verdonik, D.: Ozone-depleting substances (ODSs) and related chemicals, Chapter 1, in: Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project, Report No. 52, edited by: Ennis, C. A., World Meteorological Organization, Geneva, 516, 2011.
- Nakayama, T., Fukuda, H., Kamikawa, T., Sugita, A., Kawasaki, M., Morino, I., and Inoue, G.: Measurements of the 3v₃ band of ¹⁴N¹⁵N¹⁶O and ¹⁵N¹⁴N¹⁶O using continuous-wave cavity ring-down spectroscopy, Appl. Phys. B, 88, 137–140, doi:10.1007/s00340-007-2653-3, 2007.
- ³⁰ Ostrom, N. E., Pitt, A., Sutka, R., Ostrom, P. H., Grandy, A. S., Huizinga, K. M., and Robertson, G. P.: Isotopologue effects during N₂O reduction in soils and in pure cultures of denitrifiers, J. Geophys. Res., 112, G02005, doi:10.1029/2006JG000287, 2007. Ostrom, N. E., Sutka, R., Ostrom, P. H., Grandy, A. S., Huizinga, K. M., Gandhi, H., von Fis-

cher, J. C., and Robertson, G. P.: Isotopologue data reveal bacterial denitrification as the primary source of N₂O during a high flux event following cultivation of a native temperate grassland, Soil Biol. Biochem., 42, 499–506, doi:10.1016/j.soilbio.2009.12.003, 2010.


- Park, S., Atlas, E. L., and Boering, K. A.: Measurements of N₂O isotopologues in the strato sphere: Influence of transport on the apparent enrichment factors and the isotopologue fluxes to the troposphere, J. Geophys. Res., 109, D01305, doi:10.1029/2003JD003731, 2004.
 - Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous oxide (N₂O): The dominant ozone-depleting substance emitted in the 21st century, Science, 326, 123–125, doi:10.1126/science.1176985.2009.
- Röckmann, T. and Levin, I.: High-precision determination of the changing isotopic composition of atmospheric N₂O from 1990 to 2002, J. Geophys. Res., 110, D21304, doi:10.1029/2005JD006066, 2005.

10

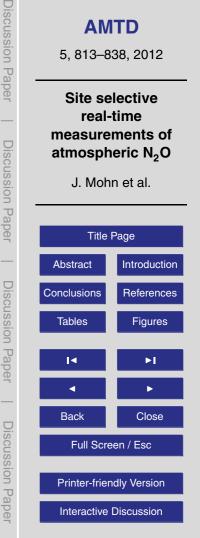
20

Schmidt, H. L., Werner, R. A., Yoshida, N., and Well, R.: Is the isotopic composition of nitrous

- oxide an indicator for its origin from nitrification or denitrification? A theoretical approach from referred data and microbiological and enzyme kinetic aspects, Rapid Commun. Mass Spectrom., 18, 2036–2040, doi:10.1002/rcm.1586, 2004.
 - Senbayram, M., Chen, R., Budai, A., Bakken, L., and Dittert, K.: N_2O emission and the $N_2O/(N_2O + N_2)$ product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations, Agric. Ecosyst. Environ., 147, 4–12, doi:10.1016/j.agee.2011.06.022, 2011.
 - Solomon, S., Qin, D., Manning, M., Alley, R. B., Berntsen, T., Bindoff, N. L., Chen, Z., Chidthaisong, A., Gregory, J. M., Hegerl, G. C., Heimann, M., Hewitson, B., Hoskins, B. J., Joos, F., Jouzel, J., Kattsov, V., Lohmann, U., Matsuno, T., Molina, M., Nicholls, N., Over-
- peck, J., Raga, G., Ramaswamy, V., Ren, J., Rusticucci, M., Somerville, R., Stocker, T. F., Whetton, P., Wood, R. A., and Wratt, D.: Technical Summary, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK and New York, 91, 2007.
- Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Breznak, J. A., Gandhi, H., Pitt, A. J., and Li, F.: Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances, Appl. Environ. Microbiol., 72, 638–644, doi:10.1128/AEM.72.1.638-

644.2006, 2006.

15


- Toyoda, S. and Yoshida, N.: Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer, Anal. Chem., 71, 4711–4718, doi:10.1021/ac9904563, 1999.
- ⁵ Toyoda, S., Yoshida, N., Miwa, T., Matsui, Y., Yamagishi, H., Tsunogai, U., Nojiri, Y., and Tsurushima, N.: Production mechanism and global budget of N₂O inferred from its isotopomers in the Western North Pacific, Geophys. Res. Lett., 29, 1037, doi:10.1029/2001GL014311, 2002.

Toyoda, S., Yoshida, N., Urabe, T., Nakayama, Y., Suzuki, T., Tsuji, K., Shibuya, K., Aoki, S.,

- ¹⁰ Nakazawa, T., Ishidoya, S., Ishijima, K., Sugawara, S., Machida, T., Hashida, G., Morimoto, S., and Honda, H.: Temporal and latitudinal distributions of stratospheric N₂O isotopomers, J. Geophys. Res., 109, D08308, doi:10.1029/2003JD004316, 2004.
 - Toyoda, S., Mutobe, H., Yamagishi, H., Yoshida, N., and Tanji, Y.: Fractionation of N₂O isotopomers during production by denitrifier, Soil Biol. Biochem., 37, 1535–1545, doi:10.1016/i.soilbio.2005.01.009, 2005.
- Toyoda, S., Suzuki, Y., Hattori, S., Yamada, K., Fujii, A., Yoshida, N., Kouno, R., Murayama, K., and Shiomi, H.: Isotopomer analysis of production and consumption mechanisms of N₂O and CH₄ in an advanced wastewater treatment system, Environ. Sci. Technol., 45, 917–922, doi:10.1021/es102985u, 2011a.
- Toyoda, S., Yano, M., Nishimura, S., Akiyama, H., Hayakawa, A., Koba, K., Sudo, S., Yagi, K., Makabe, A., Tobari, Y., Ogawa, N. O., Ohkouchi, N., Yamada, K., and Yoshida, N.: Characterization and production and consumption processes of N₂O emitted from temperate agricultural soils determined via isotopomer ratio analysis, Global Biogeochem. Cy., 25, GB2008, doi:10.1029/2009GB003769, 2011b.
- ²⁵ Tuzson, B., Henne, S., Brunner, D., Steinbacher, M., Mohn, J., Buchmann, B., and Emmenegger, L.: Continuous isotopic composition measurements of tropospheric CO₂ at Jungfraujoch (3580 m a.s.l.), Switzerland: Real-time observation of regional pollution events, Atmos. Chem. Phys., 11, 1685–1696, doi:10.5194/acp-11-1685-2011, 2011.

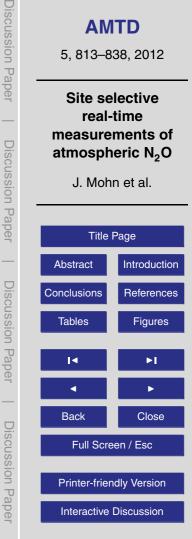
Uehara, K., Yamamoto, K., Kikugawa, T., and Yoshida, N.: Isotope analysis of environmental substances by a new laser-spectroscopic method utilizing different pathlengths. Sens.

- Actuators B, 74, 173–178, doi:10.1016/S0925-4005(00)00729-2, 2001.
 - Uehara, K., Yamamoto, K., Kikugawa, T., and Yoshida, N.: Site-selective nitrogen isotopic ratio measurement of nitrous oxide using 2 µm diode lasers, Spectrochim. Acta A, 59, 957–962,

doi:10.1016/S1386-1425(02)00260-3, 2003.

10

15


- Wächter, H. and Sigrist, M. W.: Mid-infrared laser spectroscopic determination of isotope ratios of N₂O at trace levels using wavelength modulation and balanced path length detection, Appl. Phys. B, 87, 539–546, doi:10.1007/s00340-007-2576-z, 2007.
- ⁵ Wächter, H., Mohn, J., Tuzson, B., Emmenegger, L., and Sigrist, M. W.: Determination of N₂O isotopomers with quantum cascade laser based absorption spectroscopy, Opt. Express, 16, 9239–9244, doi:10.1364/OE.16.009239, 2008.
 - Well, R., Flessa, H., Xing, L., Xiaotang, J., and Römheld, V.: Isotopologue ratios of N₂O emitted from microcosms with NH⁺₄ fertilized arable soils under conditions favoring nitrification, Soil Biol. Biochem., 40, 2416–2426, doi:10.1016/j.soilbio.2008.06.003, 2008.
- Well, R., and Flessa, H.: Isotopologue signatures of N₂O produced by denitrification in soils, J. Geophys. Res., 114, G02020, doi:10.1029/2008JG000804, 2009.

Werle, P.: Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence, Appl. Phys. B, 102, 313–329, doi:10.1007/s00340-010-4165-9, 2011.

- Werner, R. A., Bruch, B. A., and Brand, W. A.: ConFlo III an interface for high precision δ^{13} C and δ^{15} N analysis with an extended dynamic range, Rapid Commun. Mass Spectrom., 13, 1237–1241, doi:10.1002/(sici)1097-0231(19990715)13:13<1237::aid-rcm633>3.0.co;2-c, 1999.
- Yamagishi, H., Westley, M. B., Popp, B. N., Toyoda, S., Yoshida, N., Watanabe, S., Koba, K., and Yamanaka, Y.: Role of nitrification and denitrification on the nitrous oxide cycle in the eastern tropical North Pacific and Gulf of California, J. Geophys. Res., 112, G02015, doi:10.1029/2006JG000227, 2007.

Yoshida, N.: ¹⁵N-depleted N₂O as a product of nitrification, Nature, 335, 528–529, doi:10.1038/335528a0, 1988.

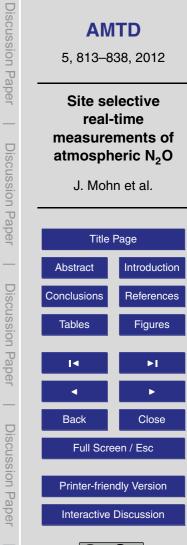

Yoshida, N. and Toyoda, S.: Constraining the atmospheric N₂O budget from intramolecular site preference in N₂O isotopomers, Nature, 405, 330–334, doi:10.1038/35012558, 2000.

Table 1. N₂O mixing ratios and relative differences of isotopic ratios $\delta^{15}N^{\alpha}$ and $\delta^{15}N^{\beta}$ of secondary laboratory standards applied in the current project (the precision indicated is the standard error of the mean). Standard Ia was replaced by standard Ib 22 September.

	N ₂ O [ppm]	$\delta^{15} N^{lpha}$ [‰]	$\delta^{15} N^{eta}$ [‰]
Standard Ia		2.1 ± 0.1	2.0 ± 0.2
Standard Ib Standard II	250.1±0.05 249.1±0.1	15.2±0.1 25.0±0.1	2.0±0.1 24.8±0.2

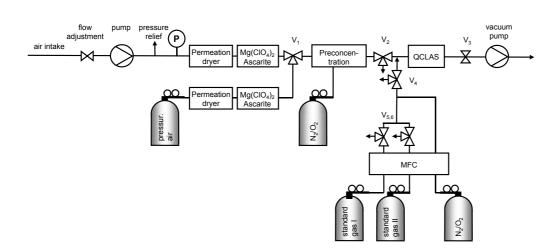
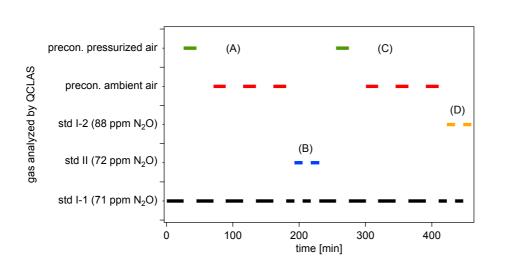
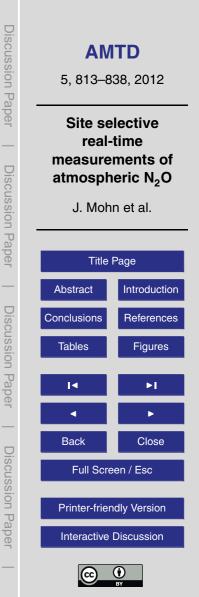
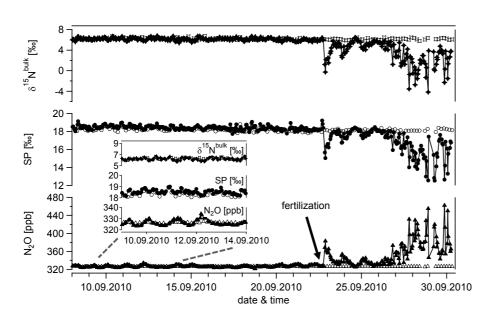


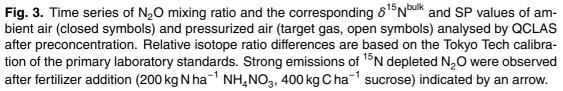

Fig. 1. Experimental setup for on-line N_2O isotopomer analysis in ambient air. Vi are solenoid valves and MFC mass flow controllers.

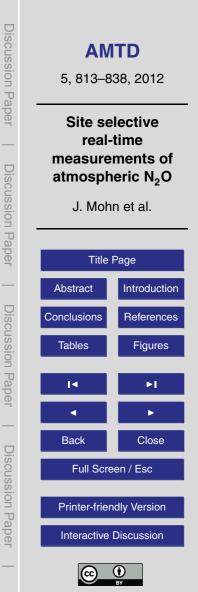

Discussion Paper

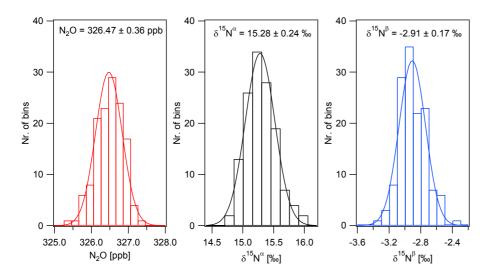
Discussion Paper


Discussion Paper


Discussion Paper






Fig. 2. Measurement cycle: **(A)** + **(C)** analysis of ambient air or pressurized air (target gas), **(B)** determination of calibration factors for $\delta^{15}N^{\alpha}$, $\delta^{15}N^{\beta}$, and **(D)** the N₂O mixing ratio as well as its influence on δ values.

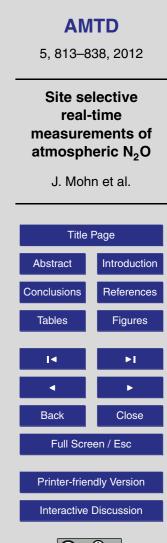
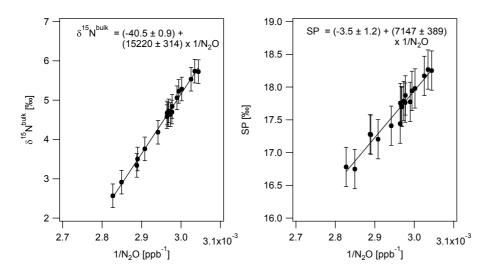
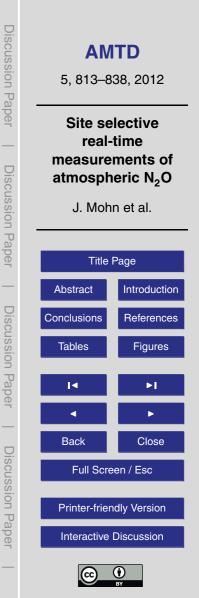
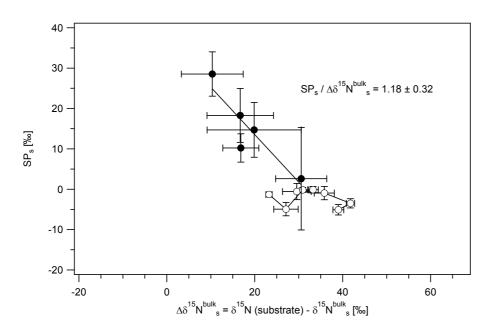


Fig. 4. Repeated measurements of pressurized air (target gas) during the field experiment. N₂O mixing ratios and relative differences of isotope ratios were plotted as a histogram with bin widths of 0.25 ppb (N₂O), 0.15% ($\delta^{15}N^{\alpha}$) and 0.1% ($\delta^{15}N^{\beta}$), respectively (the precision indicated is the standard deviation).



Discussion Paper


Discussion Paper


Discussion Paper

Discussion Paper



Fig. 5. Exemplary 24 h Keeling plot (23 September noon–24 September 2010 noon) after fertilizer addition. Site preference and $\delta^{15} N^{\text{bulk}}$ are plotted vs. the inverse of the N₂O concentration. The intercept of the ordinary least square linear regression corresponds to the isotopic signature of the main N₂O emitting process ($\delta^{15} N_{\text{s}}^{\text{bulk}}$, SP_s) and is given together with its 1 σ uncertainty.

Fig. 6. SP_s vs. $\Delta \delta^{15} N_s^{bulk}$ plot to interpret the biogeochemistry of soil emitted N₂O. Isotopic source signatures indicate heterotrophic denitrification as the main N₂O production process, with $\Delta \delta^{15} N_s^{bulk}$ values between 10 and 42‰. Before fertilizer application (closed symbols, 9 to 22 September, periods with N₂O concentration changes >6.5 ppb) a SP_s/ $\Delta \delta^{15} N_s^{bulk}$ ratio of 1.18±0.32 indicates N₂O reductase activity which ceased after fertilizer addition (open symbols, 22 to 30 September) identified by low SP_s values between 0 and -5‰. For $\delta^{15} N$ (substrate) 5‰ were assumed before fertilizer addition (before 22 September) according to Makarov et al. (2010), afterwards the ¹⁵N content of the applied NH₄NO₃ fertilizer (1.3±0.3‰) was used.

