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Abstract. We discuss the interaction of ultrashort near-infrared laser pulses
with sharp metal tips at moderate nominal intensities (I0 ∼ 1011 W cm−2). As
external electric fields are strongly enhanced at such tips (enhancement factor
∼10) our system turns out to be an ideal miniature laboratory to investigate
strong-field effects at solid surfaces. We analyse the electron-energy spectra as
a function of the strength of the laser field and the static extraction field and
present an intuitive model for their interpretation. The size of the effective field
acting on the metal electrons can be determined from the electron spectra. The
latter are also reproduced by time-dependent density functional theory (TDDFT)
simulations.
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1. Introduction

The emerging field of attosecond science is based on the ability to control electronic
wavepackets with the help of well-controlled few-cycle laser pulses [1]. The key effect is the
recollision of an electronic wavepacket with the parent matter within a fraction of the laser
cycle after its generation through ionization [2, 3]. Prominent dynamical processes based on
recollision are high-harmonic generation (HHG) and high-order above-threshold ionization
(ATI), observed with atomic and molecular gases. The exquisite control over the recolliding
wavepacket allows one to take, for example, diffraction images of the parent molecule [4, 5] and
to achieve attosecond time resolution for electronic processes [6–8]. Recently, laser–electric-
field-driven recollision processes were also observed with solid-state systems, namely at
dielectric nanoparticles [9] and at sharp metal tips [10, 11].

For versatile imaging techniques applied to atomic, molecular and solid-state systems it
would be of great interest to vary the parameters of the returning electron over a large energy
range. The same holds true in the process of the generation of high-harmonic photons, which
is currently being optimized to match certain flux and energy requirements (see, e.g., [12, 13]).
Improving and extending the ability to control the motion of the electronic wavepacket requires
additional control knobs for the strong fields driving the wavepacket. One obvious choice would
be the addition of a static (dc) electric field. Theory suggests [14–16] that the application
of relatively small static fields, one to four orders of magnitude weaker than the maximum
laser field, already leads to a modification of the path of the recolliding wavepacket and,
hence, to changes of the resulting HHG spectrum. For example, the maximum HHG energy
could be tripled if a static field with a field strength 10% that of the maximum laser field
was applied [16]. Although considerably smaller than the amplitude of the moderately strong
laser itself, application of such a (macroscopic) static field with a strength of a fraction of a
GV m−1 is unfeasible, rendering this control tool exceedingly difficult to employ in laser–atom
or laser–molecule interactions.

When nanostructures are irradiated with laser light, optical field enhancement takes
place. The laser electric field is substantially enhanced in the vicinity of the surface of
structures smaller than the wavelength. An important class of nanostructures are nanotip
electron emitters [17]. Here optical field enhancement factors of about 10 notably alleviate the
requirements on the laser system for strong-field photoemission experiments [10, 11, 18, 19].
Enhanced laser electric fields of the order of 0.02 au (10 GV m−1) and more have been reached
experimentally with gold and tungsten nanotips. As an additional benefit, high static electric
fields are easily achievable and facilitate conceptionally simple imaging techniques of the
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Figure 1. Setup for nanotip-based photoemission experiments. Laser pulses from
a Ti:sapphire oscillator are tightly focused on a tungsten tip with an off-axis
parabolic (OAP) mirror. Photoelectrons are detected either with an MCP detector
that provides spatial resolution or with a retarding field spectrometer.

emitter surface by virtue of field emission microscopy (FEM) [20] and field ion microscopy
(FIM) [21], the latter with atomic resolution.

Laser–nanotip interactions are therefore ideally suited for exploring the influence of
additional static electric fields. In the following, we explore both experimentally and
theoretically the influence of a superimposed dc field on the formation of the photoelectron
spectrum and the plateau, the hallmark of rescattering of a strongly driven electron wavepacket.
For a tungsten tip the experimentally observed electron spectrum can be surprisingly well
‘synthesized’ by a remarkably simple model which can be viewed as the extension of the
well-known simple man’s model (SMM) to the nanotip geometry. It turns out that, despite the
apparent complexity of the target, the SMM for nanotips (SMMN) is conceptionally simpler
than for atoms or molecules due to the effective reduction of the dynamically relevant degrees
of freedom.

2. Experimental methods and results

The experimental setup is described in detail in [19], so we only give a brief overview here. In
our experiment, ∼6.5 fs (full-width at half-maximum (FWHM) intensity) laser pulses generated
by a Ti:sapphire oscillator at a repetition rate of 80 MHz are tightly focused on the apex of a
sharp tungsten tip (see figure 1). In this experiment, the carrier–envelope phase (CEP) of the
laser pulses is not stabilized and therefore random from pulse to pulse. CEP effects as reported
in [10] are not the main focus of this investigation. The tip is fabricated from a single crystal
tungsten wire in (310) crystallographic orientation. The radius of curvature at the tip apex
is about r ≈ 8 nm as determined from FIM images with the ring counting method [21]. The
typical dimensions of the tip apex are hence much smaller than the focal spot size of ∼2.4µm
(1/e2 intensity radius) and the central laser wavelength of 800 nm, so we expect optical field
enhancement to occur at the tip surface.

Two interchangeable electron detectors can be used, a micro-channel plate (MCP) detector
and a retarding field spectrometer. The MCP detector gives access to high-magnification
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stereoscopic imaging of the electron emission sites and of the atomic structure of the tip surface
with the FEM and FIM techniques. If the retarding field spectrometer is placed in front of the
tip, energy spectra of electrons emitted in the forward direction can be recorded. In this case, the
tungsten tip is grounded and the entrance aperture of the spectrometer is biased with a positive
extraction voltage U . This potential difference gives rise to an electric field of magnitude

Fdc = −
U

kr
(1)

at the surface of the tip apex. Equation (1) differs from the field at the surface of a charged sphere
with radius r only by the dimensionless field reduction factor k. k accounts for the deviation of
the shape of the tip from a sphere (mainly the tip’s shank) and for the presence of the detector
located at a distance d [21]. k is difficult to determine accurately because the shape of the tip
apex is not precisely known.

The voltage-to-field conversion factor kr can be deduced from the field emission
characteristics of the tip. For this purpose we record the field emission current J as a function of
extraction voltage U with the spectrometer. Field emission follows the Fowler–Nordheim (FN)
equation (see, e.g., [20, 22]). It is of the form

J (Fdc)∝
1

t2(y)
F2

dc exp

{
−

4
√

2

3
v(y)

W 3/2

|Fdc|

}
, (2)

where W is the metal work function and y =
√

|Fdc|/W is the Nordheim parameter. The
dimensionless Nordheim functions t (y) and v(y) (see, e.g., [23]) both approach 1 as y → 0.
Measuring J (U ) and displaying the data in an ln(J/U 2) versus 1/U plot (so-called FN
plot) approximately yields a straight line with a slope s corresponding to the argument of
the exponential function in equation (2). The factor kr can then be determined from s and
equation (2) by

kr = −
3

4
√

2
·

s

v(y)W 3/2
. (3)

From measurements of the field emission current J (U ) performed before and after spectral
measurements we deduce kr = (162 ± 11) nm with W = 4.5 eV and v(y)= 0.77 ± 0.04. The
latter value of v(y) was deduced with the help of an iterative scheme [24]: we start with the
assumption v(y)= 1, calculate a (preliminary) factor kr with equation (3), then determine Fdc

from the average voltage U used to record the FN plot and finally calculate the Nordheim
parameter y and v(y) and repeat this procedure until convergence. In spectral measurements
we found, however, that the effective barrier height increases within an hour after cleaning
the tip [10, 19], presumably due to adsorbates. If we perform the above-mentioned analysis
an increased barrier height Weff results in a lower value for kr and ultimately in a higher
field magnitude for a given voltage U . From spectral measurements we extract roughly
Weff ∼ 6 eV [10] that results in kr = 105 nm. Due to the uncertainty in Weff we estimate that
kr = (125 ± 40) nm.

A series of spectra was recorded for gradually increasing laser intensities I0 =

{0.55, 0.72, 0.89, 1.1, 1.3} × 1011 W cm−2 at a fixed extraction voltage of U = 50 V,
corresponding to a static electric field of Fdc = −(8 ± 2)× 10−4 au (∼ − 0.4 GV m−1; figure 2).
At the lowest laser intensity, above-threshold photoemission (ATP) peaks are observed on top
of an overall exponential decay [19]. The first photon peak at energy E ≈ 5.6 eV corresponds
to 4-photon photoemission. For higher intensities a radical change takes place: at energies
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Figure 2. Photoelectron spectra for different laser intensities at a fixed extraction
voltage U = 50 V (Fdc = −0.4 GV m−1). From the bottom to the top, the curves
are taken at nominal laser intensities {0.55, 0.72, 0.89, 1.1, 1.3} × 1011 W cm−2.
Energies are measured relative to the Fermi energy EF. With increasing intensity,
a plateau builds up at an energy E > 9 eV. It is more pronounced than the plateau
reported in [11] because the static field strength |Fdc| is smaller here (0.4 versus
0.7 GV m−1). The tip radius is ∼8 nm (in [11]: ∼6 nm). Inset: cut-off position
as a function of laser intensity (solid line: linear fit of the four data points with
highest intensity). See the text for details.

E>9 eV, a pronounced plateau structure builds up with increasing intensity. For the highest
laser intensity measured, the count rate stays almost constant between 10 and 15 eV. It is
more pronounced than the plateau reported in [11] because |Fdc| is smaller here (−0.4 versus
−0.7 GV m−1, tip radii ∼8 nm versus ∼6 nm). The plateau structure is a hallmark of electron
rescattering [25], here taking place at the surface of the metal tip [11]. Beyond the plateau part
we observe a sharp drop-off of the count rate. This kink can be identified with the (classical)
cut-off energy Ecut of rescattered electrons [3] and is given by the maximum kinetic energy a
rescattered photoelectron can reach according to a classical description of electron propagation
and scattering at the surface (in close analogy to the SMM for atoms [2]). An electron can reach
a maximum kinetic energy of Ecut = 10 Up, with Up being the ponderomotive energy:

Up =
F2

eff

4ω2
=

Ieff

4ω2
. (4)

Up gives the mean quiver energy of an electron in a laser field of amplitude Feff and photon
energy ω. Ecut should therefore scale linearly with intensity Ieff. The intensity dependence of
the position of the kink (inset of figure 2) confirms an approximately linear scaling and yields a
slope of (6.1 ± 0.3) eV/1011 W cm−2. Assuming the validity of Ecut = 10 Up + const, however,
yields a slope of 5.5 eV/1013 W cm−2, indicating an intensity enhancement of more than two
orders of magnitude or, equivalently, a field enhancement of about 10. This is corroborated
by a numerical solution to the time-dependent Maxwell equations near nanotips, yielding an
enhancement factor of the same order of magnitude (figure 3).
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Figure 3. Photoelectron spectra for different static electric fields at a fixed
nominal intensity 1.1 × 1011 W cm−2. The curves are taken at extraction voltages
from 50 to 183 V, corresponding to effective electric field strengths at the tip from
Fdc = −0.78 to −2.8 × 10−3 au (from −0.4 to −1.5 GV m−1, see the legend).

Unlike for atomic spectra it is now straightforward to experimentally explore the influence
of a dc field on the ATP and plateau spectra by simply increasing the extraction voltage U .
A series of spectra recorded at a fixed laser intensity of I0 = 1.1 × 1011 W cm−2 (nominal peak
electric field F0 = 1.8 × 10−3 au, not including field enhancement) for different voltages U
corresponding to effective field strengths ranging from |Fdc| = 0.78 to 2.8 × 10−3 au (from −0.4
to −1.46 GV m−1) reveals strong changes in the electron emission (figure 3).

Firstly, the spectral onset shifts to lower energies with an additional above-threshold photon
peak becoming visible at energy E ≈ 4.5 eV. This results from the lowering of the surface barrier
(Schottky effect [26]). In line with the Fowler–Nordheim theory [27] for field emission and
assuming an asymptotic −1/4z image potential superimposed on the static potential zFdc, the
lowering of the surface barrier height corresponds to

1W (Fdc)= −
√

|Fdc|. (5)

Secondly, the plateau becomes increasingly ‘tilted’ and is expected to eventually disappear
for large Fdc. The cut-off energy Ecut of the plateau appears to be only weakly dependent on Fdc,
with a slight shift towards lower energies as the field strength |Fdc| increases.

3. The simple man’s model for nanotips

We present in the following a remarkably simple model that can account for the main
qualitative features of the ATP and plateau formation in electron-emission spectra from laser-
driven nanotips. This phenomenological description can be viewed as an extension of the
SMM [28, 29] to the case of nanotips (SMMN) and possibly to other nanostructures as well.
Despite the obvious complexity of the target compared to atoms in the gas phase, several
specific geometric and dynamical features aid in the simplification such that the resulting
model becomes even simpler than its atomic analogue. This fact underscores the notion that
laser–nanotip interaction may serve as a testing ground for strong-field processes.
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Figure 4. Sketch of the SMM for nanotips and the step-by-step formation
of a typical spectrum. The laser electric force (orange) leads to emission of
electrons near its maxima (large-amplitude wavepackets |1〉 and |3〉), generating
the ‘direct’ spectrum (b). A fraction of the wavepackets returns to the surface
and is backscattered, resulting in rescattered wavepackets with a larger central
momentum (small-amplitude wavepackets |2〉 and |4〉; (c)). Repetition of these
processes after multiples of one laser period T leads to interferences, that
manifest themselves as ATP (see text).

One key ingredient is the locally enhanced electric field near the tip, which confines
electron emission to the tip apex (r ∼ 10 nm � k = 800 nm). This region is still much larger
than the characteristic length of the electron wave functions (Fermi wavelength ∼0.1 nm).
Therefore, translational symmetry of the electron subsystem is approximately conserved in
the surface plane, allowing for a quasi-one-dimensional treatment along the surface normal z
with a spatially homogeneous laser field that includes field enhancement. In the following, we
include enhancement into the effective electric field. Since the quiver amplitude at the driving
wavelength and field strength is small compared to the spatial near-field decay profile of the
enhanced field, its local variation is neglected. Another key feature is the effective screening of
the driving field inside the solid (z < 0), leading to a drastic reduction of the number of paths to
be included in the SMMN (figure 4(a)).
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Accordingly, electrons are photoemitted by the laser electric field around the field maxima
and driven away from the tip. A fraction of them will be driven back towards the surface as
the laser electric field changes sign and are rescattered from the topmost atomic layer. These
electrons reach higher kinetic energies and are responsible for the plateau and cut-off parts of
the spectra. Interferences in the energy spectra develop due to the repetition of the process after
multiples of the laser period T . These processes can be conveniently parameterized by a linear
combination of Gaussian wavepackets for the direct and rescattered wavepackets.

The time-dependent Schrödinger equation in momentum space for a laser pulse in dipole
approximation described in the velocity gauge by its time-dependent vector potential A(t)=

−
∫ t

−∞
F(t ′)dt ′ reads

i∂tφ(p, t)=
(p + A(t))2

2
φ(p, t), (6)

where the instantaneous velocity (kinetic momentum) v is related to the (canonical) momentum
p as v = p + A(t). The time evolution of a wave function from time t1 to time t2 is accordingly
given by the so-called Volkov propagator [30], which is diagonal in momentum space:

ψ(p, t2)= exp
(
−iSp(t2, t1)

)
ψ(p, t1), (7)

where the Volkov phase

Sp(t2, t1)=

∫ t2

t1

1

2
(p + A(t))2 dt (8)

is given by the classical action integral. Quantum–classical correspondence is invoked here on
two different levels. First, according to Ehrenfest’s theorem the time evolution of the expectation
values of velocity and position

〈v(t2)〉 = 〈v(t1)〉 − A(t1)+ A(t2), (9)

〈x(t2)〉 =

∫ t2

t1

〈v(t ′)〉dt ′ + 〈x(t1)〉 (10)

follow the Newtonian equations of motion of a point charge in a laser field. Secondly, according
to (7), the individual momentum components p of a wave function acquire a phase according
to their time-dependent kinetic energy v2/2 = (p + A(t))2 /2, which is that for a classical point
charge following Newton’s equations of motion (9).

It is instructive to analyse the terms contributing to the phase of the wave function
according to the action integral (8) for a monochromatic vector potential, A(t)=

−(Feff/ω)sin(ωt):

Sp(t2, t1)=

{
p2

2
t +αq p cos(ωt)+ Up

[
t −

1

2ω
sin(2ωt)

]}∣∣∣∣t2

t1

. (11)

In addition to the first term associated with the energy, the momentum components acquire
phases associated with the quiver motion of amplitude αq = Feff/ω

2 in the laser field as well as
a constant and a time-dependent energy shift proportional to the average kinetic energy of an
electron in a laser field, Up = (Feff/2ω)

2.
For modelling electron emission and rescattering according to the SMM, we consider the

time evolution of a Gaussian wavepacket launched at time t1 with expectation value p1 = 〈p〉

and momentum width σp,

ψG(p, t, t1)= e−(p−p1)
2/4σ 2

p e−iSp(t,t1) e+i|W |t1, (12)
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where the Gaussian momentum spectrum is centred at the initial velocity v1 = p1 + A(t1).
Prior to the emission at t1, the evolution of a bound state at the Fermi energy EF is
determined by the initial energy −W , while the subsequent time evolution is given by
equation (7).

For tunnelling at an electric field maximum (direct part), we expect vanishing velocity at
the tunnel exit and vanishing vector potential because the field is extremal so that p1 = 0,

ψd(p, t, t1)= e−p2/4σ 2
p e−iSp(t,t1) e+i|W |t1, (13)

and the associated momentum spectrum for this direct part after the end of the pulse is

|ψd(p)|
2
= e−p2/2σ 2

p , (14)

leading to an exponentially decaying energy spectrum with a decay constant 1/σ 2
p . An estimate

of the longitudinal momentum distribution σp of emitted electrons for a given Keldysh parameter
γ =

√
2Wω/Feff has been given in [31]. It reduces to the ADK formula [32] in the tunnelling

regime γ � 1:

P(p)= P0 exp
(
−p2c1(γ )/ω

)
(15)

with

c1(γ )= Arcsinh(γ )− γ (1 + γ 2)−1/2. (16)

Consequently, σ 2
p = ω/2c1(γ ). The (effective) work function W entering the Keldysh parameter

may become dependent on Fdc for strong static fields (see below). Inserting the experimental
values for the work function (W ' 4.5–6 eV) and the effective electric field (Feff ' 0.02 au
from the position of the cut-off, see below), we obtain for the width σp ' 0.26–0.23 in good
agreement with the experimental spectrum of direct electrons (without rescattering) for the
weakest extraction field of σp = 0.225 (figure 4(b)).

Subsequently, part of the emitted wavepacket is driven back to the surface when the
laser field changes sign. We incorporate rescattering by making the approximation that all
components of the wavepacket are elastically scattered at the same time t2, reversing the velocity
(or kinetic momentum p + A(t2)) v(t2)→ −v(t2). This gives rise to a displacement of the wave
function in momentum space

p(t = t2 + ε)= −p(t = t2 − ε)− 2A(t2). (17)

The Gaussian wavepacket ψr tunnelled at t1 and reflected at t2 reads

ψr(p, t, t2, t1)= e−[p+2A(t2)−A(t1)]2/4σ 2
p e+i|W |t1 e−iS−p−A(t2)(t2,t1) e−iSp(t,t2). (18)

The momentum spectrum at the conclusion of the pulse is then

|ψr(p)|
2
= exp

(
−(p + 2A(t2)− A(t1))

2/2σ 2
p

)
, (19)

a Gaussian with displaced average momentum

pr = 〈 p̂〉 = 2A(t2)− A(t1) (20)

depending on the moment of emission and rescattering according to Newton’s equation
of motion (9). The classical cut-off energy derived in the SMM for atoms follows from
maximizing (20) while constraining the rescattering time t2 to times where the wavepacket
emitted at t1 is in the vicinity of the surface 〈x(tr)〉 = 0, yielding for a harmonic vector potential
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pr = max(2A(t2)− A(t1))

p2
r /2 = 10.0Up (21)

with optimal emission time t1 = 0.0415T and rescattering time t2 = 0.727T .
Since the direct (d) and rescattered (r) portions of the wave function are well separated in

momentum space, they can be added incoherently

|ψ(p)|2 = |ψd(p)|
2 + |ψr(p)|

2 (22)

without introducing a significant error. We note that for suitable pulse shapes the distance
in momentum space between the direct and rescattered parts can be reduced, giving rise to
additional interference effects. The resulting spectrum is shown in figure 4(c), showing already
the plateau structure characteristic of rescattering. We note that our model predicts that the
momentum width σp of the direct and rescattered wave functions is the same because there
is no broadening process included. For the description of the experimental spectra, however,
we find that the momentum width of the rescattered part is roughly by a factor of two larger
than that of the direct part. Broadening could be accounted for by allowing for a distribution
of rescattering times t2. Another broadening mechanism would be the energy dependence of
the backscattering amplitude, which could be included into the model by multiplying (18) by a
reflection amplitude R(p) exp (iδ(p)) with a scattering phase δ(p).

The characteristic peaks in the ATP spectrum of the direct part now follow from a coherent
superposition of otherwise identical wavepackets launched at times t j delayed relative to each
other by multiples of the period T

ψATP
d (p, t)=

∑
j

cd; jψd(p, t, t j). (23)

For simplicity we restrict the sum in (23) to two terms (packets |1〉 and |3〉 in figure 4(a)). The
total wave function for the direct part then reads (for simplicity assuming a maximum of the
electric field at t = 0)

ψATP
d (p, t)= cd;1ψd(p, t, 0)+ cd;2ψd(p, t, T ), (24)

ψATP
d (p, t)= e−p2/4σ 2

p
(
cd;1e−iSp(T,0) + cd;2 e+i|W |T

)
e−iSp(t,T ), (25)

where the propagation after the ejection of the second wavepacket (t > T ) only yields a global
phase that drops out upon taking the absolute value. The corresponding momentum spectrum
is, upon evaluating Sp(T, 0) for the vector potential (11),

|ψATP
d (p)|2 = e−p2/2σ 2

p

{
c2

d;1 + c2
d;2 + 2cd;1cd;2 cos

[(
p2

2
+ Up + W

)
T

]}
, (26)

giving rise to ATP peaks at (figure 4(d))

Ekin + Up + W = nω. (27)

Analogously, the train of rescattered wavepackets yields a momentum spectrum

|ψATP
r (p)|2 = e−(p−pr)

2/2σ 2
p

{
c2

r;1 + c2
r;2 + 2cr;1cr;2 cos

[(
p2

2
+ Up + W

)
T

]}
(28)

with the same interference phase. We note that the precise value of the interference phase
depends sensitively on the pulse shape (equation (11)). For short pulses the timing between

New Journal of Physics 14 (2012) 085019 (http://www.njp.org/)

http://www.njp.org/


11

emission and rescattering of the rescattered wave function may change between bursts, leading
to an additional phase shift and a time spacing between rescattered wavepackets that is slightly
different from the laser period T in (28). In figure 4(e), the phase shift is ∼π/6 and the repetition
time is ∼0.93 T .

The resulting spectrum (figure 4(e))

|ψATP(p)|2 = |ψATP
d (p)|2 + |ψATP

r (p)|2 (29)

resembles the experimental data amazingly well. It should be noted that the SMMN can be
used to investigate the laser nanotip interaction along two different lines. One can either fit the
experimental spectrum to equation (29) and deduce from the extracted value for pr the effective
field enhancement and, thereby, possibly even the tip geometry. In the present case, the fit to
the data gives pr ≈ 0.8 and equation (21) implies Feff = 0.021 au. Conversely, one can use the
field enhancement as derived from the solution to Maxwell’s equations near the tip, assuming a
known geometry of the tip, and predict the spectrum via equations (21) and (29), thereby testing
the ingredients of this elementary strong-field model. Its success hinges, in part, on the fact that,
in contrast to ATI spectra from single atoms, fewer classes of trajectories contribute to the total
spectrum due to broken symmetry at the metal surface. The laser field is strongly screened inside
the solid (dashed grey lines in figure 4(a)). On the one hand, electrons that return to the surface
but are not backscattered and enter the bulk experience no further significant interaction with the
laser field and do not contribute to the total spectrum. On the other hand, there are no trajectories
launched toward the inside of the solid. In laser–atom interactions, trajectories taking off during
the same cycle in opposite directions give rise to intra-cycle interferences [33]. The reduction to
only two types of trajectories for nanotip targets greatly simplifies the interpretation of electron-
energy spectra.

It is now instructive to enquire into the effect of an additional static field Fdc as predicted
by the SMMN outlined above. To leading order the static field will decrease the surface barrier
height

W → W (Fdc)= W −
√

|Fdc|. (30)

This leads to a lowering of the threshold for photoemission (equation (27)) and to the
appearance of an additional multi-photon peak below the zero-field threshold at E ≈ 4.5 eV.
In addition, through the dependence of the width of the longitudinal momentum distribution
on W (equation (15)), the presence of a static field Fdc is expected to lead to a broadening
of the tunnelling momentum distribution and to a reduced slope of the direct part of the
spectrum. Finally, the SMMN predicts a (slight) decrease of the cut-off energy Ecut ≈

10 (Feff − |Fdc|)
2 /4ω2 since the presence of the dc field effectively reduces the kinetic energy

and momentum of the returning electron at the moment of rescattering. All the predicted trends
are in agreement with the experimental data.

4. Time-dependent density functional theory simulations

The phenomenological SMMN wavepacket model outlined above yields qualitative insight into
the formation of the spectrum and provides estimates of parameter dependences in qualitative
agreement with the experiment. Clearly, for a thorough understanding of the contributing
processes a microscopic model incorporating the solid-state properties of the target is required.

We employ time-dependent density functional theory (TDDFT) [34–37] in one dimension,
treating the coordinate along the surface normal z as the reaction coordinate. A detailed
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description was given in [11]. Briefly, the time-dependent electron density n(z, t) is expanded
using the one-body Kohn–Sham pseudo wave functions ψk(z, t)

n(z, t)=

nocc∑
k=1

ak|ψk(z, t)|2, (31)

where nocc ≈ 50 is the number of occupied orbits up to the Fermi energy with weight coefficients
ak derived from the projection of the 3D Fermi sphere onto the tip axis [38]. Basic properties
of the electron gas are determined by the Wigner–Seitz radius chosen as rs = 2.334 au, giving
a realistic Fermi energy of EF = 9.2 eV. The width of the jellium slab is approximately 200 au.
The time evolution of the electronic density is governed by the time-dependent Kohn–Sham
equations

i∂tψk(z, t)=

{
−

1

2
∂2

z + V [n(z, t)] + Vext(z, t)

}
ψk(z, t). (32)

The external potential due to the laser pulse is given in dipole approximation Vext(z, t)=

zFeff(t)+ zFdc where the laser field Feff(t) includes the field enhancement near the nanotip.
V [n(z, t)] contains the ground-state jellium potential and the response of the material to the
external fields in terms of the electrostatic and exchange-correlation potentials. For the latter we
assume the local density approximation (LDA) in the Perdew–Zunger parameterization [39]. To
allow for rescattering at the atomic cores of the topmost target layer (i.e. the momentum reversal
v(t2)→ −v(t2)) an additional potential simulating the atomic cores near the surface is added.

The time-dependent Kohn–Sham equations (32) are integrated in real space by the
Crank–Nicolson method with a constant time step of 0.05 au up to a simulation time of typically
120 fs (∼5000 au). The total size of the simulation box is 1425 au (9500 grid points) with
absorbing boundary conditions to avoid unphysical reflections due to the finite size of the
system. Electron emission spectra are determined [40] by a temporal Fourier transform of the
wave functions at a computational detection point far from the surface (∼900 au) in order to
ensure that the laser pulse has terminated at the time of arrival of even the fastest electrons.
Calculated spectra are broadened by 0.5 eV to match the experimental spectrometer resolution.

A typical result (figure 5) for the induced density fluctuations1n(z, t)= n(z, t)− n(z, t =

−∞) corresponding to experimental parameters (laser intensity I0 = 1.1 × 1011 W cm−2
→

Feff = 0.02 au, surface extraction field Fdc = −1.9 × 10−4 au = −0.1 GV m−1, pulse length
(FWHM intensity) of 6.4 fs, photon energy h̄x = 0.057 au and carrier–envelope phase φCEP =

+π ) displays the ‘pulsed’ electron emission into vacuum (z > 0) near the field maxima (solid
arrows). As the laser field changes sign, electrons are driven back towards the surface. They
rescatter from the surface approximately at the zero crossings of the electric field (maxima of the
vector potential, not shown), visible as interferences of steep slope (marked by dashed arrows).
In this space–time plot, a large slope indicates high velocity representing high-energy electrons
contributing to the plateau in the spectra. The fading of the density with increasing distance from
the surface is due to the longitudinal spread of the wavepackets in time. The process repeats itself
at subsequent field maxima. Even though the effective Keldysh parameter γeff ≈ 1.9 (including
field enhancement; the nominal γ0 is even larger) is outside the tunnelling regime (γ � 1),
emission bursts near the two central field maxima are clearly observable, qualitatively validating
the SMMN wavepacket model. The time grating (or time double slit) leads to interferences in
energy (multi-photon peaks), which are visible as interferences in the density plot.

Inside the tip (z 6 0), the laser field induces density fluctuations that screen the external
laser field. The induced density inside the solid is approximately two to three orders of
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Figure 5. TDDFT sample simulation. Top panel: absolute value of the time-
dependent induced electron density n(z, t)− n(z,−∞) (for comparison, the
bulk density is n0 = 1.88 × 10−2 au). The tip is located at z 6 0. Bottom panel:
time-dependent force exerted by the laser electric field (red) and the static field
(green), and the induced dipole moment (blue, in arbitrary units). Emission
happens mostly near the maxima of the electric field (vertical solid arrows).
Electrons are subsequently driven back to the surface and rescatter (vertical
dashed lines). Interferences in position space with increasing slopes (velocities)
are detected as equi-spaced multi-photon peaks in the energy spectra (tilted
arrows).

magnitude larger than the emitted part of the density but is still two orders of magnitude smaller
than the bulk electron density n0 = 1.88 × 10−2 au. Since on the electron time scale set by the
Fermi momentum kF ≈ 1 au the laser field varies very slowly (period T ≈ 110 au), this small
fraction of the electron density can almost adiabatically adjust to the external field, screening it
within a small surface layer of about 10 au. This is reflected in the induced dipole moment (blue
line in figure 5), which is almost in phase with the driving field.

We now explore the dependence of the electron spectrum on laser intensity (or effective
laser field strength Feff) at a fixed extraction field Fdc (figure 6) and on extraction field
strength at a fixed laser intensity (figure 7). In our simulation we average over eight different
carrier–envelope phases since the CEP was not stabilized in the experiment. The build-up of
a plateau (figure 6) with increasing laser amplitude at the tip varying from Feff = 0.008 au
to Feff = 0.021 au (other laser parameters are the same as above) is clearly visible. From the
comparison between the reference experimental spectrum (black dots) and the simulated spectra
we can infer the effective peak field to be about F0 = 0.02 au, in good agreement with the
experimental estimate (Feff = 0.018 au) and the fit to the data according to equation (21). Other
features of the experimental data (threshold energy, slope of direct part, plateau and cut-off) are
equally well reproduced.
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Figure 6. Simulated spectra for varying laser field strength Feff from 0.008 to
0.021 au. Best agreement between experimental (black dots) and simulated data
is found for Feff ≈ 0.02 au.

Figure 7. Comparison of simulated spectra (lines, upper graphs) and
experimental results (thin lines, lower graphs) for varying static field Fdc, shifted
vertically relative to each other for clarity.

The comparison between theory and experiment for varying static field strength Fdc

(figure 7) reproduces the main features of the experiment and the predictions of the SMMN.
In agreement with the data, the threshold moves to lower energies when the effective work
function is reduced (the Schottky effect). The slope of the direct part is reduced with increasing
static field because the momentum distribution of tunnelling electrons changes. The high-energy
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cut-off, on the other hand, remains almost unchanged as long as the static field is much smaller
than the laser amplitude.

The shift in the threshold energy allows for a quantitative comparison between
experimental dc voltage and the simulated (enhanced) static field effective at the surface, Fdc.
The best agreement is found for Fdc = −0.2 to −0.3 GV m−1 in good agreement with the
experimental value of Fdc ≈ −(0.4 ± 0.1)GV m−1 for U = 50 V.

In the plateau part of the spectrum, we observe, however, a qualitative difference between
simulation and experiment. While in the experiment an increasing static field mainly reduces
the visibility, in the simulation the main effect of an increased field is a shift in peak positions
without a decrease in peak visibility. The origin of this difference remains to be investigated.
We note that both of these effects should be sensitive to details of the phase of the electron wave
functions near the surface.

5. Conclusions

We have both experimentally and theoretically investigated the electron emission spectrum in
laser–nanotip interactions at nominally moderate laser intensities. Due to field enhancement
near the nanotip this system has proved to be an excellent testing ground for strong-field
phenomena. In particular, effects of the superposition of a dc field and the laser field can
be conveniently demonstrated. We have shown that a model akin to the SMM for atomic
and molecular targets can both qualitatively and quantitatively describe the electron spectrum
remarkably well. For nanotips this model is, to a certain degree, conceptually even simpler than
its atomic analogue because of the effectively reduced dimensions and the smaller number of
effectively contributing paths. We have validated this SMMN by TDDFT simulations. Overall,
we find surprisingly good agreement with experimental data considering the complexity of the
target. Remaining discrepancies are likely related to oversimplifications of the surface potentials
employed.
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