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Abstract

The Mediator is a highly conserved, large multiprotein complex that is involved essentially in the regulation of eukaryotic
mRNA transcription. It acts as a general transcription factor by integrating regulatory signals from gene-specific
activators or repressors to the RNA Polymerase II. The internal network of interactions between Mediator subunits that
conveys these signals is largely unknown. Here, we introduce MC EMiNEM, a novel method for the retrieval of functional
dependencies between proteins that have pleiotropic effects on mRNA transcription. MC EMiNEM is based on Nested
Effects Models (NEMs), a class of probabilistic graphical models that extends the idea of hierarchical clustering. It
combines mode-hopping Monte Carlo (MC) sampling with an Expectation-Maximization (EM) algorithm for NEMs to
increase sensitivity compared to existing methods. A meta-analysis of four Mediator perturbation studies in
Saccharomyces cerevisiae, three of which are unpublished, provides new insight into the Mediator signaling network.
In addition to the known modular organization of the Mediator subunits, MC EMiNEM reveals a hierarchical ordering of
its internal information flow, which is putatively transmitted through structural changes within the complex. We identify
the N-terminus of Med7 as a peripheral entity, entailing only local structural changes upon perturbation, while the C-
terminus of Med7 and Med19 appear to play a central role. MC EMiNEM associates Mediator subunits to most directly
affected genes, which, in conjunction with gene set enrichment analysis, allows us to construct an interaction map of
Mediator subunits and transcription factors.
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Introduction

The Mediator, first discovered by Kim et al. (1994) and Koleske

et al. (1994) [1,2], is a large multiprotein complex which is highly

conserved in eukaryotes [3]. Yeast Mediator consists of 25

subunits, organized in 4 different modules: head, middle, tail,

and kinase module. It is a general transcription factor (TF) that

acts as an interface between gene-specific transcription factors and

the core transcription machinery (e.g., Polymerase II). Mediator is

required for basal transcription as well as for activated transcrip-

tion or repression [4–6]. In the last years, many successful efforts

have been made to gain insight into both structural and functional

aspects [7–10]. However, though being a well-studied complex,

the Mediator still raises a number of unanswered questions: How

do the individual subunits contribute to the Mediator’s functions?

How is the regulatory information transferred within the Mediator

complex, and how does it convey these signals to the core

transcription machinery?

Recently, ‘‘structure-function’’ analyses have been suggested

and conducted by van de Peppel et al. (2005) and Koschubs et al.

(2009) [7,11]. In a clustering approach, they use expression profile

similarity as a proxy for physical interaction, respectively for

common module membership. Their method was strikingly

successful in identifying physical interactions between Mediator

subunits. However, it did not exploit the fact that their data

originated from active interventions into the cellular system. Such

interventions followed by phenotypic measurements of a cell, as

opposed to purely observational data, provide additional insight

into the functions and interactions of the respective gene products.

Along this line, perturbation experiments have been carried out

with low-dimensional readouts (such as cell viability or growth

[12,13]) as well as with high-dimensional phenotypes (such as

genome-wide expression or DNA binding measurements [14,15]).

While the reconstruction of regulatory networks from observa-

tional high-dimensional gene expression data has been investigat-

ed thoroughly, e.g., by Basso et al. (2005), Segal et al. (2003) and

Segal et al. (2005) [16–18], the statistical analysis and interpre-

tation of perturbation data is an active field of research [19,20].

Nested Effects Models (NEMs) are a class of probabilistic graphical

models which are tailored for the analysis of gene expression

perturbation screens [21–28] (see [29] for a summary). They have

been applied successfully to the ER{a pathway of human MCF-7
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breast cancer cells [29] and to a signaling pathway in Drosophila

melanogaster [21]. Here, we introduce MC EMiNEM, an efficient

and robust learning algorithm for NEMs. MC EMiNEM

combines a Markov Chain Monte Carlo (MC) sampling procedure

with an Expectation-Maximization (EM) algorithm in NEMs. The

MC EMiNEM method is freely available as a part of the R/

Bioconductor package nem. When applied to gene expression data

from various Mediator mutant strains, it reveals parts of the

functional architecture of the yeast Mediator complex. Moreover,

it predicts new interactions between its subunits and gene-specific

transcription factors.

Methods

Nested Effects Models
Nested Effects Models (NEMs) are probabilistic graphical

models designed for the analysis of gene expression data from

perturbation experiments. They are designed to reconstruct the

dependency structure of the perturbation signals, and they

perform particularly well if this structure is hierarchical [24].

The graph underlying a NEM contains two types of nodes: the

perturbed entities (the signals S) and the genes for which

expression has been measured (the effects E). The edges of that

graph describe the flow of regulatory information between the

nodes. NEMs split this flow into two parts: the signals graph H
containing the edges between the perturbed entities, and the

effects graph H describing the assignment of the effect nodes to the

signal nodes. We identify the graphs H and H with their respective

adjacency matrices H[f0,1gS|S , H[f0,1gS|E . The experimental

data is summarized in an S|E matrix D~(Djk), where Djk

corresponds to the expression data obtained from measurements

of effect k upon perturbation of signal j. NEMs aim at

reconstructing the signals graph, assuming a particularly simple

regulatory structure: The perturbation of a signal j implies the

perturbation of other signals that are children of j. This in turn

perturbs the effect nodes that are the children of the perturbed

signals in the effects graph (see Fig. 1). In other words, the NEM

predicts an effect of gene k upon perturbation in signal j exactly if

there is a two-step path from j to k, i.e., if (HH)jkw0. These

binary predictions (HH)jk of our model are then linked to the

actual measurements by specifying a probability model for the

individual effects gene measurements,

pjk~P(Djk Dj has an effect on k)~P(Djk D(HH)jkw0), and

qjk~P(Djk Dj has no effect on k)~P(Djk D(HH)jk~0)

There is extensive literature on the estimation of these two

distributions, see [30,31]. Instead of modeling the two distributions

separately, it is convenient to estimate their log ratio. For each

effect gene k, we perform a moderated t-test comparing its

expression after perturbation of signal j vs. its wild type expression.

A false discovery rate estimation procedure is then used to convert

the p-values of the moderated t-test into a log odds matrix

R~(Rjk)~log(
pjk
qjk

). This matrix can for instance be obtained

using the R/Bioconductor package limma (see Section S4.2 in Text

S1 for details) [32].

Consequently, a NEM is parametrized by the tuple

(H,H)[MS|ME , where MS is the space of binary S|S
matrices with unit diagonal, and ME5f0,1gS|E is the space of

effects graphs. We assume that the effects graph is sparse, such that

each effect is linked to at most one signal (i.e., each column of

H[ME equals either a unit base vector of dimension n, or the null

vector). According to Tresch et al. (2008) [25], the log posterior of

the signals graph is given by

log P(H,H DD)~trace(HHRT )zlogp(H,H)zconst ð1Þ

For a derivation of Equation (1), see also Section S1 in Text S1.

We assume edge-wise independent priors, p(H,H)~

pS(H):pE(H), and p(H)~Pi,j pS(Hij), pE(H.k)~Pk pE(H.k).

The problem of structure learning in probabilistic graphical

Figure 1. Example NEM. S~fX ,Y ,Zg, E~fa,b,c,:::,lg. Shaded
matrix fields Djk correspond to an expression change of effect gene
k upon perturbation of signal j, white fields indicate no change in
expression. The edges Y?X and Y?Z cause an effect in genes
directly attached to signal X and Z respectively, when Y is perturbed.
doi:10.1371/journal.pcbi.1002568.g001

Author Summary

Phenotypic diversity and environmental adaptation in
genetically identical cells is achieved by an exact tuning
of their transcriptional program. It is a challenging task to
unravel parts of the complex network of involved gene
regulatory components and their interactions. Here, we
shed light on the role of the Mediator complex in
transcription regulation in yeast. The Mediator is highly
conserved in all eukaryotes and acts as an interface
between gene-specific transcription factors and the
general mRNA transcription machinery. Even though most
of the involved proteins and numerous structural features
are already known, details on its functional contribution on
basal as well as on activated transcription remain obscure.
We use gene expression data, measured upon perturba-
tions of various Mediator subunits, to relate the Mediator
structure to the way it processes regulatory information.
Moreover, we relate specific subunits to interacting
transcription factors.

A Mediator Map by MC EMiNEM
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models is generally computationally hard (see [33]). A range of

methods has been proposed for the maximization of Equation (1). It

has been observed that it is very difficult to estimate the effects graph

H reliably. This is not surprising, since the adjacency matrix H has

the same dimensions as the data matrix D. It is therefore desirable to

reduce the number of effects a priori. Attaching a gene k that never

has a positive entry Rjkw0 to a signal never increases the posterior.

These genes are filtered out prior to the estimation. This step can

reduce the number of effects considerably (from about 6000 effects

to roughly 3000 in the case of the Mediator experiments).

Moreover, we extend the set of signal nodes by a so-called null

node, which formally corresponds to extending H by a null column.

Genes that attach to the null node hence are always predicted

inactive. This implements an automated feature selection mecha-

nism within the model (see also Section S4.2 in Text S1).

The main objective is the reconstruction of the signals graph H.

Several approaches try to maximize the (marginal) structure

posterior P(HDD) by integrating out the hidden parameters H (for

a methods review, see [29]). This marginalization however is a

time consuming step that increases the complexity of the respective

algorithms by at least a factor of DED, making the analysis of larger

effects sets (such as in microarray studies) slow or even impossible.

We avoid this drawback and develop an efficient Expectation-

Maximization (EM) algorithm for the optimization of the NEM

structure posterior (EMiNEM), which, even for large expression

data sets, is able to detect a local maximum within seconds. Since

the landscape of the structure posterior is rugged (Fig. S2.1 in Text

S1), we combine EMiNEM with mode-hopping Markov Chain

Monte Carlo (MC EMiNEM) for an efficient optimization of the

structure posterior. The MC EMiNEM method is freely available

as a part of the R/Bioconductor package nem [34–36]. It is easy to

use, and it does not require external parameters to be set

manually. The only parameter that might be tuned is the weight of

the sparsity prior, however moderate changes did not change the

outcome qualitatively (see also Sections S2.2 and S5 in Text S1). A

short introduction to MC EMiNEM is provided in the Supple-

ments (Section S5 in Text S1, see also the nem package vignette).

An Expectation-Maximization algorithm for NEMs
Throughout this section, the data D resp. the matrix R is

considered given and fixed. We want to find the maximum a

posteriori estimate ĤH for the signals graph,

ĤH~ argmax
H

P(HDD)~ argmax
H

X
H[ME

P(H,H DD) ð2Þ

This is the classical situation in which Expectation-Maximization is

applicable [37]. For excellent introductions to the EM-algorithm,

we recommend the tutorials of Minka (1998), Neal

et al. (1998) and Dellaert (2002) [38–40]. Briefly, given some guess

Ht for ĤH, the EM algorithm describes how to find an improved

guess Htz1 such that the sequence (P(HtDD))t~1,2,::: is monoton-

ically increasing, and converges (under mild additional assumptions

that are met in our case) to a local maximum of P(HDD).

The expectation (E-)step of the EM algorithm involves

calculating the expected log-posterior with respect to the

distribution of H, given the current guess Ht:

Q(H;Ht) ~ EP(H DD,Ht) log P(H,H DD)½ � ð3Þ

The maximization (M-)step of the EM algorithm then consists of

finding the maximizer Htz1~argmaxHQ(H;Ht). This is usually

a much easier task than solving Equation (2) directly. We derive an

analytical solution, which leads to an efficient closed-form update

step for Htz1:

Htz1
ab ~

1 if
P
k[E

RakpEbk exp((RTHt)kb)(Ak){1ztabw0

0 otherwise

8<
: for a,b[S

ð4Þ

with tab~log
pab

1{pab

and Ak~
Pn

j~1 pEjk exp(
Pn

i~1 RT
kiH

t
ij). A

precise definition of the variables contained in Equation (4),

together with a detailed derivation of this formula is deferred to

the Supplements, Text S1, as it involves elementary but tedious

calculations.

Sampling of the signal posterior’s local maxima
The EM algorithm is guaranteed to find a local maximum

which, for unimodal distributions, equals the global optimum. In

practice, the posterior landscape P(HDD) can be very rugged (see

also Fig. S2.1 in Text S1). The outcome of the EM algorithm may

therefore strongly depend on its initialization, and it may be far

from the global optimum (see also Fig. S2.2 in Text S1). This raises

the need to explore the set of local maxima provided by EMiNEM.

To that end, we introduce MC EMiNEM. In the classical

Metropolis-Hastings MCMC approach, consecutive parameter

samples :::,Hn,Hnz1,::: are drawn from the distribution P(HDD).
Given Hn, a random process generates a new proposal H’. The

Hastings ratio, a quantity that involves Hn and H’, then

determines the probability of acceptance (Hnz1~H’) or rejection

(Hnz1~Hn) of the new proposal. The MC EMiNEM algorithm

instead applies an EM step to each new proposal H’, which maps it

to the ‘‘nearest’’ local maximum ĤH0. The acceptance/rejection

step is then modified by plugging ĤHn and ĤH0 into the Hastings

ratio, instead of Hn and H’. We can show that the series of local

maxima :::,ĤHn,ĤHnz1,::: associated to the underlying Markov chain

:::,Hn,Hnz1,::: is approximately drawn from P(ĤHDD), where ĤH
ranges exclusively over the space of local maxima. MC

EMiNEM’s sampling scheme is illustrated in Fig. S2.3 in Text

S1. The details of the implementation as well as a theoretical

justification of this method are given in Section S2.2 and S2.3 in

Text S1, respectively. Similar so-called mode hopping approaches

have been established by Li et al. (1987), Neal et al. (1996), Wales

et al. (1997) and Sminchisescu et al. (2003) [41–44], with

applications in areas such as protein folding [45], nanocluster

structure analysis [46] and reconstruction of signaling pathways

[47]. Here, we provide a theoretical justification of their use.

An Empirical Bayes method for the estimation of the
signals graph

It is not obvious how the effects graph prior should be defined.

Being most conservative, pE can be chosen uniform, i.e.,

pE(H)~const for all effects graphs H[ME. The posterior

P(HDD) is then proportional to the marginal likelihood P(DDH):

On the other side, upon availability of precise prior knowledge, pE

can be chosen deterministic, i.e., pE(H)~
1 if H~Hprior

0 otherwise

�
, for

some fixed adjacency matrix Hprior. In this case, the posterior is

proportional to the full likelihood P(DDHprior,H). As a trade-off

between these two extremes, we initialize pE in a data-driven

fashion (based on R), namely

A Mediator Map by MC EMiNEM

PLoS Computational Biology | www.ploscompbiol.org 3 June 2012 | Volume 8 | Issue 6 | e1002568



pEk(H.k~v)!

pjk

pjkzqjk

~(1zexp Rjk){1 if v~ej , j[S

mean(
pjk

pjkzqjk

Dj[S) if v~0

8>><
>>:

,k[E ð5Þ

In an Empirical Bayes approach, we iteratively estimate P(HDD)
and P(H DD), and use these distributions as priors for the

estimation of the other quantity, respectively. Our Empirical

Bayes procedure is:

1. Initialize pE in a data driven fashion (Equation (5)); choose pS

uniform.

2. Generate a representative sample (ĤHi)i~1,2,::: from P̂P(HDD) by

mode-hopping MCMC, given the prior distributions pE and pS .

3. Rep lace pE(H) by
P

j P(H DĤHj ,D), which i s taken

as an approximation for P(H DD)~
P

H[M S P(H,HDD)~P
H[M S P(H DH,D):P(HDD). For more details, see Section

S2.4 in Text S1.

4. Repeat steps 2 and 3 until convergence (see Sections S3.2 and

S4.4 in Text S1).

Results/Discussion

Our goal was to establish MC EMiNEM as a general purpose

tool for the analysis of high-dimensional intervention data, and to

use MC EMiNEM for the reconstruction of the internal Mediator

complex signaling network. MC EMiNEM includes three key

features for an efficient and comprehensive search of the space of

candidate regulatory networks (Markov Chain Monte Carlo

sampling, in combination with Expectation Maximization, and

an Empirical Bayes method for the adaptive attachment of effects).

We show in simulations that all these features contribute

substantially to the method’s performance. Then we construct a

high-confidence regulatory network of Mediator subunits. The

predicted effects graph reveals interactions between the Mediator

and gene-specific transcription factors.

MC EMiNEM’s predictions are accurate in simulations
Extensive simulations were performed to ensure the conver-

gence of the MCMC chain, and to verify the independence of the

outcome from the initial parameter choice (see Section S2.2 in

Text S1). The prediction quality was assessed in seven parameter

settings for different noise levels and different numbers of signal

nodes, with 1200 observed effect genes and a total number of

0:7:DSD edges in the signals graph. For each of these scenarios, 50

NEMs were randomly sampled (for details see Section S3.1 in

Text S1). In each case, data was generated and afterwards

analyzed with various methods: a simple EMiNEM approach

without Markov Chain Monte Carlo sampling, the original NEM

score [21], the Nessy method [25] and a random sampling

approach (for details on the competing methods see Section S3.3

in Text S1). For all methods, the sensitivity strongly depends on

the noise level and the number of signal nodes (Fig. 2A). MC

EMiNEM performs best throughout all tested parameter settings,

except for low noise where Nessy achieves a similar sensitivity. The

specificity of all methods is very high, with a value above 98% in

all scenarios (see also Fig. S3.7 in Text S1). A comparison of the

method-specific run times is provided in Table S1 in Text S1. It

should be mentioned that EMiNEM itself is extremely efficient,

even for large numbers of effect nodes (one run for the Mediator

data took 0.1 s on a standard desktop computer). This efficiency is

a prerequisite that allows us to perform ten thousands of MCMC

steps in the MC EMiNEM algorithm in an acceptable time. For a

comparison of run times and scalability of the different methods,

see Table S1 in Text S1.

Adaptive attachment of effects improves prediction
quality

Our approach attempts to maximize the marginal posterior

P(HDD). This quantity implicitly depends on the effects graph

prior pE(H). Therefore, we seek a prior for which the true signals

graph Htrue scores on the top end of the distribution P(HDD). It

has been shown that NEM models are asymptotically consistent

and identifiable [25], i.e., given the true effects graph as a

deterministic prior pEtrue, the true signals graph will score best.

Thus, a well-chosen effects gene prior might greatly improve the

prediction outcome. We tested the following priors: a deterministic

prior according to the true effects graph, our Empirical Bayes

prior, the data-driven prior used for the initialization of the

MCMC sampling (see S2.4), and a uniform effects graph prior.

The quality of an effects graph prior is assessed in two ways: First,

we calculate the average L1-distance between the prior pE(H.k) to

the true prior pEtrue(H.k), where k[E, and normalize it by dividing

through the maximum gene-wise L1-distance, which is 2.

Secondly, we calculate the position of P(HtrueDD) within the

marginal posterior distribution P(HDD). Each posterior distribu-

tion was approximated by the empirical distribution of P(HDD) for

a random sample of 5000 signals graphs. This was done for the 50

NEM samples that were generated in the most realistic simulation

scenario (11 nodes, a~0:05, b~0:49, see Fig. 2 A). The results

show that the Empirical Bayes prior approaches the true prior

better than the other methods, according to the L1-distances.

Furthermore, the resulting posterior is better able to distinguish

between signals graphs and to identify the true one (the true graph

is located at the 99:1%, 99:4%, and 99:9% quantile for the

uniform, data driven and Empirical Bayes prior, respectively, and

at the maximum for the true effects graph; see Fig. 2 B).

MC EMiNEM predicts a robust Mediator subunit network
The 25 protein subunits of the Mediator are subdivided into 4

distinct modules (head, middle, tail, kinase, see Fig. 3). The tail

module is believed to establish the contact to the gene-specific

transcription factors, based on various TF binding domains, while

the head and middle module apparently contact Polymerase II

[48]. The kinase module is described as having mostly inhibitory

effects on gene expression [49]. The perturbation of a central

Mediator subunit can have severe consequences on the structure

of the whole Mediator complex. It may cause the loss of whole

modules or specific submodules [50–52]. The perturbation of a

peripheral component might have only local effects on the

Mediator structure and, consequently, have fewer effects on

transcription. From the structural organization of the Mediator,

we therefore expect a hierarchy of transcriptional effects upon

subunit perturbations, which makes NEMs a suitable tool for their

analysis. As a result of a NEM analysis, we expect the central

Mediator subunits that have widespread effects upstream in the

signals graph, whereas the more peripheral components should lie

downstream. Due to its role as a general transcription factor

involved in the formation of the transcription initiation complex, a

perturbation of the Mediator can entail global changes in gene

expression [53]. Such effects are completely removed by our

normalization procedure and can therefore not be detected. Note

that systematic variation in RNA extraction, RNA amplification,

A Mediator Map by MC EMiNEM
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labeling and scanner calibration make it generally impossible to

reliably detect global shifts in transcriptional activity by conven-

tional methods; the absolute quantification of transcription levels

requires new experimental techniques, e.g., as proposed in Sun

et al. [54]. Our focus in the present study, however, is on effects

that are due to the interaction of the Mediator with gene-specific

transcription factors. These effects are restricted to the target genes

of the interacting transcription factors. They superimpose to the

possible global effects of a Mediator perturbation, and hence

become visible only after removal of the global effects.

We generated expression profiles of S.cerevisiae Mediator subunit

deletion mutants dMed2, dMed15, dMed20, dMed31, which were

complemented by data from published intervention studies on the

Mediator. Those comprise mutations of Med7 (N- and C-terminal

deletion), and point mutants of Med10, Med19, Med20, Med21

(see S4.1). The raw data is available at ArrayExpress (accession

number E-MTAB-1037). Although there exist even more high-

quality gene expression data of Mediator mutants (e.g., [52,55]),

we restricted our analysis to experiments that were obtained on the

Affymetrix yeast 2.0 array under similar environmental conditions.

Luckily, some data were redundant in different experiments,

which enabled us to correct for batch-specific effects, and to

remove outlier genes (for data pre-processing, see Section S4.2 in

Text S1). After normalization and batch effect removal, a

straightforward application of the MC EMiNEM algorithm led

to identical results in 9 out of 10 independent MCMC runs; the

tenth run differed only by one edge (Fig. S4.1, Fig. S4.2 in Text

S1). The runs revealed a bi-directional edge assigned to the Med10

and Med21 nodes, which means that these two subunits are

indistinguishable in terms of their intervention effects. Their

attached effect genes are interchangeable without affecting the

model’s likelihood. Therefore, according to Tresch et al. (2008)

[25], we combine the two subunits and treat them as one node (see

Section S4.2 in Text S1). When Med10 and Med21 were

combined, 10 independent MC EMiNEM runs gave identical

signals graph predictions (Fig. 3). The corresponding attachment

of effects to signal nodes is provided in Dataset S1.

MC EMiNEM confirms the Mediator architecture
The predicted Mediator network (the signals graph in Fig. 3)

agrees well with current knowledge about the Mediator structure

[8,10]: When removing the downstream Med7N node, the signals

graph is separated into three connected components that reflect

the modular organization of the Mediator (middle module:

Med7C, Med19, Med10Med21, Med31; head module: Med20;

tail module: Med2, Med15). While the overall module organiza-

tion of the Mediator can also be recovered from a simple clustering

analysis (see Section S4.4 in Text S1), MC EMiNEM reveals a

much finer structure by assigning a directionality to each edge.

Med7N is downstream of all other nodes, indicating that among

Figure 2. Prediction quality and influence of the Empirical Bayes procedure. (A) Prediction quality. Comparison of the sensitivity of MC
EMiNEM and four alternative methods for four different noise levels (top) and four different signals graph sizes (bottom). The sensitivity is depicted on
the y-axis, each frame corresponds to one parameter setting. Top: For a signals graph of 11 nodes, noisy data was generated such that for an optimal
test with a type-I error (a-level) of 5%, a type II error (b-level) of 0:04%,20%,49%, and 66% would be achieved, respectively. Bottom: For a noise level
corresponding to an error level of (a~5%, b~49%), signals graph sizes of DSD~5,8,11,14 are investigated. We expect our application to range within
the four central scenarios. The comparisons of sensitivities is a fair comparison of the prediction qualities since the specificities for all methods and
parameter settings are located w98% (see also Fig. S3.7 in Text S1). (B) Influence of the Empirical Bayes procedure. Here, for the standard setting
DSD~11 and (a~5%, b~49%). The x-axis shows the calculated marginal posterior values P(HDD) centered at P(HtrueDD) (indicated by the dashed
vertical line), on the y-axis the frequency is displayed. In the table, the percentages of signals graphs scoring higher than Htrue are provided, as well as
the L1-distances (relative to the maximum).
doi:10.1371/journal.pcbi.1002568.g002

A Mediator Map by MC EMiNEM
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all perturbations that were applied, it has the fewest effects on

transcription. It shows that there is a set of effects (attached to

Med7N in the NEM) whose transcription depends on an entirely

intact Mediator complex. The middle module component consists

of a Med7C, Med10Med21 and Med19 upstream part, and a

Med31, Med7N downstream part. Again, this conforms to its

physical architecture: Med7C/Med10Med21 and Med7N/

Med31 form stable complexes [8]. We conclude that the former

are central architectural components, whereas the latter are

peripheral. Indeed, Med7N/Med31 are only weakly attached to

the middle module, and easily dissociate from it, whereas Med7C/

Med10Med21 are essential for its architecture [8]. The position of

Med19 yet is still unclear [56,57]. In our model, however, Med19

is clearly placed in the center of the middle module. The tail

module interacts with gene-specific transcription factors and is

structurally less analyzed [6]. The NEM includes an edge from

Med15 to Med2 and thus suggests a more central role for Med15

than for Med2, because the effects upon perturbation of Med2 are

a subset of the respective Med15 effects (see Fig. 4 and Fig. S4.3 in

Text S1).

MC EMiNEM provides a map of specific transcription
factor - Mediator interactions

Apart from an estimate of the internal flow of regulatory

information in the signals graph, MC EMiNEM returns a

posterior probability of the attachment of effect genes to specific

Mediator subunits (Fig. 4). The attachment of effects to signal

nodes in the NEM framework does not necessarily represent a

physical/direct interaction of the Mediator with the DNA. In the

case of the Mediator it is sensible to assume that the coupling is

mediated by transcription factors (TFs). We extend the analysis of

our Mediator network and infer the transcription factors by which

this coupling has been achieved (cf. [28]). We group the effect

genes according to their attachment to signal nodes and according

Figure 3. Mediator network inferred by MC EMiNEM, with associated transcription factors (the basic Mediator cartoon was
modified from [63]). The numbers of the Mediator subunits correspond to the unified Mediator nomenclature [64] and subunits that are part of
this study are enlarged and have saturated colors. The two subunits Med10 and Med21 were merged as explained in the main text. The N-terminus
and the C-terminus of Med7, which are represented by two individual perturbations in this study, are shown separately. Physically, they are
connected by a flexible linker [8]. The arrows between the Mediator subunits show the signals graph of our MC EMiNEM analysis, arrow colors
correspond to the module they originate from. The TFs surrounding the Mediator are the outcome of a gene set enrichment analysis of the MC
EMiNEM effects graph. TFs are grouped into gray areas which link them to the Mediator subunit for whose target genes they are enriched. For each
TF, minus resp. plus signs indicate whether their targets are down- resp. upregulated upon perturbation of the corresponding Mediator subunit. The
results of the gene set enrichment analysis were compared to known interactions between TFs and Mediator subunits in BioGRID [60,65]). Red: the
interaction with the corresponding Mediator subunit is known; orange: an interaction with a Mediator subunit in the same module is known; dark
yellow: confirmed interaction with the Mediator; white: no known interaction.
doi:10.1371/journal.pcbi.1002568.g003
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to the direction of expression change upon perturbation. A gene set

enrichment analysis for these 16 groups then reveals interactions of

gene-specific TFs with specific Mediator subunits/submodules. We

used the MGSA algorithm for the enrichment analysis [58], based

on the gene-TF assignment by Mac Isaac et al. (2006) [59] (see also

Section S4.3 in Text S1). Although the attachment of individual

effects to Mediator subunits is notoriously variable (see Fig. S3.5 and

S4.6 in Text S1), the gene set enrichment approach lends its

robustness from combining evidence from many attached genes.

The result is a map of TF-Mediator interactions, summarized in

Fig. 3 and listed in Table S2 in Text S1.

The 21 TF-Mediator subunit interactions mapped by MC

EMiNEM were validated using the BioGRID database [60]. Two

interaction pairs were known from the literature (YAP1-Med2,

SWI4-Med2). Another eight TFs were known to interact with a

Mediator subunit from the same module as the predicted

interacting subunit ([GLN3/SWI5]-Med7N, RPN4-Med7C,

[SKN7/STB5/INO4/HAP3]-Med10Med21, ASH1-Med2). An

interaction with the Mediator has been described for three more

TFs ([UME6/HAP4]-Med10Med21, SUM1-Med2), and eight

predicted interactions were new (MBP1-Med7C, [HSF1/SKO1]-

Med10Med21, [TEC1/YAP6/GTS1]-Med2, [FKH2/YOX1]-

Med7N).

All target genes of TFs associated with the tail module show

downregulation after perturbation, consistent with the tail’s

function to contact gene specific transcription factors [5]. The

same holds for the target genes of TFs associated with Med7N.

This is expected, as the genes attached to Med7N are those that

show an effect in all perturbations (Fig. 4) and therefore

presumably require a completely intact Mediator. The target

genes of TFs associated to the rest of the middle module show

expression changes in both directions, in accordance with the

middle module described as an ambiguous regulator [11].

Fig. 5 A) offers a TF-centric excerpt on the MC EMiNEM map

from Fig. 4. It drills in to the target genes of SKO1, which are

enriched in the set of upregulated genes attached to

Med10Med21. SKO1 is both a transcriptional activator and

repressor and forms a complex with the general repressor TUP1

(Saccharomyces Genome Database [61]). TUP1 in turn targets

Med21p [62]. A Mediator complex lacking this subunit might thus

not be able to forward repressive signals, resulting in upregulated

target genes of SKO1.

The transcriptional activator SWI5 has a large number of

physical interactions with subunits from various Mediator modules

(Med15, Med17, Med18, Med22, [61]). This suggests that any

change in the Mediator structure affects its interaction with SWI5.

Consequently, target genes of SWI5 should change their

expression upon any Mediator subunit perturbation. Fig. 5 B)

confirms this behavior of the SWI5 targets: MC EMiNEM

associates SWI5 to Med7N, because SWI5 targets are enriched in

the set of downregulated genes attached to Med7N, and these are

consistently downregulated in all perturbations.

Similar analyses were carried out for all TFs in the MC

EMiNEM map (Figure S1; lists of genes that contribute to the

respective TF enrichments are provided in Dataset S2). The most

striking observation is that the sign of a gene’s expression change is

consistent in virtually all perturbations for which MC EMiNEM

predicts an effect. Since our model is completely blind with respect

to the sign of regulation, the consistency in the direction of the

expression changes provides compelling evidence that the signals

graph reflects regulatory dependencies between Mediator subunits

which are likely to be caused by structural changes.

Conclusion
The reconstruction of interaction networks from high dimen-

sional perturbation effects is still a challenge. We have developed

MC EMiNEM, a method for the learning of a Nested Effects

Model. We introduced two major improvements, namely an

Expectation-Maximization algorithm for the very fast detection of

local maxima of the posterior probability function. Mode hopping

Markov Chain Monte Carlo sampling was then used for the

efficient exploration of the space of local maxima. We applied MC

EMiNEM to a combination of proper and public gene expression

data obtained from Mediator subunit perturbations. It turned out

that MC EMiNEM does not only shed light on structural

dependencies of Mediator subunits, it also identifies interactions

Figure 4. Effects graph inferred from the Mediator data. Shown are the log-odds ratios which serve as MC EMiNEM’s input. Genes that are
likely to change in a given condition are depicted in red,and they are blue otherwise. Color saturation indicates the absolute value of the log-odds
ratio (cf. Fig. S4.3 in Text S1). Rows correspond to Mediator perturbation experiments, columns correspond to genes, sorted according to their
attachment to Mediator subunits. Mediator subunits are colored as in Fig. 3 and Fig. 5.
doi:10.1371/journal.pcbi.1002568.g004
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of gene-specific transcription factors with Mediator subunits. Our

findings are consistent with the state-of-the-art knowledge about

the Mediator architecture and function. By grouping of compo-

nents with similar profiles, hierarchical clustering has proved

tremendously useful for the analysis of expression data obtained

from observational experiments. MC EMiNEM reaches beyond

the identification of undirected relationships; it resolves directed

regulatory structures, and it identifies gene groups with a

consistent and specific response pattern. For interventional data,

MC EMiNEM is thus the appropriate counterpart to clustering.

Supporting Information

Dataset S1 Attachment of effects to signal nodes. The

attachment of effects to signal nodes displayed in Figure 4. A tab-

separated text file, where the first column corresponds to the

Mediator subunit and the second column corresponds to the

attached gene.

(TXT)

Dataset S2 Gene set enrichment analysis. The lists of

genes that contribute to the respective TF-Mediator subunit

interactions derived from the gene set enrichment analysis (see also

Figure 3 and Figure 5). A tab-separated text file, where the first

column corresponds to the Mediator subunit, the second column

corresponds to the direction of expression change of the respective

gene set, the third column corresponds to the interacting TF and

the fourth column corresponds to the targets of the TF that are

attached to the respective Mediator subunit.

(TXT)

Figure S1 TF-Mediator subunit interactions. For each

TF-Mediator subunit interaction predicted by the gene set

enrichment analysis (see Figure 3), a figure similar to Figure 5 is

provided. For more information, please refer to the legend of

Figure 5.

(PDF)

Text S1 Additional information on methods and results.
This file provides additional information on methods and results

which go beyond the scope of this paper, including detailed

derivations of formulas.

(PDF)
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Figure 5. Gene set enrichment analysis. A) Expression changes of the target genes of SKO1 across all experiments. Experiments correspond to
rows; the respective Mediator subunit perturbations are indicated by the colored boxes to the left of the heat map (coloring is in accordance with the
Mediator module structure in Fig. 3). Target genes correspond to columns. If a target gene is attached to a Mediator subunit in the MC EMiNEM
effects graph, this is indicated by a colored box on top of the respective column, using the same color code as for the experiments. Expression
changes relative to wild type are color coded by the panel on the right. In the gene set enrichment analysis, SKO1 target genes were found enriched
for upregulated genes attached to the Med10Med21 node in the MC EMiNEM effects graph. These genes lie to the left of the bold vertical line in the
heat map. Briefly, our Mediator NEM model predicts that they should also change their expression in the Med19 and Med7C perturbations, which lie
above the bold horizontal line. Ideally, the expression changes in the upper left corner defined by the two bold lines should be strong and consistent,
while those in the remaining part should be weaker and less consistent. B) Same plot as A), for the target genes of SWI5. Since SWI5 targets are
enriched for downregulated genes attached to Med7N, and Med7N is downstream of all other nodes in the signals graph, we expect consistent
expression changes of the Med7N attached genes across all perturbations.
doi:10.1371/journal.pcbi.1002568.g005
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27. Zeller C, Fröhlich H, Tresch A (2008) A bayesian network view on nested effects
models. EURASIP J Bioinform Syst Biol 2009: 195272.

28. Vaske CJ, House C, Luu T, Frank B, Yeang CH, et al. (2009) A factor graph

nested effects model to identify networks from genetic perturbations. PLoS
Comput Biol 5: e1000274.
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