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Abstract

Elucidation of the biological role of linker histone (H1) and heterochromatin protein 1 (HP1) in mammals has been difficult
owing to the existence of a least 11 distinct H1 and three HP1 subtypes in mice. Caenorhabditis elegans possesses two HP1
homologues (HPL-1 and HPL-2) and eight H1 variants. Remarkably, one of eight H1 variants, HIS-24, is important for C.
elegans development. Therefore we decided to analyse in parallel the transcriptional profiles of HIS-24, HPL-1/-2 deficient
animals, and their phenotype, since hpl-1, hpl-2, and his-24 deficient nematodes are viable. Global transcriptional analysis of
the double and triple mutants revealed that HPL proteins and HIS-24 play gene-specific roles, rather than a general
repressive function. We showed that HIS-24 acts synergistically with HPL to allow normal reproduction, somatic gonad
development, and vulval cell fate decision. Furthermore, the hpl-2; his-24 double mutant animals displayed abnormal
development of the male tail and ectopic expression of C. elegans HOM-C/Hox genes (egl-5 and mab-5), which are involved
in the developmental patterning of male mating structures. We found that HPL-2 and the methylated form of HIS-24
specifically interact with the histone H3 K27 region in the trimethylated state, and HIS-24 associates with the egl-5 and mab-
5 genes. Our results establish the interplay between HPL-1/-2 and HIS-24 proteins in the regulation of positional identity in
C. elegans males.
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Introduction

Linker histone H1 and heterochromatin protein HP1 are

involved in numerous processes ranging from stabilizing hetero-

chromatin condensation to the regulation of gene expression [1–

5]. As has been reported, a methylation mark on vertebrate

histone H1 is specifically recognized by the chromodomain of

HP1. However, the exact biological role of HP1 binding to linker

histone has not been determined [6].

The functions of HP1 and H1 proteins are mainly dependent

on the cell type in which particular variants are expressed.

Although the number of H1 (11) and HP1 variants (3) presents

difficulties in studying the effect of H1 and HP1 depletion in

mice, some data has emerged [3,7–10]. For example, loss of

HP1b results in defective development of neuromuscular

junctions and the cerebral cortex [10], whereas depletion of

three of eleven H1 genes causes lethality connected with a very

broad range of defects in mice [11–12]. In ES cells, the lack of

three somatic H1 variants leads to changes in nucleosome spacing

and local chromatin compaction, and this is correlated with

decreased levels of H3K27 trimethylation [11]. Additionally, H1

is necessary to establish and maintain the DNA methylation

pattern in a subset of genes including the reproductive homeobox

(Rhox) gene cluster [13].

C. elegans possesses eight linker histone variants and two HP1

homologues, HPL-1 and HPL-2 [14–16]. Mutation of hpl-2 results

in defective vulval and germline development at elevated

temperatures [15–17]. hpl-1, in contrast to hpl-2, does not have

visible effects on C. elegans development at different temperatures,

however, hpl-1 acts redundantly with hpl-2 to control larval

development, somatic gonad development and vulval cell fate

determination [17]. Our previous study revealed that HPL-1

recognizes the linker histone variant HIS-24 when it is mono-

methylated at lysine 14 (HIS-24K14me1), similar to the situation

in vertebrates [16]. Additionally, we showed that HIS-24 interacts

with H3K27me3 [18]. The H3K27me3 modification correlates

with a repressive chromatin state that inhibits expression of many

developmentally regulated genes. This is consistent with studies of

Hox loci demonstrating that enrichment of H3K27me3 recruits

the binding of Polycomb group proteins (PcG) [19].

The Hox genes encode conserved homeodomain-containing

transcription factors that control the positional identities of cells

along the anterior–posterior axis [20–21]. The expression pattern

of Hox genes appears to be regulated by two evolutionarily

conserved PcG complexes, the ESC/E(Z) complex and the PRC1

complex. Both have been identified in flies and mammals and are

linked to modulation of repressive chromatin structures [21]. The

C. elegans Hox cluster consisting of lin-39, ceh-13, mab-5 and egl-5
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(orthologs of Drosophila Scr, labial, ftz and Abd-B, respectively) is

quite degenerated in comparison to Hox clusters in other species

[22] but, as in mammals, is also globally repressed by Polycomb

group (PcG) proteins [20,23]. Mutations in mes-2 and mes-6, which

encode the C. elegans ESC/E(Z) complex, result in ectopic

expression of Hox genes [23]. A similar phenotype has also been

observed in the absence of sop-2 or sor-1 genes. SOP-2 and SOR-1

form another C. elegans PcG-like complex which shares many

structural and functional properties with the Drosophila PRC1, and

is involved in the global repression of Hox gene expression. Loss of

sop-2 and sor-1 results in gross homeotic transformations [24–25].

To elucidate the function of H1 and HP1 related proteins in C.

elegans, we decided to generate double and triple mutants, since hpl-

1, hpl-2 and his-24 deficient nematodes are viable, and since HIS-

24K14me1 is recognized by HPL-1 [16–17,26]. We performed

global transcriptional analyses of single, double and triple mutant

animals, and we found that HPL-1/-2 and HIS-24 regulate a

relatively small number of genes. We provide evidence that the

methylated form of HIS-24 (HIS-24K14me1) and HPL-2 are

involved in the regulation of mab-5 and egl-5 expression by binding

to H3K27me3, although HIS-24K14me1 does not interact with

HPL-2 [16]. Furthermore, we observed that HIS-24 and HPL-2

act in parallel pathway as MES (PcG) proteins, and loss of their

activity causes defects of male tail structures. Overall, our data

suggest a common and dual role for C. elegans H1 and HP1,

functioning both as chromatin architectural proteins and at the

same time as modifiers of a small subset of genes. Furthermore, we

provide the first direct evidence for redundant functions of H1 and

HP1 in metazoan development.

Results

HP1 and HIS-24 are not global repressors of
transcriptional activity in C. elegans

C. elegans contains two related HP1 proteins (HPL) and eight

linker histone variants [14–15]. Only one of the eight linker

histone variants, HIS-24 is important for germline development,

with its absence resulting in reduced fertility and de-repression of

extrachromosomal transgenic arrays in the germline [14]. As we

previously reported, the absence of HIS-24 did not affect protein

levels of the other histone variants, in contrast to the mammalian

H1 subtypes which are sufficient to compensate for the loss of a

single linker histone [7,16]. Furthermore, we showed that C. elegans

heterochromatin protein 1 variant, HPL-1 recognizes and binds

the methylated form of HIS-24 [16]. Given the physical

interaction of HPL-1 with HIS-24 mono-methylated at lysine 14

and their role in chromatin silencing and germline developmental

processes [15–17], we decided to study HPL and HIS-24 function

in transcriptional regulation in C. elegans. It was of great interest to

determine how the HPL subtypes (HPL-1 and HPL-2) and HIS-24

affect gene expression. To determine the contribution of HIS-24

and HPL-1/-2 to the control of gene transcription, we compared

the gene-expression profiles of single null mutations in the hpl-1,

his-24 and hpl-2 as well as profiles of hpl-1his-24, and hpl-2; his-24

double, and hpl-2; hpl-1his-24 triple mutant animals in L4 larval

stages grown at 21uC. We decided to use L4 larval stages because

HIS-24 is the most abundant linker histone H1 variant at this stage

according to mass spectrometry-based protein expression data

(Figure 1).

By microarray we observed very few changes in the gene

expression profiles of either single, double, or triple mutants when

compared with wild type animals at L4 larval stages. Among the

16,278 target probe sets assayed, we identified only modest

changes in expression of just a small number of genes (Figure 2A–

2H, Table 1). The majority of genes exhibiting changes were

upregulated (6.5%) in the absence of the three heterochromatin

components HIS-24, HPL-1 and HPL-2, in contrast to 3.7%

downregulated genes from a total of 16,278 genes analyzed

(FDR,0.05) suggesting that HPL-1/-2 and HIS-24 are not global

repressors of transcriptional activity (Table 1). The deletion of

both hpl-1 and hpl-2 genes caused up-regulation of 4.5% genes and

downregulation of 2.1% of a total 16,278 genes when compared to

wild type (WT) animals.

As previously reported, HPL-2 binds to HIS-24K14me1

through its association with HPL-1, and the heterochromatin

proteins HPL-1 and HPL-2 play redundant roles in C. elegans

development [16–17]. Considering these observations we com-

pared transcriptional profiles between hpl-2 (tm1489); hpl-

1(tm1624) double mutants and hpl-2 (tm1489); hpl-1(tm1624) his-

24(ok1024) triple mutant animals. We found that 464 up-regulated

(2.9% of 16,278) and 195 down-regulated (1.2% of 16,278) genes

were commonly affected (FDR,0.05; p-value,0.000001 for all

pair-wise comparisons by hypergeometric tests) (Figure 2, Table

S1). Among the 464 up-regulated genes we identified some

significantly enriched in GO terms associated with growth

regulation (Fisher exact test (FET) P = 461026), determination of

adult life span (FET P = 261026), locomotion (FET P = 0,003),

protein phosphorylation (FET P = 0,04), reproduction (FET

P = 0,05) and lipid storage (FET P = 0,05). The 195 genes that

are down-regulated are enriched in GO terms associated with

oxidation reduction (FET P = 0,003), embryonic development

(FET P = 0,002) and metabolic process (FET P = 0,04). We

identified common response proteins including heat shock proteins

(HSP-12.3, -12.6, -16.2 and -17), enzymes (cytochromes) of the

P450 family involved in protection against toxins (CYP-13A12,

CYP-33C4, CYP-33D3, CYP-34A2, CYP-34A4 and CYP-34A9),

metabolic enzymes such as the fatty acid-coenzyme A (CoA)

synthetase ACS-1 and the fatty acid/retinol binding proteins FAR-

5, -7 (Table S1). Furthermore, we observed the induction of

oxidative stress proteins such as glutathione S-transferases (GST)

and genes commonly associated with increased stress resistance –

for example, the mitochondrial sod-3 superoxide dismutase gene

(Table S1).

In conclusion, deletion of the different HPL variants and HIS-

24 caused an alteration in the expression of a limited number of

genes, different in each HPL variant and HIS-24. Most of the

genes are affected by a single HPL variant and HIS-24, supporting

the theory that HPL isoforms or HIS-24 play specific roles in gene

expression. Nonetheless, a proportion of genes are altered by more

Author Summary

Linker histone (H1) and heterochromatin protein 1 (HP1)
play central roles in the formation of higher-order
chromatin structure and gene expression. Recent studies
have shown a physical interaction between H1 and HP1;
however, the biological role of histone H1 and HP1 is not
well understood. Additionally, the function of HP1 and H1
isoform interactions in any organism has not been
addressed, mostly due to the lack of knockout alleles.
Here, we investigate the role of HP1 and H1 in develop-
ment using the nematode C. elegans as a model system.
We focus on the underlying molecular mechanisms of
gene co-regulation by H1 and HP1. We show that the loss
of both HP1 and H1 alters the expression of a small subset
of genes. C. elegans HP1 and H1 have an overlapping
function in the same or parallel pathways where they
regulate a shared target, the Hox genes.
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than one HPL variant as well as HIS-24, suggesting redundant

roles for HIS-24 and HPL variants, and for HPL-1/-2 may also

exist.

HIS-24 acts synergistically with HPL proteins to allow
normal reproduction, somatic gonad development, and
vulval cell fate decisions

In parallel to microarray analysis we investigated the biological

role of HIS-24 and HPL proteins in C. elegans. For morphological

defects we scored hpl-1(tm1624) his-24(ok1024), and hpl-2(tm1489);

his-24(ok1024) double mutants as well as hpl-2(tm1489); hpl-

1(tm1624) his-24(ok1024) triple mutant animals. In particular, we

focused on germline nuclei morphology, hermaphrodite vulval

development and the somatic patterning of the male tail since

these tissues are known to be affected by mutations in chromatin

factors, and HPL-2 influences vulval cell fate specification in the

synMuv (synthetic multivulva) pathway [14–15,27]. We found that

the deletion of hpl-2(tm1489) together with his-24(ok1024) results in

synergistic non-lethal defects of vulval cell fate specification

(everted vulva, multivulva) and sterility at 21uC, and at 25uC
(Table 2). While the observed phenotypic effects at 21uC were

minor in contrast to the situation at 25uC, it is tempting to

speculate that the effects can be also modulated through unknown

mechanisms, environmental cues (temperature), which in itself

may also lead to significant side-effects. Additionally, decreased

brood sizes were observed in hpl-2(tm1489); his-24(ok1024) double

and hpl-2(tm1489); hpl-1(tm1624) his-24(ok1024) triple mutant

Figure 1. C. elegans H1 proteomics. (A) L4 larval stage of wild type animals were extracted with 5% PCA. The PCA extract was chromatographed
on C18 column. (B) Fractions 1, 6, and 7 containing H1 were analyzed. (C) Absolute protein abundances of linker histone variants were calculated
from spectral counts. The table shows the relative abundance of the variants on the basis on their protein scores (Mascot). The total protein score
corresponds directly to the protein abundance, because the histones have similar masses. HIL-1 (H1.X) was found only in an HCl extract (data not
shown). (D) Abundance of C. elegans H1 variants in percent (%).
doi:10.1371/journal.pgen.1002940.g001
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Figure 2. HPL and HIS-24 are not global repressors of transcriptional activity. (A–H) Venn diagrams on the basis of whole genome
microarray (16278 genes) showing the extent of overlap among genes that are associated with HIS-24 and HPLs activity. Values for fold change are
the average from 2 independent biological replicates (FDR,0.05; |log2-fold change|.1.5). WT-wild type; significant overlapping among the candidate
lists - p-value,0.000001 for all pair-wise comparisons by hypergeometric tests. (I, J) Functional clusters of HPL-1, HPL-2 and HIS-24 co-regulated

Repression of Hox Genes by HP1 and H1 in C. elegans
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animals grown at 21uC (Figure 3). The brood size of the hpl-

2(tm1489); his-24(ok1024) was strongly decreased by 35% of wild

type worms, and was further decreased to about 50% in the hpl-

2(tm1489); hpl-1(tm1624) his-24(ok1024) triple mutant animals

(Figure 3). These results were consistent with our microarray data

analysis that revealed differential expression of genes involved in

the embryonic development or reproduction (Table S1). Further-

more, we observed several defects in the morphology of the

somatic gonad of hpl-1(tm1624) his-24(ok1024) double mutant

animals grown at 21uC. In wild type, single mutant and hpl-

2(tm1489); his-24(ok1024) double mutant the gonad arms form an

U-shaped structure (Figure 4A–4D). In contrast, in the double

mutant hpl-1(tm1624) his-24(ok1024) 25% of gonad arms (161 of

642) form a loop (Figure 4E). These results suggest that both

proteins HIS-24 and HPL-1 are involved in the somatic gonad

development whereas HIS-24 and HPL-2 influence vulva cell fate

specification and reproduction (Table 2).

HIS-24 and HPL-2 are required for chromatin compaction
Since HPL-2 and HIS-24 are required for germline develop-

ment and for the chromatin based germline-specific silencing

mechanism [14–15,26], we asked whether they influence the

structure of nuclei. In-depth analysis revealed that the germline

nuclei of hpl-2(tm1489); his-24(ok1024) double mutants differ in size

and morphology when compared to single mutants or to wild type

worms grown at 21uC (Figure 4F–4I, 4L). The observed

chromatin of 86% of gonad arms (36 of 42) had a more open,

relaxed structure suggesting that HIS-24 and HPL-2 play a

function in chromatin condensation in the germline (Figure 4J,

4M). To assess the specific requirements for HIS-24 among the H1

isoforms, we also tested hpl-2(tm1489);hil-3(ok1556) double mutant

strain to determine if the observed changes in the chromatin

compaction is linker histone variant specific (Figure 4K). As

shown, loss of hpl-2 and linker histone variant hil-3 did not cause

defects in chromatin compaction in contrast to hpl-2; his-24 strain.

In addition, we also did not observe involvement of HPL-2 and

HIL-3 on brood size (Figure 3).

To determine if the loss of HIS-24 and HPL proteins also

influence chromatin histone modifications as well as core histone

H3 level, we performed western blot analysis of mutant animals.

No gross changes were observed in the methylation and core

histone H3 levels using antibodies directed against H3K9me3,

H3K27me3, and H3 (Figure S1). In addition, we did not detect

changes in chromatin modification marks on a cellular level by

immunofluorescence (data not shown) indicating that the observed

effects of chromatin compaction are not correlated with alterations

of histone modifications in hpl-2(tm1489); his-24(ok1024) double

mutant animals.

Mutations in his-24 and hpl-2 cause male tail defects
Loss of hpl-1, -2 and his-24 function results in changes of

transcriptional regulation of genes encoding nuclear hormone

receptor family genes (nhr-60, nhr-156), transcription factors (miz-1,

zip-3, zip-8, madf-2), homeobox ceh-82 and homeodomain lim-7

genes (Table S1). Moreover, hpl-2 regulates lin-39 Hox gene

expression in vulval precursor cells (VPCs) [27]. Therefore we

tested whether hpl-1, -2 and his-24 genes are involved in the

regulation of Hox gene expression during the somatic patterning

of the male tail.

The wild type male tail possesses nine pairs of bilateral sensory

rays that function in locating and mating with hermaphrodites.

Normally, the posterior hypodermal blast cells V5 and V6 produce

six pairs of rays (ray 1 to ray 6), while the blast cell T gives rise to

the three rays (rays 7–9) [23–25]. We found that mutations in both

his-24 and hpl-2 (37%, 51 of 73 males with defected rays) as well as

in his-24, hpl-1 and hpl-2 (83%, 76 of 107 males with defected rays)

cause abnormalities in patterning of blast cells V that result in

fused and atypical (under-developed) rays, while the single and hpl-

1; hpl-2 and hpl-1 his-24 double mutations have normal develop-

ment of rays (Table S2, Figure 5A–5E, 5G). Although hpl-1

mutation alone or in combination with his-24 or hpl-2 had no

visible effect on the male tail at 21uC (Figure 5C, 5G–5H), it

appeared to be partially redundant in combination with hpl-2 and

his-24 double mutations. As Figure 5J and Table S2 show, the

number of under-developed rays is significantly increased (up to

42%, 39 of 107 males) in the hpl-2(tm1489); hpl-1(tm1624) his-

24(ok1024) triple mutant compared to the hpl-2(tm1489); his-

24(ok1024) double mutant males (13%, 18 of 73 males) (Figure 5I).

This synergism suggests that hpl-1 only in combination with his-24

and hpl-2 plays functions in the patterning of the male tail. We also

tested hil-3; hpl-2 double mutant animals for the mail tail

phenotype. We did not observe any defects in the patterning of

the male tail of hil-3; hpl-2 double mutant animals in contrast to

hpl-2; his-24 animals suggesting that HIS-24 (in combination with

HPL-2) specifically affects the patterning of the mating structures

in C. elegans (Figure 5F–5I).

genes in C. elegans. The molecular functions and the percentage of the total for each group are indicated. Gene Ontology (GO) terms taken from
WormBase (http://www.wormbase.org).
doi:10.1371/journal.pgen.1002940.g002

Table 1. Summary of agilent microarray analysis of gene expression in mutant animals versus wild type (16, 278 genes analysed).

Genotype Up-genes (%) Down-genes (%)

FDR,0.05; |log2-fold change|.1.5 (total)

his-24(ok1024) 1.4 1.9

hpl-1(tm1624) 2.5 2.0

hpl-2(tm1489) 4.2 1.9

hpl-1(tm1624); hpl-2(tm1489) 4.5 2.1

hpl-1(tm1624) his-24(ok1024) 3.4 1.0

hpl-2(tm1489); his-24(ok1024) 7.2 2.1

hpl-1(tm1624) his-24(ok1024); hpl-2(tm1489) 6.5 3.7

doi:10.1371/journal.pgen.1002940.t001

Repression of Hox Genes by HP1 and H1 in C. elegans

PLOS Genetics | www.plosgenetics.org 5 September 2012 | Volume 8 | Issue 9 | e1002940



HIS-24 and HPL-2 are required for inhibiting the ectopic
expression of mab-5 and egl-5 Hox genes

In agreement with previous observations we analyzed the ability

of his-24, hpl-1 and hpl-2 genes to regulate mab-5 and egl-5

expression [28–29]. Interestingly, these two Hox genes are

required for V ray development [23] and mab-5 was slightly up-

regulated in our microarray analysis of hpl-2(tm1489); hpl-

1(tm1624) his-24(ok1024) mutant animals (data not shown).

We compared expression of egl-5::gfp and mab-5::gfp reporter

genes in wild type animals and in combination with his-24(ok1024),

hpl-1(tm1624) and hpl-2(tm1489) background mutations (Figure 6).

We observed that mab-5::gfp reporter is ectopically expressed in

approximately 30% of early L3 stage of hpl-2(tm1489); his-

24(ok1024) double mutant males scored (n = 100) (Figure 6A,

6B). Altered expression of this reporter was also detected in adult

males. Similarly, about 80% of L3 stage of hpl-2(tm1489); his-

24(ok1024) double mutant males (n = 100) displayed ectopic

expression of EGL-5::GFP protein in two daughters of ray

precursors anterior to R4, R5 and R6 sublineages (Figure 6C–

6E). We did not observe any significant enhancement of the

ectopic expression of mab-5 and egl-5 Hox genes in hpl-1 depleted

hpl-2(tm1489); his-24(ok1024) double mutant animals. For the

crossing with mab-5::gfp transgenic strain we did not use triple

mutant animals due to hpl-1 his-24; hpl-2 phenotype (sterile worms,

worms with everted vulva or multivulva; Table 2).

To verify HPL-1 depletion directly and to examine the extent of

HPL-1 knockdown we tested the hpl-1 depleted hpl-2; his-24

mutant animals for presence of HPL-1 on the western blot. We

found that hpl-1RNAi strongly reduces HPL-1 level compared to

the controls (Figure S2).

Since mutations in hpl-2 and his-24 affect transgene expression

in C. elegans [14–15] we assessed the expression level of the

endogenous EGL-5 in hpl-2; his-24 double mutant males. Western

blot of hpl-2; his-24 double mutant males probed with EGL-5

antibody revealed an increased level of endogenous EGL-5 protein

of predicted size (26 kDa) compared to EGL-5 level of wild type C.

elegans and egl-5::gfp transgenic line (Figure 6F) [29]. Altogether,

these results suggest that HIS-24 and HPL-2 silence the Hox gene

cluster, either by general repression of the transcriptional activity,

or through a specific biochemical and structural function in Hox

gene silencing.

Figure 3. HIS-24 act synergistically with the hpl-genes to control brood size at 216C. Number of embryos (6 SEM), 20 animals scored:
* p,0.0001, vs. wild type.
doi:10.1371/journal.pgen.1002940.g003

Table 2. Genetic interaction of hpl-1, hpl-2, and his-24.

Genotype % sterility % multivulva % everted vulva

at 216C at 256C at 216C at 256C at 216C at 256C

wild type 0 (320) 0 (330) 0 (320) 0 (330) 0 (320) 0 (330)

his-24(ok1024) 7 (257) 8 (235) 0 (257) 0 (235) 0 (257) 0 (235)

hpl-1(tm1624) 0 (401) 0 (420) 0 (401) 0 (420) 0 (401) 0 (420)

hpl-2(tm1489) 5 (356) 66 (424) 5 (356) 22 (424) 0 (356) 32 (424)

hpl-1(tm1624) his-24(ok1024) 0 (321) 0 (326) 0 (321) 0 (326) 0 (321) 2 (326)

hpl-2(tm1489); his-24(ok1024) 11 (881) 88 (528) 9 (881) 28 (528) 12 (881) 62 (528)

hpl-1(n4317);hpl-2(tm1489) 0 (453) L2/L3 arrest 4 (453) L2/L3 arrest 5 (453) L2/L3 arrest

hpl-1(tm1624) his-24(ok1024); hpl-2(tm1489) 11 (729) L2/L3 arrest 12 (729) L2/L3 arrest 28 (729) L2/L3 arrest

The mutant animals show temperature sensitive phenotypes.
doi:10.1371/journal.pgen.1002940.t002

Repression of Hox Genes by HP1 and H1 in C. elegans
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HIS-24 binds to egl-5 and mab-5 loci
Since HIS-24 and HPL-2 are required for inhibiting the ectopic

expression of mab-5 and egl-5 Hox genes, we tested if HIS-24 and

HPL-2 bind directly to their promoters in vivo and therefore

regulate egl-5 and mab-5 transcription. The primer sets used for

quantitative ChIP-PCR (qChIP-PCR) analysis were directed to

the promoters, introns and 39UTR regions of mab-5 and egl-5

genes. Remarkably, mab-5 and egl-5 are tightly clustered on

chromosome III, suggesting that chromatin structure coordinately

regulates the expression of these genes (Figure 7A). qChIP-PCR

analysis revealed that HIS-24 is indeed associated with the

promoters and introns of mab-5 and egl-5 genes (Figure 7B). In

contrast, we did not see any HIS-24 binding to 39UTR regions

(Figure 7B). However they are occupied by H3 (Figure 7D). As

shown, the anti-HIS-24 antibody binds with higher affinity to egl-5

and mab-5 genes than the anti-HIL-4 antibody, which is cross-

reactive to C. elegans linker histone variants [14] (Figure 7C). Next,

to verify the specificity of the HIS-24 binding to Hox genes, we

tested the HIS-24 binding to mab-5 gene ectopically expressed in

sor-1 background mutation. As previously reported, SOR-1

(together with SOP-2) shares many structural and functional

properties with the PRC1 complex, and is involved in the global

repression of egl-5 or mab-5 Hox gene expression [25]. As shown,

we detected a significantly decreased level of HIS-24 at this region

compared to the situation in wild type animals, implicating that

HIS-24 enables mab-5 transcriptional repression, thereby influ-

encing its expression (Figure 7D). Additionally, we observed lower

levels of histone H3 occupancy at the mab-5 promoter in sor-1

background mutation than in wild type animals, suggesting that

the difference in H3 levels could be due to the nucleosome free

region that forms at high levels of expression (Figure 7D). In

addition, mab-5 promoter and intron regions in the his-24 mutant

animals showed decreased enrichment of the histone H3 than in

wild type animals, suggesting that binding of H3 and HIS-24 can

be positively correlated at regulatory regions. In comparison, the

H3 changes at 39UTR region of mab-5 in sor-1 and his-24

background mutation were relatively mild than in wild type

animals (Figure 7D).

Unfortunately, we have failed so far to detect HPL-2 at this

region using direct ChIP approach.

HIS-24 and HPL-2 act in parallel pathway as MES-2/-3
Hox genes are transcriptionally repressed by the evolutionally

conserved Polycomb group (PcG) proteins through the

H3K27me3 mark in a lineage specific fashion [30–31]. In

Drosophila, a member of the Polycomb group (PcG), the H3K27

histone methyltransferase E(Z) has been identified as a stable

repressor of Hox genes [32]. In C. elegans, orthologs of the PcG

chromatin repressors E(Z) and ESC, namely MES-2 and MES-6

influence expression of Hox genes and male tail development [23].

Since Polycomb group (PcG) proteins (MES-2/3/6 complex) are

involved in the repression of Hox genes, we performed genetic

epistasis analysis of mes-2- and mes-3-depleted triple mutant

animals [23,33]. Interestingly, hpl-2(tm1489); his-24(ok1024) dou-

ble as well as hpl-2(tm1489); hpl-1(tm1624) his-24(ok1024) triple

mutant males on mes-2 or mes-3 feeding plates showed an increased

number of ectopic rays (,2-fold) and defective rays in comparison

to mes-3- or mes-2 - depleted double mutant males (Figure 8A, 8C;

Table S2). As shown, loss of HPL and HIS-24 together with

depletion of mes-2 or mes-3 resulted in additive defects implying

that HPL and HIS-24 act in parallel pathway as MES-2 or MES-

3.

We also phenotyped hpl-2(tm1489); his-24(ok1024) double and

hpl-2(tm1489); hpl-1(tm1624) his-24(ok1024) triple mutant males on

sop-2 feeding plates (Figure 8B, 8C, Table S2). As previously

reported, SOP-2 forms a novel PcG-like complex that may

function analogously to PRC1 in C. elegans and regulates

expression of Hox genes [25]. Homologs of SOR-1 and SOP-2

are not found in other organisms, including even the very closely

related C. briggsae suggesting a C. elegans specific mechanism on an

essential global gene regulatory system [25]. Remarkably, we did

not observe any influence of SOP-2 depletion in the hpl-2; his-24

double and hpl-2; hpl-1 his-24 triple mutant background suggesting

that sop-2 appears to be epistatic to hpl-2; his-24 deletion.

HIS-24K14me1 and HPL-2 bind H3K27me3 chromatin
mark

Recently, we have reported that HIS-24 specifically interacts

with H3K27 trimethylated and H3K27 unmodified peptides [18].

While HPL-1 and HPL-2 were able to pull down native HIS-

24K14me1, and HPL-2 failed to bind either modified or

unmodified HIS-24 peptides in vitro, we asked whether HPL-2

and HIS-24K14me1 repress the transcription of egl-5 and mab-5

genes by binding to H3K27me3 [16,18].

By peptide pull down assay (PD) we observed that HIS-

24K14me1 interacts preferentially with H3K27me3 peptide when

compared to the unmodified, mono- or di-methylated H3K27

peptides, and conversely, native H3K27me3 binds only the

methylated form of HIS-24 peptide (Figure 9A). Furthermore,

we found strong preference of HPL-2 for the trimethylated form of

H3K27, as well as for H3K27me2 and H3K9me2/3 as previously

reported (Figure 9A) [16]. No interaction was observed between

H3K9me0/1 or H3K27me0/1. We confirmed the results

obtained from peptide pull down (PD) by an immunoprecipitation

(IP) approach using antibodies raised against different chromatin

modification marks and lysates of wild type animals (Figure 9B).

Additionally, we were able to pull down native H3K27me3 using a

GFP-antibody directed against GFP-tagged HPL-2 and HIS-24

(Figure 9C). As a control we used GFP expressed protein under the

his-24 promoter to demonstrate the specificity of HPL-2 and HIS-

24 binding to H3K27me3 (Figure 9C). To confirm that HPL-2

and HIS-24 indeed display H3K27me3 binding, we expressed

HPL-2 and HIS-24 in E. coli. We did not detect the interaction of

HPL-2 with H3K27me3 in contrast to HIS-24, suggesting that

additional factors (transcription factors, RNAi machinery, post-

translational modifications of HPL-2) are involved in the

mediation of HPL-2 binding to H3K27me3 (Figure 9D, 9F). In

the case of HIS-24 we detected strong preference for H3K27me

peptides apart from H3K27me1 (Figure 9D). The differences in

the binding to H3K27me3 between bacterially expressed HIS-24

and native HIS-24 can be explained by the fact that bacterially

expressed proteins are not methylated and only the methylated

form of HIS-24 binds specifically the H3K27me3. Finally, to

exclude that the binding of HPL-2 to H3K27me3 takes place via

Figure 4. HIS-24 and HPL-1/-2 depletion results in abnormal somatic gonad development and reduction of chromatin compaction.
(A–D) Normal U-shaped form of gonad arm of wild type, his-24 or hpl-1 single, and hpl-2; his-24 double mutants. (E) hpl-1his-24 mutant animal
demonstrates aberrant loop form of gonad arm. (F–K) DAPI stained gonad arms of his-24, hil-3 or hpl-2 single and hpl-2; his-24 or hpl-2; hil-3 double
mutants. Stars point to pachytene stage germ nuclei. Scale bar: 10 mm. (L, M) Morphology of pachytene stage nuclei of the germ line of hpl-2 mutant
animals compared to the nuclei of hpl-2; his-24 double mutants. Scale bar: 7.5 mm.
doi:10.1371/journal.pgen.1002940.g004
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interaction with the C. elegans HIS-24, we repeated the pull downs

using extracts obtained from his-24(ok1024) mutant animals

(Figure 9E). We detected a preference of HPL-2 for H3K27me3

independently of HIS-24 however this binding was reduced

compared to binding of HPL-2 to H3K27me3 in the presence of

HIS-24 (Figure 9B, 9E).

HIS-24K14me1 rescues the developmental patterning of
the male tail

To assess whether the methylated form of HIS-24 has a causal

role in the observed changes of the male tail morphology, we

generated his-24::gfp and his-24K14A::gfp transgenic worms in the

hpl-2(tm1489); his-24(ok1024) mutant background. We observed

Figure 5. his-24 and hpl-2 genes are involved in proper postembryonic development of male-specific structures. (A–F, I–J) All nine rays
are formed normally in his-24, hil-3, hpl-1 or hpl-2 single mutants and in hpl-1his-24 as well as in hpl-1; hpl-2 and hpl-2; hil-3 double mutant males. (G,
H) Abnormal male tails of hpl-2; his-24 and hpl-2; hpl-1his-24 mutant animals. Arrows point to ray fusions. (K) Quantification of ray defects associated
with single, hpl-2; his-24 double and hpl-1his-24; hpl-2 triple mutations. The animals were growing on him-14 (high incidence of males) feeding plates
at 21uC.
doi:10.1371/journal.pgen.1002940.g005
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that the restoration of HIS-24 levels by expression of HIS-24::GFP

rescued the male phenotype and the fused/missing rays were

down nearly to zero in the transgenic line (Figure 10). Importantly,

the nonmethylatable HIS-24K14A::GFP mutant failed to rescue

the wild type rays development in hpl-2; his-24 animals, suggesting

that HIS-24 methylation at lysine 14 is necessary to regulate male

tail development (Figure 10B, 10D, 10E). These results also imply

that, at 21uC, hpl-2 and his-24 play a redundant role in the

regulation of positional identity in the C. elegans males. Important-

ly, the analysis of transgene expression at the cellular level by

immunostaining and immunoblotting of the rescued hpl-2(tm1489);

his-24(ok1024) animals verified that the exogenous HIS-

24K14A::GFP mutated form was expressed at a level comparable

to that in animals carrying HIS-24::GFP wild type form

(Figure 10C).

Discussion

HP1 and H1 are heterochromatin components that are believed

to be associated with global repression of transcriptional activity

[4–5]. Surprisingly, our microarray analysis showed that H1 and

HP1 play more dynamic and gene-specific roles in the roundworm

C. elegans. They grossly affect only a few genes and can have an

overlapping function in the same or parallel pathways where they

regulate common target genes.

In particular, we found that HIS-24 and HPL-2 can regulate a

shared target, the Hox genes. Although, the C. elegans homeobox

genes (egl-5, mab-5) are silenced by mechanisms involving H3K27

trimethylation, we showed that the methylated form of HIS-24

and HPL-2 can also serve as essential protein components in

establishing and/or maintaining the repressive chromatin state at

the selected Hox genes, presumably through their binding to

H3K27me3 (Figure 9F).

Effect of HIS-24 and HPL on gene expression profile and
chromatin organization

Our microarray analyses support a role of H1 and HP1 in

specific gene regulation, rather than a general repressive function

[34–36]. Despite global changes in chromatin compaction and

synergism of HIS-24 and HPL in aspects of many developmental

processes we observed very few and slight changes in gene

expression profile of mutants when compared with wild type

animals. We detected a set of shared up- and down-regulated

genes by HIS-24 and HPL suggesting that redundant roles for

HIS-24 and HPL also exist. The relatively small number of

regulated genes in observed triple mutant animals may indicate

that HPL proteins and HIS-24 serve to fine-tune the regulation of

key genes during development or differentiation. This model can

be explained by the fact that the sequential arrangement of the

linker histone HIS-24 and HPL-2 on the chromatin fibre might

influence higher-order chromatin structure and effect nucleosome

positioning, and stability [36]. It is possible that the different HPL

subtypes and HIS-24 confer subtle differences in the properties of

the chromatin fiber which allow for quantitative modulation of

gene expression [34,35]. Although the changes in gene transcrip-

tion are subtle, we think that even 1.5-fold differences in

expression can contribute to the marked phenotypic consequences

we observed.

Model of transcriptional regulation of egl-5 and mab-5 by
HPL-2 and HIS-24K14me1

We demonstrated that HIS-24K14me1, together with HPL-2,

has a causal role in transcriptional silencing of egl-5 and mab-5. We

propose that HPL-2 and HIS-24K14me1 may serve as essential

protein components in establishing and/or maintaining the

repressive chromatin state at the selected Hox genes through

their interactions with H3K27me3. While we did not observe any

phenotypic effects on male tail development either in hpl-2; hpl-1

nor in hpl-1 his-24 background, we speculate that HPL-2 acts

redundantly with HIS-24K14me1 to regulate the positional

identity in the C. elegans males. Loss of the two heterochromatin

components, HIS-24K14me1 and HPL-2, causes significant

changes in chromatin structure affecting Hox gene expression in

C. elegans. However, since no interaction of HPL-2 and HIS-

24K14me1 was observed in immunoprecipitation experiments, it

is possible that HPL-2 together with HIS-24K14me1 might be a

part of the same protein group involved in the regulation of Hox

gene expression. The high degree of redundancy between his-24

and hpl-2 in Hox gene regulation might indicate that these two

proteins are the only readers acting in parallel to perform the same

role in translating the effects of histone H3K27 trimethylation.

However, since we have failed so far to detect HPL-2 at the Hox

gene region using direct ChIP approach, it is possible that the

mechanisms by which HPL-2 regulates mab-5 and egl-5 might be

indirect, involve intermediate factors (RNAi machinery, transcrip-

tion factors) and depend on an architectural level in the cellular

context.

HIS-24K14me1 and HPL-2 as a part of the PcG silencing
complex

In mammals, H1 regulates Hox gene activation by promoting

DNA demethylation [13]. Although C. elegans does not possess

methylated DNA, we speculate that H1 can still influence Hox

gene regulation and, together with HPL-2, regulate Hox gene

expression as a part of the PcG silencing complex. The interaction

of HPL-2 and HIS-24K14me1 with H3K27me3 can regulate the

Hox gene in parallel pathway as MES-2 or MES-3, and can be

directed to specific parts of the genome. Notably C. elegans HP1/

HPL-2 does not follow the H3K9me2/me3 code [37–41] but it is

sufficient to recognize, and to bind H3K27me2/me3. Remark-

ably, HIS-24 is required for optimal HPL-2 binding to

H3K27me3 in vivo.

Interestingly, some PcG proteins containing a chromodomain

similar to that found in C. elegans HPL-2 and mammalian HP1s

have been shown to bind H3K27me3 [30,42].

Overall, these and our previous results implicate that HPL and

HIS-24 share some common functions even though there are

Figure 6. mab-5 and egl-5 Hox genes are ectopically expressed in hpl-2; his-24 mutants. (A) A hpl-2; his-24 early L3 mutant male ectopically
expresses mab-5::gfp in hypodermal syncytium cell ((hyp7); animal on the left side). Expression of mab-5::gfp in a wild type early L3 male marks very
few cells at the posterior (animal on the right side). Scale bar: 25 mm. (B) Quantification of progeny of single and double hpl-2; his-24 mutant
hermaphrodites with males carrying mab-5::gfp reporter versus wild type males. (C, D) In a wild type L3 male, expression of egl-5::gfp is limited to the
daughters of the ray precursor cells R4, R5 and R6 which give rise to rays 3–6. In hpl-2; his-24 L3 mutant male the reporter is expressed in additional
ray sublineages. Scale bar: 25 mm. (E) Quantification of progeny of single and double hpl-2; his-24 mutant hermaphrodites with males carrying egl-
5::gfp reporter versus wild type males. (F) Western blot of protein extracts (150 males) from C. elegans wild type, hpl-2; his-24 double mutant and egl-5
transgenic strain probed with antibody raised against EGL-5. Anti-EGL-5 recognized the EGL-5::GFP fusion protein and endogenous EGL-5 in egl-5::gfp
transgenic strain. Protein loading was confirmed by probing with an anti-Ce-lamin antibody and western blot stained with Ponceau S.
doi:10.1371/journal.pgen.1002940.g006
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differences among these proteins [16–17,26]. We conclude that a

combination of the H3K27me3 methylation mark, HPL-2 and

HIS-24K14me1 could be a major factor in the establishment of

stable patterns of selected homeotic gene expression.

Methods

Strains
Nematodes strains were cultured and genetically manipulated as

previously described [43]. The Bristol strain (N2) was used as wild

type. The following strains, obtained from the Caenorhabditis

Genetics Center (CGC), were used in this study: his-24(ok1024)X,

hil-3(ok1556)X (both strains outcrossed 16), hpl-1(tm1624)X

(outcrossed 46), hpl-2(tm1489)III (outcrossed 46). Transgenic

strain (transcriptional reporter) expressing GFP under the control

of the his-24 promoter was kindly provided by BC C. elegans Gene

Expression Consortium, Canada. The double mutants hpl-

1(tm1624)X his-24(ok1024)X, hpl-2(tm1489)III; his-24(ok1024)X,

hpl-2(tm1489)III; hil-3(ok1556)X and the triple mutant strain hpl-

2(tm1489)III; hpl-1(tm1624)X his-24(ok1024)X were generated by

crossing. his-24::gfp (stable integrated EC602 strain [26]) and his-

24K14A::gfp transgenic strains were crossed with the hpl-

2(tm1489)III; his-24(ok1024)X. The generation of his-24K14A::gfp

transgenic strain was previously described [16].

For the reporter gene analysis following transgenic strains:

EM599 [egl-5::gfp; him-5(e1490)V; lin-15B(n765)X; bxIs13], OP27

[unc-119(ed3)III; wgIs27], OP54 [unc-119(ed3)III; wgIs54] and

HZ111 [mab-5::gfp; muIs16 II; sor-1(bp1)/qC1 dpy-19(e1259) glp-

1(q339)III; him-5(e1490)V], kindly provided by CCG, were used.

The brood size was scored as previously described [14].

All C. elegans strains were maintained at 15uC or at 21uC, unless

otherwise specified.

Protein extraction, purification, and identification
C. elegans H1 extraction was performed as previously described

[16].

Immunofluorescence analysis
Worms from wild type strain and the mutant worms were fixed

and stained as previously described [26]. Gonads of worms were

stained with fluorescent dye 49,69-diamidino-2-phenylindole (DAPI)

diluted 1:1000. The slides were mounted with Vectashield Mounting

Medium and analyzed by using Leica DMI 6000 microscope.

Microarray analysis
Microarray analysis from two biological replicates was per-

formed as previously described [16,44]. In brief, 80 to 100 animals

in L4 larval stage raised at 21uC were used. The gene expression

fold change was calculated from the duplicate microarray data.

The fold change cut-off was 1.5 from 2 biological replicates.

Analysis of ray phenotypes
Abnormalities of rays were identified in single, double and triple

mutant males in comparison to the wild type worms. Animals were

transferred on agar pads (2% agarose) and examined with

differential interference contrast (DIC), using Leica DMI 6000

microscope. The number of rays, their position in relation to the

anterior-posterior body axis and their shape served as basics of the

analysis. Rays which were found outside of their normal formation

region were defined as ectopic.

RNA interference (RNAi) experiments
RNAi feeding experiment was performed in 50 mm NGM

feeding plates (NGM plates with 100 mg/ml ampicillin, 1 mM

IPTG). him-14 (RNAi) (CGC, USA), hpl-1 (RNAi), mes-2 (RNAi)

and mes-3 (RNAi) bacterial clones (Sanger Institute, UK) were

grown overnight at 37uC in LB medium with 100 mg/ml

ampicillin and were spotted onto 50 mm NGM plates. Mixed

stage L3 and L4 mutant larval worms were transferred onto

feeding plates and incubated at 21uC through several generations.

Males were examined on the agar pads using Leica DMI 6000

microscope. Male progeny were scored for the presence of ectopic,

under-developed rays and/or ray fusions.

Analysis of EGL-5::GFP and MAB-5::GFP expression in the
single, double, and triple mutant strains

L3 stage and adult animals from each line were mounted on the

agar pads and examined under Leica DMI 6000 microscope.

Males were scored for the presence of ectopic EGL-5::GFP or

MAB-5::GFP expression.

Chromatin immunoprecipitation
ChIP was performed as previously described [45] with several

modifications. Mixed stage L4 and adult worms were homog-

enized in ice-cold FA lysis buffer (50 mM HEPES/KOH

pH 7.5, 1 mM EDTA, 1% Triton X-100, 0.1% sodium

deoxycholate; 150 mM NaCl) with complete protease inhibitor

cocktail (Roche) and 1% Triton X-100 using liquid nitrogen.

Worm lysate was sonicated with a Branson Digital Sonifier using

following settings: 30% amplitude for 3 min total. Protein

concentration of the extract was determined by the Coomassie

Plus (Bradford) Protein Assay. Worm extract was incubated with

the following antibodies: anti-H3 (Abcam 1791), anti-

H3K27me2 (Upstate 07-322), anti-H3K27me3 (kindly provided

by T. Jenuwein), anti-H3K9me2 (Abcam 1220), anti-H3K4me3

(Abcam 1012), anti-GFP (Roche) and anti-HIS-24. Proteins were

immunoprecipitated using G-agarose beads (Pierce). mab-5 and

egl-5 genes were detected by qPCR using iCycler iQTM Multi-

Color real time PCR detection system (Bio-Rad). Primer

sequences are available on request.

Peptide pull down analysis
Peptide pull downs were performed as previously described

[46]. 10 mg of each biotinylated peptide was coupled to

streptavidin- agarose beads (Pierce). For peptide binding experi-

ments following peptides were used: H3 mono-, di- or trimethy-

lated at K9, H3 mono-, di- or trimethylated at K27, H3

unmethylated at K27, HIS-24 monomethylated at K14 and

Figure 7. HIS-24 associates with promoters of mab-5 and egl-5 genes. (A) mab-5 and egl-5 genes are tightly clustered on chromosome III.
Primer sets for qChIP-PCR are directed to the mab-5 and egl-5 promoters, introns and 39UTR (red bars). (B) qChIP-PCR assay determining HIS-24
occupancy at the mab-5, and egl-5 genes. The results were normalized to binding by anti-HIS-24 antibody in his-24 mutant strains and performed in
triplicates. Error bars indicate 6SD (see Table S3). (C) qChIP using anti-HIL-4 antibody and total protein isolated from wild type worms. (D) Decreased
level of HIS-24 enrichment at mab-5 using anti-HIS-24 antibody and mab-5::gfp transgenic strain in sor-1 background mutation (KO) as well as wild
type (WT) animals. H3 occupancy at mab-5 loci is affected in sor-1 and his-24 background. In sor-1 and his-24 background mab-5 is ectopically
expressed in contrast to repressed mab-5 in wild type animals. (C, D) All results were normalized to binding by control IgG antibody and performed in
triplicates. Error bars indicate 6SD (see Table S3).
doi:10.1371/journal.pgen.1002940.g007
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HIS-24 unmethylated at K14. Peptides were generated by Squarix

(Germany). Worm extracts were incubated for 2 h at 4uC with the

beads (constant rotation). Beads were washed six times with PD

150 buffer (20 mM Hepes pH 7.9, 150 mM KCl, 0.2% Triton-X

100, complete protease inhibitor cocktail, 20% glycerol). Bounded

proteins were separated on gradient NuPAGE SDS gel (4–12%).

Figure 8. MES-2 and MES-3 enhances the number of defected rays in animals lacking hpl-2 and his-24. (A) RNA interference (RNAi) of
mes-3 leads to enhancement of hpl-2; hpl-1his-24 mutant male phenotype in contrast to (B) sop-2-depleted triple mutant animals. Ectopic rays are
indicated with arrowheads and under-developed rays by a star. (C) Quantification of ray defects associated with hpl-2; his-24 double and hpl-2; hpl-
1his-24 triple mutations. The animals were growing on him-14 and mes-2 or mes-3 as well as sop-2 feeding plates at 21uC. sop-2 deletion is epistatic to
hpl-2; his-24 double mutation.
doi:10.1371/journal.pgen.1002940.g008

Repression of Hox Genes by HP1 and H1 in C. elegans

PLOS Genetics | www.plosgenetics.org 14 September 2012 | Volume 8 | Issue 9 | e1002940



Figure 9. HIS-24K14me1 and HPL-2 bind to the H3K27me3 chromatin mark. (A, B) HIS-24K14me1 protein specifically recognizes H3K27me3
chromatin mark and HPL-2 binds H3K27me2/me3, and H3K9me2/me3 in peptide pulldown assay (PD) and immunoprecipitation experiment (IP). Non-
specific bands are indicated by a star. (C) HPL-2::GFP and HIS-24::GFP pull down H3K27me3. In contrast, GFP under his-24 promoter did not precipitate
H3K27me3. In the bottom panel, SIR-2.1 was used as a negative control [18]. (D) Recombinant expressed HIS-24 binds H3K27me0/2/3 in contrast to HPL-
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Figure 10. HIS-24::GFP expression in hpl-2;his-24 double mutant animals restores normal male tail development. (A–C) The exogenous,
mutated form of his-24K14A::gfp is expressed at the level comparable to those in animals carrying his-24::gfp wild type form. (A) Scale bar 10 mm. (B)
Scale bar 25 mm. Stars point to under-developed rays. (D) Quantification of ray defects (E) associated with his-24K14A::gfp and his-24::gfp in hpl-2; his-
24 background mutation. The animals were growing on him-14 feeding plates at 21uC.
doi:10.1371/journal.pgen.1002940.g010

2. (E) Deficiency of HIS-24 does not influence the binding of HPL-2 to H3K27me3. (F) Simplified model of HIS-24K14me1 and HPL-2 regulation of Hox
gene expression. HIS-24K14me1 does not interact with HPL-2.
doi:10.1371/journal.pgen.1002940.g009
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Western and dot blot
C. elegans lysates were prepared and analyzed by western blot as

previously described [16,18].

Immunoprecipitation
Mixed populations of L4 worms carrying the hpl-2::gfp transgene

or wild type worms were homogenized [47]. About 1.5 mg of total

precleared protein was incubated with following antibodies GFP-

TrapR –A beads (Chromotek, Germany), anti- H3 (Abcam 1791),

anti-H3K27me2 (Upstate 07-322), anti-H3K27me3 (kindly pro-

vided by T. Jenuwein), anti-H3K9me2 (Abcam 1220), anti-

H3K4me3 (Abcam 1012), anti-H3K9me3 (Abcam 8898) or anti-

H4K20me3 (Abcam 9053) at 4uC overnight. Next, the complexes

were washed six times with PD150 buffer for 5 minutes at 4uC
(20 mM Hepes, pH 7.9; 150 mM KCl, 0.2% Triton X-100, 16
Protease Inhibitor (Roche), 20% glycerol). Finally, the immuno-

precipitated proteins were resolved on NuPAGE SDS gradient gel

(4–12%) and western blotted with antibodies against H3K27me3

(1:20 000 dilution), HPL-2 (1:2000 dilution; kindly provided by F.

Palladino), HIS-24K14me1 (1:10000 dilution) and GFP (Roche;

1:20000 dilution).

Expression of recombinant HPL-2 protein
The pGEX HPL-2a plasmid (kindly provided by F. Palladino)

and HIS-24 pet3a plasmid were expressed in E. coli BL21(DE3)

and the recombinant proteins were used for the peptide pull down

assay.

Accession numbers
The microarray data can be found in the Gene Expression

Omnibus (GEO) of NCBI through accession number GSE33339.

Supporting Information

Figure S1 The levels of heterochromatin marks are not altered

in the hpls, his-24 mutant animals. No changes of the H3K27me3,

H3K9me3 and H3 levels were observed in single, double and

triple mutant animals.

(PDF)

Figure S2 Reduced level of HPL-1 after depletion. Reduction of

HPL-1 level in hpl-1 depleted his-24; hpl-2 double mutant animals

in contrast to his-24; hpl-2 double, where HPL-1 is present.

(PDF)

Table S1 Differentially co-expressed genes for L4 stage larvae in

hpl-2; hpl-1 and his-24 hpl-1; hpl-2 compared to wild type

(FDR,0.05). Each table represents the following ontologies:

Biological Process (BP) and/or Cellular Component (CC). Gene

Ontology (GO) terms taken from WormBase (http://www.

wormbase.org). n/a –not available.

(XLS)

Table S2 Ray defects associated with hpl-1, hpl-2 or his-24

mutations.

(DOC)

Table S3 Standard deviation of qChIP-PCR analysis for

Figure 7.

(DOC)
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