
Mitochondrial Genomes Reveal Slow Rates of Molecular
Evolution and the Timing of Speciation in Beavers
(Castor), One of the Largest Rodent Species
Susanne Horn1*, Walter Durka2, Ronny Wolf3, Aslak Ermala4, Annegret Stubbe5, Michael Stubbe5,

Michael Hofreiter1¤

1 Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany, 2 Department for Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle,

Germany, 3 Department for Molecular Evolution and Animal Systematics, University of Leipzig, Leipzig, Germany, 4 Finnish Game and Fisheries Research Institute, Helsinki,

Finland, 5 Institute of Zoology, University of Halle-Wittenberg, Wittenberg, Germany

Abstract

Background: Beavers are one of the largest and ecologically most distinct rodent species. Little is known about their
evolution and even their closest phylogenetic relatives have not yet been identified with certainty. Similarly, little is known
about the timing of divergence events within the genus Castor.

Methodology/Principal Findings: We sequenced complete mitochondrial genomes from both extant beaver species and
used these sequences to place beavers in the phylogenetic tree of rodents and date their divergence from other rodents as
well as the divergence events within the genus Castor. Our analyses support the phylogenetic position of beavers as a sister
lineage to the scaly tailed squirrel Anomalurus within the mouse related clade. Molecular dating places the divergence time
of the lineages leading to beavers and Anomalurus as early as around 54 million years ago (mya). The living beaver species,
Castor canadensis from North America and Castor fiber from Eurasia, although similar in appearance, appear to have
diverged from a common ancestor more than seven mya. This result is consistent with the hypothesis that a migration of
Castor from Eurasia to North America as early as 7.5 mya could have initiated their speciation. We date the common
ancestor of the extant Eurasian beaver relict populations to around 210,000 years ago, much earlier than previously
thought. Finally, the substitution rate of Castor mitochondrial DNA is considerably lower than that of other rodents. We
found evidence that this is correlated with the longer life span of beavers compared to other rodents.

Conclusions/Significance: A phylogenetic analysis of mitochondrial genome sequences suggests a sister-group relationship
between Castor and Anomalurus, and allows molecular dating of species divergence in congruence with paleontological
data. The implementation of a relaxed molecular clock enabled us to estimate mitochondrial substitution rates and to
evaluate the effect of life history traits on it.
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Introduction

Dating back to approximately 40 million years, today the family

of beavers, Castoridae, is represented by only two extant species,

Castor canadensis in North America and Castor fiber in Eurasia. Both

species are characterized by their large body size, being the second

largest rodent, and their semi-aquatic lifestyle [1,2]. However,

several aspects of the early history and evolution of beavers remain

unclear. Earlier attempts of their phylogenetic placement relative

to other rodents were difficult because of a lack of fixed

morphological differences, poor taxon sampling in many genetic

studies, limited sequence data in previous studies, and contempo-

raneous radiations of multiple rodent lineages. More recent

molecular data strongly support the placement of Castor within a

‘‘mouse-related clade,’’ containing several families including

Pedetidae, Anomaluridae, Muridae, Dipodidae, Geomyidae, and

Heteromyidae [3,4,5,6]. Previous multigene studies have suggested

Geomyoidea to be the closest relatives of beavers [5,6]. However,

the branches leading to both groups diverged very early in rodent

evolution and transposon insertion analyses are inconclusive with

regard to their monophyly [7,8].

Not only the phylogenetic placement of beavers within rodents

is not completely understood, little is also known about the timing

of the speciation event leading to the two extant beaver species.

Both have a strikingly similar phenotype, making them almost

indistinguishable in the field; therefore molecular methods are

applied to differentiate them [1,9]. Despite the morphological

similarities, subtle morphological and biochemical features and
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different chromosome numbers support their distinction as

different species [10]. The fossil record provides further informa-

tion on the timing of Castor speciation. The appearance of

the genus Castor in Eurasia and North America was estimated

to the late Miocene and the Pliocene, between 9–4.9 mya

[11,12,13,14,15,16]. Castor is assumed to have emerged in Eurasia

as a close relative of Steneofiber [11,12,14,15,16], and to have

subsequently dispersed to North America via the Bering land-

bridge [12,13,15,16,17]. This dispersal event was estimated to 4.9–

6.6 mya [13,15]. However, since the estimates for the earliest

appearance of Castor on both continents overlap, it is not entirely

clear in which direction the dispersal of Castor took place.

Irrespective of dispersal direction, since the two extant species of

Castor are native to either Eurasia or North America, it seems

reasonable to assume that a migration across the Bering strait

could have initiated the speciation of C. canadensis and C. fiber

[10,14,15] (Fig. 1). However, no study to date attempted obtaining

a sequence based molecular date for the timing of divergence

between the two species. As mitochondrial genomes are available

for a number of rodent taxa [18], the addition of Castor

mitochondrial genomes could shed light not only on the deep

phylogeny of beavers, but also on the timing of divergence to other

rodents and within the genus itself. Finally, mitochondrial genome

data should allow for determination of the overall substitution rate

in beaver mitochondrial DNA, which allows retrospectively

investigating and dating population genetic processes.

Here we present the first complete mitochondrial genomes of

beavers. We use these DNA sequences to investigate the

phylogenetic position of beavers within rodents, date evolutionary

events within the extant members of the family Castoridae and

explore the substitution rate of their mitochondrial DNA.

Results

Phylogenetics
We sequenced mitochondrial genomes of one C. canadensis and

five C. fiber utilizing long range PCR, DNA hybridization capture

and 454 sequencing (Table S1 and and Supporting References

S1). Assemblies derived from hybridization capture showed a

considerably smoother read distribution than those derived from

long range PCR (Fig. 2). The consensus sequences obtained were

aligned with a variety of rodent and outgroup mitochondrial

genomes for phylogenetic analyses and molecular dating (Table

S2). We employed several different methods for investigating the

phylogenetic relationships in our dataset. All methods, Bayesian

approaches, maximum likelihood (ML), neighbor joining (NJ) and

maximum parsimony (MP) recovered a well supported, mono-

phyletic clade of the Castor individuals. In Fig. 3 we present a

maximum clade credibility tree from BEAST with support values

from all phylogenetic methods. Highest support was obtained for

the sister group relationship of C. canadensis and C. fiber, the latter

represented by a monophyletic clade of five subspecies (C. fiber ssp.

albicus, belorussicus/orientoeuropaeus, birulai, tuvinicus, and pohlei). A

position of Castor within the mouse related clade of rodents, as

sister to the scaly tailed squirrel Anomalurus, was supported with

very high and maximum support, respectively, from Bayesian

analyses as well as with bootstrap values higher than 70 in ML

analyses. The squirrel related clade and Hystricognathi were

recovered with high support values in all phylogenetic methods.

Although the monophyly of rodents was not supported in NJ and

MP, it received maximum support from Bayesian and a bootstrap

value of 70 in ML analyses. However, the relationship between the

three major rodent clades remains enigmatic, since their

branching order could not be resolved. Since difficulties in

resolving the root of the rodent tree have been attributed to the

effect of long branch attraction, causing rodent sequences to

cluster with outgroups [18,19], we conducted additional ML

analyses with a more representative sample of outgroup sequences

(Table S2). These additional outgroup sequences could not

improve the resolution of the early branchings, instead, the ML

bootstrap support value for rodent monophyly decreased from 70

to 52 (Table S3). However, since the monophyly of rodents was

supported in our Bayesian and ML trees based on the smaller set

of taxa as well as other studies on nuclear DNA sequences and

transposon insertions [7,8], we nevertheless attempted estimating

the time elapsed since a monophyletic origin of all rodents using a

molecular dating approach implemented in BEAST [20].

Figure 1. Distribution of beavers and sampling sites. Beavers live in North America (C. canadensis, striped areas) and Eurasia (C. fiber, grey
areas). Black areas mark C. fiber relict populations from which the current populations developed. C. canadensis was introduced in Europe and Asia
(striped areas, distribution not exactly known for Kamchatka). Numbers indicate beaver populations sampled for mitochondrial genome sequencing.
C. fiber was sampled in the areas of the relict populations (1,3,4,5) or close to them (2) [31]. C. canadensis was sampled in a European introduced
population (6). Arrow: migration via the Bering land bridge is suggested to have initiated Castor speciation around 8–7.6 million years ago (mya). Map
redrawn from [1], [31] and [55].
doi:10.1371/journal.pone.0014622.g001
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Divergence estimates
We estimated that all rodents shared a common ancestor around

67 mya (CI: 57–76 mya) (Table S4). Around 54 mya (CI: 44–64 mya),

the branch leading to beavers diverged from the common ancestor

with the scaly tailed squirrel Anomalurus. The mitochondrial DNA of

the two beaver species C. fiber and C. canadensis shared a most recent

common ancestor between 8 mya (mean) and 7.6 mya (median) (CI:

3.7–13 mya; Table S4). Within Eurasian beavers, the individuals

coming from different relict populations shared a common ancestor

around 210,000 years ago (CI: 110,000-340,000 ya).

Substitution rates
As beavers are the largest rodents for which a mitochondrial

genome sequence is currently available, we explored the

Figure 2. Sequencing coverage plots of beaver mitochondrial genomes. Plots for C.f. ssp. birulai amplified by long range PCR (grey line) and
C.f. ssp. pohlei enriched by hybridization capture (black line). Coverage was more even when hybridization capture was used instead of long range
PCR. Peaks of sequencing coverage are visible for C.f. ssp. birulai (grey) in proximity to priming sites (indicated on top of the plots).
doi:10.1371/journal.pone.0014622.g002

Figure 3. Timetree of rodents and outgroups. Beavers share a common ancestor with Anomaluromorpha around 54 mya (CI: 44–64 mya); the
only extant beaver genus Castor separated into two species from 8–7.6 mya onwards (CI: 3.7–13 mya). The common ancestor of the Eurasian relict
populations was estimated to have lived around 210,000 ya (CI: 0.11–0.34 mya). The tree depicted is a maximum clade credibility tree from BEAST
analyses based on a 16,352 bp alignment (including gaps). Bayesian posterior probability (.0.6) and bootstrap support values (.50) are shown at
the branches and separated by slashes for MrBayes, maximum likelihood, neighbor joining and maximum parsimony, respectively. Diamonds indicate
fossil calibrations (Table S4). Paleoc.: Paleocene; Oligoc.: Oligocene; Pl: Pliocene, PH: Pleistocene and Holocene. Castor fiber po, tu, bi, in and al indicate
the subspecies sampled (see Table S1).
doi:10.1371/journal.pone.0014622.g003
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mitochondrial substitution rate in comparison to other rodents.

There is some evidence that the substitution rate is linked to life

expectancy and body mass [21] even though this connection is

controversial [22]. Animals like the beaver, with higher life

expectancy and larger body mass are therefore expected to show

decreased substitution rates. Molecular substitution rates for the

taxa in our dataset were estimated in the BEAST analysis and are

depicted on each branch in Fig. 4 (see also Table S5). The only

rodents with a lower mitochondrial rate were Sciurus and Myoxus in

the squirrel-related clade. Within the mouse-related clade the

mitochondrial tip rates of beavers were significantly lower than

those of the other members of this clade (p-value = 0.005). Also,

when the distribution of rates for beavers was compared to the

distribution of rates for all other rodents in the dataset, the rates of

beavers were significantly lower (p-value = 0.014, Mann-Whitney

U-test, Fig.4, Table 1). This difference became even more evident

when instead of tip rates average rates leading to the individual

taxa were used (see methods and Table S1). If tested across all

glires (rodents and lagomorphs), the tip and average rates of

beavers did not differ significantly anymore (Table 1).

We related the inferred substitution rates to body mass and

life history traits of rodents as had been done earlier [21] (Fig. 5,

Table S6). In linear regressions, more than 30 percent of the

variation in tip rates (R2 = 0.34, p-value = 0.0225) and average

rates (R2 = 0.40, p-value = 0.0113) could be explained by maxi-

mum lifespan. Thus considerably more variation in lifespan was

attributable to mitochondrial rate variation than had been

estimated previously (below 20 percent in [21]). However, for

body mass and age at sexual maturity, no significant correla-

tions with substitution rates could be identified (p-values.0.05,

Table S6).

Discussion

The phylogenetic relationships of extant rodent families have

been difficult to resolve. However, several previous molecular

studies recognized three major phylogenetic clades of rodents: the

mouse-related clade, Ctenohystrica (relatives of the guinea pig)

and the squirrel-related clade (Fig. 3). This branching was

supported by nuclear DNA analyses [3,5,7,8] as well as some

studies including mitochondrial DNA [6,23]. We find this

phylogeny to be also supported by complete mitochondrial

nucleotide sequences. In accordance with studies on nuclear

DNA [3,5,6], Anomalurus is recovered as an early member of the

mouse-related clade. In contrast, an earlier analysis of complete

mitochondrial genome sequences did not recover Anomalurus

within the mouse-related clade [18], possibly due to reducing

the sequences to the coding regions for some of the phylogenetic

inferences.

The root of the rodent tree is much more difficult to resolve.

Although we obtain high support for rodents as a monophyletic

group, confirming earlier studies [3,5,8,24,25], as in previous

Figure 4. Comparison of mitochondrial substitution rates among glires. Phylogenetic tree of glires (rodents and lagomorphs) with branch
lengths from the BEAST analysis. Mitochondrial substitution rates are shown on the branches or next to each taxon in units of substitutions per
million years. Beavers exhibit short branches and substitution rates for beavers are the lowest within the mouse-related clade, significantly lower than
those of most other rodents (see also Table 1).
doi:10.1371/journal.pone.0014622.g004
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studies, we could not determine the branching order of the three

major clades [3,5,18]. However, our analyses are based on

mitochondrial DNA and therefore represent a single genomic

locus only. Also, since many rodents exhibit high substitution rates,

part of the lower resolution for the deeper nodes might result from

mutational saturation of the sequences. Analyses of a larger

number of nuclear loci should improve the resolution of the deeper

phylogenetic nodes within rodents in the future.

We recovered the six beaver mitochondrial genomes in one

monophyletic group within the mouse-related clade of rodents

(Fig. 3). This phylogenetic position of beavers was indicated

already in earlier analyses based on nuclear gene sequences and

transposon insertions [5,7,8]. Now, mitochondrial genomics adds

another line of evidence to this relationship. In our dataset, the

mitochondrial sequence of the scaly tailed squirrel Anomalurus was

most closely related to those of the beavers. However, there is no

mitochondrial genome sequence available for the Geomyoidea

(gophers and kangaroo rats), which have been found to be most

closely related to beavers in multigene studies [5,6] and could

attach to the evolutionary branch leading to beavers even later

than Anomalurus.

We estimated divergence times within rodents in BEAST using

six fossil calibration points and a Bayesian relaxed molecular clock

approach [20] and found all rodents to share a common ancestor

around 67 mya (CI: 57–76 mya) (Table S4). This timing is

remarkably coincident with the mass extinction event that marked

the transition between the Cretaceous and Tertiary (K-T

boundary). At that time dinosaurs went extinct and a major

faunal change took place all over the world. The origin of rodents

has been dated both earlier and later in other studies: around 96

mya [26], 71–89 mya [6], around 72 mya [3] and around 62 mya

[18]. Our estimate lies in between the range of earlier estimates,

close to the K-T boundary and predating the explosive radiation

of rodents in the early Eocene (dated to around 55mya) [27].

Thus, the changing biota at the K-T boundary may have been

causal for a first rodent radiation.

Around 54 mya (CI: 44–64 mya), a phylogenetic lineage leading

to beavers diverged from its common ancestor with Anomalur-

omorpha (Anomalurus and Pedetes). Thus, beavers probably have a

very long evolutionary history, which might explain their

ecological and morphological peculiarities. In a previous study

using 5.5 kb of nuclear and mitochondrial DNA sequences [3], the

divergence of beavers and Anomaluromorpha was estimated even

older, at more than 65 mya. However, since Geomyoidea are

potentially even more closely related to beavers, additional DNA

sequences for Geomyoidea will be required to provide information

on the beginning of beaver evolution.

Similar to the divergence of the family Castoridae, the

divergence time of the two extant beaver species has not yet been

estimated with much precision. The origin of the extant beaver

genus Castor has been suggested to lie in Eurasia at some time

between 9.7 and 5.2 mya based on the fossil record and similarities

with Steneofiber [14,15,16]. However, since there is overlap with the

earliest appearance of Castor in North America (6.6 mya to 7.5 mya

[12,28]), the geographical origin of Castor remains uncertain.

Independent of that, a migration of ancient Castor via Beringia and

the subsequent geographical isolation of the two populations in

Eurasia and North America, respectively, most likely led to the

divergence of Castor lineages that ultimately gave rise to the

modern species C. fiber and C. canadensis. According to our

molecular datings, the two beaver species shared a common

ancestor around 7.6–8 (CI: 3.7–13) mya. This molecular estimate

is intriguingly close to the earliest fossil beaver remains in North

America possibly dating as early as 7.5 mya [12]. The Beringian

land bridge allowed faunal exchange between Eurasia and North

America until its first flooding 5.4–5.5 mya and then again several

times during the Pliocene and Pleistocene [29]. Thus, a migration

over the Beringian landbridge around 8–7.6 mya has likely been

the starting point for the speciation between C. fiber and C.

canadensis, each on a different continent (Fig. 1).

Despite a successful evolutionary history across the Palaearctic for

several millions of years, beaver populations decreased dramatically

in size in more recent history. Extensive hunting by humans and

Table 1. Mitochondrial substitution rates of Castor differ significantly from those of other rodents.

Median rate at tips Median rates averaged

Castor vs. rest of mouse-clade U = 36, p-value = 0.004998 ** U = 42, p-value = 0.002591 **

Castor vs. rest of rodents U = 58, p-value = 0.01375 * U = 60, p-value = 0.007005 *

Castor vs. rest of glires U = 62, p-value = 0.1075 U = 60, p-value = 0.1457

Results of Mann-Whitney U-tests testing the null hypothesis that substitution rates for Castor are identical to the rates of other rodents (Wilcoxon rank sum test with
continuity correction as implemented in R).
*: significant, ,0.05;
**: highly significant, ,0.005.
doi:10.1371/journal.pone.0014622.t001

Figure 5. Linear regression of average substitution rates and
lifespan of rodents. Rodents with higher mitochondrial substitution
rates exhibit a shorter lifespan (R squared = 0.4011, p-value = 0.0113).
See Table S6 and S7 for details.
doi:10.1371/journal.pone.0014622.g005
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habitat destruction affected both beaver species [1,30] and left

Eurasia with a few, isolated relict populations of C. fiber at the end of

the 19th century [30]. The diversification of these extant beaver

populations was proposed to have happened during the last glacial

period, from 115,000 ya onwards [31]. We dated the last common

ancestor of the extant Eurasian beaver mitochondrial genomes to

almost twice the age than estimated before, around 210,000 ya (CI:

110,000–340,00 ya). However, it has been pointed out that due to

the problems in determining substitution rates precisely, such dates

should be viewed with caution and correlating molecular divergence

dates with changes in environmental conditions may be tentative at

best [32]. It should be noted that when using fossil calibration points

like in this study, the divergences towards the tips of the tree may be

overestimated [33]. However, the substitution rate estimates for the

tip branches leading to the individual subspecies are very similar to

the overall estimate for the branch from the MRCA of all rodents to

the tips of the beaver branches, suggesting that for this evolutionary

lineage, time-dependent variation in substitution rates is negligible.

Therefore, the diversification of the extant Eurasian beaver lineages

started most likely substantially earlier than previously estimated.

Also, geographically distinct lineages of other Eurasian, potentially

forest dependant species showed similar divergence estimates, such

as cave bears (173,000–414,000 ya [34]) and brown bears (174,000–

314,000 ya [35]). The genetic diversity of these populations was

probably shaped by climatic fluctuations during the glacial cycles

since around 0.9 mya [36].

The analysis of substitution rates also shows that beavers display

a lower substitution rate than most other rodents, a feature clearly

visible in the branch length of the phylogenetic tree (Fig. 4). This

difference was highly significant when beavers were tested against

other members of the mouse-related clade. The rate difference was

still significant when Castor was compared with all other rodents in

the dataset, including the squirrel-related clade which also showed

lower substitution rates. It has been argued before that certain

morphological, physiological, and life history traits influence DNA

substitution rates. For example, Welch et al. [21] showed that life

history traits like body mass, lifespan and age at sexual maturity

are negatively correlated with substitution rates over a wide range

of mammals. Beavers are atypical among rodents with respect to

several life history traits as they have a much larger body mass,

longer lifespan and do not reach sexual maturity until 1.5–3 years

of age (Table S7, [1,14]). Thus, a lower substitution rate can be

expected for beavers compared to other rodents. In our analysis of

mitochondrial genomes, body mass and age at sexual maturity did

not correlate significantly with mitochondrial substitution rates,

although body mass did so earlier [21]. However, we found a

significant negative correlation between the substitution rate and

maximum lifespan as has been previously reported for mitochon-

drial synonymous sites across mammals [21]. Despite the smaller

sample size in our analysis, a larger fraction of the variation in

substitution rate was explained by maximum lifespan, even though

we included non-synonymous sites, which did not show a

significant correlation earlier [21]. Correlates of substitution rates

with lifespan are not fully explained to date [21], but natural

selection could have acted to reduce the mutation rate in

mitochondria of long lived taxa such as the beaver [37,38].

However, in a genome scan across 25 species, genes involved

in DNA replication, repair or antioxidation did not show

signatures of selection in long-lived taxa. Instead, the selected

features were connected to cellular membrane and extracellular

collagen composition and their functional relevance remains

puzzling [39].

In summary, our study showed that over the wide taxonomic

range of glires, datasets comprising whole mitochondrial genome

sequences facilitate the inference of substitution rates, phylogenetic

analyses and divergence estimates.

Materials and Methods

Ethics statement
The tissue sample of Castor canadensis was taken from a dead

beaver, which was shot during the open hunting season in Finland.

The sample of Castor fiber ssp. albicus came from a road kill,

dissected with the approval from the environmental agency of

Germany, administrative district of Leipzig. Samples Castor fiber

ssp. belorussicus/orientoeuropaeus, birulai, tuvinicus and pohlei consisted

of beaver tail skin or hair that was obtained from live animals

captured with nets, live traps, and at night with a search light and

netting from a boat. Animals were released afterward. Sampling

procedures were consistent with guidelines of the American

Society of Mammalogists for the capture and handling of

mammals [40]. All catches were performed in cooperation with

and under approval by, the Nature Reserve ‘Malaya Sosva’ in

Russia, the Zhitkov Russian Research Institute of Game

Management and Fur Farming in Kirov, Russia, as well as the

National University of Mongolia in Ulaan-Baatar, Mongolia.

Samples, DNA extraction and long range PCR
DNA was extracted from five tissue samples of C. fiber and from

one sample of C. canadensis (Table S1) using the DNeasy blood &

tissue kit (Quiagen). For well preserved DNA, the mitochondrial

genome was amplified in two overlapping pieces around 11 and

6 kb in length, by long range PCR using the expand dNTPack

(Roche) according to the manufacturer’s instructions. Primer

sequences are listed in Table S8. Long range PCR products were

sheared using a Bioruptor UCD-200 (Diagenode). Barcoding

adaptors with sample specific sequences and 454 sequencing

adaptors were ligated to the sonicated products as described

previously [41].

DNA hybridization capture and sequencing
For less well preserved samples, for which long range PCR did

not work, DNA hybridization capture was used to enrich for

mitochondrial genomes (Table S1). For this process, biotinylated

bait molecules are hybridized with a genomic library and later

selectively captured on streptavidin beads [42]. Barcoded genomic

libraries were prepared from Castor DNA as described previously

[41,43], allowing the simultaneous sequencing of different samples

on the same 454 lane. To produce bait molecules, long range

amplicons of C. fiber ssp. albicus were used. The PCR products were

sheared until they had a length of around 300 bp, and double

stranded, biotinylated adapters were ligated onto the ends. The

hybridization mixture was set up as follows: 1 mg of genomic

library, 100 ng of bait and four blocking oligos (each 2 mM) in 1x

blocking Agent (Agilent) and 1x hybridization buffer (Agilent).

Agilent reagents were from the aCGH Kit #5188-5220.

Sequences for the blocking oligos are listed in Table S8. After

denaturation of the mixture at 95uC for 5 min, the hybridization

was carried out in 200 ml tubes (Eppendorf), rotating at 65uC for

48 hours in a conventional hybridization oven (SciGene).

After hybridization, biotinylated bait molecules were captured

by incubation with 5 ml of magnetic streptavidin covered beads

(Dynalbeads M270, Invitrogen) for 20 min at room temperature.

The mixture was then placed into a magnetic rack (Beckman

Coulter #A32782) allowing the separation of magnetic beads from

the supernatant. The supernatant, containing non-target mole-

cules was discarded and the remaining beads were washed five

times using 1xBWT buffer (1 M NaCl, 10 mM Tris-Cl, 1 mM

Castor Mitochondrial Genomes
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EDTA, 0.05% Tween-20 (Sigma), pH 8.0) and once in pre-

warmed HW buffer (200 ml 10x AmpliTaq Gold buffer, 200 ml

MgCl2, 1.6 ml H2O) at 50uC for 2 min. After one more wash with

1xBWT, the beads were transferred into a new tube with 100 ml of

TE-buffer (containing 0.05% Tween-20). Finally, hybridized

target molecules were separated from the bait molecules in 30 ul

1xTE by 5 min incubation at 95uC in a thermocycler. The eluate

containing the sequencing library enriched for mitochondrial

DNA, was directly used for quantification and sequencing.

Sequence analyses and assembly
After 454 library preparation and quantification of the libraries

by qPCR using emPCR priming sites [44], sequencing was carried

out on the 454 FLX platform. De novo assembly of 454 reads of the

mitochondrial genomes for C. fiber ssp. albicus and C. canadensis was

done with runAssembly (454 Roche), separately for each of the two

overlapping long range amplicons, and the overlaps joined by

hand in BioEdit [45]. For the remaining C. fiber specimens,

sequencing reads were mapped onto the assembled C. fiber

mitochondrial genome using runMapping (454 software) and the

iterative mapping tool IMA [46]. The output of the mappings was

viewed with clview (software available at http://compbio.dfci.

harvard.edu/tgi/software/) and the map aligner [46]. Mapping of

the sequencing reads from one PCR derived sequence showed a

somewhat uneven coverage and peaks of read counts in the

proximity to priming sites (Fig. 2), which could result from

amplicons that were aborted during the PCR shortly after

priming. The generally observed differences in coverage between

both long range PCR products might reflect variation in

quantification or pooling of these prior to sequencing. Coverage

plots from hybridization capture were smoother than those derived

from long range PCR (Fig. 2). The obtained mappings covered the

complete mitochondrial genomes for all samples. One site each in

beaver samples C. canadensis and C. fiber albicus had less than 3x

coverage, for which the sequence was confirmed by PCR and

Sanger sequencing (sample specific primers listed in Table S8).

Nuclear mitochondrial insertions (numts) could be ruled out for

long range PCR by joining the overlaps creating a circular

sequence, and are not expected to be a problem for hybridization

capture since nuclear DNA has a much lower copy number than

mitochondrial DNA. The length of the repeat region between the

control region and tRNA-Phe is a minimum estimate, since the

454 sequencing reads did not span the region completely. For

between two and 21 positions per mitochondrial genome,

corrections of the assembled DNA sequence were made by hand

in BioEdit. These affected mainly protein coding regions, where

the length of homopolymers was corrected so that the reading

frame for amino acid sequences was retained. The obtained

sequences were deposited in GenBank with accession numbers

FR691684-FR691689.

Phylogenetic analyses and divergence estimates
Alignments of DNA sequences were done using mafft v6.708b

[47] for the taxa listed in Table S2. The complete alignment

including gaps had 19,419 bp in length. 3067 bp of the alignment

containing the control region between tRNA-Pro and tRNA-Phe

were not well aligned due to high sequence divergence and were

therefore removed, resulting in an alignment of 16,352 bp for

phylogenetic analyses.

Modeltest was used to determine the optimal evolutionary

model for the dataset [48]. The general time reversible (GTR)

model with a proportion of invariant sites of 0.2559 and a gamma

shape parameter of 0.4721 was determined to be most

appropriate. Using this substitution model, phylogenetic trees

were calculated with maximum likelihood (ML). One hundred

bootstrap replicates were done in Paup [49] version 4.0d105. The

heuristic search used tree bisection reconnection (TBR) limited to

1000 rearrangements per bootstrap replicate due to computational

constraints.

In order to test if the removal of fast evolving sites from the

sequences could improve phylogenetic inference [6], two shorter

versions of the original alignment were created and also subjected

to ML inference (Table S3). One alignment contained all

annotated loci with 15,865 bp (coding genes, l-rRNA, s-rRNA,

replication origin, tRNAs) and thus excluded only 487 bp of non-

annotated loci. The other alignment (containing coding genes, l-

rRNA and s-rRNA) had 14,270 bp, excluding all tRNAs and the

replication origin. Since these shortened alignments did not

improve phylogenetic inference with ML (Table S3) and the

longer alignment with 16,352 bp allowed the recognition of all

major rodent clades, the latter was used for the following

phylogenetic inferences and molecular dating with BEAST. The

initial ML analyses on three alignments of different length were

performed also on a larger taxon set in order to evaluate the

topology of our phylogenetic tree, especially the monophyly of

rodents. This larger taxon set comprised all 39 taxa listed in Table

S2. Due to computational constraints, the taxon set was then

reduced to 24 taxa, excluding some of the outgroup sequences for

the following phylogenetic inferences and molecular dating with

BEAST.

For neighbor joining (NJ) the T3P model was used in Mega4

[50]. 1,000 Bootstrap replicates were calculated with pairwise

deletion and gamma distributed rates among sites (gamma shape

parameter was 0.4729). For maximum parsimony (MP) 1,000

bootstrap replicates were done with close neighbor interchange

(CNI, level 1) and initial trees for the CNI search by random

addition trees (10 replications) in Mega4. Trees were searched in

MrBayes v.3.1.2 with four parallel search chains for 10 million

generations in triplicates. The search chains reached similar

posterior probability levels in the triplicates as viewed in Tracer

v1.4.1, final ESS were 339. The treefiles were combined in

logcombiner and maximum clade credibility trees were created

with TreeAnnotator implemented in BEAST v.1.5.3 and viewed

in FigTree v.1.3.1 [51].

Molecular dating was carried out with BEAST v.1.5.3, a

coalescence based method for parameter estimation [52]. Six fossil

calibrations were taken into account as prior assumptions on

divergence times (diamonds in Fig. 3, Table S4) and simulta-

neously optimized with other parameters describing the phylog-

eny. The relaxed molecular clock models implemented in BEAST

assume independent rates on different branches of a phylogeny,

thus allowing for calibrations in rather distantly related taxonomic

groups. Thus, BEAST is specifically suited to accommodate the

rate variation between lagomorphs, rodents and primates as well

as that between rodents with slower and faster rates. The sampling

priors for fossil calibrations were set to be normally distributed,

incorporating knowledge on divergence estimates, such as the

earliest appearance of members of a clade in the fossil record as

well as the age of an assumed monophyletic origin and early

relatives of the clade. Since there are uncertainties for determining

the age of fossils and times that lineages actually diverged, we used

rather wide ranges around these events for calibration (Table S4).

Further, we used estimated base frequencies, an uncorrelated

lognormal relaxed molecular clock, the Yule prior for speciation

scenarios and UPGMA starting trees. BEAST xml-files were

created in beauty (implemented in BEAST). Search chains were

run in BEAST for 50 million generations and log files were written

every 5,000 generations. The GTR substitution model was used
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and the first 10 percent of runs were discarded as burnin.

Logcombiner from the BEAST package did not remove the

burnin correctly, when combining logfiles. Therefore, logfiles of

triplicates of the 50 million generation runs were combined into a

single logfile by hand and the results were viewed in Tracer

version v1.4.1 [53]. The posterior distributions for the fossil

calibrations were visually inspected in Tracer v1.4.1 and verified

to be symmetrically bell shaped, indicating a proper sampling from

the prior distribution. A maximum clade credibility tree was

created with treeannotator and viewed in FigTree.

Comparison of evolutionary rates
Substitution rates for the branches leading to different rodent

taxa were determined in the BEAST analyses (combined from

three 50 million generation runs) and shown as branch labels in

Figtree. We tested if beavers differ in substitution rates from other

rodents using a Mann-Whitney U-test, implemented in R 2.9.2 as

Wilcoxon rank sum test with continuity correction. Since this test

examines if two distributions differ significantly from each other,

all beaver samples were included in the test.

We showed that mitochondrial substitution rates of Castor differed

significantly from those of the other rodents in the dataset. An

increase of the observed rates towards the tips in a phylogeny (Fig. 4)

is assumed to be a result of transient polymorphisms present in the

more recent timescales of a phylogeny [33]. Although this hypothesis

is controversial [54], in our BEAST phylogeny the estimated

substitution rates also increase towards the tips. In order to explore

this possible bias due to sampling on different taxonomic levels, we

averaged the substitution rates along all branches leading to the

common ancestor of all tested taxa (Table S5) and repeated the

Mann-Whitney U-tests with those average rates (Table 1). In order to

average the rates, for each of the three tests (Castor vs. mouse-related

clade, Castor vs. rest of rodents, Castor vs. rest of glires, as indicated in

Table 1) the arithmetic mean was calculated from the rates along the

branches leading to the ancestral node connecting the tested taxa.

The resulting p-values indicated an even more pronounced, highly

significant difference between the lower rates of beavers and the

higher rates of the other rodents in the dataset (Table 1). Further, we

correlated the substitution rates of rodents with life history traits, such

as body mass, lifespan and age at sexual maturity [21] using linear

regressions in R. In order to avoid unbalanced data, we collapsed all

sampled beavers into one data point for each regression. Measure-

ments of substitution rates and life history traits for beavers were

therefore averaged using the arithmetic mean. References for

maximum lifespan, body mass and age at sexual maturity are given

in Table S7 and Supporting References S1.

Supporting Information

Table S1 Samples and overview of processing for mitochondrial

genome sequencing. Samples were obtained from different source

populations of beavers [S1], enriched for mitochondrial DNA and

barcoded before sequencing. LR PCR: long range PCR. Hyb:

hybridization capture.

Found at: doi:10.1371/journal.pone.0014622.s001 (0.04 MB

DOC)

Table S2 Taxa and accession numbers of the mitochondrial

genome sequences used. Sequences marked by * are additional

outgroup sequences to rodents and were used to evaluate the

topology of our phylogenetic tree in the initial ML analysis but

were excluded in the later ML, NJ, MP, and Bayesian analyses due

to computational constraints.

Found at: doi:10.1371/journal.pone.0014622.s002 (0.06 MB

DOC)

Table S3 Bootstrap support for monophyletic clades in maxi-

mum likelihood analyses of rodent mitochondrial genome

alignments of different length. Support values for clades recovered

in previous studies decline when using smaller fractions of the

sequence data. Support values are given for alignments including

24 taxa and 39 taxa separated by a slash. Note that all alignments

excluded a less well aligned region containing the control region.

Found at: doi:10.1371/journal.pone.0014622.s003 (0.04 MB

DOC)

Table S4 Fossil calibrations and age estimates. Prior and

posterior values for the time to the most recent common ancestor

(tmrca) of monophyletic clades determined by BEAST analyses are

given in million years ago (mya). L.: late. M.: middle. HPD:

highest posterior density. Stderr: Standard error.

Found at: doi:10.1371/journal.pone.0014622.s004 (0.05 MB

DOC)

Table S5 Mitochondrial substitution rates for glires. Tip rates

estimated by BEAST and averaged rates given in substitutions per

position per million years.

Found at: doi:10.1371/journal.pone.0014622.s005 (0.06 MB

DOC)

Table S6 The relationships of body mass, life history traits and

substitution rates were explored in linear regressions. A linear mo-

del correlated the estimated rates with lifespan and reached a

significance level below 0.05 for tip as well as averaged rates. In

contrast, linear models correlating rates with body mass and age at

sexual maturity did not reach this significane level. Data on the

body mass of the sequenced Anomalurus sp. individual were

missing. Thus independent regressions were made for datasets

containing Anomalurus with a body mass of 700 g and 2000 g. *:

significant, ,0.05.

Found at: doi:10.1371/journal.pone.0014622.s006 (0.04 MB

DOC)

Table S7 Life history traits of rodents and references. Since no

data were available for M. kikuchii, data for M. oeconomus was

used instead. Both taxa are closely related [S19]. Note that high

values for lifespan could result from animals held in captivity.

Found at: doi:10.1371/journal.pone.0014622.s007 (0.07 MB

DOC)

Table S8 Oligo sequences. Long range PCR primer and

blocking oligos.

Found at: doi:10.1371/journal.pone.0014622.s008 (0.05 MB

DOC)

Supporting References S1 Supporting References

Found at: doi:10.1371/journal.pone.0014622.s009 (0.03 MB

DOC)

Acknowledgments

We thank Alexander P. Saveljev for sample collection, Dietrich Heidecke

and Natalia Rybczynski for fruitful discussions and Karl Andreas Nitsche

for the drawing of a beaver in Fig. 1. We thank Matthias Meyer for help

with tagging and sequencing protocols as well as Tomislav Maricic for help

with the hybridization capture and two anonymous reviewers for helpful

comments.

Author Contributions

Conceived and designed the experiments: SH MH. Performed the

experiments: SH. Analyzed the data: SH. Contributed reagents/materi-

als/analysis tools: WD RW AE AS MS MH. Wrote the paper: SH WD

MH.

Castor Mitochondrial Genomes

PLoS ONE | www.plosone.org 8 January 2011 | Volume 6 | Issue 1 | e14622



References

1. Baker BW, Hill EP (2003) Beaver (Castor canadensis). In: Feldhamer GA,

Thompson BC, Chapman JA, eds. Wild Mammals of North America: biology,
management, and conservation Baltimore, MD The Johns Hopkins University

Press.
2. Djoshkin WW, Safonow WG (1972) Die Biber der alten und neuen Welt.

Germany: Die Neue Brehm-Bücherei, A Ziemsen Verlag.
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