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ABSTRACT

Rhesus macaque is a widely used primate model
organism. Its genome annotations are however
still largely comparative computational predictions
derived mainly from human genes, which pre-
cludes studies on the macaque-specific genes,
gene isoforms or their regulations. Here we took
advantage of histone H3 lysine 4 trimethylation
(H3K4me3)’s ability to mark transcription start
sites (TSSs) and the recently developed ChIP-Seq
and RNA-Seq technology to survey the transcript
structures. We generated 14013757 sequence tags
by H3K4me3 ChIP-Seq and obtained 17322358
paired end reads for mRNA, and 10698419 short
reads for sRNA from the macaque brain. By
integrating these data with genomic sequence
features and extending and improving a
state-of-the-art TSS prediction algorithm, we ab
initio predicted and verified 17933 of previously
electronically annotated TSSs at 500-bp resolution.
We also predicted approximately 10 000 novel TSSs.
These provide an important rich resource for close
examination of the species-specific transcript struc-
tures and transcription regulations in the Rhesus
macaque genome. Our approach exemplifies a rela-
tively inexpensive way to generate a reasonably
reliable TSS map for a large genome. It may serve

as a guiding example for similar genome annotation
efforts targeted at other model organisms.

INTRODUCTION

Rhesus macaque is a widely used model species for
primate studies, including drug and virus infection tests,
evolutionary sequence comparisons and so on. Since its
full genome sequencing became available in 2007 (1),
various computational gene predictions, mainly through
comparing with human gene structures, have been
included in the UCSC genome browser, including SGP
gene prediction (2,3), Ensembl gene prediction (4) and
the aligned non-Rhesus RefSeq genes (5). However, elec-
tronic gene annotations not only overlook many macaque
specific genes but are also unreliable. Large fractions
of the human genes are not alignable to the macaque
genome (1). Meanwhile, experimentally validated tran-
script information is available for only no more than
1000 genes in the macaque genome (6).

An important application of the macaque genome
sequence is to use it to compare the transcription regula-
tions in different primate species, especially to those of our
own. Transcription start sites (TSSs) are very important
landmarks for locating transcription regulatory regions
and elements for genes. Relying only on comparative
genomic annotation, many novel or alternative TSSs
specific to the Rhesus Macaque genome are missed or
labeled incorrectly. Here, we aim to perform an

*To whom correspondence should be addressed. Tel: +86 10 64845843; Fax: +86 10 64845797; Email: jdhan@genetics.ac.cn; jackie.han@

research.dfci.harvard.edu

The authors wish it to be known that, in their opinion, the first three authors should be regarded as joint First Authors.

© The Author(s) 2010. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ST0Z ‘€2 Yo\ Uo 3160 0doyiuy 8532U0INn j0AT Jan4 IN1NSU| Youe|d Xe A Te /610°s euino[pioxo" feuy/:dny wouy papeojumoq


http://nar.oxfordjournals.org/

unbiased survey and ab initio predictions of TSSs in the
macaque genome.

H3K4me3 has been shown to specifically and sharply
mark the TSS of genes (7,8). It has recently been used
to identify long intergenic non-coding RNAs (lincRNA)
in the mouse and human genomes (9,10). Although
the level of promoter H3K4me3 is largely correlated
with the expression level of the genes (7,8,11), this mark
also marks repressed genes, especially for genes having
high CpG in their promoters (8,12,13). We therefore
carried out genome-wide H3K4me3 ChIP-Seq (chromatin
immunoprecipitation followed by deep sequencing)
to identify the TSSs in macaque brains. We further used
RNA-Seq (massively parallel deep sequencing) of mRNA
and small RNA (sRNA) to validate and further refine the
TSS predictions derived from H3K4me3 ChIP-Seq data.

Finally, to facilitate the usage of our de novo TSS pre-
dictions, we deposited our predictions at http://hanlab
.genetics.ac.cn/Rhesus-TSS for querying and visualizing
these TSSs together with genome annotations and our
ChIP-Seq and RNA-Seq data. We have also uploaded all
the new deep sequencing data generated in this study (input
DNA control, ChIP-Seq, and mRNA-Seq) to NCBI Gene
Expression Omnibus under accession no. GSE24538.

MATERIALS AND METHODS
Tissue sample collection and preparation

The rhesus macaque samples were obtained from the
Suzhou Experimental Animal Center (Suzhou, China).
All macaque individuals used in this study suffered
sudden deaths for reasons other than their participation
in this study and without any relation to the tissue used.
For all individuals the brain tissue was frozen in liquid
nitrogen within 20 min from the time of death and then
stored at —80°C. The cerebral cortex samples were dis-
sected from postmortem frozen brain on dry ice. All
samples had excellent tissue preservation and contained
RNA of comparable and high quality.

ChIP-Seq

An amount of 0.25 g of a 9-year-old male macaque cortex
were grinded in liquid nitrogen, suspended in cold 1x
PBS, and chemically cross-linked by addition of formal-
dehyde to a final concentration of 1% for 15min at room
temperature, then the cross-linking reaction was quenched
by adding glycine to a 125mM final concentration.
The chromatin preparation and immuneprecipitation
procedure is as described in ref. (14). An amount of 6 pg
antibodies  (anti-H3K4me3, Abcam ab8580) were
incubated with the sonicated chromatin fragments.

A sample of input genomic DNA without the ChIP
procedure above was used to construct a control library,
which was also sequenced at similar depth with 13 894 402
and 9314 545 total and unique reads.

Sequencing library construction for the ChIP DNA,
cluster generation and sequencing analysis using the
Illumina 1G Genome Analyzer were performed following
manufacture’s protocols. Sequencing tags of 36-mer were
obtained by the single-end pipline.
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Gene annotations

Computationally predicted genes (non-Rhesus RefSeq
Genes) were downloaded from UCSC genome browser
on 13 October 2009 (http://genome.ucsc.edu/cgi-bin/hg
TrackUi?hgsid = 15175564 1&c = chr7&g = xenoRefGene).
The experimentally validated transcription units
were downloaded from http://genome.ucsc.edu/cgi-bin/
hgTrackUi?hgsid = 151755641&c = chr7&g = refGene.

ChIP-Seq tag mapping and H3K4me3 peak detection

We used SOAP2 (15) with parameters ‘—r 0’ to align
H3K4me3 reads to rheMac2 genome (downloaded from
UCSC genome browser), discarding multiple alignment
reads. Modification peaks were detected by using the
SICER software with P<10e—3 (16), where the
sequence tags of input genomic DNA library were used
for background subtraction in the SICER program.

Training TSS predictors

Similar to the CoreBoost MH algorithm (12), the inten-
sity profile of H3K4me3 (and RNA-Seq) signals for a
centered genomic position is represented as a 49 dimen-
sion vector. Each bin in the vector corresponds to the sum
of reads [—100 bp, +100 bp] surrounding 1 of the 25-bp
uniformly spaced genomic positions within [—600 bp,
+600 bp] of the profile center.

We used decision stumps trained on single H3K4me3/
sequence features as the weak learners in the GentleBoost
algorithm. Unlike general classification and regression
trees, decision stumps are single node decision trees
which are very conservative and do not tend to overfit in
Boosting algorithms. Similarly, the GentleBoost algorithm
is also very conservative in additively combining many
weak learners into a strong classifier (17). Partly due of
this reason, we find the performance of the final CpG/
non-CpG TSS classifier is not sensitive to the number
(>30) of weak learners. For computational purpose, we
always use 200 weak learners for classifier training
throughout this work. Besides, similar to the Real
Adaboost and Logitboost algorithm, weak learners in
the GentleBoost classifier generate real-valued predictions
which are linearly combined by the Boosting algorithm to
form the strong hypothesis. As a result, the absolute value
of the final prediction score reflects the confidence that the
instance is classified correctly (17).

Detecting candidate TSS positions from GentleBoost
scores

After sliding the GentleBoost classifier through the
H3K4me3 peaked regions in the genome, scores are
assigned to the genomic positions at 10-bp step intervals
to represent the tendency that each position is a true TSS.
As expected, genomic coordinates in the vicinity of a true
TSS will also receive high scores. To eliminate these false
positive detections, we adopt the following approach to
detect candidate TSS positions: (i) eliminate the genomic
positions whose GentleBoost scores <1.5 Z-scores from
being a true TSS. In other words, the threshold is set to
be the average score plus 1.5 times of the standard
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variation; (ii) find the highest scoring genomic position
from candidate TSS positions (Z-score > 1.5) and report
this position as a true TSS; (iii) eliminate the possibility
that another TSS appears in the [-200 bp, +200 bp] region
of this TSS. If there is other candidate TSS appearing in
this region, we continuously expand the region 200-bp
upstream and 200-bp downstream until no candidate
TSS is encountered during the expansion; and (iv) go to
Step 2 and find another TSS.

RNA-Seq for mRNA

Total RNA was extracted from ~100 mg of the dissected
frozen prefrontal cortex tissue using Trizol® reagent
(Invitrogen, Carlsbad, CA, USA) from five male individ-
uals of 8-, 9-, 10-, 11- and 14-year old. An amount of 4 ug
of total RNA isolated from each individual were pooled
together to perform twice Oligo(dT) selection using
Oligotex® mRNA Midi Kit (Qiagen). After selection,
100ng mRNA was first fragmented by addition of 5x
fragmentation buffer (200mM Tris-acetate, pH 8.2,
500mM potassium acetate and 150mM magnesium
acetate) and heating at 94°C for 2min 30s in a
thermocycler, then transferred to ice and run over a
Sephadex-G50 column (USA Scientific) to remove the
fragmentation ions (18). We used random hexamer
primers (Invitrogen, Cat. No. 48190-011) for reverse tran-
scription of fragmented mRNA to double-stranded
cDNA. Sequencing libraries were prepared according to
the paired-end sample preparation protocol (http://
www.illumina.com) and sequenced as 75-mer X2 using
the Illumina 1G Genome Analyzer paired-end pipeline.

RNA-Seq for small RNA

We have previously deposited this data to NCBI Gene
Expression Omnibus with ID GSM450615 through an
independent study (see NCBI GEO series GSE18013 and
reference therein). Specifically, low molecular weight
RNA isolated from 10pug total RNA isolated from the
9-year-old male macaque was ligated to the 5 and 3’
adapters separately. After reverse transcription and 15
cycles of amplification, the small RNA library was
sequenced as 36-mer using the Illumina 1G Genome
Analyzer single-end pipeline.

RNA-Seq tag mapping to the human and macaque
genomes

MicroRNA sequence tags were mapped to rheMac2
genome by SOAP2 (15), discarding multiple alignment
reads. Pair-end mRNA sequence tags were mapped to
rheMac2 genome by TopHat1.0.12 (19) with the following
parameters: “-r 100 -a 8 -m 0 -g 100 —solexal.3-quals —
coverage-search —microexon-search —segment-mismatches
2 —segment-length 25°.

TSS validation and refinement

We checked whether there exists an mRNA/sRNA-Seq
tag within the [—500 bp, +500 bp] region of each TSS. If
the answer is true, the TSS is believed to be ‘validated’ by
the mRNA/sRNA-Seq data.

An upward edge is defined to be located in a position
where there is no mRNA-Seq signal in [—20 bp, —1 bp] but
at least one tag in [1 bp, 20 bp], and there is precisely an
mRNA-Seq tag at this position. All validated predictions
were refined to the nearest mRNA upward edge instead of
sRINA edge, as the mRNA tags are shorter and therefore
more precisely mapped to the genome.

For mRNA validated TSSs, the mRNA-seq data were
used in computing the transcription direction; while for
sRNA validated TSSs, the union of mRNA/sRNA-Seq
signals were used in this computation.

RESULTS
H3K4me3 ChIP-Seq to mark TSSs

An outline of our TSS identification procedure is briefly
summarized in Figure 1. We first performed ChIP with
anti-H3K4me3 antibodies wusing macaque cerebral
frontal cortex samples, and subjected the ChIP DNA to
deep sequencing by Illumina Genome Analyzer II
(‘Materials and Methods’ section). A total of 14013757
and 13894403 reads, and 10023993 and 9 162 762 unique
reads were obtained for H3K4me3 ChIP and control input
DNA, respectively. As expected, H3K4me3 tag counts
show very sharp peaks at TSSs, with different shapes
for CpG and non-CpG genes (Supplementary Figure
S1). The CpG genes display two asymmetric peaks at
TSSs, with the one after TSSs much broader and higher
than the one before TSSs. The non-CpG genes contain
only one peak at TSSs, which is slightly shifted toward
the downstream of TSSs (Supplementary Figure S1).

Positive and negative training data sets

Within the 530 genes whose structures have been experi-
mentally validated, 162 are CpG promoters, whereas the
rest (368) are non-GpG promoters. These promoter
regions are used as positive training cases for a TSS pre-
dictor. Similar to the CoreBoost HM approach (12),
which was designed for TSS re-annotation in the human
genome, we combined sequence features as well as the
intensity profile of H3K4me3 to predict TSSs for CpG
and non-CpG promoters. Specifically, we used the cosine
similarity and dot product of each H3K4me3 intensity
(tag counts) profile from =+600-bp region surrounding
the annotated TSSs to the average profiles of known
CpG and non-CpG promoters to characterize the
histone modification signal at the TSSs (‘Materials and
Methods’ section). To characterize sequence property at
core promoter regions, we used the CoreBoost package
(20) to generate 29/31 features at each CpG/non-CpG
TSS. These features include CpG-island, TATA box
or Inr scores, k-mer frequencies, energy properties of
nucleotides and so on (20). The union of these two types
of features was used to train a Gentle Adaboost
(GentleBoost) classifier for TSS prediction (17).
Specifically, besides the 162/368 true positive examples
of known CpG/non-CpG TSSs, two different ways were
employed to generate negative training cases. The first
way is similar to the one used in (12), that is, we generated
six negative training cases (non-TSSs) randomly in the
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Figure 1. The flowchart of our ab initio TSS prediction approach for the Rhesus macaque genome. First, the SICER software (16) is employed to
detect 24246 H3K4me3 peaks throughout the Rhesus Macaque genome. Then, combined with raw sequence features, the dot product and cosine
similarity features of the H3K4me3 profile are used to train two GentleBoost classifiers for predicting CpG and non-CpG TSS separately. Here, the
162 and 368 known CpG/non-CpG TSS were used as positive control in classifier training, while negative examples were randomly sampled from
background genomic regions and from ([—1200 bp, —300 bp], [300 bp, 1200 bp]) flanking genomic regions for CpG and non-CpG TSS, respectively.
Using the CpG and non-CpG classifiers to scan both positive and negative strands of the 24246 H3K4me3 peak regions, we predict 45876 (on
positive strand) and 47 577 (on negative strand) CpG TSS, 62 586 (on positive strand) and 66 588 (on negative strand) non-CpG TSS. Then, positive
and negative strand TSS predictions within a 400-bp moving window were merged to the genomic position with the largest GentleBoost score to
reduce the redundancies. These predictions were further validated with the existence of mRNA-/sRNA-Seq signals. Finally, the precise genomic
locations of the validated TSSs were refined to the nearest upward edge of mRNA-Seq signals in the predicted transcription direction. Upper right
panel: the Venn diagram of the mRNA/sRNA-Seq validated CpG/non-CpG TSSs. Lower right panel: the Venn diagram of the final refined sets of
CpG/non-CpG TSS predictions.

flanking region (three from [—1200 bp, —300 bp] and three
from [+300bp, +1200bp]) of each known TSS. The
second way was to generate (H3K4me3/sequence)
features at approximately 10000 genomic positions,
which are randomly distributed on the genome.

Classification algorithm

Gentleboost algorithm has been suggested to be more nu-
merically immune to mislabeled examples than Real
Adaboost and Logitboost algorithm and generally yields
better classification performance (17). In our approach,
there is no warrantee that all negative training data are
strictly non-TSSs. As a result, we used the GentleBoost
algorithm rather than the Logitboost algorithm as in
(12,20) to obtain more robust and accurate TSS prediction

results (‘Materials and Methods’ section). This is indeed
the case when the performances of the two algorithms are
compared on the macaque data (See Supplementary
Figure S2 and Section ‘ROC to evaluate and compare
the performances of predictors and improvements’ below).

Genome-wide scan of H3K4me3 peaks for ab initio
TSS prediction

The above algorithm was applied to the Rhesus macaque
genome to predict CpG and non-CpG TSS on both
positive and negative strands. Specifically, we first
detected the peaks of H3K4me3 signal in the Rhesus
macaque genome to pinpoint genomic regions that are
highly enriched for TSS by using the SICER software
(16) (‘Materials and Methods’ section). Then, the
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GentleBoost classifier was applied to scan genomic regions
enclosing these H3K4me3 peaks at 10-bp resolution. The
classifier assigns for each position a real-valued score (17),
which quantifies the likelihood that a real TSS is located at
this position. Then the positions with local maximal
GentleBoost scores are reported as candidate TSSs
(‘Materials and Methods’ section) (Figure 1).

Cross-validation experiments demonstrate the
effectiveness of the TSS detector

To investigate the accuracy and effectiveness of the afore-
mentioned approach to TSS detection, we first examined
the accuracy of predicting a random subset (~30%) of
known CpG and non-CpG TSSs by using the remaining
(~70%) CpG/non-CpG TSSs as positive training data.
After the learning step, the two GentleBoost classifiers
were used to scan the [—2kb, +2kb] region of the two
held-out sets of TSS, either along or reversely with the
direction of transcription. Then, we compared the
distance between the true TSS sites with the positions
with local maximal GentleBoost scores. The receiver
operating characteristic (ROC) curves of the distance
gap versus the percentage of within-gap true TSS pre-
dicted clearly demonstrate the effectiveness of our
approach for detecting CpG and non-CpG TSS at rela-
tively high accuracy, which reaches >80% within 500-bp
prediction gap (Supplementary Figure S3).

Validating TSS prediction scores with the presence of
electronically annotated TSSs

After obtaining these ab initio TSS predictions, we
compared them with the recent Rhesus macaque TSS an-
notation derived from the human genome. Briefly, this
comparison has two functions: one is to offer global stat-
istics for quantifying the accuracy of our prediction and
the other is to exemplify that our prediction indeed detects
novel TSSs or refines the positioning of the existing elec-
tronically annotated TSSs.

We find a strong correlation [Pearson correlation coef-
ficient (PCC) = 0.879 along 100 tiles of prediction scores]
of the prediction scores to the percentages of predicted
TSSs that have nearby electronically annotated TSSs, sug-
gesting that the higher the prediction score, the more likely
the TSS can be validated by homology-based electronic
gene annotation transfer (Figure 2A and B).

RNA-Seq for mRNA and sRNA

Genome-wide transcripts so far have not been studied for
Rhesus macaque, and it might be useful for increasing the
accuracy of TSS prediction and providing further experi-
mental support for newly predicted TSS. We therefore
carried out RNA-Seq experiments also using mRNA or
sRNA from macaque frontal cortex, to see whether there
exist sharp RNA-Seq signals near the detected TSSs.
Using Illumina Genome Analyzer, we obtained
17322358 paired end reads for mRNA, and 10698419
short reads for sRNA, among which 22931989 and
3310618 single-end tags can be uniquely mapped to the
macaque genome, respectively.

Note that although RNA-Seq data consistently map to
TSSs, using RNA-Seq data alone, there is no way to dis-
tinguish TSSs versus exon—intron boundaries, which are
present very frequently in almost all primate genes. In our
study, using H3K4me3 ChIP data greatly reduced such
false positive TSS predictions at the splicing sites.

Validating TSS prediction scores with the presence of
nearby mRNA or sRNA

We find a strong correlation (PCC = 0.898 along 100 tiles
of prediction scores) of the prediction scores to the per-
centages of predicted TSSs that have nearby (within
500 bp) (s)RNA-Seq reads, suggesting that the higher the
prediction score, the more likely the TSS can be validated
by RNA-Seq signals (Figure 2A and B).

ROC to evaluate and compare the performances of
predictors and improvements

The overall distance gaps of the ab initio predicted TSSs to
annotated genes (a surrogate for ROC curves, and
referred to as ROC below) can be used to evaluate the
performance of different predictors.

Indicated by the ROCs, using the flanking negative
training data is better for predicting non-CpG TSSs,
while negative training data from random genomic back-
grounds is good at predicting CpG TSSs (Figure 2C and D
and Supplementary Figure S4). Since the G/C percentages
of non-CpG TSSs and flanking regions of CpG TSSs are
generally higher than that of the genomic background, the
training data generation strategy above reflects the fact
that CpG-like features are of uttermost importance for
predicting CpG TSSs, while the G/C abundance at
non-CpG TSS regions might be a confounding factor for
non-CpG TSS prediction. It is not surprising that the
above hybrid training strategy achieves good performance
since it highlights the CpG features for predicting CpG
TSS while reduces it for predicting non-CpG TSS.

We also find that the use of cosine similarity between
two vectors yields much better prediction accuracy than
PCC, [which was used in (12)] for predicting non-CpG
TSSs (Figure 2E and F). TSS prediction accuracy using
the Gentleboost algorithm is also enhanced compared
with the Logitboost algorithm used in ref. (12) for both
CpG/non-CpG TSS prediction (Supplementary Figure
S2). The above three improvements on the classification
algorithm over the algorithm described by Wang et al. (12)
greatly enhanced its performance.

The ROC plot clearly indicates that TSS predictions
supported by nearby RNA-Seq signals overlap better
with the known TSSs (Figure 3A and B), hence filtering
using mRNA-Seq and sRNA-Seq data can further
increase the accuracy of TSS mapping. Interestingly, we
find that TSS predictions overlapped with sSRNA signals
tend to have higher log-odds scores, suggesting that sSRNA
signal is a better TSS predictor than mRNA signal (Figure
3A and B). This might be because mRNA signals can be
mapped to many different exons, whereas sSRNA signals
more often map to a single exon for a particular gene and
that many sRNAs are associated with TSS (see below).
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Figure 2. Evaluating the performance of the TSS classifier. (A) and (B) Correlation of the CpG (A) or non-CpG (B) TSS log-odds scores with the
probability or percentage of the predicted TSSs containing electronically annotated TSSs, RNA-Seq signals, or either annotated TSSs or RNA-Seq
signals within 500 bp. ‘Low’, ‘medium’, ‘high’ correspond to the sets of TSSs whose probability of being a true TSS (implied by log-odds scores) are
>50, 95, 99%, while ‘minus’ denotes the predictions with negative log-odds scores. (C) ROCs of using different negative training samples for
predicting CpG TSS. ‘Random’ or ‘Flanking’ means the negative training samples were randomly selected from the whole genome or the flanking
regions of known TSS. ‘Flanking + Random’ means we combined the two sets above as negative training examples. Each point in an ROC shows the
percentage of the TSS predictions that are supported by electronic TSS annotations within a certain distance. Given the different numbers of
predictions made in different training strategies, only the top 10000 predictions with the largest GentleBoost scores in each training scenarios
are compared. (D). ROCs of using different negative training examples for predicting non-CpG TSS. The format of the graph is the same as in C.
(E) and (F). ROCs of using cosine similarity compared with using PCC for predicting CpG and non-CpG TSSs, respectively. The format of the
graphs is the same as in C. All TSS predictions in C-D are based on mRNA-seq validation (see section “TSS validation and refinement’, and those
based on sRNA-seq are shown in Supplementary Figure S4). The TSS predictions in E and F are based on either mRNA-seq or sRNA-seq
validation.

Directionality of TSS profile, see ‘Materials and Methods’ section). Then, the
gene is judged to be located on the strand with a higher
dot product. For those CpG genes without RNA-Seq
signal flanking the TSSs, we compared the two dot

products of H3K4me3 profile (one on each strand) with

The directionality of a TSS is important for understanding
the transcriptional structure of the associated gene. The
H3K4me3 profile at TSS shows a clear directionality for
CpG genes: the peak downstream of a TSS is much higher

than the one upstream. In addition, the RNA-Seq signal
downstream of TSSs is generally much higher than the
upstream counterpart for both CpG and non-CpG
genes. Based on these directional features, we designed a
principled approach to predict the direction of TSSs: for
CpG genes, we computed the dot products of the average
RNA-Seq profile with the RNA-Seq profile at a predicted
TSS on both positive and negative strands (RNA-Seq
profiles are computed in the same way as the H3K4me3

the average H3K4me3 shape and assign the gene to the
strand with a higher dot product. Because the prediction
accuracy of RNA-Seq signal is higher than the H3K4me3
signal, we preferentially used the RNA-Seq signal. For
non-CpG genes, similarly, the RNA-Seq signal was used
to decide on which strand the gene is transcribed.
However, the second step prediction based on H3K4me3
signal was abandoned since its prediction accuracy for
non-CpG genes is only slightly better than random,
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Figure 3. TSS prediction accuracy enhanced by RNA validation and refinement. (A) and (B) ROCs for CpG TSS and non-CpG TSS predictions
before and after RNA validation and refinement. ‘sSRNA validated” and ‘mRNA validated’ refer to the TSS predictions validated by the SRNA-Seq
and mRNA-Seq signals, respectively, while ‘sSRNA refined’ and ‘mRNA refined’ refer to the final sets of TSS predictions which were further refined
to the mRNA upward edges in the predicted direction of transcription. Each point in a ROC denotes the percentage of the set of TSS predictions
that contain a homology-based electronic TSS annotation within the indicated distance. Only the TSS predictions with >0 GentleBoost scores are
included. (C-F). The average profile of normalized H3K4me3 ChIP-Seq (C and D)/mRNA-Seq (E and F) tag counts for different sets of TSS

predictions in the [-2kb, +2kb] region.

although the H3K4me3 peak is slightly biased towards
downstream direction of a TSS. In this case, the direct-
ionalities of these TSSs are left unsolved.

Merging positive and negative strand TSS predictions

Since TSS prediction is performed by sliding the classifier
on both positive and negative strands, it is important to
merge nearly duplicate predictions. More precisely, if the
distance between two predicted TSS is <400 bp, we only
retain the TSS with a larger GentleBoost score to elimin-
ate some redundant TSS predictions.

TSS refinement using the RNA-Seq data

As RNA-Seq could increase the prediction accuracy,
we used it to further refine the position of the predicted
TSSs. We first validated each predicted TSS by checking
the existence of mRNA/sRNA-Seq tags in the [—500 bp,

+500 bp] flanking region (‘Materials and Methods’
section). Then, the directions of each validated TSS were
determined based on mRNA/sRNA-Seq signal (and the
H3K4me3 signal for CpG genes), as described above.
For these validated TSS, we further refined their positions
by analyzing the detailed shape of the mRNA-Seq signal.
The idea is fairly simple, we search for the nearest upward
edge of the mRNA signal along the predicted direction
of this TSS, also within the [—500 bp, +500bp] region
(‘Materials and Methods’ section). If an up-forward
edge exists, we refine the predicted TSS to the position
of the edge to signify the fact that transcripts typically
start at true TSSs. Finally, we re-compute the direction
of transcription at the refined TSS positions (‘Materials
and Methods’ section).

We are able to verify 18587 (35.42%) of homology-
based TSS annotations within 500 bp after the validation
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procedure described above. When the refinement is
included, the predictor can verify 17933 (34.18%) of pre-
viously annotated TSSs at 500-bp resolution. The ROCs
clearly demonstrate that after the SRNA/mRNA refine-
ment, the precision of the predicted position of both the
predicted CpG and non-CpG TSSs has much improved
(Figure 3A and B). Meanwhile, the average profiles of
normalized H3K4me3 tag counts surrounding the pre-
dicted TSSs display much sharper peaks after the refine-
ment, and because of resolving the directionality of the
TSSs, the average profile starts to display the characteris-
tic asymmetry at TSS (Figure 3C and D). Similarly, the
average profiles of normalized mRNA tag counts also
display sharper peaks at TSS after the refinement
(Figure 3E and F). We also note that due to RNA-Seq
refinement, the overlap between different sets of TSS pre-
diction increases (Figure 1), which suggests that the
uncertainties in our raw predictions are greatly reduced.
All of the above point to significantly enhanced prediction
accuracy when directionality and RNA-Seq data are con-
sidered in the refinement step. Interestingly, the majority
of the TSSs validated or refined by sSRNAs are included by
those validated or refined by mRNAs (Figure 1), suggest-
ing that most SRNAs sequenced were derived from short
transcripts at mRNA TSS, a notion in agreement with the
recent findings by the ENCODE project (21).

Precise localization of macaque-specific TSSs

A large number of primate genes encode multiple tran-
scripts via alternative TSSs or exon—intron splicing.
Previous computational gene annotation approaches
purely based on sequence alignment are unable to
identify macaque-specific alternative TSSs, while our
ab initio prediction approach is better for pinpointing
such species-specific transcriptional events that are im-
portant for comparative genomic studies. An example is
bromodomain PHD finger transcription factor (BPTF),
the largest subunit of nucleosome-remodeling factor
complex NURF (Figure 4A). BPTF is an ‘H3K4me3
reader’ and can recognize and tightly bind H3K4me3
(22). This gene was also found to be essential in early
embryo and embryonic stem cells in mouse (23). By our
approach, a TSS was predicted at the start of BPTF’s
third exon but not in the first exon as given by the elec-
tronic annotation. The large number of mRNA-Seq reads
further supports our prediction. As the BPTF alternative
splicing event in Drosophila has been reported to generate
distinct NURF chromatin remodeling complexes (24), the
distinctive transcriptional events in the macaque brain
might imply existence of macaque-specific complex con-
taining the BPTF protein. Other examples of alternative
TSSs in the serine/threonine—protein kinase PLK2 and
PAR domain protein 1PDP1 gene identified by our ab
initio approach are shown in Supplementary Figure S5A
and B.

Besides revealing macaque-specific transcriptional
events, our approach also locates a large number of
TSSs more precisely than previous homology-based gene
annotations. For example, we found that the TSS of
SLC24A4, an ergothioneine transporter, is located
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hundreds of base pairs upstream of the previous annota-
tion (Figure 4B), which is firmly supported by
the mRNA-Seq signal. Similarly improved TSS position-
ing can also be found for Sfrs2 and C3orf78 genes
(Supplementary Figure S5C and D).

Finally, our ab initio predictions at previously
annotated intergenic or intronic regions also suggest
many novel transcripts (Figure 4C, Supplementary
Figure SSE and F). Judging by the ROCs, as 80% of
our best TSS predictions coincide with electronic gene an-
notations, the other 20% may contain novel TSSs at
similar prediction accuracy (80%, Figure 2C and D).
This extrapolates to approximately 1600 novel TSSs in
the top 10000 predictions, and approximately 10000
novel TSSs if we look at all our 37371 RNA-Seq refined
predictions (with log odds score >0, at >50% accuracy)
(Figure 3A and B). All the TSSs predicted by the
H3K4me3 profile and sequence features, and further
RNA-seq validation and refinement (Figure 1) can be
found in Supplementary Tables S1 and S2.

Web interface for the Rhesus macaque TSS

To facilitate the usage of the TSSs identified in this study,
we compiled the TSS coordinate information and the
ChIP-Seq and RNA-Seq tag density to .bed files, which
can be downloaded in batch to visualize in customized
genome browsers. We also provided a web interface for
users with no programming experience to query for
user-defined genomic coordinates and genes of interest,
then visualize the TSSs together with electronic
homology based TSS annotations, as well as all the
sequence tags of H3K4me3 ChIP-Seq and mRNA/
sRNA-Seq. The web interface for these data is available
at http://hanlab.genetics.ac.cn/Rhesus-TSS.

DISCUSSION

In this study, to discover macaque TSS, we generated
H3K4me3 ChIP-Seq and mRNA and sRNA RNA-Seq
data genome-wide for the Rhesus macaque frontal
cortex, and based on these data we improved a computa-
tional method previously designed for TSS re-annotation
(12) and extended it for ab initio TSS prediction.
Compared to the CoreBoost MH algorthm (12), we
made four major improvements/extensions, which signifi-
cantly enhanced the performance of the classifier. (i)
We use different ways to generate negative examples for
training two TSS classifiers: for CpG promoters, negative
training samples are cropped randomly from the genomic
background; while for non-CpG promoters, we simply use
random examples from the flanking region of known TSSs
as negative training data. In this way, the most distinctive
features for predicting the two classes of promoters are
fully extracted by the two classifiers. (i) We use the
cosine similarity to quantify the similarity of the current
H3K4me3 profile to the average H3K4me3 profile rather
than the PCC used in the CoreBoost. MH algorithm (12).
This turns out to be more robust to the fluctuations of
ChIP-Seq reads. (iii) Leveraging on the asymmetry of
the H3K4me3 and the RNA-Seq signal, we are able to
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further predict the directionality of transcription for each
CpG/non-CpG TSS, which has not been addressed by
previous TSS prediction approaches. (iv) Unlike the
previous algorithm, which is based only on genomic and
epigenomic features, we now also incorporated the
transcriptomic features from the RNA-Seq data for TSS
prediction. As demonstrated in the results, the RNA-Seq
data can not only serve to validate our TSS classification
scores, but more importantly be able to pinpoint the
location of the TSS to single base pair resolution, and
help determine the transcript directionality. Surprisingly,
the majority of SRNAs is perhaps associated with TSSs
and therefore can be used to identify both small RNA
and mRNA TSSs at higher accuracy than mRNA
sequence tags.

As a consequence of the technical improvements to the
TSS prediction algorithm, the TSS identification accuracy
is greatly increased. This enables us to ab initio predict,
based on our H3K4me3 and RNA-Seq profiles, approxi-
mately 10000 new TSSs and verify 17933 (34.18%) of
previously electronically annotated TSSs at 500-bp reso-
lution, 52.96% of which are precisely located within
100 bp. If the number of TSSs in the Rhesus macaque
genome is similar to that of the electronic gene annotation,
among our predicted TSSs, the 17933 validated TSSs
together with the estimated approximately 10000 new
TSSs have covered approximately 27933 (53.23%) of the
whole set of TSSs.

Although we only detected H3K4me3 modification and
RNA tags in macaque brain, the H3K4me3 modification
has been shown to be able to identify both expressed and
non-expressed CpG genes (8,12,13). Therefore the TSSs
we identified for CpG promoters might also include
genes that are expressed in tissues other than the brain.

The TSSs identified in this study provide a map and a
rich resource for close examination of the species-specific
transcript structures and transcription regulations in the
Rhesus macaque genome, as well as a starting point for
comparing them to other primate species, including us
humans. Our approach constitutes a relatively inexpensive
way to generate a reasonably reliable TSS map for a large
genome and may serve as a guiding example for similar
genome annotation efforts targeted at other model
organisms.
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