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Abstract

Transcription is the first step connecting genetic information with an organism’s phenotype. While expression of annotated
genes in the human brain has been characterized extensively, our knowledge about the scope and the conservation of
transcripts located outside of the known genes’ boundaries is limited. Here, we use high-throughput transcriptome
sequencing (RNA-Seq) to characterize the total non-ribosomal transcriptome of human, chimpanzee, and rhesus macaque
brain. In all species, only 20–28% of non-ribosomal transcripts correspond to annotated exons and 20–23% to introns. By
contrast, transcripts originating within intronic and intergenic repetitive sequences constitute 40–48% of the total brain
transcriptome. Notably, some repeat families show elevated transcription. In non-repetitive intergenic regions, we identify
and characterize 1,093 distinct regions highly expressed in the human brain. These regions are conserved at the RNA
expression level across primates studied and at the DNA sequence level across mammals. A large proportion of these
transcripts (20%) represents 39UTR extensions of known genes and may play roles in alternative microRNA-directed
regulation. Finally, we show that while transcriptome divergence between species increases with evolutionary time,
intergenic transcripts show more expression differences among species and exons show less. Our results show that many
yet uncharacterized evolutionary conserved transcripts exist in the human brain. Some of these transcripts may play roles in
transcriptional regulation and contribute to evolution of human-specific phenotypic traits.
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Introduction

Transcriptome studies conducted by various methodologies, such

as conventional sequencing, tiling arrays, and, most recently, high-

throughput sequencing, have consistently indicated that a large

proportion of transcription takes place outside known gene

boundaries (see [1,2] and references therein). Among human tissues,

the brain transcriptome is one of the most complex [3,4]. Changes in

expression of brain transcripts have been suggested to play an

essential role in evolution of the human phenotype [5]. Indeed,

expression of protein-coding genes differs greatly between humans

and one of our closest relatives [6,7,8]. Furthermore, comprehensive

analysis of approximately 1% of the human and chimpanzee brain

transcriptomes using tiling arrays found multiple instances of

differential expression outside annotated gene regions [9].

To systematically characterize the transcriptome in a particular

brain region, cerebellar cortex, and identify its human-specific

features, we performed high-throughput sequencing using the

Illumina platform to analyze transcripts expressed in ten humans,

four chimpanzees, and five rhesus macaques. All individuals are

adult males (Table S1). While most previous studies [1,2,4,10]

have focused on the RNA fraction carrying poly(A) tails, we

sequenced all transcripts present in the total RNA, excluding

ribosomal RNA (rRNA) and depleting RNA transcripts shorter

than 200 nucleotides (nt). Our experimental strategy is similar to

the strategy used to characterize total transcriptome of HeLa cells

[11,12], with the difference that these studies either focused on the

39-region of the transcript or sequenced mixture of polyA+ and

polyA2 transcripts with predominant part of polyA-enriches ones.

To reduce within-species variation, we pooled the total RNA from

brains of four to five individuals of the same species into one

sample. To estimate technical as well as remaining within-species

biological variation, we sequenced two independent human

samples, each comprising total RNA from five individuals.

Results

Brain transcriptome composition
For each sample, we obtained an average of ,10,000,000

sequence reads of 36 nt corresponding to ,7,200,000 unique
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sequences. From these reads, we can map on average 51% to the

corresponding reference genomes and annotated exon junctions

(Table S2). Excluding the remaining sequences mapping to rRNA,

we find that in humans 26% of the reads map to annotated exons

and exon junctions, 2% - to mitochondrial genes, and less than 1%

- to annotated non-coding RNA (ncRNA) (Figure 1A). Although

these proportions are much greater than the corresponding

genomic fractions (Figure 1A), they still represent less than a third

of the total non-ribosomal human brain transcriptome. The

remaining reads map within introns and intergenic regions (49%

and 23% of the transcriptome, respectively). Such a distribution of

transcriptome reads is not unique to humans, but shared among

the three primate species studied (Figure S1).

Repeat transcription
Within intronic and intergenic regions, more than half of

transcription originates from repetitive sequence elements, occu-

pying in total ,42% of the entire transcriptome (Figure 1A). This

proportion is substantially greater than that reported in the human

brain using cap-selected transcript tags (,10%) [13]. For most of

the repeat families, the expression is proportional to the genome

fraction occupied (Figure 1B). Still, for some, such as simple and

low complexity repeats, as well as repeat families derived from

functional ncRNA, such as snRNA, snpRNA and 7SK RNA, the

expression level is higher than expected from the repeat family size

alone in all three species studied (Figure S2).

More than 90% of repeats present in the human genome

result from transposable element (TE) activity taking place over

hundreds of millions of years. Estimating the transcriptional

activity of different TE families, we find that the most recently

expanded ones, the Alu elements, show elevated transcriptional

activity per genomic fraction occupied by the family

(Figure 1C). The effect is more obvious when normalizing by

the genomic fraction occupied by repeat elements actually

expressed in brain (Figure 1D). We find the same effect in the

other two species (Figure S3), indicating that elevated

expression of certain Alu elements in brain might be

widespread among primates.

Intergenic transcription
Excluding repeats, intergenic regions contain 7% of all non-

ribosomal human brain transcriptome sequences. These sequences

are not distributed evenly, but concentrate within distinct regions

(Figure 2A, 2B). Notably, the expression levels of such intergenic

highly transcribed regions (igHTR) are comparable and, frequent-

ly exceed the expression levels of annotated exons (Figure 2C). We

used two parameters to define igHTR: the maximum spacing

between two neighboring reads and the minimum number of

mapped sequence reads within the genomic regions. For

convenience, we set these parameters to 150 nt and 10 reads for

most of the analysis. In the two human samples, we find 883 and

790 of such highly transcribed intergenic regions (igHTR) not

overlapping with any annotated human transcripts (Materials and

Methods, Table S3). Out of these igHTR, 580 (66% and 73% for

the two human samples) overlap between the samples, with the

majority of igHTR overlapping by more than 80% of their length

(Figure S4), while less than 1% would be expected to overlap by

chance (simulation, p,0.01). Further, for all 1,093 igHTR

identified in at least one of the two human samples, the expression

levels correlated well between the samples (Spearman correlation,

rho = 0.90, p,10215) (Figure S5), even when the corresponding

region did not pass the igHTR definition cutoff in one of the

samples. Using different igHTR definition cutoffs, we get

principally the same results throughout the analysis (e.g. Figure

S6). Finally, using human brain expressed sequence tag (EST)

libraries, we find further support for 48% of 1,093 igHTR found in

at least one of the two human samples, significantly more than

expected by chance (simulation, p,0.01) (Figure 2B).

Similar to humans, we can identify igHTR in chimpanzee and

rhesus macaque brain transcriptomes. Expression levels of

individual igHTR show significant positive correlation between

the two human samples and among the three species (Spearman

correlation, rho.0.7, p,10215) (Figure S5). Thus, igHTR

expression is largely conserved across the three primate species.

To test whether igHTR are conserved at the DNA sequence level,

we used PhastCons scores based on nucleotide conservation

among 18 placental vertebrates genomes [14]. We find that

igHTR show significantly greater conservation than randomly

chosen intergenic regions or annotated genic regions including

both exons and introns, but are less conserved than exons alone

(Figure 2D). Further, DNA sequence conservation correlates

positively with igHTR expression level (Figure S6). Thus, although

both expression level and DNA sequence conservation do not

prove functionality, it is likely that at least some of the identified

igHTR represent functional transcripts.

Do igHTR represent extensions of known genes or independent

coding and/or non-coding transcripts? The size distribution of

transcription clusters shows two distinct peaks: a minor one at

45 nt and a major one at 500 nt (Figure 2E). Although 500 nt is

longer than the average exon size in humans, the definition of

igHTR boundaries by our method is not precise. When we define

exons using the same criteria as igHTR, we find a similar length

distribution for both exons and long igHTR (Figure 2E). More

than half of all igHTR (65%) cluster within intergenic regions,

with an average of four igHTR per group. Notably, the distances

between igHTR within such clusters are similar to an average

intron length (Figure 2F). Furthermore, within clusters, individual

igHTR are expressed at similar levels, resembling expression of

exons within a gene (Figure S7). Finally, 53 individual igHTR

within clusters can be connected by at least one EST sequence,

while less than 5, on average, are expected by chance (simulation,

p,0.01) (Figure 2G, S8). Thus, more than one half of igHTR

Author Summary

Phenotypic differences between closely related species,
such as humans and chimpanzees, might be determined
to a large extent by differences between their transcrip-
tomes. Recent studies using microarray and high-through-
put sequencing technologies have demonstrated that
beside annotated genes, a large proportion of the human
genome can be transcriptionally active. Little is known,
however, about the extent and the conservation of human
brain transcripts located outside of the known genes’
boundaries. Here, we use high-throughput transcriptome
sequencing to characterize the non-ribosomal transcrip-
tome of the human cerebellum and compare it to the
transcriptomes of chimpanzee and rhesus macaque. Our
results show that close to 40% of all transcripts expressed
in the human brain map within repetitive elements. By
contrast, less then 10% of the human brain transcriptome
corresponds to non-repetitive intergenic regions. None-
theless, within these regions we identify more than a
thousand novel highly transcribed evolutionary conserved
locations. Some of the intergenic transcripts show distinct
human-specific expression and may have contributed to
evolution of human-specific phenotypic traits.

Intergenic and Repeat Transcription in Brain
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appear to form long transcripts with exon-intron structure closely

resembling annotated protein-coding genes.

With respect to the genomic location, igHTR tend to be

situated within gene-rich regions, with 49% of human igHTR

located within 10 kb of the nearest gene (simulation, p,0.01).

Interestingly, 84% of these igHTR are close to the 39-end, rather

than 59-end of the nearest gene (Figure 2B). Expression levels of

these igHTR correlate positively with expression of the adjacent

genes (Figure S9). Further, a total of 70 out of the 452 igHTR and

igHTR clusters located within 10 kb from 39-end of the nearest

gene in at least one human sample can be connected to the gene

by 263 EST sequences (simulation p,0.01) (Figures 2G, S10).

Notably, within these igHTR, we find a significant excess of

conserved microRNA (miRNA) binding sites, one of the

characteristic features of 39-UTRs of annotated transcripts (Figure

S11). Thus, these igHTR may represent alternative or extended

39-UTR of annotated genes, potentially contributing to micro-

RNA-directed expression regulation in the primate brain.

With respect to function, 251 genes that contain igHTR within

10 kb from the gene boundaries (204 of them are situated

downstream for gene and may correspond to 39-UTR extensions)

show significant enrichment among GO terms [15] and KEGG

pathways [16] (Table S4, S5). Notably, these genes are mainly

involved in neural functions, such as signal transduction,

regulation of synaptic plasticity, learning, glutamate signaling

pathway and long-term potentiation pathway, as well as two major

pathways associated with lifespan duration: insulin signaling and

mTOR signaling.

With respect to protein coding capacity, as determined by

codon substitution frequencies (CSF) [17], igHTR scored lower

than known protein coding genes, but still significantly higher than

known non-coding RNAs (ncRNAs) (Wilcoxon test, p,2.2e-16)

(Figure S12). Based on the chosen CSF cutoff, approximately 10%

of all human igHTR may have protein-coding capacity. The

remaining igHTR may represent as yet unannotated ncRNA.

Supporting this suggestion, we find significant overlap (Figure S13,

Figure 1. Composition of human brain transcriptome and transcription of repetitive elements. (A) Outer circle: average proportions of
transcriptome sequence reads from the two human samples that map within annotated exons (green), introns (light orange), intronic repeats
(orange), intergenic repeats (blue), intergenic regions (light blue), mitochondrial DNA (purple), and ncRNA (maroon). Middle circle: the proportions
occupied by the corresponding regions in the human genome. Inner circle: the proportions of transcriptome sequence reads for polyadenylated
human brain RNA (data adopted from [26]). (B) The transcriptional activity of repeat families located within introns (orange) or intergenic regions
(blue) plotted against the total genomic length occupied by the family (see Materials and Methods for details). The labels indicate the repeat families
with elevated expression levels. (C and D) The expression levels of twelve TE families normalized by the total genomic length of the corresponding
family (C) and by the length corresponding to expressed repeats (D), plotted against their age rank. The expression level 95% confidence intervals are
calculated by 1,000 bootstraps over sequence reads. The age rank and the corresponding confidence intervals are plotted according to [39]. Higher
age rank corresponds to evolutionary younger TE families.
doi:10.1371/journal.pcbi.1000843.g001
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simulation, p,0.01) between igHTR and large intergenic non-

coding RNA (lincRNA) identified in mouse and human cell lines

[18,19], involving 19% of all identified human igHTR. An

additional 10% of human igHTR overlap with ncRNA predictions

based on secondary structure and folding potential score

determined by EvoFold [20] (Figure S14, simulation, p,0.01)

(Figure 2B).

Transcription divergence
To determine the extent of expression divergence between

human, chimpanzee, and rhesus macaque brain transcriptomes,

we first tested whether expression of known protein coding genes

could separate species according to their phylogenetic relationship.

Based on expression of 13,832 genes detected in at least two out of

four samples in our dataset, we found that in agreement with

Figure 2. Characteristics of intergenic transcripts. (A) Examples of igHTR. The black track shows sequence reads density (in counts) in the four
samples studied. The blue tracks show human EST density and PhastCon scores. (B) igHTR categories. The inner circle shows the proportion of igHTR
with (red) or without (blue) EST support. The outer circle shows proportions of igHTR with protein-coding potential (green), supported by lincRNA
(blue) or EvoFold (light blue) ncRNA predictions, adjacent to gene’s 59-UTR (light orange) or 39-UTR (orange), and uncharacterized igHTR (grey)
among EST-supported and non-supported igHTR. (C) Expression levels within intergenic regions (blue), genic regions including both exons and
introns (light orange), exons (green), and igHTR (red). (D) Sequence conservation of nucleotides in human exons, genic regions, intergenic regions,
and igHTR (all colors as on the panel (C)) based on phastCon scores among 18 placental vertebrates genomes. PhastCon scores close to 1 indicate
high conservation. The heights of the bars show mean value and error bars show 95% confident intervals based on sampling of the same number of
nucleotides as located within igHTR from the corresponding genomic regions 1,000 times. For igHTR, the values are based on all nucleotides located
within them. (E) Size distributions of igHTR in the two human samples (red - Human1, blue - Human2), annotated human exons (grey), and exonic
HTR (black) (F) Distributions of genomic distances between nearest pairs of igHTR (red – Human1, blue – Human2), annotated exons (black), and
simulated randomly distributed igHTR (grey). The dashed line shows 10 kb distance. (G) Examples of splicing within igHTR clusters (red) and between
annotated genes (blue) and downstream igHTR supported by EST (green).
doi:10.1371/journal.pcbi.1000843.g002

Intergenic and Repeat Transcription in Brain

PLoS Computational Biology | www.ploscompbiol.org 4 July 2010 | Volume 6 | Issue 7 | e1000843



previously reported results based on microarray data, gene

expression differs significantly among the three species

(Figure 3A, S15). Furthermore, expression divergence among

species increases with the time of species divergence, independent

of normalization procedures and distance measures used (Mate-

rials and Methods, Figures 3B, S16).

Next, we identified genes with species-specific expression using a

Bioconductor package for differential expression analysis of digital

gene expression data, ‘‘edgeR’’ [21]. Following this methodology,

we first used the variation between two human samples to build a

null model of changes in read counts across all loci studied and

then used this null model to identify expression differences

between species. Further, we used Benjamini-Hochberg multiple

testing correction to set the false discovery rate below 5%

(Materials and Methods). Following this procedure, we identified

118 genes with human-specific expression in both human samples

(Table S6). To test whether these expression differences are

reproducible, we compared them with published expression

differences measured between three human and three chimpanzee

cerebellar samples using microarrays [22]. For 34 genes present in

both datasets (Materials and Methods), we find significant positive

correlation of human-chimpanzee expression differences (Pearson

correlation r = 0.68, p = 0.0001; Spearman correlation rho = 0.55,

p = 0.0008).

Functional analysis of the 118 genes with human-specific

expression did not yield significant results, but showed an

enrichment trend among genes involved in transcriptional

regulation (Table S4). This finding is consistent with previous

studies, suggesting transcriptional regulation may play an

important role in human brain evolution [23,24,25]. Further, in

terms of amino acid divergence between humans and chimpanzees

or between humans and mice, as well as promoter sequence

divergence, 118 genes showed tendency for greater conservation

than all genes expressed in at least one of our four samples (Table

S7). Thus, observed gene expression changes are not likely to

reflect relaxation of selective constraint.

Figure 3. Transcription divergences. (A) UPGMA tree based on the expression level of 13,832 genes in 4 sample pools. The numbers at the nodes
indicate node stability in 1,000 bootstraps over genes. (B) The gene expression divergence between sample pairs plotted against the species
divergence time. The box plot represents variation of the divergence estimated from 1,000 bootstraps over genes (same set of genes as (A), see
Materials and Methods). (C) The upper panels show genomic annotation of nucleotides covered by at least one sequence read within all HTR
identified in at least one sample (Total) and HTR with species-specific expression. Genomic locations of species-specific HTR are listed in Table S8. The
lower panels show genomic annotation of nucleotides covered by at least one sequence read within all genomic windows (Total) and genomic
windows with species-specific expression. Locations of species-specific genomic windows are listed in Table S10. The colors represent: exons (green),
intronic repeats (orange), introns (light orange), intergenic repeats (blue), and intergenic regions (light blue). (D) An example of a genomic window
with human-specific expression.
doi:10.1371/journal.pcbi.1000843.g003

Intergenic and Repeat Transcription in Brain

PLoS Computational Biology | www.ploscompbiol.org 5 July 2010 | Volume 6 | Issue 7 | e1000843



In addition to gene expression differences, we compared the

extent of expression divergence among the three species for

different types of transcripts: exonic, intronic, intergenic, and

repeats. To compare expression divergence of these different

transcript types on the same basis, we used two approaches. In

the first approach, in addition to igHTR, we identified all other

highly transcribed regions (HTR) present in human, chimpan-

zee, and rhesus macaque brain transcriptomes and compared

their expression levels across species. From a total of 16,159

HTR found among the three species, 10,654 (65.9%) corre-

spond to exons, 904 (5.6%) to introns, 528 (3.3%) to intergenic

regions, 3,007 (18.6%) and 1,066 (6.6%) to intronic and

intergenic repeats, respectively. To identify the HTR with

species-specific expression, we applied the methodology de-

scribed above, based on the edgeR package. Following this

approach, 24 HTR (11% in all species-specific HTR) can be

classified as human-specific, 32 (15%) as chimpanzee-specific,

and 159 (74%) as specific to rhesus macaque in the three species

comparison (Table S8). Intriguingly, for humans, we find a

slight but significant excess of HTR with species-specific

expression within intergenic regions (one-sided binomial test,

p,2.2e-16) (Figures 3C, S17, Table S9).

In the second approach, we identified regions showing extreme

species-specific divergence by comparing transcriptome coverage

in a sliding window over the entire human-chimpanzee-macaque

(HCM) genome alignment (Figure 3D). Windows were defined to

contain the same total number of sequence reads (N = 50)

summing over all three species. Using the described above

approach to identify species-specific genomic windows (GW)

(Table S10), we find a strong excess of intergenic region

representation in all three species (one-sided binomial test,

p,2.2e-16) (Figure 3C lower bars, Figure S18, Table S11). We

obtain the same result using both species-specific and human-

based annotations (Figure S18, Table S11). Further, the result did

not depend on recent duplication events or alignment problems,

as determined by allowing multiple-location mapping, use of

alternative reference species in alignment construction and visual

inspection of all species-specific widows. Thus, in the three

primate species studied, genomic regions with extreme species-

specific expression patterns are more than twice as likely to

originate within intergenic regions than expected by chance

(Table S11).

Discussion

Our study, although based on a few samples, uncovers basic

features of the brain transcriptome that are shared among the

three primate species and identifies the most divergent expression

patterns specific to the human brain. Among shared features, we

find that exons alone contribute approximately a quarter of the

total non-ribosomal transcriptome, while exons and introns

together contribute three-quarters. Previously published human

brain transcriptome sequencing data based on polyadenylated

transcripts contains a higher proportion of exonic and a lower

proportion of intronic transcription (54% and 24%, respectively,

Figure 1A) [26]. Thus, many of the intronic transcripts detected in

our study may represent unprocessed non-polyadenylated precur-

sors of mature mRNA. Non-repetitive intergenic transcripts,

however, occupy similar proportions (7%) in both poly(A)-

enriched and the total human brain transcriptomes.

While 42% of the human brain transcriptome originate within

repetitive elements, most of the repeat expression is directly

proportional to the occupied genomic length and, therefore, might

represent ‘‘transcriptional background’’. Some of the repeat

families, however, are transcribed above the background level.

While some of these families, such as snRNAs, snpRNAs and 7SK

RNA that derived from functional ncRNA might be actively

transcribed, high expression of simple and low complexity repeats

is unusual. Notably, analysis of cap-selected mouse and human

transcript tags across 12 tissues shows that simple and low

complexity repeats have distinct tissue-specific expression profiles

and are highly expressed in brain in both species [13]. Similarly,

elevated expression of Alu elements from the most recently

expanded subfamilies is unusual and indicates that these elements

might be transcribed actively.

Besides repeats, intergenic transcription is highly non-uniform,

containing distinct highly transcribed regions conserved between

species both in terms of their expression and DNA sequence. A

substantial proportion of these regions (23%) may represent

alternative or extended 39-UTR of known genes, enriched in

conserved microRNA binding sites. In mouse brain, 39-UTR

extensions containing miRNA binding sites were found in

microRNA-Argonaute complexes, indicating their role in

miRNA-directed expression regulation [27]. Further, changes in

39-UTR length have been shown to play a role in miRNA

regulation of cell proliferation and mouse embryonic develop-

ment [28,29]. Thus, identified novel 39-UTR may play an

important role in microRNA-directed regulation in the primate

brain.

Another substantial proportion of identified intergenic tran-

scripts (29%) overlap recently identified lincRNA and ncRNA

predicted by EvoFold. Since our analysis is limited to highly

expressed transcripts, most of them are expressed at higher levels

than protein-coding genes. This indicates that at least some of

these intergenic transcripts represent novel ncRNA functioning in

the primate brain. We have to note, however, that these transcripts

represent a small fraction of all identified lincRNA and ncRNA

predicted by EvoFold: 1.7% and 0.3%, respectively. Thus, the vast

majority of lincRNA and ncRNA predicted by EvoFold are not

expressed in human cerebellum, or are expressed at levels below

our igHTR detection threshold.

With respect to evolutionary features, the extent of expression

divergence increases with greater species’ phylogenetic divergence

time. In our study, we do not observe an excess of expression

divergence on the human lineage, previously reported in another

brain region, cerebral cortex [6,7]. Thus, in different brain

regions, the transcriptome may have evolved at different rates

during human evolution. It has to be noted, however, that our

study does not provide intra-species variation estimates, and

cannot be directly compared with the previous studies. Further

work is needed to investigate this question. Notably, we find that

the most extreme human-specific expression patterns, as well as

extreme expression patterns characteristic for the other two

primate species, show greater than expected enrichment within

intergenic regions. Thus, further characterization of intergenic

transcription will be necessary for understanding regulatory

evolution in primates and identification of the molecular

mechanisms underlying the evolution of the human-specific

phenotype.

Materials and Methods

Ethics statement
Informed consent for use of the human tissues for research was

obtained in writing from all donors or the next of kin. All non-

human primates used in this study suffered sudden deaths for

reasons other than their participation in this study and without any

relation to the tissue used.

Intergenic and Repeat Transcription in Brain
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Sample preparation and sequencing
We dissected postmortem cerebellar cortex samples from ten

male humans (8–54 years old), four male chimpanzees (8–40 years

old), and five male rhesus macaques (4–20 years old). All human

postmortem brain tissue samples were obtained from the NICHD

Brain and Tissue Bank for Developmental Disorders (NICHDBB)

(Baltimore, MD, USA). Forensic pathologists at the NICHDBB

defined all subjects as normal controls. No subjects with prolonged

agonal state were used. Chimpanzee samples were obtained from

the Yerkes Primate Center (Atlanta, GA, USA), the Anthropo-

logical Institute & Museum of the University of Zürich-Irchel,

(Zürich, Switzerland), and from the Biomedical Primate Research

Centre (Rijswijk, Netherlands). The rhesus macaque samples were

obtained from the SuZhou Experimental Animal Center (SuZhou,

China). All samples contained RNA of comparable and high

quality (Table S1).

Total RNA was extracted from dissections by Trizol reagent

(Invitrogen, Carlsbad, CA) and treated for 30 min at 37uC with

RNase free DNase I (Ambion, Austin, TX). RNA was purified

with the RNeasy MinElute Kit according to the manufacturer’s

instructions (Qiagen, Valencia, CA). This procedure depletes

RNA molecules with length shorter than 200 nt. Resulting RNA

samples from five human, five macaque, or four chimpanzee

individuals was mixed in equal proportions within species,

resulting in two human, one chimpanzee, and one rhesus macaque

pooled samples (Table S1). 10ug RNA was treated with two

rounds of RiboMinus kit (Invitrogen) to remove most of the

Ribosome RNA. The cDNA libraries were prepared starting from

2ug of rRNA-Reduced total RNA per sample and using random

hexamer primers (Invitrogen, Cat. No. 48190-011). It has to be

noted that the resulting double-stranded cDNA fragments do not

preserve information about the strand specificity of the original

transcript. The Illumina sequencing libraries were prepared

according to the single-end sample preparation protocol (http://

www.illumina.com). The libraries were sequenced using the 1G

Illumina Genome Analyzer. The sequencing products were the

single-end 36 nucleotides (nt) long sequence reads. All sequence

data including quality scores is deposited into the NCBI’s Short

Read Archive, accession number SRA011534.

Read mapping and annotation
All raw sequencing reads were mapped to the corresponding

reference genomes (hg18, panTro2, and rheMac2), allowing a

maximum of four mismatches, using Short Oligonucleotide

Alignment Program (SOAP, version 1) [30]. Using a smaller

number (two or three) of allowed maximum mismatches did not

affect the analysis (data not shown). Only the reads that mapped

uniquely were included in the analysis, unless indicated otherwise.

For the three species, all uniquely mapped reads were annotated

based on the species-specific gene annotation from Ensembl

(release 50) provided by BioMart (http://www.biomart.org/) [31]

or based on the human annotation (see below). Throughout the

analysis, exons and intron categories are based on all exons, both

coding and non-coding, of protein-coding genes according to

Ensembl (release 50) annotation. Reads mapping to rRNA (both

uniquely and allowing multiple mapping) were excluded from the

analysis. To ensure complete and unbiased exclusion of rRNA

sequences, for each species we mapped reads to all rRNA

sequences annotated in the three species. In each sample, 36–39%

of all mapped reads mapped to rRNA. For uniquely mapped

reads, 1–2% mapped to rRNA. The repeat annotation was taken

from the RepeatMasker table provided by the UCSC table

browser (http://genome.ucsc.edu/) [32]. The genomes were

separated into 7 categories: exons, intronic repeats, introns,

intergenic repeats, mitochondrial chromosome, non-coding

RNA, and intergenic regions. This order is further used as a

category hierarchy for sequence reads annotation, from the

highest to the lowest level, respectively. A sequence read was

assigned to a category if at least one nucleotide of the read mapped

to the category’s genomic region according to the above hierarchy

and independent of the strand orientation, as strand information

was lost during sequence library preparation. Further, sequence

reads mapped to exon junctions were assigned to exons. Although

our approach biases annotation to the categories high in the

hierarchy, such as repetitive elements, this effect is not large.

Specifically, we find that in humans only 7% of all sequence reads

we assign to repeats do not map completely within repetitive

elements and, therefore, can be assigned to other categories.

Further, for only 2% of all sequence reads we assign to repeats, less

than half of a read sequence is contained within repetitive

elements. The distribution of mapped reads shown in (Figure 1A)

and (Figure S1A) is based on counting the number of sequence

reads mapped to both unique and multiple (#100 locations)

positions in the genome. We obtain similar results considering only

sequence reads mapped to unique genomic positions (Figure S1B).

Repeat transcription
We estimated the expression levels of repeat families based on

uniquely mapped sequences. Including sequence reads mapped to

multiple positions increased the total number of reads mapped to

repeat regions by approximately 10%, but did not affect the results

qualitatively. To normalize the expression by the lengths of unique

DNA in each repeat family, we calculated the numbers of potential

positions in repeat elements that can be mapped uniquely, then we

summed up these numbers of all the elements and that of the

expressed elements separately. This length calculation was done

for both the analysis of repeat expression level vs. repeat length

(Figure 1B) and the analysis of repeat transcriptional activity vs.

repeat age (Figure 1C, 1D).

Three-species genome alignment
Pair-wise genome alignments of human-chimpanzee and

human-macaque were downloaded from UCSC genome browser

(genome versions: hg18, panTro2 and rheMac2). Based on these

alignments, Human-Chimpanzee-Macaque (HCM) three-way

alignment was constructed Using Multiz software package [33].

The human genome was selected as reference during the

construction unless indicated otherwise. The regions in the

HCM alignment were also considered as 3 species consensus

regions (HCM consensus regions).

HTR definition and analysis
We used two parameters to determine whether a region is a

HTR. The first is the maximum spacing (maxspacing) between

two neighboring reads (from 5 to 39 on the forward strand). The

second is the minimum number of mapped sequences (minhits)

within the regions. For convenience, we use maxspacing = 150 nt

and minhits = 10 for all HTR analysis shown in the paper, except

Figure S5. The chosen parameters are conservative, as we only

select genomic regions with unusually high expression levels

(Figure 2B). Using other parameter sets did not affect the results.

igHTR were defined to be located entirely within intergenic

regions according to Ensembl (release 50) annotation of protein-

coding genes, non-coding genes, and pseudogenes. Further, they

did not overlap with RefSeq and VEGA transcript annotation

(downloaded from UCSC table browser, http://genome.ucsc.edu)

[32]. To identify HTR in humans, chimpanzee, and macaque on

an equal basis, total numbers of mapped sequences were equalized
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among the samples by random sub-sampling of 1,500,000 mapped

sequences for each sample. This number was based on the read

number in the sample with the lowest coverage. HTR were

aligned across species based on HCM alignment. HTR genomic

boundaries were defined based on the 59-most and 39-most

coordinates found among the four samples.

To calculate the expression correlation of individual igHTR in

the three species, we unified igHTR identified in the four samples.

We mapped igHTR identified in chimpanzee and macaque onto

the human genome using the LiftOver tool from UCSC genome

browser (http://genome.ucsc.edu/cgi-bin/hgLiftOver).

All simulation tests were done by randomly selecting the same

number of genomic regions with the same length distribution as

the actual igHTR 1,000 times. The sample genomic regions

differed depending on the tested variable and are described

specifically in each case (see Supplementary Information for

details).

Sequence conservation analysis was based on the sequence

conservation measures provided for each nucleotide position by

the PhastCons conservation scores for 18-way multiple alignments

between the human genome and 17 other placental mammalian

species [34]. Conservation was determined for nucleotides within

human igHTR, as well as for the entire human intergenic regions,

genic regions (including both exons intron), and exons by

randomly sampling the same number of nucleotides from these

regions 1,000 times.

We tested protein-coding potential of human igHTR by

determining the maximum CSF (codon substitution frequency)

score observed across the entire genomic locus, following [17].

Briefly, we used a scoring matrix built from human-mouse

alignment and computed the CSF scores across sliding windows

of 90 nucleotides. We then scanned all 6 possible reading frames in

each window, since we have the strand information. After

computing a score for each window, we defined the ‘‘max CSF

score’’ for a cluster to the maximum observed score across the

region. Then, we chose CSF cutoff that discriminates well between

coding and non-coding regions based on the CSF distributions of

known protein-coding and non-coding regions. We chose cutoff at

CSF = 2, which gives specificity (97.9%) and sensitivity (93.2%)

(Figure S12). Finally, we applied this cutoff to the CSF

distributions of igHTR to estimate the proportion of potential

protein-coding regions.

For overlap between lincRNA (large intergenic non-coding

RNA) and igHTR, we used published lincRNA identified in

mouse [18] and human [19]. We downloaded the lincRNA tables

provided by these two papers and identified the human orthologs

of the mouse lincRNA as described in [19]. Next, we combined

the human lincRNA and the human orthologs with mouse

lincRNA for the analysis.

For overlap between EvoFold predictions and igHTR, we

download a total of 47,510 predicted RNA from UCSC browser

[20]. As many of these predictions are short (,20 nt), we assume

that they originate from a longer precursor and extend the

predicted locations by 1 kb at both ends for the analysis.

Transcription divergence
Among all annotated human protein-coding genes (Ensembl

release 50), 18,391 can be matched between the three species

based on HCM alignment. Out of these genes, 13,832 expressed in

at least two of the four samples were used in this analysis. The gene

expression levels were calculated as the number of sequence reads

uniquely mapped in exons, normalized by the gene’s exonic region

length. Reads mapped to exon junctions were not counted here,

because some exon boundaries might not been matched accurately

between genomes based on HCM genome alignment. The

expression levels were normalized across samples using quantile

normalization (normalize.quantiles function in R) [35]. Diver-

gence between samples was estimated based on Euclidean

distance, Manhattan distance, and 1-rho (Spearman correlation

coefficient) (Figures S15, S16). Further, to remove influence of

expression level on divergence calculation, we Z-transformed

expression levels before the expression distance calculation: the

expression level of each gene was set to mean = 0 and standard

deviation = 1 across the four samples (Figures S15, S16). The

UPGMA trees (Figure S15) were constructed using R-package ape

and phangorn.

Species-specific expression
To identify species-specific expression of genes, HTR, or GW,

we used a Bioconductor package for differential expression

analysis of digital gene expression data, ‘‘edgeR’’ [21]. This

package models the digital expression data using a negative

binomial (NB) distribution with parameters estimated from the

actual data. First, we estimated the dispersion parameter in the NB

model by comparing expression in two human samples (function

estimateCommonDisp in edgeR package). This estimated com-

mon dispersion was then used in an exact test (function exactTest)

analogous to the Fisher’s exact test to detect differential expression

between any two species. The resulting p-values were adjusted with

Benjamini-Hochberg multiple testing correction to control the

false discovery rate to be below 5%. Species-specific expression

was identified separately in two groups of samples. Group one (G1)

contained Human1, Chimpanzee, and Macaque samples. Group

two (G2) contained Human2, Chimpanzee, and Macaque

samples. Genes, HTR, or GW with significant expression

difference in human-chimpanzee and human-macaque compari-

sons, but not in chimpanzee-macaque comparison, in both G1 and

G2 were classified to have human-specific expression. Similarly,

we identified genes, HTR, or GW with chimpanzee-specific and

rhesus macaque-specific expression (Tables S6, S8, and S10).

HTR were determined over the entire HCM alignment using

standard parameters (maxspacing = 150 nt and minhits = 10) and

assigned to the annotation categories according to the hierarchy

mentioned above (Materials and Methods: Read mapping and

annotation). We defined GW as HCM alignment regions

containing a total of 50 sequence reads in the three species.

GO/KEGG enrichment analysis
For 118 genes with human-specific expression, 251 genes

containing igHTR (within 10 kb from the gene boundaries in both

directions in the human samples), and for 204 (of 251) genes with

igHTR near 39-UTR, we performed GO-term/KEGG-pathway

enrichment analysis using 15,263 genes expressed in at least one

out of four samples as background. For the GO function

enrichment analysis, we downloaded the Ensembl gene-GO

annotation from the Ensembl database [31]. We then used the

func_hyper program of the package FUNC to test for category

enrichment. The program generates raw enrichment p-values for

each category based on hypergeometric distribution, then

performs permutations of genes to determine whether the detected

enrichment is greater than expected by chance, generating a

global enrichment p-value [36]. For KEGG pathway enrichment

analysis, we downloaded Ensembl gene-KEGG annotation from

the KEGG database, and use in-house code written in R-language

(supplied on request) that uses the same strategy as func_hyper.

The resulting GO terms from ‘‘biological process’’ taxonomy and

KEGG pathways with raw enrichment p-value,0.05 are listed in

Tables S4 and S5.
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Comparisons with published data
To compare human-chimpanzee expression differences, we

used expression data measured using Affymetrix arrays in three

human and three chimpanzee adult cerebellar samples [22].

Provided expression levels of 6,645 genes were quantile normal-

ized and log2 transformed. Based on these data, for each gene we

calculated human-chimpanzee difference as the difference be-

tween mean expression levels in the two species. In our current

RNA-Seq data, 14,959 genes are expressed in at least one of the

three samples. For these genes, we quantile normalized the

expression levels across three samples, log2-transformed, and

calculated human-chimpanzee difference as the difference be-

tween mean expression levels in the two species. Out of 118 genes

with human-specific expression in RNA-Seq experiment, 34 were

present in both data sets.

Conservation of the human-specific genes
We compare selective constrains in 118 genes with human-

specific expression to that of 15,263 genes expressed in at least one

out of four samples based on three measures: (1) Ka/Ks between

human and mouse: the data was downloaded from Ensembl

(release 50) [31] via Biomart and only considering 1:1 orthologs

between human and mouse. (2) Ka/Ki between human and

chimpanzee: this data was downloaded from [37]. (3) Promoter

sequence divergence (Kp) between human and chimpanzee: this

data was downloaded from [38]. The results are shown in

Table S7.
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7. Cáceres M, Lachuer J, Zapala MA, Redmond JC, Kudo L, et al. (2003) Elevated

gene expression levels distinguish human from non-human primate brains. Proc

Natl Acad Sci USA 100: 13030–13035.

8. Gu J, Gu X (2003) Induced gene expression in human brain after the split from

chimpanzee. Trends Genet 19: 63–65.

9. Khaitovich P, Kelso J, Franz H, Visagie J, Giger T, et al. (2006) Functionality of
intergenic transcription: an evolutionary comparison. PLoS Genet 2: e171.

10. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and

quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: 621–628.

11. Morin R, Bainbridge M, Fejes A, Hirst M, Krzywinski M, et al. (2008) Profiling

the HeLa S3 transcriptome using randomly primed cDNA and massively

parallel short-read sequencing. Biotechniques 45: 81–94.

12. Wu Q, Kim YC, Lu J, Xuan Z, Chen J, et al. (2008) Poly A- transcripts

expressed in HeLa cells. PLoS One 3: e2803.

13. Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C, et al. (2009) The
regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41:

563–571.

14. Siepel A, Bejerano G, Pedersen J, Hinrichs AS, Hou M, et al. (2005)
Evolutionarily conserved elements in vertebrate, insect, worm, and yeast

genomes. Genome Research 15: 1034–1050.

15. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene
ontology: tool for the unification of biology. The Gene Ontology Consortium.

Nat Genet 25: 25–29.

16. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes.
Nucleic Acids Res 28: 27–30.

17. Lin MF, Carlson JW, Crosby MA, Matthews BB, Yu C, et al. (2007) Revisiting

the protein-coding gene catalog of Drosophila melanogaster using 12 fly
genomes. Genome Research 17: 1823–1836.

18. Guttman M, Amit I, Garber M, French C, Lin MF, et al. (2009) Chromatin

signature reveals over a thousand highly conserved large non-coding RNAs in
mammals. Nature 458: 223–227.

19. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, et al. (2009) Many

human large intergenic noncoding RNAs associate with chromatin-modifying
complexes and affect gene expression. Proc Natl Acad Sci U S A 106:

11667–11672.

20. Pedersen JS, Bejerano G, Siepel A, Rosenbloom K, Lindblad-Toh K, et al.
(2006) Identification and classification of conserved RNA secondary structures in

the human genome. PLoS Comput Biol 2: e33.

21. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics 26:

139–140.
22. Khaitovich P, Muetzel B, She X, Lachmann M, Hellmann I, et al. (2004)

Regional patterns of gene expression in human and chimpanzee brains. Genome

Research 14: 1462–1473.
23. Nowick K, Gernat T, Almaas E, Stubbs L (2009) Differences in human and

chimpanzee gene expression patterns define an evolving network of transcription
factors in brain. Proc Natl Acad Sci U S A 106: 22358–22363.

24. Haygood R, Fedrigo O, Hanson B, Yokoyama KD, Wray GA (2007) Promoter
regions of many neural- and nutrition-related genes have experienced positive

selection during human evolution. Nat Genet 39: 1140–1144.

25. Gilad Y, Oshlack A, Smyth GK, Speed TP, White KP (2006) Expression
profiling in primates reveals a rapid evolution of human transcription factors.

Nature 440: 242–245.
26. Mudge J, Miller NA, Khrebtukova I, Lindquist IE, May GD, et al. (2008)

Genomic convergence analysis of schizophrenia: mRNA sequencing reveals

altered synaptic vesicular transport in post-mortem cerebellum. PLoS One 3:
e3625.

27. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes
microRNA-mRNA interaction maps. Nature 460: 479–486.

28. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating

cells express mRNAs with shortened 39 untranslated regions and fewer
microRNA target sites. Science 320: 1643–1647.

29. Ji Z, Lee JY, Pan Z, Jiang B, Tian B (2009) Progressive lengthening of 39

untranslated regions of mRNAs by alternative polyadenylation during mouse

embryonic development. Proc Natl Acad Sci USA 106: 7028–7033.
30. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide

alignment program. Bioinformatics 24: 713–714.

31. Hubbard T, Barker D, Birney E, Cameron G, Chen Y, et al. (2002) The
Ensembl genome database project. Nucleic Acids Res 30: 38–41.

32. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, et al. (2004) The
UCSC Table Browser data retrieval tool. Nucleic Acids Res 32: D493–496.

33. Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, et al. (2004) Aligning

multiple genomic sequences with the threaded blockset aligner. Genome Res 14:
708–715.

34. Karolchik D, Kuhn RM, Baertsch R, Barber GP, Clawson H, et al. (2008) The
UCSC Genome Browser Database: 2008 update. Nucleic Acids Res 36:

D773–779.
35. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of

normalization methods for high density oligonucleotide array data based on

variance and bias. Bioinformatics 19: 185–193.
36. Prufer K, Muetzel B, Do HH, Weiss G, Khaitovich P, et al. (2007) FUNC: a

package for detecting significant associations between gene sets and ontological
annotations. BMC Bioinformatics 8: 41.

37. (2005) Initial sequence of the chimpanzee genome and comparison with the

human genome. Nature 437: 69–87.
38. Khaitovich P, Hellmann I, Enard W, Nowick K, Leinweber M, et al. (2005)

Parallel patterns of evolution in the genomes and transcriptomes of humans and
chimpanzees. Science 309: 1850–1854.

39. Giordano J, Ge Y, Gelfand Y, Abrusán G, Benson G, et al. (2007) Evolutionary
history of mammalian transposons determined by genome-wide defragmenta-

tion. PLoS Comput Biol 3: e137.

Intergenic and Repeat Transcription in Brain

PLoS Computational Biology | www.ploscompbiol.org 10 July 2010 | Volume 6 | Issue 7 | e1000843


