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Abstract

The X chromosome often plays a central role in hybrid male sterility between species, but it is unclear if this reflects
underlying regulatory incompatibilities. Here we combine phenotypic data with genome-wide expression data to directly
associate aberrant expression patterns with hybrid male sterility between two species of mice. We used a reciprocal cross in
which F1 males are sterile in one direction and fertile in the other direction, allowing us to associate expression differences
with sterility rather than with other hybrid phenotypes. We found evidence of extensive over-expression of the X
chromosome during spermatogenesis in sterile but not in fertile F1 hybrid males. Over-expression was most pronounced in
genes that are normally expressed after meiosis, consistent with an X chromosome-wide disruption of expression during the
later stages of spermatogenesis. This pattern was not a simple consequence of faster evolutionary divergence on the X
chromosome, because X-linked expression was highly conserved between the two species. Thus, transcriptional regulation
of the X chromosome during spermatogenesis appears particularly sensitive to evolutionary divergence between species.
Overall, these data provide evidence for an underlying regulatory basis to reproductive isolation in house mice and
underscore the importance of transcriptional regulation of the X chromosome to the evolution of hybrid male sterility.
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Introduction

The importance of proper gene regulation to the evolution of

reproductive isolation between species is not well understood.

Several studies have documented abnormal genome-wide patterns

of expression in F1 hybrid offspring relative to their parental

species [1–5]. However, two confounding factors make it difficult

to determine the extent to which these data are directly relevant to

the genetic basis of speciation. First, expression data from whole

tissues reflect proportional transcript abundances across different

cell types. Thus, genome-wide differences in hybrid expression

could simply reflect quantitative differences in the cellular

composition of tissues that manifest abnormal hybrid phenotypes

[6], rather than true expression differences between cells. Second,

many studies have focused on divergent crosses that produce

severe F1 hybrid incompatibility phenotypes that uniformly affect

a given sex. Without variability in F1 sterility, it is difficult to

establish a causal relationship between reproductively isolating

phenotypes and general expression patterns on a hybrid genomic

background.

The X chromosome often plays a central role in the genetic

underpinnings of reproductive isolation [7]. Hybrid inviability and

sterility typically arise due to incompatible epistatic interactions

between divergent genes [7–9]. Deleterious recessive incompati-

bilities are exposed on the X chromosome, but not the autosomes,

of F1 hybrid males. This dominance-based model [10] provides a

simple genetic explanation for the ubiquitous evolutionary pattern

that hybrid inviability or sterility overwhelmingly afflicts the

heterogametic sex first (i.e., Haldane’s rule [11]). However, it does

not explain why hybrid male sterility evolves much faster than

male inviability [12–16]. Male sterility evolves particularly quickly

on the X chromosome (i.e., the large X-effect [7,17] for male

sterility), which has been shown in Drosophila to accumulate a

higher density of recessive mutations causing hybrid male sterility

relative to the autosomes [14–16]. There are several evolutionary

hypotheses to explain the rapid development of X-linked sterility,

including more frequent positive selection on the X chromosome

because of the immediate exposure of beneficial recessive

mutations [18–20], recurrent genetic conflict over the meiotic

transmission of the sex chromosomes [21–25], and rampant gene

movement onto and off of the X chromosome [26]. None of these

hypotheses are mutually exclusive and all plausibly contribute to

the rapid evolution of hybrid male sterility.

Rapid X-linked evolution notwithstanding, the importance of

the X chromosome for hybrid male sterility is surprising given that

spermatogenic genes tend to be underrepresented on the X

chromosome [27–29]. A possible mechanistic explanation for this

discrepancy is that spermatogenesis may be particularly sensitive to

disruption of gene expression on the X chromosome [16,30–32].

In mammals [33], flies [34], and nematodes [35], transcription
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on the X chromosome is silenced during part of spermatogenesis,

resulting in an under-representation of X-linked spermatogenic

genes [27,29,36]. In mice, the X chromosome is inactivated at the

pachytene stage of meiosis (i.e., meiotic sex chromosome inactiva-

tion or MSCI) when homologous autosomes synapse [37,38]. Most

of the X chromosome remains transcriptionally inactive for the

duration of spermatogenesis (postmeiotic sex chromosome repres-

sion or PMSR) save a relatively small subset of postmeiotically

expressed genes [39]. Mutations that disrupt synaptic pairing of

autosomes can disrupt MSCI and PMSR, often resulting in male-

limited sterility [40–42]. If MSCI and/or PMSR are also sensitive to

evolutionary divergence between closely related species then

disruption of X-inactivation during spermatogenesis may provide

a general molecular basis for the large X-effect and the rapid

evolution of hybrid male sterility [30–32].

Two closely related lineages of house mice, Mus musculus and M.

domesticus, provide a powerful system for studying the role of gene

regulatory divergence in speciation. The two species are recently

diverged (,500 KYA; [43]) and form a narrow hybrid zone across

Europe. Laboratory crosses between M. domesticus and M. musculus

often yield fertile females and sterile males [44]. The spermato-

genic status of F1 males ranges from normal to complete meiotic

arrest [31] or dramatic reductions in postmeiotic cells [44]. Two

factors contribute to variation in F1 hybrid male sterility. First,

multiple sets of epistatic incompatibilities are involved in

spermatogenic failure [31,44], including one or more X-autosome

interactions that result in asymmetric sterility in some reciprocal

crosses [44,45]. All asymmetric crosses described so far yield sterile

hybrid males when the maternal line is M. musculus, and

introgression of the M. musculus X chromosome causes male

sterility on a M. domesticus genetic background [46,47]. Second,

multiple autosomal incompatibilities are polymorphic within M.

musculus and M. domesticus [45,47–49]. Thus, F1 hybrid male

fertility depends critically on both the direction of the cross and the

genotype of the parental species.

One of the polymorphic incompatibilities, Hst1, has recently

been localized to a single autosomal gene, PR-domain 9 or Prdm9

[50]. Prdm9 is involved in histone methylation [51] and causes

aberrant expression of several interacting genes in sterile hybrid

males [50]. Two previous studies [5,52] have interrogated the

evolution of gene expression between M. musculus, M. domesticus,

and M. castaneus (another closely related species). The results of

these studies were somewhat conflicting, with testis showing a clear

excess of expression divergence between M. musculus and M.

domesticus relative to brain or liver in only one of the experiments

(i.e., [5]). This experiment also evaluated F1 hybrid male

expression for two reciprocal crosses (M. domesticus and M. musculus;

M. castaneus and M. musculus) [5]. F1 expression patterns were

largely additive in most tissues and crosses; however, males from

one cross (female M. musculus x male M. castaneus) showed an excess

of mis-expressed transcripts in testis. The relevance of these data to

mouse speciation remains unclear because sterility factors are

polymorphic within house mice [45,47–49] and male fertility

phenotypes were not measured in this experiment.

Here we evaluate the role of gene expression in mouse

speciation by using a reciprocal cross between M. domesticus and

M. musculus that results in asymmetric hybrid male sterility. We

directly associate aberrant expression patterns with hybrid male

sterility by contrasting genome-wide expression data for both

species with data from fertile and sterile F1 hybrids. Previously

published phenotypic data from sterile hybrid males [44] were

used to generate simple qualitative predictions for expected

expression differences due to changes in the cellular composition

of sterile hybrid testis. We then considered these predictions in the

context of detailed information on the developmental timing of

gene expression during spermatogenesis [39,53].

Results/Discussion

Experimental design
The current work builds upon a previous study examining hybrid

male sterility [44]. Previously, all eight pairwise interspecific crosses

were performed between two wild-derived strains of M. domesticus

(LEWES/EiJ, WSB/EiJ) and two wild-derived strains of M. musculus

(PWK/PhJ, CZECHII/EiJ). F1 hybrid males from reciprocal

interspecific crosses between CZECHII/EiJ and either strain of

M. domesticus had small testis that produced few or no mature sperm.

In contrast, males from crosses involving PWK/PhJ were only

sterile when PWK/PhJ was the maternal strain (Figure 1).

Focusing on this latter asymmetric cross involving PWK/PhJ,

we interrogated expression levels of ,39,000 transcripts using

Affymetrix Mouse Genome 430 2.0 GeneChips. For each of four

genotypes (Figure 1), we examined expression levels of RNA

isolated from whole testis in three 60-day old males resulting in 12

microarray experiments. This cross design was chosen specifically

to evaluate the expression of a single M. musculus and M. domesticus

X chromosome on both con- and heterospecific F1 backgrounds.

Crosses within each species were performed to avoid confounding

expression and phenotypic differences within and between species

with differences between inbred and F1 genotypes. This design

provides two important contrasts for evaluating the contribution of

expression differences to reproductive isolation. First, comparison

of testis expression levels within M. musculus (hereafter MxM) and

within M. domesticus (hereafter DxD) males allows for the

identification of genes with divergent expression levels between

the species. Second, comparison between sterile hybrid males

(hereafter MxD, maternal strain first) and all other males, including

the fertile reciprocal hybrid (hereafter DxM), provides a direct

contrast between normal and sterile males.

Strong conservation of testis expression between species
on the X chromosome

Affymetrix 430 2.0 GeneChips were designed from the genome

of the laboratory mouse C57BL/B6, which is largely of M.

domesticus origin [54]. To help reduce the influence of probe

Author Summary

The X chromosome plays an important role in the
development of reproductive isolation between species,
but the basis for this has remained unclear. One possible
explanation is that sperm development is sensitive to
disruption of X-linked gene regulation. In mice, evidence
linking abnormal gene expression on the X chromosome
with reproductive isolation has been lacking until now.
Here we use experimental crosses within and between
species of mice and genome-wide expression data to
identify aberrant expression patterns associated with
hybrid male sterility. We observed chromosome-wide
over-expression of the X chromosome during spermato-
genesis in sterile hybrid males and developmentally
localized this breakdown to an apparent disruption of X-
inactivation. Collectively, these results highlight the
importance of gene regulation to the evolution of
reproductive isolation and support the hypothesis that
improper expression of the X chromosome during
spermatogenesis is an important mechanism contributing
to the rapid evolution of hybrid male sterility.

X-Linked Gene Expression and Hybrid Male Sterility
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mismatch, we incorporated probe performance into our analysis

by down-weighting probes with high technical variance and only

including genes that were detected in all samples based on

Wilcoxon signed rank tests (P,0.01) between perfect versus

mismatch signals. Of the 6,998 genes detected in all 12 samples

(Table S1), 2,065 were significantly different between M. musculus

and M. domesticus (P,0.05, pairwise t-tests). 1,435 of these genes

remained significant at an estimated false discovery rate (FDR) of

5% (P,0.02364, pairwise t-tests).

The cellular composition of testis is highly heterogeneous,

including populations of both somatic and germ line cells.

Therefore, expression data collected from whole testis can be

strongly influenced by the underlying cellular composition. We

used published expression data [53] to identify groups of genes

that show the greatest level of induction in somatic (Sertoli cells),

mitotic (spermatogonia), meiotic (spermatocytes), or postmeiotic

(round spermatids) cells. Of the 1,435 genes with significantly

different expression between the species (FDR,0.05), 712 genes

Figure 1. Experimental design and male reproductive phenotypes. The crossing designs used to generate F1 males from two intraspecific
crosses (DxD and MxM) and two interspecific crosses (DxM and MxD) are shown on the left. For each cross, the genotype for three autosomes and
both sex chromosomes are given. Light-colored chromosomes (white and white-hatched) are from wild-derived strains of M. domesticus (LEWES/EiJ,
WSB/EiJ) and dark-colored chromosomes (black and black-hatched) are from wild-derived strains of M. musculus (PWK/PhJ, CZECHII/EiJ). Previously
published estimates [44] of relative testis weights (standardized for body weight) and sperm counts are given for males from each cross, in black and
gray bars, respectively. Error bars indicate one standard deviation. (*) Hybrid MxD males were significantly reduced for both characters when
compared to MxM and DxD males (pooled, Wilcoxon rank sum, P,0.01). For each genotype, representative histological cross-sections of a single
seminiferous tubule are shown on the right. The first three genotypes showed normal progression of spermatogenesis, while the MxD males showed
diminished numbers of germ cells overall, poor organization of the seminiferous epithelium, and a large reduction in the number of postmeiotic cells.
doi:10.1371/journal.pgen.1001148.g001

X-Linked Gene Expression and Hybrid Male Sterility
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could be associated with a particular cell type. For these genes, loci

with significantly higher expression in M. domesticus were enriched

for meiotic genes but under-represented among mitotic genes

(Table 1). Expression differences were not biased with respect to

postmeiotic genes, suggesting that this difference does not reflect a

simple shift in the onset of spermatogenesis (i.e., later development

in M. musculus). Rather, it appears that evolutionary differences

between the species are enriched to particular developmental time-

points (i.e., meiosis). However, it is also possible that a subtle shift

in the overall cellular composition of the testis has evolved between

the species. Note that a slight majority of these differences resulted

from transcripts that were more highly expressed in M. musculus

(55%). These data suggest that probe effects due to evolutionary

divergence are not a major factor in our analysis because probe

mismatches to M. musculus should bias our results towards

transcripts appearing more highly expressed in M. domesticus.

Autosomal genes with divergent expression between species

were distributed as expected given the genomic location of probes

on the array (Figure 2). In contrast, we found half as many

significant differences as expected on the X chromosome (22

observed versus 43.5 expected; Bonferroni-corrected P,0.003).

The same under-representation of differences on the X chromo-

some was also obtained for the larger set of 2,065 genes (35 X-

linked observed versus 63 expected; Bonferroni-corrected

P,0.001) identified using a non-FDR corrected cutoff for the

pairwise t-tests (P,0.05). These results are seemingly at odds with

the prediction that the X chromosome may be disproportionately

involved in adaptive evolution [18]. Although empirical evidence

for faster X-linked evolution has been mixed [32], numerous

studies have reported higher levels of protein divergence [55–57],

a higher incidence of positive selection [56,58], and an over-

representation of certain classes of male reproductive genes

[29,59] on the X chromosome. We found that X-linked testis-

expressed genes also show a significantly higher rate of protein

evolution than autosomal testis-expressed genes (Wilcoxon signed

rank P,0.0001 for dN/dS pairwise comparison versus orthologous

rat genes; X chromosome, N = 152 genes, mean = 0.247, medi-

an = 0.160; autosomal dN/dS, N = 5,611 genes, mean = 0.165,

median = 0.112). Thus, contrary to considerable evidence for

rapid protein evolution on the X chromosome, our results

demonstrate that testis gene expression on the X chromosome is

actually more highly conserved between species of mice. Testis

expression is significantly enriched for mitotic expression on the X

chromosome (Table S2) and MSCI selects against expression

during meiosis [29]. These developmental constraints also appear

to limit X-linked expression divergence between species.

Widespread mis-expression of the X chromosome in
sterile hybrid males

To associate expression divergence with reproductive isolation,

we employed a hierarchical approach to define a conservative set

of sterility-correlated genes. First, we contrasted each of the three

fertile genotypes (MxM, DxD, DxM) with the MxD sterile F1 hybrid

mice and identified all genes with significantly different expression

between groups based on gene-by-gene t-tests (P,0.05; Figure 3).

The estimated FDR among significant differences identified in

these three pairwise contrasts ranged from 3.2% (MxD vs. DxD) to

19.3% (MxD vs. DxM). To help reduce the global FDR while

enriching for expression differences directly correlated with the

sterility phenotype, we focused only on the 902 genes that were

significantly different between the reciprocal hybrids and at least

one of the parental lines (Figure 3). We refer to these 902 genes as

‘‘sterility-correlated genes’’. The autosomal distribution of sterility-

correlated genes did not deviate from random expectations (Figure

S1). However, opposite to what was observed between species, we

detected a ,three-fold enrichment of sterility-correlated genes on

the X chromosome (81 observed versus 27.3 expected, Bonferroni-

corrected P,0.0001). Importantly, an approximately three-fold

enrichment of sterility-correlated genes on the X chromosome was

consistently observed across different operational definitions of

Table 1. Expression differences between M. domesticus and M. musculus across spermatogenic cell types.

Autosomes X chromosome

observed expected* P observed expected* P

All genes (N = 712)

Somatic 80 85.9 1 5 3.0 0.6300

Mitotic 172 220.2 0.0003 6 9.2 0.4345

Meiotic 284 233.9 0.0003 - -

Postmeiotic 159 155.0 1 6 4.7 1

Higher expression in M. domesticus (N = 320)

Somatic 31 38.8 0.7937 1 1.1 1

Mitotic 52 99.5 ,0.0001 2 3.3 1

Meiotic 154 105.7 ,0.0001 - - -

Postmeiotic 77 70.0 1 3 1.7 1

Higher expression in M. musculus (N = 392)

Somatic 49 47.1 1 4 2.0 0.1182

Mitotic 120 120.7 1 4 6.0 0.2455

Meiotic 130 128.2 1 - - -

Postmeiotic 82 85.0 1 3 3.1 1

*Expectations were generated independently for the X chromosome and the autosomes based on the observed distributions of expressed genes in a given cell type
and tested with a Bonferroni-corrected binomial distribution.
Dashes (-) denote that no meiotic genes were observed on the X chromosome.
doi:10.1371/journal.pgen.1001148.t001

X-Linked Gene Expression and Hybrid Male Sterility
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‘‘sterility-correlated’’: the 1,049 genes differing between sterile

MxD males and fertile DxM males (94 observed versus 31.8

expected, Bonferroni-corrected P,0.0001), the 397 genes different

in all three fertile vs. sterile pairwise contrasts (43 observed versus

12 expected, Bonferroni-corrected P,0.0001), and the 181 genes

different between all three fertile vs. sterile pairwise contrasts and

not different between all three fertile genotypes (21 observed

versus 5.5 expected, Bonferroni-corrected P,0.0001). Likewise,

we also observed a strong global enrichment of sterility-correlated

genes on the X chromosome (46 observed versus 6.8 expected,

Bonferroni-corrected P,0.0001) when using a more conservative

cutoff (P,0.01; estimated FDR 0.5–7.5%) in our pairwise t-tests

(Figure S2).

Histological analyses show that sterile MxD males have a

dramatic reduction in the number of postmeiotic cells (Figure 1,

[44]). Thus, postmeiotic cells comprise a smaller proportion of the

overall cellular composition of testis in sterile MxD testis when

compared to fertile males with normal spermatogenesis. There-

fore, genes expressed late in spermatogenesis would be expected to

show lower expression levels in these sterile males, even if

transcript abundances per cell were equivalent. Because we are

measuring transcript levels from a fixed amount of RNA extracted

from whole testis, it follows that transcripts from mitotic cells

would be proportionally more common in sterile males. This

simple qualitative model, hereafter referred to as the ‘‘cellular

composition hypothesis’’, predicts that mitotic genes should appear

to be over-expressed while postmeiotic genes should show lower

expression in sterile hybrid males. For example, postmeiotic cells

comprise ,85% of the total cellular content of adult testis [60]. If

postmeiotic cells only comprised 55% of the cells in the testis of

sterile F1 males then we would expect an apparent reduction in

postmeiotic expression to be accompanied by a three-fold

proportional increase in the relative abundance of non-postmeiotic

transcripts (i.e., an increase from 15% to 45% of total testis cellular

composition). Only genes with higher postmeiotic expression and

lower mitotic expression in sterile males are not confounded by

cellular composition and potentially reflect true expression

differences. Moreover, such differences should be highly conser-

vative because the skew in cellular composition should reduce our

power to detect true expression differences. In particular, the skew

in cellular composition will lead to an underestimate of the

magnitude of differences that is proportional to the underlying

difference in relative abundance of the relevant cell type.

To evaluate our data in the context of the cellular composition

hypothesis, we first binned the 902 sterility-correlated genes into

three groups: genes with higher expression in sterile MxD mice,

genes with lower expression in sterile MxD mice, and genes with

intermediate expression in sterile MxD mice. We then identified

607 sterility-correlated genes that could be associated with one of

four spermatogenic cell types [53]. Overall, postmeiotic genes

were highly over-represented among sterility-correlated genes and

there were many fewer meiotic genes than expected by chance

(Table 2). However, this global pattern masks key differences in

gene expression between the X chromosome and the autosomes.

Autosomal sterility-correlated genes closely followed the predic-

tions of the cellular composition hypothesis with most postmeiotic

genes showing lower expression (180 of 211, ,85%) and most

mitotic genes showing higher expression (151 of 184, ,82%) in

sterile MxD males. These differences are confounded by the

skewed cellular composition of the sterile versus fertile males and

thus may not reflect true differences in expression. In stark

contrast, most of the 902 sterility-correlated genes on the X

chromosome were over-expressed in sterile MxD males (,93% or

75 of 81). Thus, simple differences in the cellular composition of

sterile and fertile hybrid males do not explain a majority of mis-

expressed genes on the X chromosome. We also observed an

almost 2-fold increase in over-expressed postmeiotic genes on the

X chromosome (32 observed, 18 expected; Table 2). Strikingly, the

X chromosome harbors only ,6% of the postmeiotic genes in our

dataset (48 of 806) yet 89% of the postmeiotic genes (32 of 36) that

were over-expressed in sterile MxD males were X-linked. Overall,

there were 45 sterility-correlated genes that could not be explained

by simple differences in the cellular composition of testis from

Figure 3. Overlap of pairwise expression differences between
sterile and fertile mice. The Venn diagram gives the numbers of
genes with significantly different expression (P,0.05) for the three
pairwise contrasts between sterile MxD mice and the three fertile
mouse genotypes (DxM, MxM, DxD). The estimated FDR for each
comparison is given in parentheses. There were 902 genes that were
significantly different between the reciprocal hybrids and at least one of
the parental lines (gray shading).
doi:10.1371/journal.pgen.1001148.g003

Figure 2. Strong conservation of testis expression on the X
chromosome between species. The observed versus expected
distribution of the 1,435 genes with significantly different expression
between M. musculus and M. domesticus (P,0.02364; FDR,0.05) is
given for each chromosome. Only the X chromosome (red) showed a
significant deviation (22 observed versus 43.5 expected; Bonferroni-
corrected P,0.003) based on chromosome-wise hypergeometric tests.
doi:10.1371/journal.pgen.1001148.g002

X-Linked Gene Expression and Hybrid Male Sterility
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sterile and fertile males (higher postmeiotic, lower mitotic

expression in sterile males, Table S3); thirty-two of these were

over-expressed postmeiotic genes on the X chromosome (Figure 4).

Two patterns indicate that the signature of higher X-linked

expression in sterile MxD males is a chromosome-wide phenom-

enon. First, the 32 postmeiotic genes over-expressed in sterile MxD

males were distributed across the majority of the X chromosome

(8.7–166.2 Mb, Table S3, Figure 4). Second, over-expression of

the MxD X chromosome was also apparent when considering the

per chromosome deviation of all 6,998 expressed genes (Figure 5).

Genes on the X chromosome of the sterile MxD mice showed a

mean increase of 17% compared to the per gene median

expression level across all males (Figure 5A). In each of the six

pairwise comparisons, the distribution of expression differences

was significantly different between the X chromosome and the

pooled autosomes (Figure 5B). However, the two chromosomal

groups were similar and centered near zero for the three

comparisons between fertile genotypes (Figure 5B, top panel),

while the three contrasts involving sterile males all showed a

dramatic shift towards higher X-linked expression in sterile MxD

males (Figure 5B, bottom panel).

The observed over-expression of the X chromosome was also

not merely a consequence of probe-induced artifacts. Higher

expression of the X chromosome in sterile MxD mice is opposite of

what would be expected if our results were strongly influenced by

reduced probe affinity due to divergence from the M. domesticus-

derived microarray, because the X chromosome in the sterile

males is of M. musculus origin. More specifically, the fertile MxM

mice and the sterile MxD mice share the same hemizygous M.

musculus X chromosome and thus can be used to further evaluate

X-linked expression on con- and heterospecific F1 backgrounds,

independent of X-linked probe effects. A recent study [39]

provided a detailed account of cell type specific expression patterns

on the X chromosome, which is independent of the testis cell type

associations we used above [53]. This work identified five general

patterns of X-linked spermatogenic expression in mice: (1)

expressed primarily in mitotic cells and repressed in meiotic and

postmeiotic cells; (2) expressed in mitotic cells, repressed in meiotic

cells, and expressed in postmeiotic cells; (3) expressed primarily in

postmeiotic cells; (4) variable expression; (5) repressed in all cells.

Associating these X-specific expression groups with our testis

expression data from MxM and MxD males, we again found that

most genes (154 of 180) showed higher average expression on the

M. musculus X chromosome of MxD males, including 27 of 31

genes expressed primarily in postmeiotic cells (Figure S3). The

strong tendency for X-linked genes to show higher expression

in MxD males is in contrast to the slight bias (52% of genes) in

the opposite direction for autosomal genes in this pairwise

comparison.

By incorporating a detailed understanding of the sterility

phenotype with information on the progression of gene expression

during spermatogenesis, we were able to establish a striking

association between F1 sterility and mis-regulation of the X

chromosome that appears to be independent of differences in the

Table 2. Expression of sterility-correlated genes across spermatogenic cell types.

Autosomes X chromosome

observed expected* P observed expected* P

All genes (N = 607){

Somatic 55 66.5 0.5964 9 12.4 1

Mitotic 184 170.5 0.8445 26 37.5 0.0222

Meiotic 88 181.1 ,0.0001 - - -

Postmeiotic 211 120.0 ,0.0001 34 19.1 0.0006

Higher expression in sterile MxD males (N = 260){

Somatic 34 24.1 0.1519 8 11.6 0.9903

Mitotic 151 61.8 ,0.0001 25 35.3 0.0369

Meiotic 6 65.6 ,0.0001 - - -

Postmeiotic 4 43.5 ,0.0001 32 18.0 0.0008

Lower expression in sterile MxD males (N = 255){

Somatic 11 31.4 ,0.0001 0 0.2 1

Mitotic 9 80.5 ,0.0001 0 0.5 1

Meiotic 54 85.5 0.0032 - - -

Postmeiotic 180 56.6 ,0.0001 1 0.3 0.8323

Intermediate expression in sterile MxD males (N = 92){

Somatic 10 11 1 1 0.5 1

Mitotic 24 28.2 1 1 1.6 1

Meiotic 28 30 1 - - -

Postmeiotic 27 19.8 0.2983 1 0.8 1

*Expectations were generated independently for the X chromosome and the autosomes based on the observed distributions of expressed genes in a given cell type
and tested with a Bonferroni-corrected binomial distribution.
{Represents the subset of sterility-correlated genes that could be associated with cell types, excluding one gene on the Y chromosome.
{Genes with higher, lower, or intermediate average expression in sterile MD males relative to the average expression level in each of the three fertile genotypes.
Dashes (-) denote that no meiotic genes were observed on the X chromosome.
doi:10.1371/journal.pgen.1001148.t002

X-Linked Gene Expression and Hybrid Male Sterility
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cellular composition of the testis of sterile and fertile mice. The

large role of the X chromosome also does not appear to be a direct

consequence of greater evolutionary divergence for X-linked gene

expression because X chromosome expression appears exception-

ally conserved between species (Figure 2). Finally, the large role of

the X chromosome inferred from this study is consistent with

Figure 4. Forty-five sterility-correlated genes with patterns of expression robust to differences in testis cellular composition
between fertile and sterile males. Postmeiotic genes over-expressed in sterile males are shown in red, mitotic genes under-expressed in sterile
males are shown in blue. Autosomal loci with known male sterility knockout phenotypes are indicated with an (*). One locus, AL773568.19(y), is a
transcribed pseudogene.
doi:10.1371/journal.pgen.1001148.g004
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previous mapping results using these same strains, which showed

that many loci distributed along the entire M. musculus X

chromosome play an important role in hybrid male sterility [47].

Therefore, these data support the hypothesis that spermatogenic

gene regulation on the X chromosome is particularly sensitive to

incompatible interactions between the divergent genomes of M.

musculus and M. domesticus. With the current data, we cannot

determine whether higher expression of the X chromosome

Figure 5. Over-expression of the X chromosome in sterile MxD hybrid mice. (A) Average per chromosome deviation (log2 scale) for each
genotype versus the median per gene expression across all 12 males. The 19 autosomes (blue) are presented sequentially with the X chromosome
(red). (B) Distribution of pairwise expression differences for the X chromosome versus the autosomes. For each pairwise comparison, the proportional
distribution of gene-by-gene differences in mean expression (log2) is shown for the X chromosome (red) and the autosomes (blue) with results from a
Kolmogorov-Smirnoff test.
doi:10.1371/journal.pgen.1001148.g005
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results from a failure of MSCI or abnormally high postmeiotic

transcription. However, we did not observe a pachytene arrest

during meiosis I [44] as might be expected given a complete failure

of MSCI. Additional fine-scale examination of transcription on the

X chromosome during the developmental progression of spermato-

genesis should help resolve the exact timing and mechanism

underlying this pattern.

X-inactivation, mis-expressed autosomal genes, and
epigenetic regulation

Intrinsic hybrid incompatibilities typically arise due to epistatic

interactions among divergent genes [7–9]. In our experiment,

over-expression of the X chromosome only occurred on the MxD

hybrid genomic background and thus likely involves one or more

epistatic interactions between the M. musculus X chromosome and

loci on the M. domesticus Y and/or the autosomes. Differences in

the cellular composition of the testes of sterile and fertile mice may

mask many differentially expressed autosomal transcripts between

the sterile and fertile mice. Nevertheless, inspection of the 13

autosomal sterility-correlated genes with expression patterns that

should be robust to differences in cellular composition (Figure 4;

Table S3) revealed two compelling candidates for genes contrib-

uting to regulatory incompatibilities. First, DNA methyltransferase 3A

(Dnmt3a) showed significantly reduced expression in sterile MxD

males versus all three fertile genotypes (all P,0.021). Dnmt3a is

essential for de novo DNA methylation [61] and conditional

knockouts of Dnmt3a cause complete spermatogenic arrest

characterized by a failure of germ cells to develop past round

spermatids [62]. Under-expression of Dnmt3a, given its general

role as a repressor of transcription via DNA methylation, and the

global over-expression of X chromosome in our sterile mice

(Figure 5), together raise the possibility of a direct connection

between Dnmt3a and the failure of MSCI or PMSR. Dnmt3a is a

direct negative regulator of Xist [63], which is required for X-

inactivation in females [64]. In males, Xist is exclusively expressed

in testis coincident with the onset of MSCI [65]. However, MSCI

proceeds normally in males with a disrupted copy of Xist [66],

suggesting X-inactivation proceeds through sex-specific mecha-

nisms [41]. Thus, while Dnmt3a is essential for spermatogenesis, its

underlying role in MSCI and PMSR remains unresolved.

Second, the transcription factor Brwd1 (Bromodomain and WD

repeat domain containing 1) also showed significantly reduced

expression in sterile hybrid MxD males versus the three other

fertile genotypes (all P,0.005). Brwd1 is thought to influence

transcriptional regulation and chromatin remodeling during

spermatogenesis and oogenesis [67]. Mice homozygous for a null

mutant of Brwd1 show both male and female sterility [67]. In testis,

Brwd1 is most highly expressed in spermatogonia [53], yet

disruption of Brwd1 in males results primarily in postmeiotic

disruption of spermatogenesis, including dramatic reduction in

postmeiotic spermatocytes, low epididymal sperm counts, abnor-

mal sperm head morphology, and poor motility [67]. These

phenotypes are qualitatively similar to those found in both sterile

MxD males (Figure 1; [44]) and male-sterile strains of M. domesticus

(LEWES) consomic for portions of the M. musculus (PWK) X

chromosome [47].

In addition to Dnmt3a and Brwd1, a histone methyltransferase

gene on chromosome 17, Prdm9, was recently determined to be

involved in hybrid male sterility between M. musculus and M.

domesticus [50], marking the first discovery of a hybrid sterility locus

in a vertebrate. Prdm9 expression was not detected in any of the

males in our experiment, suggesting expression levels were beyond

the limits of microarray detection. Nevertheless, Prdm9 warrants

further consideration in the context of abnormal F1 gene

expression. Null mutants of Prdm9 disrupt homologous chromo-

some pairing and sex body formation during meiosis, resulting in

male and female sterility [51]. Crosses between female M. musculus

(PWD) and male C57BL/B6 (a laboratory strain predominantly of

M. domesticus origin [54]) result in complete meiotic arrest of hybrid

males due to an epistatic interaction between Prdm9 and multiple

unidentified autosomal and X-linked factors [46,68]. However,

genotypic data suggest that Prdm9 is not involved in hybrid sterility

in our experiment. Prdm9 is polymorphic for fertile and sterile

alleles in laboratory strains of mice (i.e., ,M. domesticus), and

hybrid sterility only ensues when both sterility alleles are present

[31]. The only protein-coding difference between sterile and fertile

M. domesticus Prdm9 alleles is variation in the number of C-terminal

C2H2 zinc-finger repeats [50]. We found that fertility-associated

Prdm9 length variants also segregate between wild-derived strains

of M. domesticus (LEWES, fertile allele; WSB, sterile allele) yet both

of these strains produce sterile hybrid males with largely

postmeiotic abnormalities when crossed with female M. musculus

(PWK) [44]. Moreover, the sterile MxD males carry the Prdm9

length variant associated with fertility. Thus, if Prdm9 was involved

in sterility of MxD males, it would require different allelic

combinations than previously described [50].

The role of X-inactivation and epigenetic gene regulation
in the evolution of hybrid male sterility

The global patterns we have described argue that disruption of

gene regulation plays an important role in house mouse speciation.

Several lines of evidence suggest that the X chromosome plays a

large role in reproductive isolation in house mice, and that the

genetic basis of this isolation is reasonably complex [47]. Three

studies have attempted to dissect the genetic basis of hybrid

sterility through introgression of the M. musculus X chromosome on

to largely M. domesticus genomic backgrounds [46,47,69]. All three

studies identified multiple QTL of large effect associated with male

sterility spanning the X chromosome, but finer-scale localization of

individual loci has thus far proven elusive. Interestingly, previous

crosses with these same strains revealed a near additive effect of

many loci along the entire X chromosome contributing to hybrid

male sterility [47]. That observation, together with the genomic

distribution of expression differences presented here, raises the

possibility that sterility in these mice largely reflects the effects of

disrupted transcriptional regulation of the X chromosome on a

hybrid genomic background. This hypothesis predicts that the M.

musculus X chromosome contains regulatory sequences along much

of its length that do not interact properly with one or more M.

domesticus autosomal loci. Chromosome-wide disruption of epige-

netic silencing could also help explain an overall reduction in X-

linked relative to autosomal gene flow between M. musculus X and

M. domesticus observed in the European hybrid zone [70–73].

The X chromosome often plays a central role in speciation but the

evolutionary basis for this has remained unclear. Several hypotheses,

including faster evolution of the X chromosome [18] and an inherent

sensitivity of spermatogenesis to disruption of X-linked gene

regulation [30,31], have been proposed to explain this phenomenon

[32]. Our data provide empirical support for a regulatory basis to

speciation in house mice and establish the importance of

transcriptional regulation of the X chromosome in the evolution of

hybrid male sterility, as originally proposed over 35 years ago [30].

Failure of MSCI may also play an important role in Drosophila

speciation [32], where the X chromosome is enriched for over-

expressed transcripts in testis of some sterile males [4]. In mammals,

MSCI has long been argued as a critical check-point in male meiosis

[74,75] and failure of X-inactivation has been suggested to be an

important cause of male sterility in humans and mice [41,75]. In

X-Linked Gene Expression and Hybrid Male Sterility
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turn, disruption of X-inactivation may also prove to be an important

mechanism contributing to two of the most general patterns in

speciation genetics: Haldane’s rule [11] and the disproportionately

large effect of the X chromosome in hybrid male sterility [7,17].

Methods

Ethics statement
Mice were maintained at the University of Arizona Central

Animal Facility following Institutional Animal Care and Use

Committee (IACUC) regulations.

Strains, animal husbandry, and male reproductive
phenotypes

All breeding colonies were established using individuals pur-

chased from the Jackson Laboratory (Bar Harbor, ME). LEWES/

EiJ and WSB/EiJ were originally derived from natural populations

of M. domesticus in eastern North America and the M. musculus strains

CZECHII/EiJ and PWK/PhJ were isolated from different localities

within the Czech Republic. After weaning, male offspring were

housed in sibling groups until 40 days postpartum, and then caged

singly until being sacrificed at 60 days old. We collected data for

several male reproductive phenotypes including testis weight, sperm

count, sperm motility, seminal vesicle weight, testis histology, and

fecundity. A detailed description of these data, including experi-

mental protocols, has been published previously [44].

Sample preparation and microarray processing
Immediately after males were euthanized, testes were dissected

and cross-sectioned, placed in RNAlater (Ambion, Inc., Austin, TX),

and archived at 280C. We extracted total RNA from whole testis

using an RNeasy Midi kit (QIAGEN Inc., Valencia, CA). RNA

sample quality and quantification was determined with an RNA

Nano LabChip on an Agilent Bioanalyzer 2100 (Santa Clara, CA).

Only samples with an RNA integrity number of 10 were used.

Biotinylated complementary DNA was generated from 5 mg of total

RNA and hybridized to the Affymetrix Mouse Genome 430 2.0

array (Santa Clara, CA). Sample quality control and microarray

processing was performed following the manufacturer’s instructions

by the Genomics Shared Service at the University of Arizona. In

order to estimate the between chip experimental variability, we

followed the standard protocol of spiking in transcripts for three

genes from the biotin synthesis pathway in E. coli (BioB, BioC, BioD)

and one transcript from the recombinase gene from bacteriophage

P1 (cre) as hybridization controls. For all of these transcripts there

were two probe sets present on the array platform that we used -

except for the BioB gene, which was targeted with three probe sets.

This results in nine probesets for which we could evaluate the effect

of hybridization onto different slides. The average Pearson

correlation between the 12 microarray experiments of the signals

from these nine probesets was observed to be very high (97.09%)

and ranged between 93.76% and 99.99%.

Analysis of expression data
Updated transcript definitions can improve both the precision

and accuracy of microarray data [76]. We used chip description

files [77] downloaded from BRAINARRAY (version 11; http://

brainarray.mbni.med.umich.edu). All data processing and analysis

was conducted using R [78]. The 430 2.0 array was designed from

the laboratory mouse genome, which is primarily derived from M.

domesticus [54]. We used two approaches to help avoid systematic

errors associated with this bias. First, data analysis was performed

using probe logarithmic intensity error estimation (PLIER) on the

signal intensity measurements as implemented with the justPlier

function in BioConductor [79]. The PLIER algorithm is a model-

based signal estimator that dynamically weights the probe signal

intensity data using empirical probe performance. Each of the

6,998 genes was targeted with an average of 17 probes (range: 7–

108). We used the PLIER algorithm to summarize the signals of

these probes in order to obtain a robust gene level expression

measurement. Second, we only considered genes with significantly

detectable expression in all 12 individuals. A gene was considered

expressed in an individual if the perfect match signal was

significantly higher than the mismatch signal (Wilcoxon signed

rank tests; P,0.01). Expression values were then quantile

normalized to facilitate comparison across chips.

The primary goals of our experiment were to identify global

patterns of testis gene expression with respect to (1) evolutionary

divergence between M. musculus and M. domesticus and (2) divergence

between sterile and fertile mice. To identify expression differences

between species (DxD versus MxM), we first identified all genes with

significantly different expression between groups based on gene-by-

gene Student’s t-tests (P,0.05), excluding genes with no variation

between individuals. We then estimated the t-test p-value

corresponding to an FDR of 5%, as implemented with fdrtool

[80], to evaluate the robustness of all global patterns inferred from

this pairwise contrast to multiple comparisons. Next we employed a

hierarchical approach to define a conservative set of sterility-

correlated genes. We first identified all genes with significantly

different expression between groups based on gene-by-gene

Student’s t-tests (P,0.05) in each of the three possible pairwise

comparisons between fertile genotypes (MxM, DxD, DxM) and the

MxD sterile F1 hybrid mice. To estimate the FDR of these individual

pairwise contrasts, we performed all ten possible sample-label

permutations of each pairwise comparison to derive an empirical

distribution of significant outcomes under the null hypothesis of no

differences between the groups [81]. The FDR was then calculated

as the ratio of the median number of significant outcomes in our

permutations to the observed number of significant outcomes at a

5% cutoff. The estimated FDR’s for individual pairwise compar-

isons in this study (3.2%–19.3%; see Results) are comparable to

those in other studies [82,83] and indicate that the results of the

individual pairwise contrasts are not dominated by type I error.

Nonetheless, because of the potential for false discovery of

individual genes, we emphasize global patterns of expression

difference with respect to genomic location rather than focusing

on individual genes. To further reduce the FDR, we also restricted

our focus to genes that were significantly different between the

reciprocal hybrids and at least one of the parental lines. While direct

estimation of the FDR for this hierarchically-defined set is

complicated by non-independence of partially overlapping com-

parisons, this set of genes should be much more conservative than

the three individual pairwise comparisons with respect to false

positives associated with male sterility. Finally, we repeated all

analyses using more stringent definitions of sterility-correlated and a

more conservative threshold for our gene-by-gene t-tests (P,0.01,

estimated FDR 0.5–7.5%) and observed the same global patterns

with respect to expression divergence on the X chromosome.

To evaluate our data in the context of up- versus down-

regulation of genes in sterile males we binned sterility-correlated

genes into three groups: genes with higher mean expression in

sterile MxD mice versus the mean expression of each of the three

fertile genotypes, genes with lower expression in sterile mice, or

genes where sterile mice showed intermediate levels of expression.

Gene set enrichment analysis
To determine if differentially expressed genes were randomly

distributed across the genome we performed chromosome-wise
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hypergeometric tests with Bonferroni correction for multiple

hypothesis testing. Gene annotation was based on Ensembl

version 52 of NCBI build 37 of the mouse genome. Of the

6,998 expressed genes in our analysis, 6,882 were annotated as

protein-coding genes, 13 as pseudogenes, two as retrotransposed

genes, and one small nucleolar RNA.

We used the GermOnline Systems database [84] to associate

genes with particular testis cell types. These cell type associations

derive from a series of microarray experiments on enriched cell

populations [53] and denote in which testis cell population

[somatic (Sertoli cells), mitotic (spermatogonia), meiotic (sper-

matocytes), or postmeiotic (round spermatids) cells] a given gene

showed the greatest level of induction in and is not necessarily

indicative of cell type specific expression. We also used additional

expression data [39] to provide a second, more detailed account of

cell type specific expression patterns on the X chromosome. Using

microarray analysis of enriched cell populations, X-linked genes

were classified into five expression groups: group A - expressed in

mitotic cells (A and B spermatogonia) and repressed in meiotic

(pachytene spermatocytes) and postmeiotic cells (round sperma-

tids); group B - expressed in mitotic cells, repressed in meiotic cells,

and expressed in postmeiotic cells; group C - expressed in

postmeiotic cells; group D - variable expression; group E -

repressed in all cells. Genes with variable expression (group D)

comprise a very small subset of X-linked genes [39] and were not

included in our analysis. Bonferroni-corrected binomial tests were

used to determine if subsets of genes were randomly distributed

with respect to cell types. Because gene expression on X

chromosome is non-random with respect to cell type (Table S2),

expectations were generated independently for the X chromosome

and the autosomes and were based on the observed distributions of

the total number of expressed genes in a given cell type.

Molecular evolutionary analysis
We analyzed all one-to-one orthologs between mouse and rat

using Ensembl annotation version 48 (www.ensembl.org; NCBI

mouse build 37). Rates of protein evolution were calculated based

on the number of nonsynonymous substitutions per nonsynon-

ymous site (dN) normalized by the number of synonymous

substitutions per synonymous site (dS), as previously reported [85].

Genotyping of Prdm9
The critical region of Prdm9 occurs in the C terminus, and the

sterility phenotype correlates with alternative numbers of C2H2

repeats [50]. This region was targeted using published primers

[50] centered around chromosome 17 position 15,249,000 (NCBI

m36 mouse genome assembly). Ten pmol of each primer was

combined with 5 nmol dNTP, 50 nmol MgCl2, BioRad Platinum

taq polymerase, buffer, and water to 25 mL, and run for 35 cycles

of: 94 C 20 sec, 57.5 C 20 sec, 68 C 90 sec. The classical inbred

strains C57BL/6J (sterile allele, 12 C2H2 repeats) and C3H (fertile

allele, 13 C2H2 repeats) were included as controls. PCR products

were scored on a 2% agarose gel.

Data deposition
The expression data reported in this paper have been deposited

in the NCBI Gene Expression Omnibus (GSE17684).

Supporting Information

Figure S1 Chromosomal distribution of sterility-correlated

genes. The observed versus expected distribution of the 902

sterility-correlated genes is given for each chromosome. Only the

X chromosome (red) showed a significant deviation (Bonferroni-

corrected P,0.0001; 81 observed versus 27.3 expected) based on

chromosome-wise hypergeometric tests.

Found at: doi:10.1371/journal.pgen.1001148.s001 (0.14 MB

TIF)

Figure S2 Overlap and chromosomal distribution of expression

differences between sterile and fertile mice based on pairwise t-

tests (P,0.01). (A) The Venn diagram gives the numbers of genes

with significantly different expression for the three pairwise

contrasts between sterile MxD mice and the three fertile mouse

genotypes (DxM, MxM, DxD). The estimated FDR for each

comparison is given in parentheses and was determined with

permutation. There were 226 genes that were significantly

different between the reciprocal hybrids and at least one of the

parental lines (gray shading). (B) The observed versus expected

chromosomal distribution of the 226 sterility-correlated genes.

Only the X chromosome (red) showed a significant deviation

(Bonferroni-corrected P%0.0001; 46 observed versus 6.8 expect-

ed) based on chromosome-wise hypergeometric tests.

Found at: doi:10.1371/journal.pgen.1001148.s002 (0.32 MB

TIF)

Figure S3 X chromosome expression in fertile MxM and sterile

MxD hybrid mice across spermatogenic cell types. The number of

genes with higher average expression in MxD versus MxM males

across four general patterns of X-linked spermatogenic expression

in mice [30] (see text for details). Genes with variable expression

(group D) were not included in this analysis. M = mitotic

expression, PM = postmeiotic expression. (*) Denotes a significant

deviation from the binomial expectation of equal proportions (all

P,0.0001). For comparison, the same contrast is provided for all

expressed autosomal genes.

Found at: doi:10.1371/journal.pgen.1001148.s003 (0.12 MB

TIF)

Table S1 Expression data for all 6,998 testis expressed genes.

Found at: doi:10.1371/journal.pgen.1001148.s004 (2.98 MB

XLS)

Table S2 Non-random cell type distribution of X-linked genes

expressed during spermatogenesis. The X chromosome shows a

significant excess of mitotic genes and no meiotic genes.

Found at: doi:10.1371/journal.pgen.1001148.s005 (0.03 MB

DOC)

Table S3 Forty-five sterility-correlated genes.

Found at: doi:10.1371/journal.pgen.1001148.s006 (0.04 MB

XLS)
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